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Part I34

Mathematical Background35

In this part, we provide a brief review of the mathematical background that will be used36

in the remainder of this monograph. This part assumes basic knowledge of the readers, and it37

aims to present well-known or relatively well-known results in a way that will be particularly38

useful for our subsequent discussions.39

High-dimensional Equivalent

Definition 1.1 (High-dimensional Equivalent). Let φ(X) be a nonlinear model of a
random matrix X ∈ Rp×n, and let f(φ(X)) be a 1-Lipschitz scalar observation map with
entrywise φ : Rp×n → Rp×n and observation map f : Rp×n → R. We say that X̄φ (which
can be deterministic or random) is a High-dimensional Equivalent of φ(X) with respect
to f(·) if, with probability at least 1− δ(p, n) we have that

|f(φ(X))− f(Xφ)| ≤ ε(n, p), (1.1)

for some non-negative functions ε(n, p) and δ(n, p) that decrease to zero as n, p → ∞.
We denote the relation in (1.1) as

φ(X)
f↔ Xφ. (1.2)

40

Analyze and Optimize Large-scale ML model φ(X,Θ)

Objective: Evaluation of φ(X,Θ) via Performance Metric f(·)

Technical Challenge 1

High-dimensionality in X,Θ

Technical Challenge 2

Analysis of Eigen-functional

Technical Challenge 3

Non-linearity in ML model

Key Idea 1

Concentration of f(φ(X,Θ)) ' E[f(φ(X,Θ))]

Key Idea 2

Deterministic Equivalent for Resolvent

Key Idea 3

High-dimensional linearization of φ(X,Θ)

Figure 1.1: Flow diagram of the proposed RMT-based analysis framework for large-scale ML
models.
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Chapter 141

Basic probability: Random scalars42

and random vectors43

In this chapter, we briefly review some basic probability results to be used throughout the44

monograph. In Chapter 1.1, we recall the definition of moment and tail of a scalar random45

variable, as well as the definition of the class of sub-gaussian and sub-exponential distributions.46

In Chapter 1.2, we consider the sample mean of a collection of independent random variables,47

and we review its asymptotic characterization via the law of large numbers (LLN) and the central48

limit theorem (CLT). In Chapter 1.3, we view the sample mean as a linear scalar observation49

f(x) = xT1n/n of a large random vector x ∈ Rn, and we establish non-asymptotic concentration50

results on f(x). In Chapter 1.4, we extend the concentration results on linear scalar observations51

(of x ∈ Rn) to Lipschitz and even certain non-Lipschitz observations. Finally, in Chapter 1.5, we52

give a preview of how similar concentration behaviors will extend to large-dimensional random53

matrices.54

1.1 Scalar random variables: moments and tails55

Let us start with a scalar random variable. Given a scalar random variable x ∈ R, one can56

characterize its behavior via its distribution/law. Equivalently, one can characterize its behavior57

via its successive moments (when they are well defined) or its moment generating function58

(MGF). In particular, the MGF, and/or the successive moments of a random variable x, as well59

as whether or not it satisfies the sub-gaussian or the sub-exponential property, provide different60

ways to characterize (the properties of) the law/distribution of x.61

The definition of these concepts, as well as their connections, are given as follows.62

Definition 1.1 (Moments and moment generating function, MGF). For a scalar random63

variable x defined on some probability space (Ω,F ,P), we denote64

1. E[x] the expectation of x;65

2. Var[x] = E[(x− E[x])2] = E[x2]− (E[x])2 the variance of x;66

3. for p > 0, E[xp] the pth moment of x;67

4. for p > 0, E[|x|p] the pth absolute moment of x; and68

5. for λ ∈ R, Mx(λ) = E[eλx] =
∑∞

p=0
λp

p! E[xp] the moment generating function (MGF) of x.69

The pth (absolute) moment of a scalar random variable x can be written as an integral of70

the tail of that random variable, as follows. The tail is of interest since it provides a character-71

ization of the probability that the random variable x differs from a deterministic value (e.g., its72

expectation, or zero in the case of Lemma 1.2 below) by more than a certain amount t > 0.73
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1.1. SCALAR RANDOM VARIABLES: MOMENTS AND TAILS 5

Lemma 1.2 (Moments versus tails). For a scalar random variable x and fixed p > 0, we74

have75

E[|x|p] =

∫ ∞
0

ptp−1P (|x| ≥ t) dt, (1.1)76

as long as the right-hand side term is finite; and77

P (|x| ≥ t) ≤ exp(−λt)M|x|(λ), t, λ > 0, (1.2)78

with M|x|(λ) the MGF of |x| that is assumed finite.79

Proof of Lemma 1.2. To prove Equation (1.1), note that for |x|p > 0, we have

E[|x|p] = E
∫ ∞

0
1t≤|x|pdt = E

∫ ∞
0

1t≤|x|pt
p−1dt =

∫ ∞
0

ptp−1E[1t≤|x|]dt =

∫ ∞
0

ptp−1P(|X| > t)dt.

The proof of Equation (1.2) follows, for λ > 0, directly from the Markov’s inequality, as

P (|x| ≥ t) = P (exp(λ|x|) ≥ exp(λt)) ≤ E[exp(λ|x|)]
exp(λt)

= exp(−λt)M|x|(λ).

80

Equation (1.2) is known as the (exponential) Markov’s inequality.81

As a consequence of Lemma 1.2, bounding the tail decay P (|x| ≥ t) is equivalent to con-82

trolling the (successive) moments of the random variable x. In particular, consider a random83

variable x such that E[x] = µ and Var[x] = σ2. In this case, we have84

P(|x− µ| ≥ tσ) ≤ t−2, t > 0, (1.3)85

which is known as the Chebyshev’s inequality.86

Equation (1.3) permits us to state that a random variable lies within some range, with some87

probability. In particular, if we allow for some failure probability δ ∈ (0, 1), then it follows from88

Equation (1.3) that, with probability at least 1− δ, the random x must lie within the range89

x ∈ [µ− σ/
√
δ, µ+ σ/

√
δ]. (1.4)90

Of course, this result may or may not be useful. For example, depending on δ and σ, the size91

of this interval can be large with respect to size of µ (for µ ≈ σ and δ = 1/2, say).92

In what follows, we will be particularly interested in the family of sub-gaussian and sub-93

exponential random variables, i.e., those having tails akin to standard Gaussian and exponential94

random variables, respectively. Here is the definition of the sub-gaussian distribution.95

Sub-gaussian distribution

Definition 1.3 (Sub-gaussian distribution). For a standard Gaussian random vari-
able x ∼ N (0, 1), we have that the law of x is given by the Gaussian measure µ(dt) =

1√
2π

exp(−t2/2), so that

P(x ≥ X) = µ([X,∞)) =
1√
2π

∫ ∞
X

exp(−t2/2) dt ≤ exp(−X2/2). (1.5)

We say y is a sub-gaussian random variable if it has a tail that decays as fast as standard
Gaussian random variables, that is

P (|y| ≥ t) ≤ exp(−t2/σ2
N ), (1.6)

for some σN > 0 (known as the sub-gaussian norm of y) for all t > 0.
96



6CHAPTER 1. BASIC PROBABILITY: RANDOM SCALARS AND RANDOM VECTORS

A closely related family is the sub-exponential distribution.97

Sub-exponential distribution

Definition 1.4 (Sub-exponential distribution). For an exponential random variable
x ∼ Exp(λ) of parameter λ > 0, we have that the law of x is given, for X ≥ 0, by

P(x ≥ X) = λ

∫ ∞
X

exp(−λt) dt = exp(−λX), (1.7)

and 1 for X < 0. We say y is a sub-exponential random variable if it has a tail that
decays as fast as exponential random variables, that is

P(|y| ≥ t) ≤ exp(−t/σN ). (1.8)

for some σN > 0 (known as the sub-exponential norm of y) for all t > 0.
98

Clearly, a sub-exponential random variable is somewhat more heavy-tailed than a sub-gaussian99

random variable, in the sense that it has more probability mass far out in the tail.100

We can compare the sub-gaussian tail in Definition 1.3 with the tail bound in Equation (1.3)101

(which we recall relies only on the assumption of bounded variance): for a sub-gaussian random102

variable x of mean µ = E[x] and sub-gaussian norm σN , one has that103

P (|x− µ| ≥ tσN ) ≤ exp(−t2), (1.9)104

for all t > 0. From this, we see that the sub-gaussian norm σN of x acts as a scale parameter105

(that is similar, in spirit, to the variance parameter of Gaussian distribution).106

Remark 1.5 (Concentration of scalar random variables around their means). Clearly,107

Equation (1.9) characterizes a much stronger concentration behavior than Equation (1.3). Re-108

latedly, Equation (1.9) can also be used to state that a random variable lies within some range,109

with some probability: with probability at least 1− δ, one has110

x ∈ [µ− σN
√

ln(1/δ), µ+ σN
√

ln(1/δ)]. (1.10)111

In this case, Equation (1.10) provides much stronger control on the location of x than Equa-112

tion (1.4). See Figure 1.1a for an illustration of this “concentration around means” behavior of113

sub-gaussian random variables.114

We note, however, that even under this much stronger control of sub-gaussianity, a “tradeoff”115

exists in Equation (1.10) (and, of course, also in the weaker form in Equation (1.4)) between the116

confidence and the range of the random x: increasing the confidence of the estimate (by taking117

smaller δ) will lead to fluctuation on a larger interval. Due to this tradeoff, the scale of the width118

of the interval need not be small, compared to the mean; and thus it is a priori inappropriate119

to say that the value of the random x can be well approximated by any deterministic value,120

e.g., its expectation µ = E[x].121

As a concrete example, taking δ = 0.01 and σN = µ, it follows from Equation (1.10) that the122

sub-gaussian random x is within the interval [−3.6µ, 4.6µ] with confidence 0.99. This is much123

stronger than Equation (1.4), but may still not be satisfactory in scenarios that are extremely124

sensitive to approximation errors.125

Remark 1.6 (Sub-gaussian and sub-exponential random vectors). The idea in Defini-126

tion 1.3 and Definition 1.4 extends to random vectors. In particular, we say that127

1. a random vector x ∈ Rn is sub-gaussian if its one dimensional marginals xTy are, for all128

y ∈ Rn of unit norm ‖y‖ = 1, sub-gaussian random variables, that is, P(|xTy| ≥ t) ≤129

exp(−t2/C2
n) for all t ≥ 0 and some Cn > 0, where that Cn may depend on the dimension130

n; and131
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2. a random vector x ∈ Rn is sub-exponential if its one dimensional marginals xTy are, for132

all y ∈ Rn of unit norm ‖y‖ = 1, sub-exponential random variables, that is, P(|xTy| ≥133

t) ≤ exp(−t/Cn) for all t ≥ 0 and some (possibly dimension-dependent) Cn > 0.134

We refer the interested readers to [36, Section 3.4] for discussions on sub-gaussian and sub-135

exponential random vectors. In what follows, we will not be particularly interested in this136

perspective on random vectors.137

1.2 A collection of scalar random variables: from LLN to CLT138

Many textbooks on statistics and/or data science start with the (asymptotic) study of sums of139

independent variables, and in particular with the law of large numbers (LLN) and the central140

limit theorem (CLT). These will be discussed in this section.141

For a collection of independent and identically distributed (i.i.d.)1 random variables x1, . . . , xn142

of mean µ and variance σ2, we have, by independence, that143

Var

[
1

n

n∑
i=1

xi

]
=

1

n2

n∑
i=1

Var[xi] =
σ2

n
. (1.11)144

That is, the variance of the sample mean 1
n

∑n
i=1 xi is n times smaller than that of each com-145

ponent; and, in particular, it vanishes as n → ∞ (as long as σ2 does not scale with n). This146

indicates that for n large, the (random) sample mean strongly concentrates around its expecta-147

tion µ, and thus that it is meaningful to say that the random variable can be approximated by148

a deterministic quantity. This is in sharp contrast to, e.g., the standard sub-gaussian concen-149

tration in Equation (1.10) for which the variance or sub-gaussian norm is independent of n.150

A formal asymptotic characterization of this concentration behavior is given by the law of151

large numbers (LNN), given as follows.152

Theorem 1.7 (Weak and strong law of large numbers, LLN). For a sequence of
i.i.d. random variables x1, . . . , xn with finite expectation E[xi] = µ <∞, we have

1. the sample mean 1
n

∑n
i=1 xi → µ in probability as n→∞, that is, for any t > 0,

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑
i=1

xi − µ

∣∣∣∣∣ ≥ t
)

= 0, (1.12)

known as the weak law of large numbers (WLLN); and

2. the sample mean 1
n

∑n
i=1 xi → µ almost surely as n→∞, that is

P

(
lim
n→∞

1

n

n∑
i=1

xi = µ

)
= 1, (1.13)

known as the strong law of large numbers (SLLN).
153

The strong law of large numbers is technically stronger than the weak law (in characterizing a154

faster growth rate of the success probability to one as n grows), but the intuition remains the155

1Note that for the LLN and CLT here, the i.i.d. assumption plays a central role and allows for a large “degrees
of freedom” in the large collection of random variables x1, . . . , xn. The i.i.d. assumption can be relaxed to
independent, however at the cost of some additional control on the higher-order moments, e.g., with Lyapunov’s
CLT, see [4, Theorem 27.3]. As we shall see later in Chapter 6.1, similar results hold for random matrices.
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same. Theorem 1.7 provides asymptotic characterization of what can be called the first-order156

and close-to-deterministic behavior of the sample mean 1
n

∑n
i=1 xi.157

The next result, the well-known central limit theorem (CLT), goes one step further by158

characterizing the limiting behavior of the second-order random fluctuation of the properly159

scaled sample mean around its expectation µ.160

Theorem 1.8 (Central limit theorem, CLT). For a sequence of i.i.d. random vari-
ables x1, . . . , xn with E[xi] = µ and Var[xi] = σ2, we have, for every t ∈ R that

P

(
1

σ
√
n

n∑
i=1

(xi − µ) ≥ t

)
→ 1√

2π

∫ ∞
t

e−x
2/2 dx (1.14)

as n → ∞. That is, as n → ∞, the random variable 1
σ
√
n

∑n
i=1(xi − µ) → N (0, 1) in

distribution.
161

The asymptotic concentration properties of the LLN and CLT can be viewed in a unified162

way, as we describe in the following remark.163

Remark 1.9 (Concentration of sample mean of a collection of random vari-
ables: asymptotic characterization). The results of the LLN and the CLT in Theo-
rem 1.7 and Theorem 1.8, respectively, can be compactly written as

1

n

n∑
i=1

xi ' µ︸︷︷︸
O(1)

+N (0, 1) · σ/
√
n︸ ︷︷ ︸

O(n−1/2)

, (1.15)

as n→∞, for µ, σ both of order O(1). Equation (1.15) makes explicit both the first order
and second order behavior of the sample mean of a sequence of i.i.d. random variables
x1, . . . , xn, with E[xi] = µ and Var[xi] = σ2, as:

1. in the first order (of magnitude O(1)), it has an asymptotically deterministic be-
havior around the expectation µ; and

2. in the second order (of magnitude O(n−1/2)), it strongly concentrates around this
deterministic quantity with a universal Gaussian fluctuation, regardless of the dis-
tribution of the component of xi.

We will see that this behavior occurs well beyond the sum of i.i.d. random variables.
164

1.3 Concentration of random vectors and their scalar observa-165

tions166

We move on to discuss the concentration properties of random vectors. These have important167

connections with the results on a collection of random variables in Chapter 1.2; and they will lay168

the foundations for similar results on random matrices later in Chapter 6. Consider a random169

vector x ∈ Rn having i.i.d. entries, that is x = [x1, . . . , xn]T. Without loss of generality, we can170

choose E[xi] = µ, and Var[xi] = σ2 for i ∈ {1, . . . , n}.171

We should first define what we mean by “concentration” for a random vector x ∈ Rn. In172

the following observation, we show that (perhaps rather surprisingly) random vectors do not173

“concentrate” around their means, if we consider the vectors themselves.174
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−3 0 3

0

0.2

0.4
H

is
to

gr
am

(a) “Concentration” around the mean for one-
dimensional random vectors

x

y

E[x] = E[y] = 0n

≈
‖x‖2 ≈

√
n

‖y‖2 ≈
√
n

(b) “Non-concentration” around the mean for
multi-dimensional random vectors

Figure 1.1: Visualization of the “concentration” (Figure 1.1a) versus “non-concentration”
(Figure 1.1) around the mean behavior for one- versus multi-dimensional random vectors x,y ∈
Rn in XX and Observation 1.10, respectively.

