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Abstract

In this article we prove that, for almost all training data-target pairs, a linear deep
neural network exhibits convergence for almost all initializations to a global min-
imum when using the classical gradient descent algorithm. This global result is
obtained through an original geometric framework relying on a key invariance prop-
erty induced by the network structure and providing, as a fundamental side result, a
clearer picture of the loss landscape. We further argue that the presented framework
is sufficiently powerful to envision extensions to nonlinear deep networks.

1 Introduction

Despite the rapid growing list of successful applications of deep neural networks trained with back-
propagation in various fields from computer vision [15] to speech recognition [19] and natural
language processing [7], our theoretical understanding on these elaborate systems, however, is
developing at a more modest pace.

One of the major difficulties in the design of deep neural networks today is that, to obtain networks
with greater expressive power, we cascade more and more layers to make them “deeper” and hope
to extract more “abstract” features from the (numerous) training data so as to improve the networks
in terms of generalization performance. Nonetheless, from an optimization viewpoint, this “deeper”
structure poses problems because it gives rise to non-convex loss functions and makes the optimization
seemingly intractable. In general finding a global minimum of a generic non-convex function is an
NP-complete problem [20] and it is unfortunately the case for neural networks as it was shown in [3]
that even training a very simple network is indeed NP-complete.

Yet, many non-convex problems such as phase retrieval, independent component analysis and
orthogonal tensor decomposition are known to obey the important properties [23] that 1) all local
minima are also global; and 2) around any saddle point the objective function has a negative directional
curvature (i.e., the possibility to continue to descend) and thus allow for the possibility to find some
way to fall into a “basin” with a (comparably) low loss “with high probability”. In this regard, the loss
surfaces of deep neural networks are receiving an unprecedented research interest: in the pioneering
work of Baldi & Hornik [2] the landscape of mean square losses was studied in the case of linear
auto-encoders (i.e., the same dimension for input data and output targets) of depth one; more recently
in the work of Saxe et al. [22] the dynamics of the corresponding gradient descent system was first
studied, by assuming the input data X empirical correlation matrix XXT to be identity, in a linear
deep neural networks, so as to propose a novel initialization method. Then in [13] the author proved
that under some appropriate rank condition on the (cascading) matrix product, all critical points
of a deep linear neural networks are either global minima or saddle points with Hessian admitting
eigenvalues with different signs, meaning that linear deep networks are somehow “close” to those
examples mentioned at the beginning of this paragraph. Nonetheless, the results in [22, 13] are
incomplete in the sense that they do not provide enough (global) information regarding when and
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how can gradient descent trajectories result in these global minima (recall that, to escape from saddle
points within a reasonable time one may alternatively use second-order methods with information
from the Hessian, artificially perturb the gradient with noise as in [12], etc.). Concretely speaking,
previous analyses in [13, 16] only focus on the local behavior of each critical point and a “global
picture” on the whole space occupied by the network weights is still in demand.

In this paper, we elaborate on the model from [22, 13] and evaluate the dynamics of the associated
gradient system in a “continuous” manner. We prove that, for almost every choice of training data-
target pair (X,Y) and almost every initialization for the weight matrices Wi, the corresponding
trajectory of the gradient system converges to a global minimum of the loss function. Based on
a cornerstone “invariant” in the parameter space induced by the network cascading structure, we
establish a generic framework for the geometric understanding of deep neural networks and provide
the aforementioned sought-for global picture of the gradient descent dynamics in the specific case
of linear networks. Due to space limitation, only proof sketches are provided in the H = 1 layer
scenario, along with generalization intuitions to the H > 1 case. The complete derivations for the
case H ≥ 1 are available in an extended version.

2 System Model and Main Result

2.1 Problem setup

We start with a deep linear neural network with H hidden layers as illustrated in Figure 1. To begin
with, the network structure as well as associated notations are presented as follows.

x ∈ Rdxh1 ≡W1x ∈ Rd1hH ≡WHhH−1 ∈ RdHŷ ≡WH+1hH

W1 ∈ Rd1×dx. . .WH+1 ∈ Rdy×dH

Figure 1: Illustration of the H-hidden-layer linear neural network

Let the pair (X,Y) denote the training data and associated targets, with X ≡ [x1, . . . ,xm] ∈ Rdx×m
and Y ≡ [y1, . . . ,ym] ∈ Rdy×m, where m denotes the number of instances in the training set and
dx, dy the dimensions of data and targets, respectively. We denote the weight matrix Wi ∈ Rdi×di−1

that connects hi−1 to hi for i = 1, . . . H + 1 and set h0 = x, hH+1 = ŷ as in Figure 1. The network
output is thus given by Ŷ = WH+1 . . .W1X. We denote W the (H+1)-tuple of (W1, . . . ,WH+1)
for simplicity and work on the mean squared error L(W) given by the Frobenius norm below,