Observation 1.10 (Random vectors do not “concentrate” around their means). For175

two independent random vectors x,y ∈ Rn, having i.i.d. entries with zero mean and unit variance176

(that is, µ = 0 and σ = 1), we have that177

E[‖x− 0‖22] = E[xTx] = tr(E[xxT]) = n, (1.16)178

and further by independence that179

E[‖x− y‖22] = E[xTx + yTy] = 2n. (1.17)180

This means that the origin (which is also the mean of x in this case) is always, in expectation,181

at the midpoint of two independent draws of random vectors in Rn. The statement easily182

generalizes to the case of nonzero mean with E[x] 6= 0, and it allows us to conclude that any183

random vector x ∈ Rn with n large is not close to its mean. More generally, it can be shown184

that the random vector x does not itself “concentrate” around any n-dimensional deterministic185

vector in any traditional sense. This large-dimensional counterintuitive “non-concentration”186

behavior is visualized in Figure 1.1.187

In spite of this, from the LLN and CLT in Theorem 1.7 and Theorem 1.8, one expects that188

some types of “observations” or “measurements” of x ∈ Rn (e.g., averages over all the entries189

of x, to retrieve the sample mean), must concentrate in some sense, at least as n → ∞. In190

the following, we can “interpret” the sample mean as a “linear scalar observation” of a vector191

x ∈ Rn.192

Remark 1.11 (Sample mean as a linear scalar observation). Let x ∈ Rn be a
random vector having i.i.d. entries, then the sample mean of the entries of x can be
rewritten as the following linear scalar observation f : Rn → R of x, defined as

f(x) = 1T
nx/n =

1

n

n∑
i=1

xi, or f(·) = 1T
n(·)/n. (1.18)

193

Importantly, while the result of Observation 1.10 shows that a given random vector x ∈ Rn does194

not itself concentrate/converge in any meaningful sense, Remark 1.11 shows that, when observed195

via “linear queries” or scalar observations, it does concentrate/converge, in this weaker (“scalar196

observation”) sense.197
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Table 1.1: Different types of characterizations of the linear scalar observation f(x) = xT1n/n
for x ∈ Rn, having i.i.d. entries with mean E[xi] = µ and variance σ2 or sub-gaussian norm σN .

First-order behavior Second-order behavior

Asymptotic
f(x)→ µ

LLN in Theorem 1.7

√
n
σ

(f(x)− µ)→ N (0, 1) in law

CLT in Theorem 1.8

Non-asymptotic
under finite variance

E[f(x)] = µ
P (|f(x)− µ| ≥ tσ/

√
n) ≤ t−2

in Theorem 1.12

Non-asymptotic
under sub-gaussianity

E[f(x)] = µ
P (|f(x)− µ| ≥ tσN /

√
n) ≤ exp(−Ct2)

in Theorem 1.13

Let’s be clear about what we have done. The quantity 1
n

∑n
i=1 xi can be viewed in one of198

two complementary ways: as the empirical mean of n instantiations of a scalar random variable,199

providing a meaningful way to quantify how that the empirical mean may concentrate about200

its population mean; and as a “scalar observation” of a single instantiation of a random vector,201

which by Observation 1.10 does not concentrate about its mean.202

Asymptotic characterization of concentration of linear scalar observations. An203

asymptotic characterization of this concentration behavior for random vectors is given in Equa-204

tion (1.15) of Remark 1.9, and it is illustrated in Figure 1.1.205

Non-asymptotic characterization of concentration of linear scalar observations. We206

now provide non-asymptotic characterizations of the concentration behavior of the linear scalar207

observation f(x) in Remark 1.11, under two different assumptions on the behavior of the tail208

of the (entries of the) random vector x. To do so, we consider two cases: that the entries of x209

1. are only assumed to have finite variance σ2 (but nothing is assumed about its tail behavior210

or higher-order moments); and211

2. have sub-gaussian tails with sub-gaussian norm σN .212

The results are summarized in Table 1.1. We now describe them in more detail.213

Non-asymptotic analysis of f(x) under finite variance. Let us compute the expectation214

and variance of the linear scalar observation f(x) = 1T
nx/n of x ∈ Rn, for x having i.i.d. entries215

with E[xi] = µ and Var[xi] = σ2:216

E[f(x)] = E[xT1n/n] = µ,

Var[xT1n/n] = 1T
nE[(x− E[x])(x− E[x])T]1n/n

2 = σ2/n,
(1.19)217

where we recall that E[x]/
√
n = µ1n/

√
n and the covariance 1

n Cov[x] = σ2In/n. Note that this218

nothing but Equation (1.11).219

Plugging the results in Equation (1.19) into the Chebyshev’s inequality in (1.3), we get the220

following concentration result for the scalar observation f(x) = xT1n/n.221

Theorem 1.12 (Concentration of f(x) under finite variance). For the linear scalar ob-222

servation f(x) = xT1n/n of a random vector x, with x ∈ Rn having i.i.d. entries with E[xi] = µ223

and Var[xi] = σ2, we have, for any n and t > 0 that224

P
(
|f(x)− µ| ≥ tσ/

√
n
)
≤ t−2, (1.20)225
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Notably, the linear scalar observation f(x) = xT1n/n is close-to-deterministic for n large, in226

the following sense: for some failure probability smaller than δ, it follows from Equation (1.20)227

that the random x will be within the range of228

f(x) ∈ [µ− σ/
√
nδ, µ+ σ/

√
nδ], (1.21)229

with probability at least 1− δ. Note that here the range is of length 2σ/
√
nδ, which, for given230

σ and δ, can be made small for n large. More precisely, consider the case of µ = σ 6= 0 and231

δ = 0.01, having a sufficiently large n ≥ 106 leads to the approximation f(x) ∈ [0.99µ, 1.01µ]232

with confidence 0.99. This should be contrasted with Equation (1.4) in which we do not observe233

such large-n concentration for each of the entries of x to “compensate” the fundamental tradeoff234

between the confidence and approximation error.235

Non-asymptotic analysis of f(x) under sub-gaussianity. Stronger concentration results236

can obtained under stronger assumptions, e.g., by considering the case of x having independent237

sub-gaussian entries. In this case, it follows from the (general) Hoeffding’s inequality (see,238

e.g., [36, Theorem 2.6.2]) that the scalar observation f(x) = xT1n/n concentrates within a239

radius of 1/
√
n from its mean with exponentially high probability, as in the following result.240

Theorem 1.13 (Concentration of f(x) under sub-gaussianity). For the linear scalar241

observation f(x) = xT1n/n of a random vector x, with x ∈ Rn having independent sub-gaussian242

random variables x1, . . . , xn with E[xi] = µ and sub-gaussian norm bounded by σN , we have,243

for any n and t > 0 that244

P(|f(x)− µ| ≥ t) ≤ exp(−Cnt2/σ2
N ), (1.22)245

or equivalently P (|f(x)− µ| ≥ tσN /
√
n) ≤ exp(−Ct2) for some constant C > 0.246

As a consequence of Theorem 1.13, we have that247

f(x) ∈ [µ−
√

ln(1/δ)/C · σN /
√
n, µ+

√
ln(1/δ)/C · σN /

√
n] (1.23)248

with probability at least 1− δ. Again, let us compare this expression with Equation (1.10) for249

a scalar sub-gaussian random variable. In Equation (1.23), we do not face, for n large, the250

confidence-range tradeoff observed in Equation (1.10), in the sense that for large n the scale of251

the width of the interval can be made small, e.g., compared to the mean. As a telling example,252

consider again the case µ = σN and δ = 0.01, so that by Equation (1.23) we have, for large253

enough n ≥ 4.6/C · 104, that the approximation f(x) ∈ [0.99µ, 1.01µ] holds with probability254

0.99. Thus, we can confidently say that the value of f(x) can be well-approximated by the255

deterministic µ.256

A few remarks are in order.257

Remark 1.14 (Connection to Chernoff bound). In the special case of x ∈ Rn having258

independent Bernoulli entries (i.e., P(xi = 1) = pi ∈ (0, 1) and xi = 0 otherwise) with µ =259

1
n

∑n
i=1 pi ∈ (0, 1), it then follows from the standard Chernoff bound that260

P
(∣∣∣1T

nx/n− µ
∣∣∣ ≥ t) ≤ exp(−nt2/(3µ)), (1.24)261

for t ∈ (0, µ). This agrees with the expression in Equation (1.22) by taking C = 1/(3µ), since262

Bernoulli random variables are bounded and thus sub-gaussian.263

Here is a summary of the (non-asymptotic) concentration properties of linear scalar obser-264

vations of large random vectors.265
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Remark 1.15 (Concentration of linear scalar observation of large random vec-
tors). Equation (1.20) and Equation (1.22) of Theorem 1.12 and Theorem 1.13, re-
spectively, show that the random vector x ∈ Rn, when “observed” via the linear scalar
observation f(x) = 1T

nx/n, exhibits the following concentration behavior:

f(x) ' µ︸︷︷︸
O(1)

+ X/
√
n︸ ︷︷ ︸

O(n−1/2)

, (1.25)

for n large, with some random X of order O(1) that:

1. has a tail that decays (at least) as t−2, for finite n and x having entries of bounded
variance (from Equation (1.20));

2. has a sub-gaussian tail (at least) as exp(−t2), for finite n and x having sub-gaussian
entries (from Equation (1.22)); and

3. has a precise Gaussian tail independent of the law of (the entries of) x, but in the
limit of n→∞ (from the CLT in Theorem 1.8).

To summarize:

1. in the first order (of magnitude O(1)), it fluctuates around the deterministic quan-
tity µ (that does not scale with the dimension n); and

2. in the second order (of magnitude O(n−1/2)), it exhibits a strong concentration
around the expectation µ with a fluctuation/deviation (that vanishes as n−1/2),
the tail behavior of which depends on the law of the entries of x.

266

Remark 1.16 (Connection between Remark 1.9 and Remark 1.15). Remark 1.15 takes267

a similar form to the asymptotic characterization given in Remark 1.9. They both establish268

close-to-deterministic behavior of f(x) = xT1n/n with strong concentration, in the sense that269

the random fluctuation is of smaller order than the mean µ. The major differences between the270

two are the following.271

1. Remark 1.9 provides an asymptotic characterization of f(x) that holds only as n → ∞.272

However, it holds for more general x, as long as x has i.i.d. entries of some mean and273

variance say, in which case the limiting fluctuation is precisely Gaussian, as n→∞.274

2. Remark 1.15 provides a non-asymptotic characterization of the behavior of f(x) that holds275

for any n. However, this comes at the price of evaluating, on a case by case basis, the276

precise law of the entries of x.277

1.4 Lipschitz, quadratic concentration, and beyond278

The discussion around Remark 1.15 was motivated by two facts: Observation 1.10, which noted279

that random vectors do not concentrate about their mean, in a meaningful manner analogous280

to how random scalars concentrate about their mean; and that, when working with scalar281

observations of random vectors, we obtain expressions that are formally equivalent to computing282

empirical estimates of sums of scalar random variables.283

Importantly, the properties described in Remark 1.15 extend beyond the specific linear284

observation, f(x) = 1T
nx/n, to many types of (possibly) nonlinear observations. (Clearly, they285

easily extend to generic linear observations of the form aTx.) Below, we formally define the286

scalar observation map of (random) vectors.287
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Table 1.2: Different types of scalar observations f(x) of random vector x ∈ Rn, having inde-
pendent entries.

Scalar observation Characterization

Linear
sample mean f(x) = 1T

nx/n as in Remark 1.11,

and f(x) = aTx for a ∈ Rn
Table 1.1

Lipschitz f(x) for a Lipschitz map f : Rn → R Theorem 1.19

Quadratic form f(x) = xTAx for some A ∈ Rn×n
Hanson–Wright inequality

in Theorem 1.22

Nonlinear quadratic form
f(x) = φ(xTY)Aφ(YTx)

for entry-wise φ, A ∈ Rn×n,Y ∈ Rp×n
Theorem 1.24

Scalar observation maps

Definition 1.17 (Scalar observation maps). For a (random or not) vector x ∈ Rn,
we say f(x) ∈ R is a scalar observation of x, with observation map f : Rn → R.

288

In this section, we will describe several different scalar observation maps (Lipschitz, quadratic289

functions, and nonlinear quadratic functions), and we will provide characterizations of their290

concentration behaviors. These results are summarized in Table 1.2.291

Lipschitz maps. Consider first a Lipschitz map f(x), for some f : Rn → R, defined as follow.292

Lipschitz function

Definition 1.18 (Lipschitz function). For a function f : Rn → R, we say f is Lipschitz
with Lipschitz constant Kf > 0 if

|f(x1)− f(x2)| ≤ Kf‖x1 − x2‖2, (1.26)

holds for any x1,x2 ∈ Rn.
293

The following result characterizes the concentration behavior of the Lipschitz (scalar) observa-294

tion of, say, Gaussian random vectors.295

Theorem 1.19 (Concentration of Lipschitz map of Gaussian random vectors, [36,296

Theorem 5.2.2]). For a standard Gaussian random vector x ∼ N (0, In) and a Lipschitz297

function f : Rn → R of Lipschitz constant Kf > 0, we have, for all t > 0 that298

P (|f(x)− E[f(x)]| ≥ t) ≤ exp(−Ct2/K2
f ), (1.27)299

for some universal constant C > 0.300
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Remark 1.20 (Concentration of Lipschitz observation of large random vec-
tors). It follows from Theorem 1.19 that Lipschitz scalar observations f(x) of the random
vector x ∈ Rn behave as

f(x) ' E[f(x)] +Kf , (1.28)

for n large, where Kf is the Lipschitz constant of f (that is, in general, of order O(n−1/2),
see Remark 1.21 below). This leads to first- and second-order behaviors akin to those
discussed in Remark 1.15 (and Remark 1.9):

1. in the first order, f(x) fluctuates around the deterministic quantity E[f(x)]; and

2. in the second order, it concentrates around this deterministic quantity with a fluc-
tuation/deviation that is proportional to Kf and has a sub-gaussian tail.

301

Remark 1.21 (Linear observations as Lipschitz observations). The linear map 1T
n(·)/n302

is, by definition, Lipschitz, with Lipschitz constant K1T
n(·)/n = n−1/2. This allows us to deduce303

the result in Theorem 1.13 from Theorem 1.19 without resorting to the Hoeffding’s inequality.304

More generally, if one has f(x) = O(1) and305

|f(y1)− f(y2)| = O (Kf‖y1 − y2‖2) , (1.29)306

then, for x ∼ N (0, In) (for which we know ‖x‖2 = O(
√
n)), taking y1 = x and y2 = 0, one307

deduces that Kf = O(n−1/2), so that the second order fluctuation in Equation (1.28) is again308

of order O(n−1/2), as for linear observation in Remark 1.15.309

Quadratic form maps. When non-Lipschitz observations of x are considered (with non-310

Lipschitz f), one may intuitively expect that the random variable f(x) still concentrates in311

some way, but “less so,” compared to the Lipschitz case. An important special case of this312

arises when one considers quadratic forms, i.e.,313

xTAx for some given A ∈ Rn×n of x, (1.30)314

from which one can define “quadratic form observations.” The following result, known as the315

Hanson–Wright inequality, precisely characterizes the concentration behavior of the quadratic316

(so non-Lipschitz ) form of x having independent sub-gaussian entries.317

Theorem 1.22 (Hanson–Wright inequality for quadratic forms, [36, Theorem 6.2.1]).318

For a random vector x ∈ Rn having independent, zero-mean, unit-variance, sub-gaussian entries319

with sub-gaussian norm bounded by σN , and deterministic matrix A ∈ Rn×n, we have, for every320

t > 0, that321

P
(∣∣∣xTAx− tr A

∣∣∣ ≥ t) ≤ exp

(
− C

σ2
N

min

(
t2

σ2
N ‖A‖2F

,
t

‖A‖2

))
, (1.31)322

for some universal constant C > 0.323

From Theorem 1.22, we see that, depending on the interplay between the “range” t and324

the deterministic matrix A, the random quadratic form xTAx swings between a sub-gaussian325

(exp(−t2)) and a sub-exponential (exp(−t)) tail. For example, consider A = In so that ‖A‖2 = 1326

and ‖A‖2F = n. In this case, it follows from Theorem 1.22 that327

P
(∣∣∣∣ 1n‖x‖22 − 1

∣∣∣∣ ≥ t√
n

)
≤ exp

(
− C

σ2
N

min

(
t2

σ2
N
,
√
nt

))
. (1.32)328

From this, it follows that:329
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1. close to the mean (that is, equal to one) with t <
√
nσ2
N , the (normalized) squared330

Euclidean norm ‖x‖22/n strongly concentrates around one, with a sub-gaussian decay; and331

2. away from the mean with t >
√
nσ2
N , the (normalized) squared Euclidean norm ‖x‖22/n332

still concentrates, but less, with a sub-exponential decay.333

Remark 1.23 (Concentration of Euclidean norm of large random vectors). It
follows from Theorem 1.22 that the squared Euclidean norm ‖x‖22, as a (non-Lipschitz)
quadratic observation of x ∈ Rn, behaves as

1

n
‖x‖22 ' 1 +O(n−1/2), (1.33)

for n large. This, again, leads to the first- and second-order behaviors as:

1. in the first order, ‖x‖22/n fluctuates around the deterministic quantity one; and

2. in the second order, it concentrates around this deterministic quantity with a fluc-
tuation/deviation that grows with σ2

N and of order O(n−1/2) with a sub-gaussian
tail when close to the deterministic quantity, and with a sub-exponential tail (so
with a fluctuation with heavier tail and concentrates “less” than the Lipschitz case)
when far away.

This should be compared and contrasted with the case of Lipschitz maps in Remark 1.20.
334

Nonlinear quadratic form maps. More generally, we may be interested in more involved335

observations of large random vectors than the quadratic forms characterized by the Hanson–336

Wright inequality in Theorem 1.22. An example is nonlinear quadratic forms of the type337

1

n
φ(xTY)Aφ(YTx), (1.34)338

for Gaussian random x ∈ Rp and deterministic A ∈ Rn×n and Y ∈ Rp×n. This is of direct use339

in the analysis of large and random neural network models in ??, for which the random vectors340

x are (columns of) the network weights applied on deterministic input data Y. A nonlinear341

activation function φ : R→ R of a neuron is then applied entry-wise on xTY. The concentration342

behavior for these nonlinear quadratic forms is precisely characterized in the following result.343

Theorem 1.24 (Concentration of nonlinear quadratic forms, [20, Lemma 1]). For a344

standard Gaussian random vector x ∼ N (0, Ip) and deterministic A ∈ Rn×n,Y ∈ Rp×n such345

that ‖A‖2 ≤ 1, ‖Y‖2 = 1, we have, for Lipschitz function φ : R→ R with Lipschitz constant Kφ346

and any t > 0 that347

P
(∣∣∣∣ 1nφ(xTY)Aφ(YTx)− 1

n
tr AKφ(Y)

∣∣∣∣ ≥ t√
n

)
≤ exp

(
− C

K2
φ

min

(
t2

(|φ(0)|+Kφ

√
p/n)2

,
√
nt

))
,

(1.35)348

with Kφ(Y) = Ex[φ(YTx)φ(xTY)] ∈ Rn×n, for some universal constant C > 0.349

Theorem 1.24 can be seen as a nonlinear extension of the Hanson–Wright inequality in Theo-350

rem 1.22. In particular, in the case of Y = In with p = n and f(x) having zero mean and unit351

variance entries, Theorem 1.24 reads352

P
(∣∣∣∣ 1nφ(x)TAφ(x)− 1

n
tr A

∣∣∣∣ ≥ t√
n

)
≤ exp

(
− C

K2
φ

min

(
t2

(|φ(0)|+Kφ)2
,
√
nt

))
. (1.36)353
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This is in accordance with the Hanson–Wright inequality in Theorem 1.22, since for Lipschitz354

φ : R → R of Lipschitz constant Kφ and standard Gaussian x, the entries of φ(x) are sub-355

gaussian with sub-gaussian norm Kφ. Note, however, that in the general case with Y 6= In,356

φ(YTx) does not have independent entries, and so Theorem 1.22 does not apply, at least357

directly, to prove Theorem 1.24 for generic Y.358

Remark 1.25 (Concentration of nonlinear quadratic form observation of large
random vectors). Similar to Remark 1.23, it follows from Theorem 1.24 that the non-
linear quadratic observation 1

nφ(xTY)Aφ(YTx), for Lipschitz f , behaves as

1

n
φ(xTY)Aφ(YTx) ' 1

n
tr AKφ(Y) +O(n−1/2), (1.37)

for n large, with max{φ(0),Kφ, p/n} = O(1). This, again, leads to the first- and second-
order behaviors as:

1. in the first order, 1
nφ(xTY)Aφ(YTx) fluctuates around the deterministic quantity

1
n tr AKφ(Y); and

2. in the second order, it concentrates around this deterministic quantity with a fluc-
tuation of order O(n−1/2) with a sub-gaussian tail when close to the deterministic
quantity, and with a sub-exponential tail when far away from the deterministic
quantity.

359

1.5 Looking beyond random scalars and vectors360

We have seen in Chapters 1.3 and 1.4 that, while large-dimensional random vectors x ∈ Rn361

themselves do not concentrate (see Observation 1.10 and an illustration in Figure 1.1), their362

(linear, Lipschitz, quadratic, and even nonlinear quadratic) scalar observations establish con-363

centration behavior of the type364

f(x) ' E[f(x)] + o(1), (1.38)365

for some observation map f : Rn → R, with high probability, for n large, and some small order366

term o(1) that vanishes as the dimension n grows large. In the aforementioned examples of367

linear, Lipschitz, quadratic, and nonlinear quadratic forms, this small o(1) term is shown to be368

O(n−1/2).369

Matrices, as natural extension of vectors, are expected to establish similar behaviors. For a370

large-dimensional random matrix X ∈ Rp×n, one may expect the following.371

1. Similar to Observation 1.10 for vectors, the random matrices themselves do not concen-372

trate, e.g., in a spectral norm sense, such that ‖X − E[X]‖ 6→ 0 as n → ∞, as we shall373

below in Theorem 5.7.374

2. At the same time, extending the scalar observation maps of vectors, in Definition 1.17,375

a similar large-dimensional concentration behavior for the scalar (e.g., eigenspectral) ob-376

servations f(X) of the random matrix X can be observed for certain matrix functionals377

f : Rp×n → R of X.378

As such, when one is interested only in scalar observations—in the matrix case, this could379

correspond to “trace queries,” “quadratic form queries,” or other (eigenspectral) functionals380

f(·) of a random matrix X that return a scalar (these are common operations of interest in381

ML and beyond)—then it is often possible to find a deterministic matrix X̄ that “mimics” the382

behavior of X but only through the observation map f(·).383
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We refer to such a matrix X̄ as a Deterministic Equivalent of X.384

(This is a special case of the High-Dimensional Equivalent in Definition 1.1, and it will be385

formally defined in Definition 6.1 of Chapter 6.) For this Deterministic Equivalent, for any386

appropriate scalar observation function f : Rp×n → R of X, we have, akin to Equation (1.38),387

that388

f(X) ' f(X̄) + o(1), (1.39)389

for n, p large. As a consequence, these scalar observations f(X̄) of Deterministic Equivalents390

“track” the behavior of their random equivalent f(X) with increased accuracy as the dimensions391

n, p grow large. In Chapter 6 of Part II, we will showcase both types of results using the example392

of sample covariance matrix. For that purpose, we will need a few basic linear algebraic notations393

and results. These will be reviewed in the next chapter.394



Chapter 2395

Basic linear algebra396

In this chapter, we briefly review basic linear algebraic notations and results to be used through-397

out the monograph. In Chapter 2.1, we review inner products and norm of vectors and matrices398

in the Euclidean space. These results, when combined with probabilistic arguments discussed in399

Chapter 1, provide novel insights into classical linear algebraic statements, for both vectors and400

matrices. As an example, we shall see in Chapter 2.2 that matrix norms are not so equivalent401

for matrices of large size. In Chapter 2.3, we recall spectral (i.e., eigenvalue and singular value)402

decompositions of matrices. Finally, in Chapter 2.4, we describe connection between spectral403

decompositions and solving linear equations.404

2.1 Inner products and norms for vectors and matrices405

Vectors. The inner product and the related notions of Euclidean norm, angle, and orthog-406

onality are among the most basic quantities that are widely used to describe properties of407

vectors.408

Definition 2.1 (Inner product, Euclidean norm, angle, and orthogonality). Given409

vectors x,y ∈ Rn living in the n-dimensional Euclidean space Rn composed as x = [x1, . . . , xn]T410

and y = [y1, . . . , yn]T, respectively,411

1. xTy =
∑n

i=1 xiyi is the inner product between x and y;412

2. ‖x‖22 = xTx =
∑n

i=1 x
2
i is the (squared) Euclidean norm of x; and413

3. cos θ =
(

xTy
‖x‖2·‖y‖2

)
is the (cosine of the) angle between x and y.414

We say that the vectors x,y are orthogonal to each other if xTy = 0; in this case, cos θ = 0,415

and θ = π/2.416

Remark 2.2 (Vector Euclidean norm as a total energy/mass). Intuitively, the Euclidean417

norm ‖x‖2 measures the total “mass” or “energy” of the vector x ∈ Rn, and this can be418

decomposed in various ways. Somewhat more precisely, for e1, . . . , en ∈ Rn, the canonical419

vectors of Rn with [ei]j = δij (that, in particular, form an orthonormal basis of Rn), any x ∈ Rn420

admits the following decomposition421

x =

n∑
i=1

xiei, (2.1)422

with xi the ith entry of x. It follows that ‖x‖22 collects (the squared sum of) all the entries xi,423

i.e., ‖x‖22 =
∑n

i=1 x
2
i . This is a generalization of the Pythagorean theorem.424

18
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The Euclidean norm of vectors in Rn can be defined (as it was in Definition 2.1) in terms of425

inner products. The converse statement, that inner products can be characterized in terms of426

norms, is also true. It is known as a polarization identity, and it is given in the following result.427

Lemma 2.3 (Polarization identity). For x,y ∈ Rn, we have428

xTy =
1

2

(
‖x‖22 + ‖y‖22 − ‖x− y‖22

)
. (2.2)429

Lemma 2.3 connects the inner product xTy to the Euclidean norm of the distance between x430

and y, ‖x− y‖22, as well as the Euclidean norms of x and y. The value of xTy can be positive431

or negative, depending on whether the two vectors are in the same “direction” or not.432

Polarization identities are usually presented simply as linear algebraic facts for given vectors433

x and y. However, when combined with a probabilistic modeling for x (and/or y) as a random434

vector living in Rn, Lemma 2.3 can be used to provide an explanation for a counterintuitive435

behavior of large-dimensional random (data) vectors. This is illustrated in ?? and ??; and it is436

discussed in the following remark.437

Remark 2.4 (Polarization identity and different scaling for inner products and norms438

of large random vectors). For fixed vector y ∈ Rn of unit norm ‖y‖2 = 1 and random vector439

x ∈ Rn such that
√
nx has i.i.d. entries with zero mean, unit variance, and finite fourth order440

moment m4 <∞ (the scaling by
√
n is made so that E[‖x‖22] = 1), we have the following.441

1. It follows from the LLN and CLT (in Theorems 1.7 and 1.8, respectively) that442

xTy ' 0 +N (0, 1)/
√
n, (2.3)443

for n large, so that the (random) inner product xTy is of order O(n−1/2) with high444

probability.445

2. On the other hand, again by the LLN, CLT, and the fact E[(xTx)2] = n+m4−1
n , one has446

that447

‖x‖22 = xTx ' 1 +N (0,m4 − 1)/
√
n, (2.4)448

for large n, so that the (random) Euclidean norm ‖x‖2 ' 1, and thus is of order O(1).449

3. It then follows from the Polarization identity in Lemma 2.3 that450

‖x− y‖22 = ‖x‖22 + ‖y‖22 +O(n−1/2) = 2 +O(n−1/2), (2.5)451

for large n, so that the Euclidean distance between x and any fixed y (or their norms) is452

much larger (in fact by a factor of
√
n) than their inner product.453

Recall from Definition 2.1 that two vectors x,y are orthogonal if xTy = 0. Thus, by Remark 2.4,454

one has that a large-dimensional random vector x having i.i.d. entries is always approximately455

orthogonal to any deterministic vector y. This is also a manifestation of the “non-concentration”456

(or CLT-type concentration) behavior of large-dimensional random vectors discussed in Obser-457

vation 1.10 and illustrated in Figure 1.1. This intrinsically different scaling (by
√
n) between458

the norm and inner-product/angle of large-dimensional random vectors comes from the funda-459

mental concentration behavior (e.g., LLN and CLT in Theorems 1.7 and 1.8); and it will, as460

we shall see below in Chapter 3, distinguish the two regimes of interest for nonlinear (random)461

functions.462

One can consider other vector norms beyond the Euclidean norm.463
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Definition 2.5 (p-norm of vectors). For any real number p ≥ 1 and x ∈ Rn, the p-norm464

(also known as the `p norm) of x is defined as465

‖x‖p ≡

(
n∑
i=1

|xi|p
)1/p

. (2.6)466

As a special case, we obtain the Manhattan norm with p = 1, the Euclidean norm with p = 2,467

and the infinity/maximum norm with p→∞ as ‖x‖∞ ≡ maxi |xi|.468

Remark 2.6 (Vector norm “equivalence”). For a vector x ∈ Rn, one has469

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2 ≤ n‖x‖∞, (2.7)470

so that the vector norms in Definition 2.5 are “equivalent,” but only up to a factor that depends471

on the the dimension n.472

Matrices. The previous results hold for vectors, but they generalize very naturally to ma-473

trices. For matrices X,Y ∈ Rm×n, we can use the matrix trace function to define their inner474

product and associated Frobenius norm, as follows.475

Definition 2.7 (Matrix inner product and Frobenius norm). Given matrices X,Y ∈476

Rm×n,477

1. tr(XTY) =
∑n

i=1[XTY]ii =
∑n

i=1

∑m
j=1XjiYji is the matrix inner product between X478

and Y, where tr(A) is the trace of A (that is also equal to the sum of all eigenvalues and479

diagonal entries of A, see Definition 2.19 below); and480

2. ‖X‖2F = tr(XTX) =
∑n

i=1[XTX]ii =
∑n

i=1

∑m
j=1X

2
ji denotes the (squared) Frobenius481

norm of X (that is also equal to the sum of the squared entries of X).482

As with vectors, we have polarization identities and (when combined with a probabilistic mod-483

eling for the elements of the matrices) associated scaling considerations for matrices.484

Remark 2.8 (Polarization identity and different scaling for large random matrices).485

Similar to Lemma 2.3, for matrices X,Y ∈ Rm×n, we have the following matrix polarization486

identity:487

tr(XTY) =
1

2

(
‖X‖2F + ‖Y‖2F − ‖X−Y‖2F

)
. (2.8)488

Also, similar to Remark 2.4, we have for fixed Y with ‖Y‖F = 1 and random X ∈ Rm×n489

such that
√
mn X has i.i.d. entries of zero mean, unit variance, and finite fourth order moment490

m4 <∞ (again, the scaling
√
mn is made so that E[‖X‖2F ] = 1) that491

tr(XTY) ' 0 +N (0, 1)/
√
mn, (2.9)492

and493

‖X‖2F ' 1 +N (0,m4 − 1)/
√
mn, (2.10)494

so that495

‖X−Y‖2F = ‖X‖2F + ‖Y‖2F +O(1/
√
mn) = 2 +O(1/

√
mn). (2.11)496

That is, Remark 2.4 extends naturally to matrices.497

As with vector norms, there are many widely-used matrix norms beyond the Frobenius498

norm. One class of such matrix norms is discussed as follows.499

Definition 2.9 (Matrix norm). For X ∈ Rp×n, consider the following “entry-wise” extension500

of the p-norms of vectors in Definition 2.5:501
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1. matrix Frobenius norm ‖X‖F =
√∑

i,j X
2
ij = ‖vec(X)‖2, that extends the vector `2502

Euclidean norm; and503

2. matrix maximum norm ‖X‖max = maxi,j |Xij | = ‖vec(X)‖∞, that extends the vector `∞504

norm.505

Also, we can consider the matrix norm induced by vectors, defined as506

‖X‖p ≡ sup
‖v‖p=1

‖Xv‖p. (2.12)507

By taking p = 2 in Equation (2.12) we get the spectral norm, defined as508

‖X‖2 =
√
λmax(XXT) = σmax(X),509

where λmax(XXT) and σmax(X) denotes the maximum eigenvalue and singular of XXT and X,510

respectively.511

The matrix Frobenius norm and spectral norm in Definition 2.9 belong to the class of so-called512

matrix Schatten norms (that can be defined by applying the vector p-norms in Definition 2.5513

on the vector of singular values of the matrix). These norms are known to be unitarily invari-514

ant, i.e., such that ‖X‖ = ‖UXV‖ for all matrices X and unitary (square) matrices U,V of515

appropriate dimensions.516

We have the following inequalities between different matrix norms that establish a certain517

sort of equivalence between matrix norms (that is often too loose for practical use, though).518