L(W) =
1

2
‖Y − Ŷ‖2F =

1

2
‖Y −WH+1 . . .W1X‖2F (1)

under the following assumptions:
Assumption 1 (Dimension Condition). m ≥ dx ≥ max(d1, . . . , dH) ≥ min(d1, . . . , dH) > dy . In
particular in the case H = 1 this condition yields m ≥ dx ≥ d1 > dy .
Assumption 2 (Full Rank Data and Targets). The matrices X and Y are of full (row) rank, i.e., of
rank dx and dy , respectively, accordingly with Assumption 1.

Assumption 1 and 2 on the dimension and rank of the training data are realistic and practically easy
to satisfy, as discussed in previous works [2, 13].1

Under Assumptions 1 and 2, with the singular value decomposition on X = UXΣXVT
X with

VX =
[

V1
X V2

X

]
, V1

X ∈ Rm×dx and then on YV1
X ≡ Y = UYΣYVT

Y, together with an
immediate change of variable, we get L(W) = L(W) + 1

2‖YV2
X‖2F with

L(W) ≡ 1

2
‖ΣY −WH+1WH . . .W2W1‖2F (2)

1Assumption 1 is demanded here for convenience and our results can be extended to handle more elaborate
dimension settings. Similarly, when the training data is rank deficient, the learning problem can be reduced to a
lower-dimensional one by removing these non-informative data in such a way that Assumption 2 holds.
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where ΣX ≡ [ SX 0 ] ∈ Rdx×m, ΣY ∈ Rdy×dx and we denote WH+1 ≡ UT
YWH+1 ∈

Rdy×dH , W1 ≡ W1UXSXVY ∈ Rd1×dx and Wi = Wi for i = 2, . . . ,H . Therefore the state
space2 of Ξ ≡ (WH+1, . . . ,W1) is equal to X = Rdy×dH × . . .×Rd1×dx . In particular, for H = 1
we have dH = d1 and X has dimension d1(dx + dy).

With the above notations, we demand in addition the following assumption on the target Y.

Assumption 3 (Distinct Singular Values). The target Y has dy distinct singular values.

Although seemingly restrictive, Assumption 3 actually holds for an open and dense subset of Rdy×dx .

The objective of this article is to study the gradient descent [5] dynamics (GDD) defined as
Definition 1 (GDD). The Gradient Descent Dynamic of L is the dynamical system defined on X by

dΞ

dt
= −∇ΞL(Ξ) (3)

where ∇ΞL(Ξ) denotes the gradient of the loss function L with respect to Ξ. A point Ξ ∈ X is a
critical point of L if and only if∇ΞL(Ξ) = 0 and we denote Crit(L) the set of critical points.

In the following, we work directly on the equivalent equation (2) and start by evaluating the gradient
of L. With the previous notations, for ξ ≡ (wH+1, . . . ,w1), we expand the variation of L(Ξ + ξ) as

L(Ξ + ξ) = L(Ξ) + ∆Ξ(ξ) +O
(
‖ξ‖2

)
with M ≡ ΣY − WH+1 . . .W1, L(Ξ) = 1

2‖M‖
2
F and the differential ∆Ξ(ξ) given by

∆Ξ(ξ) ≡ −
∑H+1
j=1 tr

(
M

T
WH+1 . . .Wj+1wjWj−1 . . .W1

)
. We thus derive from Definition 1

the dynamics of L, for j = 1, . . . ,H + 1, as

dWj

dt
≡ −∇Wj

L(Ξ) =
(
WH+1 . . .Wj+1

)T
M
(
Wj−1 . . .W1

)T
. (4)

We first remark the following interesting (and crucial to what follows) property of the gradient system
(4), inspired by [22] which essentially considered the case where all dimensions are equal to one.
Lemma 1 (Invariant in GDD). Consider any trajectory of the gradient system given by (4). Then, for
j = 1, . . . ,H , the value of W

T

j+1Wj+1 −WjW
T

j remains constant, i.e.,

W
T

j+1(t)Wj+1(t)−Wj(t)W
T

j (t) = C0
j ≡ (W

T

j+1Wj+1 −WjW
T

j )
∣∣
t=0

, ∀t ≥ 0.