Remark 2.10 (Matrix norm “equivalence”). For a matrix A ∈ Rm×n, one has the following519

1. ‖A‖2 ≤ ‖A‖F ≤
√

rank(A) · ‖A‖2 ≤
√

max(m,n) · ‖A‖2; so that, e.g., the control of the520

Frobenius norm via the spectral norm can be particularly loose for matrices of large rank521

and/or size; and522

2. ‖A‖max ≤ ‖A‖2 ≤
√
mn · ‖A‖max, with ‖A‖max ≡ maxi,j |Aij | the max norm of A, so523

that the max norm and spectral norm can be significantly different for large matrices.524

The fact that this notion of matrix norm “equivalence” holds only up to dimensional factors525

is crucial in large-dimensional data analysis and machine learning. In Chapter 2.2, we will526

discuss this in more detail with the example of sample covariance matrix, and two popular527

dimension reduction techniques: Principle Component Analysis (PCA) and multidimensional528

scaling (MDS).529

2.2 Loss of matrix norm equivalence in ML530

In this section, we delve further into the “(loss of) matrix norm equivalence” discussed in Re-531

mark 2.10, using the sample covariance matrix (SCM) in the proportional regime as an illustra-532

tive example.23 Then, we discuss how this “(loss of) matrix norm equivalence” has a significant533

impact on large-scale ML, with the examples of two popular dimension reduction techniques:534

principle component analysis (PCA, that is directly connected to SCM) and multidimensional535

scaling (MDS), in Example 2.14 and Example 2.17, respectively.536

2For the formal definitions of SCM and proportional regime, see Definitions 4.22 and 4.23, respectively.
3We assume basic familiarity with eigenvalues/eigenvectors; these are described in more detail in Chapter 2.3.
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Figure 2.1: Spectral versus max norm errors of Ĉ −C, as a function of the sample size n, for
p = 8 (Figure 2.1a) and p = 128 (Figure 2.1b), with xi ∼ N (0, Ip) and thus C = Ip. Results
averaged over 50 independent runs.

Example 2.11 (Loss of matrix norm equivalence for SCM). Consider a set of n indepen-537

dent random vectors x1, . . . ,xn ∈ Rp following a multi-variate Gaussian distribution, with zero538

mean and identity covariance, E[xi] = 0p and E[xix
T
i ] = Ip. In this case, the SCM is given by539

Ĉ =
1

n

n∑
i=1

xix
T
i . (2.13)540

This quantity is known to be the maximum likelihood estimator of the population covariance541

C = Ip, and thus it should be the “optimal” solution we can get.542

Now, we evaluate the maximum and spectral norm (see Definition 2.9 above) of the SCM543

Ĉ in the proportional regime, by considering the limit of n, p→∞ with p/n→ c ∈ (0,∞). In544

this setting, we have the following dual observations.545

1. From the LLN in Theorem 1.7, it follows that that the (i, j) entry of the SCM Ĉ converges546

to the population covariance C = Ip as n→∞. That is,547

‖Ĉ− Ip‖max → 0. (2.14)548

2. On the other hand, if we let n, p → ∞ with p > n, then Ĉ = 1
n

∑n
i=1 xix

T
i in Equa-549

tion (2.13) is the sum of n rank-one matrices, and the rank of Ĉ is at most equal to n.550

In this case, being a p × p matrix with p > n, the sample covariance matrix Ĉ must be551

a singular matrix having at least p − n > 0 zero eigenvalues. As a consequence of this552

eigenvalue mismatch, we have553

‖Ĉ− Ip‖2 6= 0, (2.15)554

as long as p > n, even for n, p arbitrary large as n, p→∞.555

While the eigenvalue mismatch in Equation (2.15) may, at first sight, seem to contradict the556

max norm convergence results in Equation (2.14), this is not the case. This is a consequence of557

the fact that matrix norms are “equivalent,” but only up to factors that depend on the size p558

of the matrix, as already mentioned in Remark 2.10.4 For instance, we have559

‖A‖max ≤ ‖A‖2 ≤ p‖A‖max (2.16)560

for the symmetric matrix A = Ĉ − Ip ∈ Rp×p. The conclusion is that, when considering561

statistical problems of large dimensions (with p� 1), the proportional regime:562

4That is, the sense in which “all matrix norms are equivalent” is very weak, depending on dimensional factors
that have strong algorithmic and statistical consequences, the latter being of particular interest for RMT.
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matrix norms are not equivalent in the proportional regime.563

As an illustration of this loss of matrix matrix norm equivalence in the proportional regime,564

Figure 2.1 provides numerical evidences on the errors in max norm and spectral norm of Ĉ− Ip565

in the classical (p = 8 in Figure 2.1a) and proportional (p = 128 in Figure 2.1b) regimes. In566

particular, we see that the differences between the spectral and max norms are significantly567

smaller in the classical regime than in the proportional regime. In the proportional regime,568

with p = 128 (which is indeed not very large in the context of modern ML), the relative error569

in spectral norm can blow up to 200%, while the max norm error still remains at a much lower570

level (of less than 25%).571

Thus, control on the max norm does not yield, at least directly, a non-trivial control on the572

spectral norm that is often of more practical interest in ML. The practical usefulness of the573

spectral norm is discussed in more detail in the following remark.574

Remark 2.12 (On the importance of spectral norm). For practical purposes, this “loss of575

norm equivalence” for large matrices (large p) raises the question of what is the relevant matrix576

norm to consider for a given problem. For many ML problems, the spectral norm is the most577

relevant, in the following sense.578

1. First, the spectral norm is the matrix norm induced by the Euclidean norm of vectors579

(see for example [18, Theorem 5.6.2]). Thus, the study of regression vectors or label/score580

vectors in classification is naturally attached to the eigenspectral study of matrices. (See581

the problem of linear least squares regression in ?? as an instance of this.)582

2. Second, one needs to evaluate the spectral norm when spectral methods such as principle583

component analysis (PCA) [40], multi-dimensional scaling (MDS) [41], (kernel) spectral584

clustering [25] or PageRank [13] are considered. More precisely, for matrices A,B ∈ Rp×p,585

according to Weyl’s inequality (see [18, Theorem 4.3.1] and Lemma A.3 in Appendix A),586

one has587

max
1≤i≤p

|λi(A)− λi(B)‖2 ≤ ‖A−B‖2, (2.17)588

for λ1(A) ≥ λ2(A) ≥ . . . ≥ λp(A) the eigenvalues of A in a decreasing order. Thus, the589

bound on the spectral norm difference provides a uniform bound on all the corresponding590

eigenvalues. See Also, it follows from Davis–Kahan theorem (see [7] and Lemma A.4 in591

Appendix A) that592 √
1− (uT

i (A)ui(B))2 ≤ ‖A−B‖2
min{|λi−1(A)− λi(B)|, |λi+1(A)− λi(B)|}

(2.18)593

for ui(A),ui(B) the eigenvector that corresponds to the eigenvalue of λi(A) and λi(B), re-594

spectively. Thus, the “alignment” between corresponding eigenvectors and subspaces can595

be controlled by the spectral norm. See Example 2.14 below for an application Principle596

Component Analysis and ?? for an application to spectral clustering.5597

Definition 2.13 (Principle component analysis, PCA). For data vectors x1, . . . ,xn ∈ Rp598

of dimension p, denote its SCM Ĉ = 1
n

∑n
i=1 xix

T
i = 1

nXXT as in Example 2.11, PCA aims to599

find the principle direction u ∈ Rp of X by solving the following optimization problem600

max
u∈Rp

uTĈu

s.t. ‖u‖ = 1.
(2.19)601

5Most previous literature on RMT has been concerned with the eigenvalues of random matrices and functional
of them. In ML applications, however, eigenvectors are more commonly exploited and thus of more practical
interest. Technically speaking, to characterize the eigenvectors one needs to the evaluate the behavior of the
whole random matrix (instead of solely its eigenvalues). This can be achieved with the proposed Deterministic
Equivalent for resolvent framework, to be discussed in Chapter 6.
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Figure 2.2: Figure 2.2a: Principle direction alignment |ûT
1 u1| for û1 the principle direction

obtained from PCA; and Figure 2.2b: related approximation error in Frobenius norm ‖X̃TX̃−
X̄T X̄‖F /‖X̃TX̃‖F obtained from MDS with m = 1; as a function of the sample size n, for p = 8
(red) and p = 128 (blue), with xi ∼ N (0,C) for C = Ip + u1u

T
1 and u1 = [1p/2;−1p/2]/

√
p.

Results averaged over 50 independent runs.

Denote Ĉ = UĈΛĈUT
Ĉ

the eigen-decomposition (see Definition 2.19 below for a formal defini-602

tion) of Ĉ, for diagonal ΛĈ = diag{λi(Ĉ)}pi=1 containing the eigenvalues of Ĉ and orthonormal603

UĈ = [û1, . . . , ûn] ∈ Rp×p containing the corresponding eigenvectors. Then, the top eigenvector604

û1 ∈ Rp that corresponds to the largest eigenvalue λ1(Ĉ) is the solution to (2.19). This is605

the “direction” where the data distribution is the most extended, and it “explains” most of the606

variability in the data.607

Subsequent principle directions/components of the data can be similarly computed. Denote608

UĈ,m ∈ Rp×m the m-principle components of X ∈ Rp×n, an m-dimensional representations of609

X obtained from PCA is given by (the columns of) X̃ = UT
Ĉ,m

X ∈ Rm×n.610

Example 2.14 (Principle component analysis in high dimensions). As a consequence611

of the loss of SCM norm equivalence in Example 2.11 and the importance of spectral norm612

in Remark 2.12, we should not, a prior, expect that the popularly used PCA dimension re-613

duction approach described in Definition 2.13 works well for large-dimensional data vectors.614

Figure 2.2a provides numerical illustrations of the different behavior of PCA in the classical615

versus proportional regime. For i.i.d. multi-variate Gaussian data vector xi ∼ N (0,C) with616

covariance C = Ip + u1u
T
1 , we evaluate here the “alignment” |ûT

1 u1| between the principle di-617

rection û1 obtained from SCM and the true covariance principle direction u1 ∈ Rp, for small618

p = 8 and large p = 128, and sample size n ranging from 256 to 2 048. From Figure 2.2a, we619

see that while for p small, the principle direction û1 obtained from PCA constantly aligns to620

the true data principle direction, this is no longer the case for p large. This is a consequence of621

the (now uncontrolled, for p large) spectral norm different ‖Ĉ−C‖2.622

Another commonly used dimension reduction technique is multidimensional scaling (MDS) [41].623

Different from PCA in Example 2.14, classical MDS aims to obtain low-dimensional (in Rm say)624

representation of the data so that their Euclidean distances (or dissimilarities) are approximately625

preserved. This is described as follows.626

Definition 2.15 (Multidimensional scaling, MDS). Classical MDS aims to obtain low-627

dimensional (in Rm say) representation of the data so that their Euclidean distances (or dis-628

similarities) are approximately preserved. More precisely, for data vectors x1, . . . ,xn ∈ Rp of629
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dimension p, denote E ≡ {‖xi − xj‖22/p}ni,j=1 their (normalized) squared Euclidean distance630

matrix, MDS aims to find m-dimensional representations X̃ = [x̃1, . . . , x̃n] ∈ Rm×n of X such631

that their Euclidean distances are approximately preserved:632

Ẽ ≡ {‖x̃i − x̃j‖22/p}ni,j=1 ≈ E. (2.20)633

To do this, note that634

E = 1nv
T + v1T

n − 2XTX, v = {‖xi‖2}ni=1, (2.21)635

so that by performing “double centering” of E we get −1
2PEP = PXTXP = X̄TX̄, for X̄ = XP636

with P = In − 1
n1n1

T
n . Then, X̃ is obtained by minimizing the following strain:637

min
X̃∈Rm×n

‖X̃TX̃− X̄TX̄‖2F . (2.22)638

Per the Eckart-Young-Mirsky theorem [12, 24], the solution to (2.22) is given by X̃ = ΣX̄,mVT
X̄,m

,639

for X̄ = UX̄ΣX̄VT
X̄

the singular value decomposition of X̄ ∈ Rp×n, and VX̄,m ∈ Rn×m and640

ΣX̄,m ∈ Rm×m containing the top-m right singular vectors and singular values, respectively.641

Remark 2.16 (PCA and MDS). MDS is similar to PCA in Definition 2.13, in that they both642

provide low-dimensional representation X̃ ∈ Rm×p of the data X ∈ Rp×n with m� p. From an643

algorithmic aspect, they are connected to each other through the singular value decomposition644

(SVD, see Definition 2.22 for a formal definition) of X = UXΣXVT
X and of XP = X̄ =645

UX̄ΣX̄VT
X̄

as follows.646

1. By Definition 2.13, PCA computes X̃ = UT
X;mX =

[
Im 0

]
ΣXVT

X, where UX,m ∈ Rp×m647

is the top-m left singular subspace of X.648

2. On the other hand, by Definition 2.15, MDS computes X̃ = ΣX̄,mVT
X̄,m

=
[
Im 0

]
ΣX̄VT

X̄
649

of the “centered” data matrix X̄ = XP.650

As such, classical MDS boils down, up centering and per (2.22), to the evaluation of data Gram651

matrix XTX, and then to the computation of the data (top) singular values and vectors, for652

which a similar loss of norm equivalence as for PCA in Example 2.14 is expected. This is653

discussed as follow.654

Example 2.17 (Multidimensional scaling in high dimensions). It can be checked that the655

MDS approximation error in Equation (2.22) is given by the sum of eigenvalues (excluding the656

largest m) of X̄TX̄ (that coincide with the sum of those of the centered SCM X̄X̄T). Thus, by657

Remark 2.12, we have, similar to Example 2.14 for PCA and as a consequence of the loss of SCM658

norm equivalence, that we should not expect that the MDS works well for large-dimensional659

data vectors. See Figure 2.2b for a numerical manifestation of this fact. We particularly see660

from Figure 2.2b that unlike for p = 8, where the relative approximation error is small; in661

the case of large-dimensional data with p = 128, the approximation error is much larger, and662

increases as n grows large.663

2.3 Spectral decomposition of matrices664

Here, we review in more detail the spectral decomposition (including both the eigenvalue de-665

composition and the singular value decomposition) of matrices.666
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Figure 2.3: Illustration of eigen-decomposition, UXΛXUT
X, of a symmetric n× n matrix X.