In particular, in the case of H = 1 we get W
T

2W2 −W1W
T

1 = C0 ≡ (W
T

2W2 −W1W
T

1 )
∣∣
t=0

.

Proof. Simply check that d
dt

(
W

T

j+1Wj+1 −WjW
T

j

)
= 0.

Lemma 1 provides a key structural property of the GDD that is instrumental to ensure the boundedness
of the gradient descent trajectories and thus in turn to prove the convergence to global minima.

2.2 Main Results

Our main result is Theorem 1 which provides information on the convergence of the GDD trajectories
to global minima under reasonable conditions. This result is obtained as follows: we first prove that
every trajectory of the GDD converges to a critical point of the loss function L. Thanks to this crucial
fact, it remains to show that the union of the basins of attraction over all the critical points which are
not global minima is “small”, in the sense that this union is contained in a subset of the state space X
that is of positive codimension. To this end, we perform a precise characterization and classification
of the critical points, followed by a local analysis of (4) around each critical point.

Concretely, we focus on the state space X and evaluate “how much” is occupied by the saddle points
(it turns out that every local minimum is global and there is no local maximum [13]): we stratify

2The network (weight) parameters Ξ evolve through time and are considered to be state variables of the
dynamical system, while the pair (X,Y) is fixed and thus referred as the “parameters” of the given system.
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the set of critical points Crit(L) in dy + 1 subsets, one of them corresponding to the set of global
minima and the dy others, Critr(L) with r = 0, . . . , dy− 1, corresponding to the set of saddle points.
Then, we perform the aforementioned fine study on the local behavior of gradient descent trajectories
“around” each saddle point, so as to measure its basin of attraction (i.e., the set of initializations for
which the GDD trajectories converge to that given saddle point). Precisely speaking, we determine,
for a given 0 ≤ r ≤ dy − 1, an upper bound Dr

S on the dimension of a differentiable manifoldM(Ξ)
containing the basin of attraction of each saddle point Ξ ∈ Critr(L) (note that Dr

S does not depend
on Ξ ∈ Critr(L)). To ensure global convergence from the local analysis, we further show that the
sum of the dimension of Critr(L) (which is defined since the latter is an algebraic variety) and Dr

S is
smaller than the dimension of the state space minus two. This allows us to reach the conclusion of
almost global convergence to global minima by means of transversality arguments [10].

We start with the global convergence to critical points of all gradient descent trajectories. While
one expects the gradient descent algorithm to converge to critical points, this may not always be the
case. Two possible (undesirable) situations are 1) a trajectory is unbounded or 2) it oscillates “around”
several critical points without convergence, i.e., along an ω-limit set made of a continuum of critical
points (see [24] for notions on ω-limit sets). The property of an iterative algorithm (like gradient
descent) to converge to a critical point for any initialization is referred to as “global convergence”
[25]. However, it is very important to stress the fact that it does not imply (contrary to what the name
might suggest) convergence to a global (or good) minimum for all initializations.

To answer the convergence question, we resort to Lojasiewicz’s theorem3 for the convergence of a
gradient descent flow of the type of (4) with real analytic right-hand side [17]. Since the loss function
L(Ξ) is a polynomial of degree (H + 1)2 in the components of Ξ, Lojasiewicz’s theorem ensures
that if a given trajectory of the gradient descent flow is bounded (i.e., it remains in a compact set for
every t ≥ 0) it must converge to a critical point with a guaranteed rate of convergence. In particular,
the previous phenomenon of “oscillation” cannot occur and we are left to ensure the absence of
unbounded trajectories. Lemma 1 is the core argument to show that all trajectories of the GDD are
indeed bounded, leading to the first result of this article as follows.
Proposition 1 (Global Convergence of GDD to Critical Points). Let (X,Y) be a data-target pair
satisfying Assumptions 1 and 2. Then, every trajectory of the corresponding gradient flow (4)
converges to a critical point as t→∞, at rate at least t−α, for some fixed α > 0 only depending on
the dimensions of the problem.

A first consequence of Proposition 1 is that it provides a rigorous justification for the appropriate
discretization of the GDD given in (3). Indeed the step size can be chosen in terms of an a priori
bound for the whole trajectory, which is explicitly determined only with the initial condition (see
[4]). This is in contrast with [16] in which the discretization step size of the GDD is determined with
a bound on the Hessian norm of a critical point, however, the latter assumption supposes that the
trajectory converges to a “well-known” critical point (with a prior information on the Hessian for
example) while no such information is available at the initial stage of training.

To provide guarantees of global convergence to a “good” critical point, we then carry out the
aforementioned analysis of the dimension of the sets Critr(L) to obtain our main result as follows.
Theorem 1 (GDD Converges to a Global Minimum for Almost All Initializations). Let Assumptions 1-
3 hold. Then there exists an open and dense subset P of the parameter (data) space P so that, for
every pair (X,Y) in P , there exists an open and dense subset X of the state space X such that
every trajectory of the GDD in (4) corresponding to (X,Y) and starting in X converges to a global
minimum with L(Ξ) = 0.

Previous works [13, 16] only studied local properties of critical points by establishing that the basin
of attraction of each saddle point, i.e., the set of initializations of the GDD trajectories converging to
that saddle point, is of measure zero. However, to obtain a global picture, one must estimate how
“big” is the union of all these basins of attraction. For that purpose, first note that the set of saddle
points, being an algebraic variety of positive dimension (see Item iii) of Proposition 2 below), is
therefore uncountable. This is why the previous works of local nature left open the possibility that a
global convergence result may not hold since the uncountable union of measure zero sets may sum
up to a set of positive measure. We solve this issue here by proving that the union of all the basins
of attraction associated with the saddle points is in fact contained in a codimension two subset of

3We defer the readers to Section A in Supplementary Material for a detailed description of the theorem.

4



the state space X . In the next section, a more advanced sketch of proof of Theorem 1 is provided.
For the sake of readability and to avoid cumbersome technical details, only the case of H = 1 is
elaborated. This proof provides the main arguments for the more technical analysis of the H ≥ 1
scenario, available in an extended version of this article.

3 Detailed Analysis of the case H = 1

In this section, we provide a detailed proof of Theorem 1 in the case of a single-hidden-layer linear
network (i.e., H = 1). To this end, we start with Proposition 1 which states the global convergence
of gradient flows in (4) to critical points, with a polynomial convergence rate in the worst case. In the
following, when state variables are concerned, we frequently drop the argument t for simplicity.

3.1 Global Convergence to Critical Points in GDD

Proof of Proposition 1 for H = 1. First note that for H = 1 the loss function L is a polynomial of
degree four in the elements of Ξ. According to Lojasiewicz’s theorem, it is enough to show that every
trajectory is bounded. To this end, we note from (4) that{

dW1

dt = W
T

2M
dW2

dt = M W
T

1

⇒
d tr

(
W

T

1W1 + W2W
T

2

)
dt

= 4 tr
(
W

T

1W
T

2M
)
,

where we recall M ≡ ΣY −W2W1 and therefore (since tr AAT = ‖A‖2F )

d
(
‖W1‖2F + ‖W2‖2F

)
dt

= 4 tr W
T

1W
T

2ΣY − 2 tr W
T

1W
T

2W2W1 − 2 tr W
T

1W
T

2W2W1

= 4 tr W
T

1W
T

2ΣY − tr W
T

2W2

(
W

T

2W2 −C0
)
− tr W1W

T

1

(
W1W

T

1 + C0
)
− 2‖W2W1‖2F

≤ 4 tr W
T

1W
T

2ΣY −
1

d1

(
‖W1‖4F + ‖W2‖4F

)
− 2‖W2W1‖2F + λmax(C0)

(
‖W1‖2F + ‖W2‖2F

)
≤ c1

(
‖W1‖2F + ‖W2‖2F

)
− c2

(
‖W1‖2F + ‖W2‖2F

)2
for some c1, c2 > 0, where we used Cauchy–Schwarz inequality (tr AAT)2 ≤ tr(AAT)2 ·tr I along
with

∣∣tr AATB
∣∣ ≤ λmax(B) tr AAT. Setting F ≡ ‖W1‖2F + ‖W2‖2F the above inequality reads

dF
dt ≤ c1F − c2F

2 with F ≥ 0 and hence the sum ‖W1‖2F + ‖W2‖2F is uniformly bounded for all
t ≥ 0. With Lemma 1 we know that the difference ‖W2‖2F − ‖W1‖2F is also uniformly bounded,
which further leads to the boundedness of all trajectories of both W1 and W2. Since the trajectories
of W1,W2 (and thus M) are uniformly bounded for all t ≥ 0, the norm of the gradient ‖∆Ξ‖F as
well as all trajectories in the GDD are bounded. The guaranteed rate of convergence can be obtained
from estimates associated with polynomial gradient systems [8].