Symmetric and Hermitian matrices. Let’s start by recalling the definition and properties667

of symmetric real and Hermitian complex matrices, as follows.668

Definition 2.18 (Symmetric and Hermitian matrix). For a real square matrix X ∈ Rn×n,669

we say X is symmetric if XT = X. Similarly, for a complex square matrix X ∈ Cn×n, we say670

X is Hermitian if X∗ = X (with X∗ the conjugate transpose of X).671

Important facts about symmetric/Hermitian matrices are the following.672

1. X is symmetric if and only if there exists real orthonormal U ∈ Rn×n and real diagonal673

Λ ∈ Rn×n such that X = UΛUT.674

2. X is Hermitian if and only if there exists unitary U ∈ Cn×n and real diagonal Λ ∈ Rn×n675

such that X = UΛU∗.676

In more detail, for symmetric real (or Hermitian complex) matrices, their diagonalization677

leads to the following eigen-decomposition (according to the eigenvalues and eigenvectors of the678

matrix of interest).679

Definition 2.19 (Eigen-decomposition of symmetric matrices, [18, Theorem 2.5.6]).680

For a symmetric real matrix X ∈ Rn×n, the eigenvalues λ1(X), . . . , λn(X) of X are all real, and681

X admits the following eigen-decomposition682

X = UXΛXUT
X =

n∑
i=1

λi(X)uiu
T
i , (2.23)683

for diagonal ΛX = diag{λi(X)}ni=1 containing the eigenvalues of X and orthonormal UX =684

[u1, . . . ,un] ∈ Rn×n containing the corresponding eigenvectors. In particular, the eigenvalue685

and eigenvector pair (λi(X),ui) of X satisfies the following equation686

Xui = λi(X)ui. (2.24)687

See Figure 2.3 for an illustration of eigen-decomposition of symmetric matrix. Given this eigen-688

decomposition, the matrix trace can be defined as tr(X) =
∑n

i=1 λi(X).689

A similar decomposition as that provided by Definition 2.19 holds for Hermitian complex690

matrices, by replacing the transpose operators above with conjugate transpose.691

In some cases, one is interested in the properties of a single eigenvalue of a symmetric real692

matrix, X ∈ Rn×n. In this case, one may either resort to the eigenvalue-eigenvector equation693

in (2.24) or to the determinant equation det(X− λIn) = 0.694
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In other cases, one is interested in the behavior of multiple eigenvalues. In particular,695

classical RMT is interested in the joint behavior of all eigenvalues λ1(X), . . . , λn(X). This696

leads to the definition of the (empirical) eigenvalue distribution, or empirical spectral distribution697

(ESD) of X, defined as follows.698

Empirical Spectral Distribution (ESD)

Definition 2.20 (Empirical Spectral Distribution, ESD). For a real symmet-
ric matrix X ∈ Rn×n, the empirical spectral distribution (ESD) or empirical spec-
tral measure µX of X is defined as the normalized counting measure of the eigenvalues
λ1(X), . . . , λn(X) of X. This can be represented as

µX ≡
1

n

n∑
i=1

δλi(X), (2.25)

where δx represents the Dirac measure at x.
699

We note the following important fact regarding the ESD of a symmetric matrix X:700

since
∫
µX(dx) = 1, the spectral measure µX of a symmetric matrix X ∈ Rn×n701

(which may be random or not) is a probability measure.702

Thus, for µX, the ESD of a real symmetric matrix X ∈ Rn×n of interest, we can talk about the703

moments of µX, just as for scalar random variables, in Definition 1.1. More precisely,704

1.
∫
tµX(dt) = 1

n

∑n
i=1 λi(X) is the first moment of µX, and it gives the average of all705

eigenvalues of X; and706

2.
∫
t2µX(dt) = 1

n

∑n
i=1 λ

2
i (X) is the second moment of µX, so that

∫
t2µX(dt)−

(∫
tµX(dt)

)2
707

gives the variance of the eigenvalues of X.708

An important subset of symmetric and Hermitian matrices is the family of positive-definite709

and positive semi-definite matrices, defined as below.710

Definition 2.21 (Positive-definite and positive semi-definite matrices, PD and PSD711

matrices). For a real symmetric matrix X ∈ Rn×n, we say X is positive-definite if for any712

nonzero real vector v ∈ Rn we have vTXv > 0; and we we say X is positive semi-definite if713

vTXv ≥ 0. Similarly, for a Hermitian complex matrix X ∈ Cn×n, we say X is positive-definite714

if for any nonzero complex vector v ∈ Cn we have v∗Xv > 0; and we we say X is positive715

semi-definite if v∗Xv ≥ 0.716

By definition, the eigenvalues of positive-definite matrices are strictly positive, and those of717

positive semi-definite matrices are non-negative.718

General matrices. Going beyond symmetric/Hermitian matrices, non-symmetric real matri-719

ces (including, potentially, non-square matrices) generally do not admit an eigen-decomposition,720

as in Definition 2.19. However, general matrices do admit the following singular value decom-721

position (SVD).722

Definition 2.22 (Singular value decomposition (SVD), [18, Theorem 2.5.6]). For a723

real and possibly non-square matrix X ∈ Rp×n, the singular values σi(X) of X are unique, real724

and non-negative, and X admits the following decomposition725

X =

r∑
i=1

σi(X)uiv
T
i = UXΣXVT

X, (2.26)726
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Figure 2.4: Illustration of SVD, X = UXΣXVT
X, of a p× n matrix X.

with r = rank(X), rectangular diagonal matrix ΣX ∈ Rp×n containing all singular values of727

X, orthonormal UX ≡ [u1, . . . ,up] ∈ Rp×p and VX ≡ [v1, . . . ,vn] ∈ Rn×n containing the left728

and right singular vectors of X, respectively. Similar to Equation (2.24) for eigenvalue and729

eigenvector, one has730

Xvi = σi(X)ui, XTui = σi(X)vi. (2.27)731

See Figure 2.4 for an illustration of SVD. Similar to Definition 2.20, one may define the empirical732

distribution of the singular values of a given matrix.733

For symmetric positive semi-definite matrices (Definition 2.21), the eigen-decomposition734

and SVD in Definition 2.19 and Definition 2.22 coincide. Beyond this setting, they are in735

general different. More generally, however, we have the following connection between the eigen-736

decomposition and the SVD.737

Remark 2.23 (Connection between eigen-decomposition and SVD). For a real matrix738

X ∈ Rp×n with SVD X = UXΣXVT
X, for orthonormal UX ∈ Rp×p and VX ∈ Rn×n, the739

eigen-decomposition of XXT and XTX are respectively given by740

XXT = UX(ΣXΣT
X)UT

X = UXΣ2
XUT

X ∈ Rp×p, (2.28)741

and742

XTX = VX(ΣT
XΣX)VT

X = VXΣ2
XVT

X ∈ Rn×n. (2.29)743

In this case, the non-zero eigenvalues of XXT and XTX are the same (and are the squared744

singular values of X), and their eigenvectors are connected to the singular vectors of X. More745

generally, it follows from the Sylvester’s determinant theorem (also known as the Weinstein–746

Aronszajn identity, see Lemma A.9) that for A ∈ Rp×n and B ∈ Rn×p, one has747

det(Ip + AB) = det(In + BA), (2.30)748

so that the non-zero eigenvalues of AB ∈ Rp×p and BA ∈ Rn×n are the same. Also, for a real749

matrix X ∈ Rp×n with SVD UXΣXVT
X, we can consider the matrix750

X̃ =

[
0 X

XT 0

]
∈ R(p+n)×(p+n). (2.31)751

This matrix is real symmetric, and it admits eigen-decomposition752

X̃ =

[
UX 0
0 VX

] [
0 ΣX

ΣT
X 0

] [
UT

X 0
0 VT

X,

]
(2.32)753

and that the non-zero singular values of X are the positive eigenvalues of X̃.754
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A × x = b

(a) Over-determined system

A × x = b

(b) Under-determined system

Figure 2.5: Illustration of over- versus under-determined linear systems.

2.4 Connection between linear equation and spectral decompo-755

sition756

One of the most important and fundamental problem in applied mathematics, statistics, and757

ML is to solve a linear system of equations defined as follow.758

Definition 2.24 (Linear system). Given a matrix A ∈ Rp×n and a vector b ∈ Rp, we aim759

to solve for x ∈ Rn that satisfies the following system of linear equations760

Ax = b. (2.33)761

For solving linear system, there are in general three regimes of interest.762

• For p > n, the system has more equations than unknowns; in this case, it is called an763

over-determined system (or sometime, within ML, an under-parameterized problem).764

• When p = n, the system has the same number of equations and unknowns.765

• For p < n, the system has fewer equations than unknowns; in this case, it is called an766

under-determined system (or sometime, within ML, an over-parameterized problem).767

See Figure 2.5 for an illustration of the over-determined and under-determined cases.768

It should be clear that a solution x to the linear system in Equation (2.33) exists if and only769

if b ∈ Rp belongs to the column space of A. (That statement is true regardless of the relative770

sizes of p and n.) In case that there exists a solution, there can be infinitely many, e.g., when771

the system is under-determined. These solutions can be given using the generalized inverse of772

A, defined as follows.773

Definition 2.25 (Generalized inverse and Moore–Penrose pseudoinverse, [15]). For a774

real matrix A ∈ Rp×n, we say the matrix Ag ∈ Rn×p is a generalized inverse of A if it satisfies775

AAgA = A. (2.34)776

Assume, in addition, that the generalized inverse Ag satisfies the following additional conditions:777

1. AgAAg = Ag; and778

2. both AAg and AgA are symmetric.779

Then, it is the Moore–Penrose pseudoinverse of A, denoted A+.780

A solution to the linear system in Definition 2.24, if it exists, can be fully described using781

the generalized inverse in Definition 2.25. This is given in the following result.782

Theorem 2.26 (Solution to linear system in Definition 2.24, [15]). For Ag ∈ Rn×p,783

any generalized inverse of A, as in Definition 2.25, and the linear system Ax = b, as in784

Equation (2.33) of Definition 2.24,785
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1. the solutions x exist if and only if AAgb = b; and786

2. all solutions are given by787

x = Agb + (In −AgA)w, (2.35)788

for arbitrary vector w ∈ Rn.789

In particular, this holds for the Moore–Penrose pseudoinverse A+ of A. If A has full column790

rank, then In −AgA = 0. If n = p and A is non-singular, then Ag = A−1 and the solution is791

unique.792

The generalized inverse Ag of a matrix A ∈ Rp×n, as in Definition 2.25 can be characterized793

using the SVD of A in Definition 2.22, as per the following result.794

Theorem 2.27 (Characterization of generalized inverse using SVD, [15]). Let A ∈ Rp×n795

be a real matrix, with SVD796

A = UA

[
ΣA 0
0 0

]
VT

A, (2.36)797

for orthonormal UA ∈ Rp×p and VA ∈ Rn×n, and non-singular ΣA ∈ Rr×r for r = rank(A)798

as in Definition 2.22. Then, for any generalized inverse Ag, as in Definition 2.25, there exists799

matrices X ∈ Rr×(n−r),Y ∈ R(p−r)×r,Z ∈ R(p−r)×(n−r) such that800

Ag = VA

[
Σ−1

A X
Y Z

]
UT

A. (2.37)801

In particular, the Moore–Penrose pseudoinverse A+ corresponds to the case X = Y = Z = 0.802

In addition, we have that:803

1. if A has full row rank (implying p ≥ n and ATA non-singular), then A+ = (ATA)−1AT;804

and805

2. if A has full column rank (implying p ≤ n and AAT non-singular), then A+ = AT(AAT)−1.806

Remark 2.28 (Minimum norm solution with Moore–Penrose pseudoinverse). It fol-807

lows from Theorem 2.26 by taking w = 0 that, if the linear system Ax = b admits a solu-808

tion, then the minimum (Euclidean) norm solution is given by Moore–Penrose pseudoinverse809

x = A+b. That is, the solution x̂ = A+b is the minimum solution to Equation (2.33):810

arg min
Ax=b

‖x‖2 = A+b. (2.38)811

In case where b does not belong to the column space of A, the linear system Ax = b does812

not admit a solution. In that case though, we can discuss the “closest” solution x so that813

the linear system of equation holds approximately Ax ≈ b. When using the Euclidean norm814

distance to measure this “closeness” of solution, this is the least squares solution.815

Definition 2.29 (Least squares and ridge regression). For A ∈ Rp×n and b ∈ Rp, the816

least squares solution xLS ∈ Rn to the linear system in Definition 2.24 is given by817

xLS = arg min
x∈Rn

‖Ax− b‖22. (2.39)818

As we shall see below in Theorem 2.30, this in fact defines a set XLS of feasible solutions. We819

can similarly define the ridge regression solution xγ ∈ Rn to the linear system in Definition 2.24820

as821

xγ = arg min
x∈Rn

(
‖Ax− b‖22 + γ‖x‖22

)
, (2.40)822

for some γ > 0 that penalizes the Euclidean norm of the solution.823
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Note that the least squares solution in Definition 2.29 is of particular interest when b does824

not belong to the column space of A so that Ax = b does not admit a solution. Otherwise, xLS825

is just one of the solutions to the linear system given by the generalized (e.g., Moore–Penrose)826

inverse as in Theorem 2.26.827

It turns out that the least squares solution in Definition 2.29 may not be unique and is828

characterized in the following result.829

Theorem 2.30 (Characterization of least squares and ridge regression solutions).830

For A ∈ Rp×n and b ∈ Rp, the least squares solution xLS in Definition 2.29 always exists, and831

all solution are given by832

xLS(w) = A+b + (In −A+A)w, (2.41)833

for arbitrary vector w ∈ Rn and A+ the Moore–Penrose pseudoinverse of A. On the other834

hand, the ridge regression solution, for any γ > 0 exists and is uniquely (and equivalently) given835

by836

xγ = (ATA + γIn)−1ATb = AT(AAT + γIp)
−1b. (2.42)837

Remark 2.31 (Minimum norm least squares solution with Moore–Penrose pseudoin-838

verse). It follows from Theorem 2.30 by taking w = 0 that, the minimum (Euclidean) norm839

least squares solution is given by Moore–Penrose pseudoinverse xLS(w = 0) = A+b. That is,840

arg min
x∈XLS

‖x‖2 = A+b, (2.43)841

where XLS is the set of feasible least square solutions as in Definition 2.29. Moreover, it follows842

from the SVD of A and Theorem 2.30 that843

lim
γ↓0

xγ = A+b. (2.44)844

That is, the Moore–Penrose pseudoinverse solution xLS(w = 0) = A+b also corresponds to the845

“ridgeless” regression solution as γ → 0.846

Despite arising in many scenarios when, e.g., considering the minimum norm solution to lin-847

ear system or least squares in Remark 2.28 and 2.31, respectively, the Moore–Penrose pseudoin-848

verse solution A+b can be numerically unstable, in that it does not depend on A in a continuous849

fashion, as opposed to the ridge regularized inverse (ATA + γIn)−1AT or AT(AAT + γIp)
−1.850

This is discussed in the following remark.851

Remark 2.32 (Discontinuity of pseudoinverse). The Moore–Penrose pseudoinverse A+
852

of A maps a (small) singular value σi(A) to 1/σi(A) and does not depend continuously on853

A. On the other hand, the regularized inverse (ATA + γIn)−1AT or AT(AAT + γIp)
−1 maps854

a (small) singular value σi(A) to σi(A)
γ+σ2

i (A)
and depends on A in a more “continuous” fashion,855

but shrinks to the Moore–Penrose pseudoinverse as γ → 0. As an example, consider a small856

rank-one perturbation Aε of a given matrix A having rank r with SVD A =
∑r

i=1 σi(A)uiv
T
i857

given by (the correspond SVD as)858

Aε = A + εur+1v
T
r+1, (2.45)859

for some small ε > 0. Then, by Theorem 2.27, its pseudoinverse A+
ε is given by860

A+
ε = A+ +

1

ε
vr+1u

T
r+1, (2.46)861

and therefore862

‖A+
ε −A+‖
‖A+‖

=
σr(A)

ε
� 1, (2.47)863



32 CHAPTER 2. BASIC LINEAR ALGEBRA

for ε small. On the other hand, ridge regularized inverse (ATA+γIn)−1AT or AT(AAT+γIp)
−1

864

is a more “continuous” function of A since865

(ATA + γIn)−1AT = VT
A

[
(Σ2

A + γIr)
−1ΣA 0

0 0

]
UT

A, (2.48)866

so that867

‖(AT
ε Aε + γIn)−1AT

ε − (ATA + γIn)−1AT‖
‖(ATA + γIn)−1AT‖

=
2σi(A)

σi(A)2/ε+ ε
≤ 1. (2.49)868

if we take γ = σi(A) for some i ∈ {1, . . . ,min(n, p)}.869



Chapter 3870

Linearizing high-dimensional871

nonlinear functions872

There are two motivations for the techniques described in this chapter.873

1. First, many ML models are nonlinear. For instance, kernel methods extract nonlinear874

features of input data by “lifting” them into some (typically infinitely dimensional) re-875

producing kernel Hilbert space [27]; and neural networks perform nonlinear classification876

or regression of input data by using nonlinear activation functions [16]. See ?? for more877

detailed treatments of these nonlinear ML models.878

2. Second, linear analysis tools (e.g., basic single-variable calculus, linear algebra, random879

matrix theory, etc.) are so powerful that when we encounter nonlinear problems, a com-880

mon strategy is to find and solve a related approximate linear problem.881

This second motivation, of course, holds throughout applied mathematics, science, and engi-
neering; but many of the issues that arise in modern ML mean that we need to revisit these
ideas in a broader context. The standard example of this linearization approach is provided by
the Taylor expansion in calculus: given a deterministic single-variable function f : R → R, we
can approximate its behavior at a point x near a reference point τ as

f(x) = f(τ) + f ′(τ)(x− τ) +
f ′′(τ)

2
(x− τ)2 + . . .