3.2 Characterization of Critical Points

Proposition 1 ensures, for all initializations, the convergence of the gradient descent to a critical
point, i.e., a point Ξ in the state space X verifying ∆Ξ(ξ) = 0. Nonetheless, the information on the
“quality” of the solution achieved by the algorithm is still missing. To obtain a clearer picture, we
now focus on the set of all critical points by further decomposing the loss L with ΣY ≡ [ SY 0 ]
for diagonal SY ∈ Rdy×dy with [SY]ii > 0 as

L(W1,W2) =
1

2
‖ΣY −W2W1‖2F =

1

2
‖SY −CA‖2F +

1

2
‖CB‖2F (5)

with C ≡W2 ∈ Rdy×d1 , A ∈ Rd1×dy and B ∈ Rd1×(dx−dy) such that [ A B ] ≡W1.

Under the notations above, we further expand L(Ξ + ξ) to obtain its higher order variation as

L(A + a,B + b,C + c) ≡ L(Ξ + ξ) = L(Ξ) + ∆Ξ(ξ) +HΞ(ξ) +O
(
‖ξ‖3

)
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with M ≡ SY −CA, L(Ξ) = 1
2‖M‖

2
F + 1

2‖CB‖2F and

∆Ξ(ξ) ≡ − tr
(
MT(Ca + cA)

)
+ tr

(
BTCT(Cb + cB)

)
= O(‖ξ‖)

HΞ(ξ) ≡ − tr(MTca) +
1

2
‖Ca + cA‖2F + tr(BTCTcb) +

1

2
‖Cb + cB‖2F = O(‖ξ‖2)

that give the differential and the Hessian of L, respectively. Recall that Crit(L) ≡ {Ξ |∆Ξ(ξ) = 0}
and denote M ≡ SY −CA, so that, by Definition 1,

dA
dt ≡ −∇AL(Ξ) = CTM = 0
dB
dt ≡ −∇BL(Ξ) = −CTCB = 0
dC
dt ≡ −∇CL(Ξ) = MAT −CBBT = 0

⇔


CTSY = CTCA

CB = 0

ASY = AATCT.

(6)

Observing the symmetric structure of A,C in (6) we have the following lemma.

Lemma 2 (Same Kernel for A and CT). Let Assumption 1 and 2 hold. Then for all Ξ ∈ Crit(L),

Ker A = Ker CT, with Ker A ≡ {x,Ax = 0}.

Moreover, denote r the common rank of A and C with 0 ≤ r ≤ dy . Then there exists some orthogonal
matrix U ∈ Rdy×dy such that 

AU =
[

A 0d1×(dy−r)
]

CTU =
[

C
T

0d1×(dy−r)

]
U−1SYU = SY

(7)

with A,C
T ∈ Rd1×r. Moreover, if SY has distinct eigenvalues (i.e., Y has dy distinct singular

values, as demanded in Assumption 3), then U is a permutation matrix.

Sketch of proof. It can be shown with basic algebraic manipulations that the eigenvectors of S2
Y

(thus of SY) form a basis of both Ker A and Ker CT. Therefore Ker A = Ker CT and in particular
dim Ker A = dim Ker CT. We denote this dimension dy − r and A,C are thus both of rank r.
Choose U2 from Ker A and U1 ⊥ Ker A; we deduce U = [ U1 U2 ] so that (7) holds.

Remark from (7) in Lemma 2 that, for arbitrary SY, there are infinitely many possibilities on the
choice of U with the risk of occupying too much of the state space X , since, with the change of
variable in Lemma 2 the state variable now becomes the tuple (A,B,C,U). Using Assumption 3, U
only takes a finite number of values (the 2dy permutation matrices) for a given Ξ ∈ Critr(L), hence
the state variable essentially becomes the tuple (A,B,C).

For Ξ ∈ Crit(L) with A,C of rank r with 0 ≤ r ≤ dy, rewriting SY in two blocks SY =[
DY 0
0 EY

]
, with DY ∈ Rr×r and EY ∈ R(dy−r)×(dy−r). With Lemma 2, we then simplify (6) as{

C A = DY

CB = 0
, UTMU =

[
0 0
0 EY

]
(8)

with the fact that C
T
,A are both of full rank (equal to r). The loss L(Ξ) (at critical points) can thus

be simplified as L(Ξ) = 1
2‖EY‖2F where EY measures the “quality” of each critical points.

For any Ξ ∈ Crit(L), with Lemma 2 we are allowed to “extract” the full rank (sub-)structures of
A,C with SY unchanged, via a simple change of basis. For 0 ≤ r ≤ dy , let Critr(L) be the subset
of Crit(L) such that the rank of A and of C is equal to r. Then, one has the following disjoint union

Crit(L) = ∪dyr=0 Critr(L).

This precise characterization of critical points naturally leads to the following proposition on on the
loss function L(·), that can be further “visualized” as in Figure 2.

Proposition 2 (Landscape of Single-hidden-layer Linear Network). Under Assumptions 1-3, the loss
function L(Ξ) has the following properties:
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Figure 2: A geometric “vision” of the loss landscape.

i) The set of possible limits of L along the GDD given by (3) is equal to the finite set made of the
sum of the squares of any subset of the singular values of Y.

ii) The set Critdy (L) is in fact the set of local (and global) minima, with L = 0 and M = 0.

iii) Every critical point in Critr(L) with 0 ≤ r ≤ dy − 1 is a saddle point such that the Hessian has
at least two negative eigenvalues. In particular, the set of saddle points is an algebraic variety of
positive dimension, i.e., (up to a permutation matrix) the zero set of the polynomial functions given
in (8), with EY 6= 0.

Proof. Item i) follows directly from the discussion preceding the proposition. As for Item ii), we
write the Hessian for a given Ξ ∈ Crit(L) as

HΞ(ξ) = − tr(MTca) +
1

2
‖Ca + cA‖2F +

1

2
‖Cb + cB‖2F

with Ξ ≡ (A,B,C) such that (6) is satisfied and arbitrary ξ ≡ (a,b, c).

The fact that no critical point is a local maximum is easily checked by taking ξ such that Cb+cB 6= 0
and a = 0. Therefore, the Hessian has positive eigenvalues and Ξ is a not local maximum. Such
ξ always exists for at least one of B,C away from 0, while the case B = C = 0 is essentially the
case r = 0. Moreover, note from Lemma 2 that, for Ξ with A,C both of full rank (r = dy) we have
M = 0, resulting in equivalent global minima.

To show Item iii) it remains to prove that a critical point Ξ ∈ Critr(L) with 0 ≤ r ≤ dy−1 is in fact
a saddle point. To this end, with the same change of basis as in Lemma 2 we write aU = [ a1 a2 ],
cTU =

[
cT1 cT2

]
, with a1, c

T
1 ∈ Rd1×r so that the associated Hessian becomes

HΞ(ξ) = − tr(EYc2a2)+
1

2
‖Ca1+c1A‖2F+

1

2
‖Ca2‖2F+

1

2
‖c2A‖2F+

1

2
‖Cb+c1B‖2F+

1

2
‖c2B‖2F

with EY given in (8).

We next determine a non trivial linear subspace GΞ such that the restriction of HΞ to GΞ is negative
definite, which implies, as a simple consequence of the min-max theorem for quadratic forms (see
for example Theorem 4.2.6 in [11]), that HΞ has at least dimGΞ negative eigenvalues. To this end,
we confine our attention to the subspace FΞ defined by a1 = c1 = b = Ca2 = c2A = 0. Since
C A = DY from (8), we have that Rd1 is the direct sum of im A and Ker C, with im A the image
of the linear map x 7→ Ax. Hence, up to a change of basis, one can assume that C =

[
C̃ 0

]
and A

T
=
[

ÃT 0
]
, with nonsingular C̃, Ã ∈ Rr×r. If we write a2 and c2 in accordance

to the previous direct sum, FΞ is in fact defined by a1 = c1 = b = 0, aT
2 =

[
0 ãT

2

]
and

c2 = [ 0 c̃2 ]. It is therefore of dimension 2(d1 − r)(dy − r) and, on it, there exists c0 > 0 such
that we have

HΞ(ξ) = − tr(EYc2a2) +
1

2
‖c2B‖2F ≤ − tr(EYc̃2ã2) + c20‖c̃2‖2F

=

∥∥∥∥c0c̃T2 − ã2EY

2c0

∥∥∥∥2
F

− ‖ã2EY‖2F
4c20

.
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We now define GΞ as the subspace of FΞ such that c̃T2 = ã2EY

2c20
on which HΞ is clearly negative

definite by the above equation. We thus deduce that HΞ has at least (d1 − r)(dy − r) ≥ 2 negative
eigenvalues (since by Assumption 1 we have d1 > dy > r), which concludes the proof.