≈ f(τ) + f ′(τ)(x− τ),

where the approximation (≈) in the second line holds when the function f is sufficiently smooth882

so that the remaining higher-order terms are small and can be ignored. When this approximation883

holds, the function f(·) is well-approximated by a linear/affine function.884

In this chapter, we are interested in the generalization of these “linearization” ideas from885

single-variable deterministic functions to high-dimensional random functions of the form f(x) :886

Rn → R. In ML, the variable x is typically a high-dimensional vector, x ∈ Rn, in which887

case f(x) ∈ R may be interpreted as a “scalar observation” of that random vector (as in888

Definition 1.17 of Chapter 1.4). We will discuss different approaches to assess the behavior889

of the nonlinear function f(x) (or its statistics such as the expectation E[f(x)]), depending890

on the properties of f(·), the random x, and the dimension n. To accomplish this, we need891

to perform some sort of high-dimensional linearization. In Chapter 3.1, we will present two892

different scaling regimes that are particularly relevant for modern ML. In Chapter 3.2, we893

will describe how the Taylor expansion approach can be applied not just to single variable894

deterministic functions but also to certain high-dimensional random functions in one of these895

scaling regimes. In Chapter 3.3, we will describe how a more sophisticated but complementary896

linearization approach can be applied in the other scaling regime. Finally, in Chapter 3.4, we897

33
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will introduce the idea of Linear Equivalent that unifies both approaches and propose High-898

dimensional Equivalents (as in Definition 1.1) by linearizing nonlinear functions.899

3.1 Two different scaling regimes of f(x)900

We start by recalling the two scaling regimes (the LLN regime and the CLT regime) that we901

have reviewed in Chapter 1.2, under the form of generic scalar observations of large-dimensional902

random vectors.903

Two scaling regimes

Definition 3.1 (Two scaling regimes). For a scalar observation f(x) of a large-
dimensional random vector x ∈ Rn via some f : Rn → R, consider the following two
scaling regimes:

1. LLN regime: this holds when f(x) establishes, for n large, a LLN-type con-
centration, strongly concentrating around a deterministic quantity, say E[f(x)], in
such a way that its distribution function becomes (asymptotically) degenerate, e.g.,
f(x)− E[f(x)]→ 0 in probability or almost surely as n→∞.

2. CLT regime: this holds when f(x) establishes, for n large, a CLT-type concen-
tration, remaining random, and having a non-degenerate distribution function in
the n→∞ limit, e.g.,

√
n (f(x)− E[f(x)])→ N (0, 1) in distribution as n→∞.

904

In the following example, we describe how different objects from Chapter 2 (norms, inner905

products, and angles) behave in two different scaling regimes (of the value of the dimension n)906

in Definition 3.1.907

Example 3.2 (Nonlinear objects in two scaling regimes). Let x ∈ Rn be a random
vector so that

√
nx has i.i.d. standard Gaussian entries with zero mean and unit variance

(the scaling by
√
n is made so that E[‖x‖22] = 1, as in Remark 2.4), and y ∈ Rn be a

deterministic vector of unit norm ‖y‖ = 1; and consider the following nonlinear objects
of interest with a nonlinear function φ : R→ R acting in two different regimes:

1. LLN regime: here, we consider random variables

fLLN(x) = ‖x‖2 or fLLN(x) = xTy, (3.1)

that establish a LLN-type concentration, as n → ∞, and we are interested in the
nonlinear φ(fLLN(x)); and

2. CLT regime: here, we consider random variables

fCLT(x) =
√
n(‖x‖2 − 1) or fCLT(x) =

√
n · xTy, (3.2)

that establish a CLT-type concentration, as n → ∞, and we are interested in the
nonlinear φ(fCLT(x)).

908

The two regimes in Example 3.2 follow from the two well-known convergence results (recall909

from Remark 2.4 on the difference scaling for inner products and norms):910

1. the (strong) law of large numbers (LLN) in Theorem 1.7, which implies that911

‖x‖2 → E[xTx] = 1 and xTy→ E[xTy] = 0, (3.3)912

almost surely as n→∞; and913
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2. the central limit theorem (CLT) in Theorem 1.8, which implies that914

√
n(‖x‖2 − 1)→ N (0, 2) and

√
n · xTy→ N (0, 1), (3.4)915

in law as n→∞.916

These two results can be written, as in Remark 2.4, in the following more compact form:917

‖x‖2 ' 1 +N (0, 2)/
√
n and xTy ' 0 +N (0, 1)/

√
n, (3.5)918

for n large.919

Remark 3.3 (Different possible scalings for the random variable). The two scaling920

regimes (of scalar observations of large random vectors) defined in Definition 3.1 are of particular921

interest when being evaluated though some nonlinear function φ : R → R as in Example 3.2.922

As we shall see below in Chapter 3.2 and Chapter 3.3, the behavior of such nonlinear random923

variables depends on different properties of φ in different scaling regimes.924

Note also that beyond the LLN and CLT, there are other (but trivial) scaling regimes:925

Consider a random vector x ∈ Rn having zero mean and unit variance entries (so that ‖x‖2 → n),926

a nonlinear function φ : R→ R could act on the following scaling regimes:927

1. LLN regime: fLLN(x) = ‖x‖2/n or fLLN(x) = xTy//
√
n; and928

2. CLT regime: fCLT(x) =
√
n(‖x‖2/n− 1) or fCLT(x) = xTy; and929

3. trivial regimes at ∞: f(x) = ‖x‖2/Cn for any Cn = o(n), for which we have f(x) =930

‖x‖2/Cn →∞ as n→∞; and similarly f(x) = xTy/Cn for any Cn = o(1), for which we931

have f(x) = xTy/Cn →∞ as n→∞.932

Remark 3.4 (LLN- versus CLT-type concentration). Here and in the following, we refer933

to the LLN-type results (in the first item of Example 3.2) as LLN-type concentration, since934

random variables of the form fLLN(x) = ‖x‖2 or xTy are close-to-deterministic and exhibit935

deterministic-like or degenerate behavior for n large. Similarly, we refer to the CLT-type results936

(in the second item of Example 3.2) as CLT-type concentration, since random variables of the937

form fCLT(x) =
√
n(‖x‖2 − 1) or

√
n · xTy are not close-to-deterministic; instead, they remain938

inherently random and exhibit a non-degenerate distribution function for n large.939

It is worth clarifying that these two categories of concentration—LLN-type and CLT-type—940

are subfields of high-dimensional concentration results in the literature of high-dimensional941

probability and statistics [19, 36, 38]. These results provide a framework to describe, e.g., the942

sub-gaussian tail behavior of random variable around (or away from) from their expectations.943

The significance of this discussion is that the “scalings” of the two families of nonlinear944

objects in Example 3.2 are different (and thus their linearizations will need to be different).945

1. LLN regime. For objects in the LLN regime, the nonlinear function φ is applied on a946

close-to-deterministic quantity, in the sense that947

‖x‖2 = 1 +O(n−1/2) and xTy = 0 +O(n−1/2), (3.6)948

with high probability for n large, due to the dominant LLN behavior. In this case,949

the familiar Taylor expansion approach (from deterministic single-variable calculus) will950

suffice, even if the justification is slightly different since x is a random variable.951

2. CLT regime. For objects in the CLT regime, the nonlinear function φ is applied on a952

normally distributed random variable. As a consequence of the CLT, that is not close to953

a deterministic quantity, in the sense that for n large,954

√
n(‖x‖2 − 1) ∼ N (0, 2) and

√
n · xTy ∼ N (0, 1), (3.7)955
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Figure 3.1: Illustrations of the random variables xTy in the LLN (Figure 3.1a) and the CLT
(Figure 3.1b) regime, with n = 500. In the LLM regime, the random variable concentrates
strongly around its expected value, with very small variability; while in the CLT regime, the
random variable still have substantial variability about its expected value.

and are in particular not close the mean zero. In this case, more sophisticated high-956

dimensional approaches based on orthogonal polynomials will be needed to perform the957

linearization.958

Figure 3.1 visualizes the behavior of inner-products xTy of Example 3.2 in the LLN regime959

(where fLLN(x) = xTy ' N (0, n−1) is almost a Dirac delta function at zero for n large)960

and the CLT regime (where fCLT(x) =
√
nxTy ' N (0, 1) “spreads” out on the axis, on a961

scale that is comparable to the range over which a “quadratic approximation” using Taylor962

expansion to φ(·) would be valid). Figure 3.2 compares the linearization (mean squared) errors963

(φ(f(x)) − φ(t))2 by considering all possible deterministic t ∈ [−3, 3], for random variables964

fLLN(x) and fCLT(x) in the LLN and CLT regime, respectively. We observe that by going over965

all possible deterministic value of φ(t), t ∈ [−3, 3], the linearization error of φ(fLLN(x)) in the966

LLN regime can be reduced to zero, but this is not the case for φ(fCLT(x)) in the CLT regime.967

In particularly, the linearization errors for φ(fCLT(x)) using any φ(t), t ∈ [−3, 3] remains rather968

random, and is empirically observed constantly larger than 4.969

These two different linearization approaches—via the Taylor expansion and via orthogonal970

polynomials—are summarized in Table 3.1. They are discussed in Chapter 3.2 and Chapter 3.3971

below, respectively. In particular, we will better understand the observation in Figure 3.2972

that a small linearization error can be achieved by approximating the nonlinear φ(f(x)) in a973

deterministic fashion (i.e., by φ(t)), but only in the LLN regime, not in the CLT regime.974

3.2 Linearization via Taylor expansion975

In this section, we will describe the Taylor expansion approach for linearizing nonlinear func-976

tions. Although most well-known for being applied to deterministic single-variable functions,977

the method also applies to certain high-dimensional random functions (basically, those in the978

LLM regime).979

Taylor expansion is perhaps the most popular approach to perform local linearization of a980

smooth nonlinear function. Here is the basic result for real-valued functions of a single variable.981
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Figure 3.2: Illustrations of the (mean squared) linearization errors (φ(f(x)) − φ(t))2 for
φ(t) = tanh(t) as in Example 3.14, by searching for all possible t ∈ [−3, 3], in the LLN regime
(Figure 3.2a) with fLLN(x) = xTy and in the CLT regime (Figure 3.2b) with fCLT(x) =

√
nxTy,

for n = 256, and errors are obtained over 1 024 samples. We observe that while there exist de-
terministic t ∈ [−3, 3] (in fact around t = 0) such that the linearization error of φ(·) can be
made small (i.e., close to zero) in the LLN regime, this is not the case in the CLT regime. In the
CLT regime, the linearization error of φ(fCLT(x)) is always larger than 4, for any t ∈ [−3, 3].

Theorem 3.5 (Taylor’s theorem for deterministic single-variable functions, [26,
Theorem 8.4]). Let φ : R → R be a function that is at least k times continuously dif-
ferentiable in a neighborhood of a given point τ ∈ R. Then, there exists a function
hk : R→ R such that

φ(x) = φ(τ)+φ′(τ)(x− τ)+
φ′′(τ)

2
(x− τ)2 + . . .+

φ(k)(τ)

k!
(x− τ)k +hk(x)(x− τ)k, (3.8)

with limx→τ hk(x) = 0 so that hk(x)(x− τ)k = o(|x− τ |k) as x→ τ .
982

In particular, for a deterministic single variable x, Theorem 3.5 applies to assess the local983

behavior of φ(x) around x = τ + o(1) as a low-degree polynomial that contains both linear (i.e.,984

φ′(τ)(x− τ)) and nonlinear (e.g., quadratic or higher-order) components, in the sense that985

φ(x) = φ(τ) + φ′(x− τ) +
φ′′(τ)

2
(x− τ)2 + o(x− τ)2. (3.9)986

In the following, we discuss how the familiar Taylor expansion approach in Theorem 3.5 can987

be applied to linearize certain nonlinear functions φ of interest, as in Example 3.2. In particular,988

Theorem 3.5 can be applied in an operational sense to the LLN regime.989

What makes the Taylor expansion approach in Theorem 3.5 work? To apply the990

Taylor expansion approach in Theorem 3.5 to linearize a nonlinear transformation φ(x) of the991

(deterministic or random) variable x, the main technical requirements are the following.992

1. Smoothness. The nonlinear function φ under study should be smooth (or, more prop-993

erly speaking, continuously differentiable), at least in the neighborhood of the point τ of994

interest, so that the derivatives φ′(τ), φ′′(τ), . . . make sense.995

2. LLN-type concentration. The variable of interest x is sufficiently close to (or, con-996

centrates around, when being random) the point τ so that the higher orders terms are997
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Table 3.1: Two different scaling regimes and their corresponding high-dimensional linearization
approaches.

Scaling regime LLN regime CLT regime

Linearization technique
Taylor expansion in Theorem 3.5

of Chapter 3.2
Orthogonal polynomial in Theorem 3.10

of Chapter 3.3

Smoothness of φ Locally smooth φ Possibly non-smooth φ

Object of interest φ(f(x))
for φ : R→ R, f : Rn → R

in Example 3.2

fLLN(x) = ‖x‖2 or xTy
in Equation (3.1)

fCLT(x) =
√
n(‖x‖2 − 1) or

√
n · xTy

in Equation (3.2)

Linearization result φ(fLLN(x)) in Proposition 3.6 E[φ(fCLT(x))] in Proposition 3.12

Object of interest f(φ(·))
for entry-wise φ : Rp → Rp
f : Rp → R in Example 3.16

φLLN(Xy), X ∈ Rp×n,y ∈ Rn
via observation f : Rp → R

φCLT(
√
n ·Xy), X ∈ Rp×n,y ∈ Rn

via observation f : Rp → R

Linearization result
f(φLLN(Xy)) in Proposition 3.18

for f(·) = aT(·)/√p
f(φCLT(

√
n ·Xy)) in Proposition 3.19

for f(·) = aT(·)/√p

neglectable (or, more properly speaking, so that the Taylor series is convergent).998

A more detailed discussion of these two points is provided below.999

Extending Taylor’s theorem to high-dimensional random functions. To use Taylor’s1000

theorem in Theorem 3.5 to assess the nonlinear behavior of φ(x) for some random variable x,1001

e.g., as those in Example 3.2, it suffices to show that order control (i.e., the o(x − τ2) term in1002

Equation (3.9)) holds with some (high) probability. Here is the basic result for the two families1003

of nonlinear examples from Example 3.2, in the LLN regime.1004

Proposition 3.6 (Taylor expansion of high-dimensional random functions in the LLN1005

regime). For random variable fLLN(x) = ‖x‖2, with
√
nx ∈ Rn having i.i.d. standard Gaussian1006

entries, in the LLN regime (as in the first item of Example 3.2), it follows from the LLN that1007

‖x‖2 − 1 → 0, and from the CLT that ‖x‖2 − 1 = O(n−1/2), with high probability for n large.1008

Thus, it follows from Theorem 3.5 and the differentiability of φ that1009

φ(‖x‖2) = φ(1) + φ′(1) (‖x‖2 − 1)︸ ︷︷ ︸
O(n−1/2)

+
1

2
φ′′(1) (‖x‖2 − 1)2︸ ︷︷ ︸

O(n−1)

+O(n−3/2), (3.10)1010

with high probability. Similarly, for random variable fLLN(x) = xTy with ‖y‖ = 1, it follows1011

that1012

φ(xTy) = φ(0) + φ′(0) xTy︸︷︷︸
O(n−1/2)

+
1

2
φ′′(0) (xTy)2︸ ︷︷ ︸

O(n−1)

+O(n−3/2), (3.11)1013

again as a consequence of xTy → 0 almost surely by the LLN and
√
n · xTy

d−→ N (0, 1) in1014

distribution by the CLT as n → ∞, where the orders O(n−`) hold with high probability for n1015

large.1016

Remark 3.7 (Delta method). By ignoring second and higher-order terms in Proposition 3.6,
the results in Equation (3.10) and Equation (3.11) can be rewritten as

√
n
(
φ(‖x‖2)− f(1)

) d−→ N
(
0, 2(φ′(τ))2

)
,

√
n
(
φ(xTy)− f(0)

)
d−→ N

(
0, (φ′(τ))2

)
.

This is known in the literature as the Delta method; see, e.g., [35, Chapter 3].1017

In the following, we discuss in more detail the two working assumptions of Theorem 3.5.1018
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Smoothness assumptions. Regarding the smoothness assumption, one can relax it. For1019

example, for a non-smooth and nonlinear function φ, one can evaluate the expected behavior1020

E[φ(x)] of φ(x), for x being random. While the function φ may not be differentiable everywhere1021

(and in particular, in the neighborhood x = τ of interest), it can still have almost everywhere1022

weak derivative φ′ (in the sense of distributions, see for example [31, Section 3] for an introduc-1023

tion) such that1024 ∫
φ′(t)µ(dt) = E[φ′(x)] <∞, (3.12)1025

exists, for random variable x having law µ. In a sense, for non-differential φ, φ′ does not exists1026

in the sense of ordinary functions, but we can still define such derivative of φ in a weak sense,1027

so long that the integral
∫
φ′(t)µ(dt) exists for some (signed) Borel measure µ.1028

A concrete example of this in the case of a standard Gaussian x is known as Stein’s lemma,1029

which states: For standard Gaussian random variable x ∼ N (0, 1), we have that1030

E[φ′(x)] = E[xφ(x)], (3.13)1031

as long as the right-hand-side term is finite. The proof of this result follows from the integration1032

by parts formula as1033

E[xφ(x)] =

∫
tφ(t)µ(dt) =

∫
φ(t)

1√
2π
te−

t2

2 dt =

∫
φ′(t)

1√
2π
e−

t2

2 dt = E[φ′(x)], (3.14)1034

with standard Gaussian measure µ(dt) = 1√
2π
e−

t2

2 dt. This result allows one to assess the1035

expectation E[φ′(x)] for standard Gaussian x and weakly differentiable φ.1036

LLT-type concentration assumption. The LLN-type concentration assumption is a more1037

intrinsic limitation of the Taylor expansion approach, as this approach allows one to assess only1038

the local behavior of the nonlinear function φ(x) around some x = τ .1039

A concrete example of this arises in the proof of Proposition 3.6,6 which strongly relies on the1040

fact that both ‖x‖2− 1 and xTy are of order O(n−1/2) with high probability, which happens in1041

the LLN regime. Otherwise, the higher-orders terms in Theorem 3.5 cannot be ignored (at least1042

with high probability). In particular, in the CLT regime, the nonlinear function φ is applied1043

on Gaussian random variables that do not exhibit this type of strong concentration around any1044

deterministic quantity (in the sense that the random fluctuation vanishes, e.g., as the dimension1045

n grows). In this setting, it no longer makes sense to apply the Taylor expansion approach in1046

Theorem 3.5, since the higher-order terms cannot be ignored.1047

3.3 Linearization via orthogonal polynomial expansion1048

In this section, we will discuss a different linearization method, the orthogonal polynomial ap-1049

proach, which can be applied to high-dimensional random functions, in particular those in the1050

CLT regime. Among other things, this approach allows one to characterize the behavior of1051

the nonlinear function E[φ(x)] of random variable x that, in particular, does not strongly con-1052

centrate around a point of interest τ , and instead exhibits a CLT-type concentration. These1053

functions cannot be linearized using Taylor expansion technique in Theorem 3.5, due to their1054

“non-LLN-type concentration” and the “non-smooth” properties of such x.1055

To understand the orthogonal polynomial approach, we can take, for random x, a functional1056

analysis perspective7 on the expectation E[φ(x)]. This is different from the Taylor expansion1057

6See [35, Chapter 2] for a detailed proof.
7That is, we use ideas from deterministic functional analysis to assess and explain the expected behavior of

nonlinear random variables (e.g., in the CLT regime of Example 3.2). This should be compared and contrasted to
the use of deterministic Taylor expansion to treat random but close-to-deterministic nonlinear random variables
(e.g., in the LLN regime of Example 3.2).
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perspective that we saw in Chapter 3.2 that viewed φ as a mapping from R→ R,1058

A functional analysis perspective of E[φ(x)]. Consider the following functional analysis1059

perspective of the expectation E[φ(x)]. For a generic random variable x following some law µ,1060

the expectation E[φ(x)] of the nonlinear transformation φ(x) can be expressed as1061

Ex∼µ[φ(x)] =

∫
φ(t)µ(dt). (3.15)1062

This corresponds to the integral of φ with respect to the probability measure µ, for some1063

(deterministic) φ living in some (possibly infinite-dimensional) function space.1064

We know that, in the case of Euclidean space (reviewed in Chapter 2, recall Remark 2.2),1065

the canonical vectors e1, . . . , en form an orthonormal basis of Rn; and thus any vector x living1066

in the Euclidean space Rn can be expanded as1067

x =
n∑
i=1

(xTei)ei =
n∑
i=1

xiei, (3.16)1068

with the inner product (see Definition 2.1) xTei = xi being equal to the ith coordinate of x. A1069

similar result holds more generally. In particular, for a function f living in some (potentially1070

infinite dimensional) function space, such an f can be expanded into the sum of “orthonormal”1071

basis functions, weighted by the projection of f onto these basis functions.1072

The concepts of inner products for functions, families of orthonormal functions in some1073

Hilbert space, and the corresponding orthogonal polynomial expansions are made precise in the1074

following definition.1075

Orthogonal Polynomials and Orthogonal Polynomial Expansion

Definition 3.8 (Orthogonal polynomials and orthogonal polynomial expan-
sion). For a probability measure µ, define the inner product between two functions φ and
ψ as

〈φ, ψ〉µ ≡
∫
φ(x)ψ(x)µ(dx) = E[φ(x)ψ(x)], (3.17)

for x ∼ µ. We say that {P`(x), ` ≥ 0} is a family of orthogonal polynomials with
respect to this inner product, obtained by the Gram-Schmidt procedure on the monomials
{1, x, x2, . . .}, with P0(x) = 1, if P` is a polynomial function of degree ` that satisfies

〈P`1 , P`2〉 = E[P`1(x)P`2(x)] = δ`1=`2 . (3.18)

Then, for any function φ ∈ L2(µ), the orthogonal polynomial expansion of φ is

φ(x) ∼
∞∑
`=0

aφ;`P`(x), aφ;` =

∫
φ(x)P`(x)µ(dx). (3.19)

1076

In Definition 3.8, we used the notation “φ ∼
∑∞

l=0 aφ;`P`” to denote that ‖φ−
∑L

`=0 aφ;`P`‖µ →1077

0 as L→∞ with ‖φ‖2µ = 〈φ, φ〉, or equivalently1078

∫ (
φ(t)−

L∑
`=0

aφ;`P`(t)

)2

µ(dt) = Ex∼µ

(φ(x)−
L∑
`=0

aφ;`P`(x)

)2
→ 0, (3.20)1079

written in the form of a nonlinear random variable φ(x). It follows from the Riesz-Fischer1080

theorem (see [26, Theorem 11.43]), that if the family of orthogonal polynomial {P`(x)}∞`=01081

forms a orthonormal basis of L2(µ), the set of all square-integrable functions with respect to1082

〈·, ·〉, then we can expand any φ as in Equation (3.20).1083
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Table 3.2: Correspondence between expansions in Hilbert versus Euclidean space.

Type of space: Euclidean vector space Hilbert functional space

Definition and notation: Rn in Definition 2.1 L2(µ) in Definition 3.8

Inner products (and norms):
xTy =

∑n
i=1 xiyi,

‖x‖22 = xTx

〈φ, ψ〉µ ≡
∫
φ(x)ψ(x)µ(dx),

‖φ‖2µ = 〈φ, φ〉µ
Expansion: x =

∑n
i=1(xTei)ei =

∑n
i=1 xiei φ(x) ∼

∑∞
`=0 aφ;`P`(x)

Remark 3.9 (Expansion in Hilbert versus Euclidean space). We can compare Defini-1084

tion 3.8 for the expansion of functions living in some (infinite-dimensional) Hilbert space, to1085

that for (finite-dimensional) Euclidean vector space in Definition 2.1. We observe the following1086

correspondence:1087

1. the inner product in Equation (3.17) between functions (measured by µ) extends the inner1088

product in Definition 2.1 between Euclidean vectors;1089

2. the norm ‖φ‖µ of some function extends the Euclidean norm of a vector in Remark 2.2,1090

and both present the total “energy” (of the function φ, when measured by the “weight1091

function” µ, and of the finite-dimensional Euclidean vector); and1092

3. the expansion of functions into in Equation (3.19) extends the canonical basis expansion1093

of Euclidean vectors in Equation (3.16).1094

See Table 3.2 for an summary of these correspondences. As we shall below, the expansion in1095

Hilbert functional space plays a crucial role in evaluating nonlinear random variables of the1096

form φ(fCLT(x)), for fCLT(x) =
√
n(‖x‖2 − 1) or fCLT(x) =

√
n · xTy in the CLT regime as in1097

the second item of Example 3.2.1098

As a specific type of expansions in Hilbert functional space, the orthogonal polynomial1099

expansion given in Equation (3.19) provides the basis for a more sophisticated linearization1100

technique that allows one to assess the behavior of E[φ(x)] for not-close-to-deterministic scalar1101

random variable x, such as the scalar observation x = fCLT(x) in the CLT regime. An example1102

of this is provided by x = fCLT(x) =
√
n · xTy ∼ N (0, 1) with ‖y‖ = 1 and

√
nx ∈ Rn having1103

standard Gaussian entries, where there is non-trivial probability that the Gaussian random1104

variable x = fCLT(x) =
√
n · xTy is “spread out” on the real line.1105

Hermite polynomial expansion. When one is interested in the Gaussian measure, µ(dx) =1106

exp(−x2/2)/
√

2π, the natural family of orthogonal polynomials to consider is the normalized1107

Hermite polynomial family. Here is the definition.1108

Theorem 3.10 (Hermite polynomial expansion, [26, Theorem 11.43]). For x ∈
R, the `th order normalized Hermite polynomial, denoted He`(x), is given by given by

He0(x) = 1, and He`(x) =
(−1)`√
`!
e
x2

2
dn

dxn

(
e−

x2

2

)
, for ` ≥ 1. (3.21)

The (normalized) Hermite polynomials

1. are orthogonal polynomials, and (as the name implies) are orthonormal with respect
the standard Gaussian measure, in the sense that∫

Hem(x)Hen(x)µ(dx) = δnm, (3.22)

for µ(dt) = 1√
2π
e−

t2

2 dt the standard Gaussian measure;

1109
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0

2

He0 = 1

He1 = x

He2 = (x2 − 1)/
√

2

He3 = (x3 − 3x)/
√

6

(a) First four Hermite polynomials.

−3 0 3

−0.4

−0.2

0

0.2

0.4

He1 · µ
He2 · µ

He1 ·He2 · µ

(b) First- and second-order Hermite polynomial
weighted by Gaussian measure.

Figure 3.3: Illustration of the first four Hermite polynomials as in Theorem 3.10 (Figure 3.3a)
and of the first- and second-order Hermite polynomial (He1 and He2) weighted by the Gaussian
measure µ(dx) = exp(−x2/2)/

√
2π (Figure 3.3b).

2. form an orthonormal basis of L2(µ), the Hilbert space consist of all square-integrable
functions with respect to the inner product 〈φ, ψ〉 ≡

∫
φ(x)ψ(x)µ(dx); and

3. can be used to formally expand any φ ∈ L2(µ) as

φ(x) ∼
∞∑
`=0

aφ;`He`(x), aφ;` =

∫
φ(x)He`(x)µ(dx) = E[φ(x)He`(x)], (3.23)

where we use ‘φ ∼
∑∞

`=0 aφ;`He`’ as in (3.20) of Definition 3.8, for standard Gaus-
sian random variable x ∼ N (0, 1). The coefficients aφ;`s are generalized moments
of the standard Gaussian measure µ involving φ, and we have

aφ;0 = Ex∼N (0,1)[φ(x)], aφ;1 = E[xφ(x)],
√

2aφ;2 = E[x2φ(x)]− aφ;0, (3.24)

as well as
νφ = E[φ2(x)] =

∑
`=0

a2
φ;`. (3.25)

1110

As an example of the Hermite polynomials, see Figure 3.3. In Figure 3.3a, we display the1111

first four (normalized) Hermite polynomials. This is in the spirit of the expansion into Fourier1112

basis commonly used in time-frequency analysis (see for example [30]), with the functions now1113

being evaluated with respect to the Gaussian measure µ. In Figure 3.3b, we depict the first- and1114

second-order Hermite polynomial (He1 and He2), but weighted by the Gaussian measure µ(dx) =1115

exp(−x2/2)/
√

2π. Comparing Figure 3.3b to Figure 3.3a, we see that the two (normalized)1116

Hermite polynomial He1 and He2 are indeed “orthogonal” to each other when measured by µ,1117

in the sense that the 〈He1,He2〉 ≡
∫

He1(x)He2(x)µ(dx) = 0.1118

Remark 3.11 (Gegenbauer polynomials and beyond). While Hermite polynomials are1119

probably of greatest interest in ML, we should emphasize how they arise. They arise due to1120

the Gaussian fluctuations in the random variable being linearized. For other ML models with1121

different noise fluctuations, other orthogonal polynomials would be appropriate For example,1122

a different, yet closely related, family of orthogonal polynomial, the Gegenbauer polynomial,1123
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arises naturally in the evaluation of xT
i xj for independent xi,xj ∼ Unif

(
Sp−1(

√
p)
)

uniformly1124

drawn from the p-dimensional sphere of radius
√
p. See [23] for an application of the family of1125

Gegenbauer polynomial in neural networks, and [14, 32] for more details on general orthogonal1126

polynomials (beyond Hermite and Gegenbauer).1127

The Hermite polynomial expansion in Theorem 3.10 allows one to approximate, for standard1128

Gaussian random variable x ∼ N (0, 1), the expectation E[φ(x)] of square-integrable nonlinear1129

(and in particular, possibly non-polynomial) function φ(x) using a (sufficiently high-order)1130

polynomial function,1131

φ(x) ∼ φ̃(x) =
L∑
`=0

aφ;`He`(x). (3.26)1132

This can be done, in particular, in the CLT regime, where needs to evaluate the expected1133

nonlinear behavior of φ(·) applied on, e.g., the inner-product of the type
√
n · xTy that admits1134

an asymptotically Gaussian behavior.1135

With Theorem 3.10, we get the following linearizations in the CLT regime.1136

Proposition 3.12 (Hermite polynomial expansion of high-dimensional random func-1137

tions in the CLT regime). For random variable fCLT(x) =
√
n · (‖x‖2 − 1), with

√
nx ∈ Rn1138

having i.i.d. standard Gaussian entries, in the CLT regime (as in the second item of Exam-1139

ple 3.2), it follows from the CLT that fCLT(x) ∼ N (0, 1) in law as n → ∞. Thus, it follows1140

from Theorem 3.10 that1141

E[φ(
√
n · (‖x‖2 − 1))] = Ex∼N (0,1)[φ(x)] + o(1) = aφ;0 + o(1), (3.27)1142

with high probability, where o(1) denotes quantity that goes to zero as n → ∞. Similarly, for1143

random variable fCLT(x) =
√
n · xTy with ‖y‖ = 1, it follows that1144

E[φ(
√
n · xTy)] = Ex∼N (0,1)[φ(x)] = aφ;0, (3.28)1145

where we do not have the error term o(1) since
√
n · xTy ∼ N (0, 1) for any n.1146

Proposition 3.12 presents the high-dimensional linearization in the CLT regime via the Hermite1147

polynomial expansion. This approach should be compared and contrasted with that of Propo-1148

sition 3.6, which presents the high-dimensional linearization in the LLN regime via the Taylor1149

expansion method. The distinction between these two methodologies is elaborated upon in the1150

following remark.1151

The idea of orthogonal polynomials in Definition 3.8 and Theorem 3.10 applies to other1152

nonlinear forms beyond the simple expectation E[φ(x)]. In particular, it applies to nonlinear1153

forms that involve large-dimensional random vectors and matrices. See Chapter 3.4 below for1154

an in-depth discussion on its use in assessing nonlinear random vectors and ?? for an exposition1155

with applications to ML.1156

Remark 3.13 (Different scalings, Taylor expansion versus orthogonal polynomial).1157