The fact that all local minima are equivalently global minima and all critical points that are not global
minima are saddle points is in fact already known for single-hidden-layer linear networks [2] as well
as for deep linear networks [13]. Here we provided an alternative and shorter proof.

3.3 Convergence to Global Minima for Almost All Initializations

Having characterized the critical points, we now show that the GDD almost always converges to a
local (and thus global) minimum, thereby completing the proof of Theorem 1.

End of proof of Theorem 1. We now complete the proof of Theorem 1 (for H = 1). Since Critr(L)
is fully characterized by (8), it is an algebraic variety, i.e., the set of zeros of a polynomial of degree
two, made of a finite number of two by two disjoint smooth strata [10]. One can therefore attach a
dimension to this algebraic variety as the largest dimension of each smooth stratum (the latter integer
defined as the standard dimension of a differentiable manifold). A simple but instrumental remark to
be made is that, for each Ξ ∈ Critr(L), the corresponding stratum at Ξ does not belong to the basin
of attraction of Ξ (since the corresponding GDD trajectories are converging to other critical points
rather that Ξ). More concretely, let C(Ξ) be the tangent space to the corresponding stratum at Ξ that
is of dimension Dr

C(Ξ) (which is locally constant on each stratum since it is the dimension of that
stratum). Since the associated Hessian HΞ is identically equal to zero on C(Ξ), the latter is contained
in the tangent space of the central manifold associated with the GDD at Ξ. Hence, by standard
transversality arguments [10], one deduces that there exists (in an open neighborhood of every Ξ in
every stratum of Critr(L)) a differentiable manifoldM(Ξ) containing the basin of attraction of Ξ,
which is transverse to the direct sum of C(Ξ) and the linear span made of the variations corresponding
to negative eigenvalues of HΞ (the tangent space of the unstable manifold of the GDD at Ξ).

Therefore, by Item iii) of Proposition 2, we have the dimension of the aforementioned differentiable
manifold dimM(Ξ) = dimX − 2 − Dr

C(Ξ). As a consequence, the union of all the basins of
attraction of saddle points in Critr(L) is (locally) contained in a set parameterized by (Ξ,M(Ξ)),
for Ξ in a stratum of Critr(L). The dimension of this set Sr is then clearly upper bounded by the
sum of Dr

C(Ξ) (that is locally constant) and dimX − 2−Dr
C(Ξ), hence by dimX − 2. Since this

bound does not depend on (any open neighborhood in Critr(L) of) Ξ, we deduce that the union of
all the basins of attraction of saddle points in Critr(L) is contained in a subset (of the state space X )
of codimension at least 2. Since there is a finite number of Sr, their union for r = 0, . . . , dy − 1 is
also of codimension two, which concludes the proof of Theorem 1.

As stated in Proposition 1 and Theorem 1, GDD achieves at least a polynomial convergence rate [8]
to a global minimum (for almost all initializations). As a side and immediate aftermath, it can be
shown that, upon proper initialization, exponential convergence can be achieved (here for H = 1).

Remark 1 (Exponential Convergence of GDD). Let Assumptions 1 and 2 hold. Then, every trajectory
of the GDD such that C0 ≡ (W

T

2W2 −W1W
T

1 )
∣∣
t=0

has at least dy strictly positive eigenvalues,
converges to a global minimum at the rate of e−2αt with α the dy-th smallest eigenvalue of C0.

Proof. Recalling that for H = 1 we have L = 1
2

∥∥ΣY −W2W1

∥∥2
F

, with (4) we deduce

d‖M‖2F
dt

=
d tr(M

T
M)

dt
= −2 tr(M

T
M W

T

1W1 + W2W
T

2M M
T

) ≤ −2c0‖M‖2F (9)

with M ≡ ΣY −W2W1 and c0 = λmin(W
T

1W1) + λmin(W2W
T

2 ). Since W
T

1W1 ∈ Rdx×dx is
of maximum rank d1 (with d1 ≤ dx from Assumption 1), we have λmin(W

T

1W1) = 0. Nonetheless,
W2W

T

2 ∈ Rdy×dy may be of full rank so that λmin(W2W
T

2 ) > 0. To this end, we decompose
W2 =

[
W21 W22

]
, with W21 ∈ Rdy×dy . Then with the inclusion principle of Hermitian ma-

trices (e.g., Theorem 4.3.28 in [11]) we deduce λmin(W
T

21W21) ≥ λdy (W
T

2W2). Moreover, since
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λmin(W
T

21W21) = λmin(W21W
T

21), by Lemma 1 and Weyl’s inequality (e.g., Corollary 4.3.12
in [11]), we have

λmin(W2W
T

2 ) ≥ λmin(W21W
T

21) ≥ λdy (W
T

2W2) ≥ λdy (C0).

As such, (9) yields d tr(M
T
M)

dt ≤ −2λdy (C0) tr(M
T
M) which concludes the proof.

4 Concluding Remarks

To the best of the authors’ knowledge, it is the first time that the global behavior of the gradient
descent dynamics in linear neural networks is fully characterized, in the sense that we show a global
convergence to critical points of all trajectories of the gradient flow via Lojasiewicz’s theorem, which
helps eliminate the possibility of divergence. Then with a fine local study of critical points we exclude
the (possible) worries concerning the “accumulation” of saddle points together with associated basin
of attractions so that they form “disjoint layers” that are of total measure zero in the total weight space.
Interestingly, Lojasiewicz’s theorem is more powerful than needed here and may enable extensions of
the present results to more advanced dynamics than the simple GDD (see Remark 2 in Supplementary
Material for more details).

It is interesting to note that the authors in [9, 6], made a strong case to warn against saddle points in
deep learning, which is in sharp contrast with our conclusions. Yet, the analysis in [9, 6] is asymptotic
in the network dimensions, where the present one is set for fixed network sizes. It would be of interest
to conciliate both results to gain a even clearer picture of deep linear learning in practical scenarios.

When nonlinear networks are considered, obtaining an equivalent version of Lemma 1 would be a key
enabler to achieve the global convergence to critical points as per Lojasiewicz’s theorem and therefore
would allows for a better understanding of the nonlinear deep networks performance. Exploring
a random model setting for X,Y, the authors in [6] argue that the loss surfaces of these networks
loosely recall (yet is formally quite different from) a spin-glass model, familiar to statistical physicists.
In this case, as the network gets large, local minima gather in a thin “band” of similar losses isolated
from the global minimum. Stating that the number of local minima outside that band diminishes
exponentially with the size of the network, the authors argue that the gradient descent dynamics
(in their case the stochastic gradient descent dynamics) converges to this band and therefore leads
to deep nonlinear networks with good generalization performance. Taking advantage of a random
nature for X,Y in our present setting would allow for a refinement of our proposed geometric vision,
likely by means of a “statistical extension” of the key Lemma 1.
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Supplementary Material
Almost Global Convergence to Global Minima
for Gradient Descent in Deep Linear Networks

A Lojasiewicz’s theorem

We first recall Lojasiewicz’s theorem for the convergence of real analytic gradient flows, which is
essentially the key enabler to prove the global convergence of the GDD trajectories.
Theorem 2 (Lojasiewicz’s theorem, [17]). Let L be a real analytic function and let Ξ(·) be a solution
trajectory of the gradient system given by Definition 1. Further assume that supt≥0 ‖Ξ(t)‖ < ∞.
Then Ξ(·) converges to a critical point of L, as t→∞.4

Remark 2. Since the fundamental (strict) gradient descent direction (as in Definition 1) in Lo-
jasiewicz’s theorem can in fact be relaxed to a (more general) angle condition (see for example Theo-
rem 2.2 in [1]), the line of argument developed in the core of the article may be similarly followed
to prove the global convergence of more advanced optimizers (e.g., SGD, SGD-Momentum [21],
ADAM [14], etc.), for which the direction of descent is not strictly the opposite of the gradient
direction. This constitutes an important direction of future exploration.

4This theorem is based on the fundamental Lojasiewicz’s inequality of analytic functions [18].
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