We can compare and contrast the two linearization approaches of Taylor expansion (in Theo-1158

rem 3.5) and orthogonal Hermite polynomial expansion (in Theorem 3.10), to assess the nonlin-1159

ear objects in Example 3.2 in the LLN and CLT regimes, respectively. Recall from Example 3.21160

that for a random vector x ∈ Rn such that
√
nx has i.i.d. standard Gaussian entries, a deter-1161

ministic y ∈ Rn of unit norm ‖y‖2 = 1, we have xTy ∼ N (0, n−1) so that1162

fLLN(x) ≡ xTy = 0 +O(n−1/2),1163

fCLT(x) ≡
√
n · xTy ∼ N (0, 1).1164

We are interested in the behavior of φ(fLLN(x)) and φ(fCLT(x)), and in particular, how they1165

depend on the nonlinear φ : R→ R. We have the following.1166
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1. In the LLN regime, by Taylor expansion (of nonlinear LLN random variables) in Propo-1167

sition 3.6, any pair of smooth function φ, ψ with φ(0) = ψ(0) satisfies1168

φ(fLLN(x)) = ψ(fLLN(x)) +O(n−1/2), (3.29)1169

with high probability for n large. Thus, the two random variables, φ(fLLN(x)) and1170

ψ(fLLN(x)), are close as long as the two nonlinear functions φ and ψ coincide at 0.1171

2. In the CLT regime, by Hermite polynomial expansion in Proposition 3.12 for φ, ψ1172

having the same zeroth-order Hermite coefficient aφ;0 = E[φ(x)] = aψ;0 = E[ψ(x)] with1173

x ∼ N (0, 1),1174

E[φ(fCLT(x))] = E[ψ(fCLT(x))]. (3.30)1175

This is by no means surprising, as it is a consequence of the definition aφ;0 = E[φ(x)] =1176

aψ;0 = E[ψ(x)].1177

In order to understand Remark 3.13 better, we provide in the following a concrete example1178

of the two linearization approaches.1179

Example 3.14 (Two different linearizations of tanh in two different scaling
regimes ). As a concrete example of Remark 3.13, consider the hyperbolic tangent func-
tion φ(t) = tanh(t). It follows from the discussions in Remark 3.13 that this nonlinear
function is “close” to different quadratic functions in different regimes of interest. More
precisely, for a random vector x ∈ Rn such that

√
nx has i.i.d. standard Gaussian entries,

a deterministic y ∈ Rn of unit norm ‖y‖2 = 1, we have the following.

1. In the LLN regime, we have for fLLN(x) = xTy that

tanh(fLLN(x)) ' ψLLN(fLLN(x)),

with ψLLN(x) = x2/4. This is as a consequence of tanh(x = 0) = ψLLN(x = 0) = 0.
In particular, we also have E[tanh(fLLN(x))] ' E[ψ(fLLN(x))] as a result.

2. In the CLT regime, we have for fCLT(x) =
√
n · xTy that

E[tanh(fCLT(x))] = E[ψCLT(fCLT(x))]

in expectation, with now ψLLN(x) = x2 − 1, i.e., with a different function. This is
a consequence of the fact that their zeroth-order Hermite coefficient a0 = 0.

Figure 3.4 visually compares the behavior of tanh(fLLN(x)) and tanh(fCLT(x)), in the
LLN and CLT regime.

1180

3.4 Linearization of f(φ(x)) with Linear Equivalent1181

In this section, we discuss how the linearization techniques (of Taylor and orthogonal polynomial1182

expansions) for scalar variables extend to multivariate vector variables φ(x) for some φ : Rn →1183

Rn that applies entry-wise on the random vector x ∈ Rn, when their scalar observations of the1184

form f(φ(x)) are considered, as in the bottom half of Table 3.1. Recall that Example 3.2 and1185

Chapters 3.2 and 3.3 focus on Taylor expansion and orthogonal polynomial expansion for scalar1186

nonlinear random variables of the form φ(f(x)) for f : Rn → R (such as inner products and1187

norms of vectors in Example 3.2) and φ : R → R, in the two different LLN and CLT scaling1188

regimes. Here, we show that these two technical approaches extend beyond the case of scalar1189

nonlinear random variables like φ(f(x)) to nonlinear random vectors φ(x) with entry-wise φ,1190
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−1

0

1

2

3

fLLN(x) ≡ x>y

φ(t) = tanh(t)

ψLLN(t) = t2/4

ψLLN(t) = α · t2

(a) LLN regime

−3 0 3
−1

0

1

2

3

fCLT(x) ≡
√
n · x>y

φ(t) = tanh(t)

ψCLT(t) = t2 − 1

ψCLT(t) = α(x2 − 1)

(b) CLT regime

Figure 3.4: Different behavior of nonlinear φ(fLLN(x)) and φ(fCLT(x)) for φ(t) = tanh(t) (in
blue) in the LLN and CLT regime, with n = 500. We have φ(fLLN(x)) ' ψLLN(fLLN(x)) in the
LLN regime (as a consequence of φ(0) = ψLLN(0) = 0) and E[φ(fCLT(x))] = E[ψCLT(fCLT(x))]
in the CLT regime (as a consequence of aφ;0 = aψCLT;0 = 0), with different quadratic functions
ψLLN(t) = t2/4 and ψCLT(t) = t2 − 1 =

√
2He2(t) in red. Note that the these linearizations

(in the two different regimes respectively) are not unique and all functions in dashed green are
also valid linearizations.

and in particular, their scalar observations f(φ(x)) via some f : Rn → R. This can be done by1191

studying the associated Linear Equivalent, defined as follows.1192

Linear Equivalent

Definition 3.15 (Linear Equivalent). For a random vector x ∈ Rn, its nonlinear
transformation φ(x) ∈ Rn is obtained by applying φ : Rn → Rn entry-wise on x. Consider
f(φ(x)) a scalar observation of φ(x) ∈ Rn via observation function f : Rn → R, we say
that the random vector x̃φ (defined on an extended probability space if necessary) is an
(ε, δ)-Linear Equivalent of the nonlinear φ(x) if, with probability at least 1− δ(n) that

|f(φ(x))− f(x̃φ)| ≤ ε(n), (3.31)

for some non-negative functions ε(n) and δ(n) that decrease to zero as n→∞. This, in
the limit of n→∞, leads to

f(φ(x))− f(x̃φ)→ 0, (3.32)

in probability or almost surely, and we denote

φ(x)
f↔ x̃φ. (3.33)

1193

The Linear Equivalent in Definition 3.15 is a special case of the High-dimensional Equivalent1194

in Definition 1.1 for vectors.1195

As expected, the nonlinear object of interest, as well as the corresponding Linear Equivalent1196

in Definition 3.15, depends on whether the nonlinear φ : R→ R is applied to (the entries of) the1197

random vector x in the LLN or the CLT regime (see Definition 3.1), as illustrated in Example 3.21198

for φ(fLLN(x)) versus φ(fCLT(x)). We should resort to the Taylor expansion in Chapter 3.2 for1199

the LLN regime and the orthogonal polynomial expansion approach in Chapter 3.3 for CLT1200

regime, respectively.1201

In Algorithm 1 and 2, we present algorithms based on Taylor and Hermite polynomial1202

expansions discussed in Chapter 3.2 and Chapter 3.3, to construct Linear Equivalent for f(φ(x)),1203

in the LLN and CLT regime, respectively.1204
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Algorithm 1: Linear Equivalent for f(φLLN(x)) in the LLN regime

Input: Nonlinear random vector φLLN(x) ∈ Rn in the LLN regime so that the entries
of x satisfy xi ≈ τ for i ∈ {1, . . . , n} and its scalar observation f(φLLN(x)) of
interest.

Output: Linear Equivalent x̃φLLN

f↔ φ(x) when f(φLLN(x)) is considered.
In the LLN regime, call Theorem 3.5 to linearize the ith entry of φLLN(x) as

φLLN(xi) = φLLN(τ) + φ′LLN(τ)(xi − τ) +
1

2
φ′LLN(τ)(xi − τ)2 + . . .+ ε,

to some desired linearization error ε;
return x̃φLLN

= φLLN(τ) · 1n + φ′LLN(τ)(x− τ · 1n) + . . . such that with high probability
‖φLLN(x)− x̃φ‖∞ = ε.

Note that1205

1. in the LLN regime in Algorithm 1, the linearization and corresponding Linear Equivalent of1206

φLLN(x) only depend on the entry-wise non-linearity φLLN, in particular its local behavior1207

around the point of LLN-concentration τ ;1208

2. in the CLT regime in Algorithm 2, the linearization and corresponding Linear Equivalent1209

of φCLT(x) depend on1210

(a) the distribution of the random vector x (which determines the family of orthogonal1211

polynomials, see, e.g., Remark 3.11 for a discussion); and1212

(b) the number (and in fact form of the one or more) of scalars observations fi(·) of the1213

nonlinear φCLT(x).1214

In the following, we extend the scalar nonlinear objects in Example 3.2 to scalar observations1215

of nonlinear random vectors, in both the LLN and the CLT regime.1216

Also, note that Example 3.16 in NOT in perfect parallel to Example 3.2, since here we only1217

consider the inner product as objects, so let us discuss.1218

Example 3.16 (Scalar observations of nonlinear random vectors in two scaling
regimes). Let X ∈ Rp×n be a random matrix so that

√
nX has i.i.d. standard Gaussian

entries with zero mean and unit variance (the scaling by
√
n is made so that the rows

xT
i ∈ R1×n of X satisfy E[‖xi‖]22 = 1 as in Example 3.2 and Remark 2.4), and y ∈ Rn,a ∈

Rp be deterministic vectors of unit norm ‖y‖ = 1, ‖a‖ = 1; and consider the following
scalar observations of nonlinear random vectors with observation function f : Rp → R
and entry-wise nonlinear function φ : Rp → Rp acting in two different regimes:

1. LLN regime: here, we consider f(φLLN(Xy)) = aTφLLN(Xy)/
√
p; and

2. CLT regime: f(φCLT(
√
n ·Xy)) = aTφCLT(

√
n ·Xy)/

√
p,

where we consider the scalar observation f(·) = aT(·)/√p, ‖a‖2 = 1 as an illustrating
example, among those thoroughly discussed in Chapter 1.

1219

Remark 3.17 (Example 3.16 versus Example 3.2). Comparing Example 3.16 for vectors1220

to Example 3.2 for scalars, we remark that:1221

• Here in Example 3.16, the ith entry of the (entry-wise) nonlinear random vector φLLN(Xy)1222

and φCLT(Xy) is nothing but a scalar non-linearity φ : R→ R acting respectively on scalars1223

xTy and
√
n · xTy in the LLN and CLT regime as in Example 3.2.1224
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Algorithm 2: Linear Equivalent of f(φCLT(x)) in the CLT regime

Input: Nonlinear random vector φCLT(x) ∈ Rn in the CLT regime with, e.g., standard
Gaussian x ∼ N (0, In) and its K scalar observations
f1(φCLT(x)), f2(φCLT(x)), . . . , fK(φCLT(x)) of interest.

Output: Equivalent x̃φCLT

f1,...,fK←→ φ(x) when the joint behavior of
f1(φCLT(x)), . . . , fK(φCLT(x)) is considered.

Initialize x̃φCLT
← 0n ;

for i = 1 to K do
if fi(φCLT(x)) 6= ‖φCLT(x)‖2/n is not the (squared normalized) norm of φCLT(x)
then

introduce the ith Hermite polynomial Pi(x) of x as defined in Equation (3.21) of
Theorem 3.10;

determine the corresponding coefficient αφ;i via Hermite polynomial expansion
of φCLT as in Equation (3.24), so that fi (x̃φCLT

+ αφ;iPi(x)) ' fi(φCLT(x));
set x̃φCLT

← x̃φCLT
+ αφ;iPi(x);

else
introduce a fresh random vector z ∈ Rp having i.i.d. standard Gaussian entries
and independent of x;

determine the corresponding coefficient β so that fi(x̃φCLT
+ βz) ' fi(φCLT(x))

for fi(φCLT(x)) 6= ‖φCLT(x)‖2/n, by setting β =
√
νφ − E[x̃T

CLTx̃CLT]/n with

νφ defined in Equation (3.25);
set x̃φCLT

← x̃φCLT
+ βz;

end

end

• While in Example 3.16 we focus on inner products (between the rows of X and y), norms1225

(as in Example 3.2) can be studied similarly.1226

• Different from Example 3.2 where the randomness comes from the vector x ∈ Rn, here1227

in Example 3.16 the randomness comes from the matrix X ∈ Rp×n that involves two1228

dimensions n and p. Intuitively, the dimension n plays the same role as in Example 3.2,1229

and leads to LLN- or CLT-type concentration of the entries of Xy or
√
n ·Xy, on which1230

φLLN or φCLT is applied; on the other hand, the dimension p should also be large, so that1231

the scalar observation f(·) = aT(·)/√p concentrates, as discussed in Chapter 1. (In this1232

sense, the scalar observation f(·) is chosen so that it establish LLN-type concentration.)1233

So, here in Example 3.16 we are working in the RMT proportional regime as n, p → ∞1234

together.1235

We describe next how the Taylor expansion approach in Theorem 3.5 and the orthogonal1236

Hermite polynomial expansion approach in Theorem 3.10 discussed in previous sections apply1237

to linearize (the observations of) the nonlinear random vector φ(Xy) and get the corresponding1238

Linear Equivalent in Definition 3.15.1239

Taylor expansion for Linear Equivalent in the LLN regime. We first evaluate the scalar1240

observation f(·) = aT(·)/√p of the nonlinear random vector φLLN(Xy) in the LLN regime, as1241

in the first item of Example 3.16. Its corresponding Linear Equivalent can be obtained using1242

Taylor expansion in Theorem 3.5 and is given in the following result.1243

Proposition 3.18 (Linear Equivalent in the LLN regime). Let X ∈ Rp×n be a random1244

matrix so that
√
nX has i.i.d. standard Gaussian entries with zero mean and unit variance, and1245
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y ∈ Rn,a ∈ Rp be deterministic vectors of unit norm ‖y‖ = 1, ‖a‖ = 1, the following Linear1246

Equivalent (Definition 3.15) holds in the LLN regime (as in the first item of Example 3.16):1247

φLLN(Xy)
f↔ φLLN(0) · 1p︸ ︷︷ ︸

O‖·‖∞ (1)

+φ′LLN(0) ·Xy︸ ︷︷ ︸
O‖·‖∞ (n−1/2)

, (3.34)1248

for scalar observation f(·) = aT(·)/√p, up to some error of order o(1/
√
np).1249

Proof of Proposition 3.18. To prove Proposition 3.18, note that for y of unit norm and X having1250

i.i.d. Gaussian entries of mean zero and variance 1/n, we have that the entries of Xy are i.i.d.1251

Gaussian of mean zero and variance 1/n, so that1252

‖Xy‖∞ = O(n−1/2), (3.35)1253

with high probability for n large. As such, the nonlinear φLLN applied on the entries of Xy in1254

the LLN regime, with point of LLN-concentration τ = 0. We then proceed as in Algorithm 1,1255

to Taylor expand, for n large, the ith entry of the nonlinear random vector φLLN(Xy) as1256

φLLN(xT
i y) = φLLN(0) + φ′LLN(0)(xT

i y) +O(n−1), (3.36)1257

where we denote xT
i ∈ R1×n the ith row of X ∈ Rp×n. This leads to the infinity norm approxi-1258

mation of φLLN(Xy) as1259

φLLN(Xy) = φLLN(0) · 1p︸ ︷︷ ︸
O‖·‖∞ (1)

+φ′LLN(0) ·Xy︸ ︷︷ ︸
O‖·‖∞ (n−1/2)

+O‖·‖∞(n−1), (3.37)1260

for O‖·‖∞(n−1) a vector having infinity norm of order O(n−1) with high probability. As such,1261

we have, for the scalar observation f(·) = aT(·)/√p of φ(Xy) that1262

aTφLLN(Xy)/
√
n = φLLN(0)αT1p/

√
p︸ ︷︷ ︸

O(1)

+φ′LLN(0)αTXy/
√
p︸ ︷︷ ︸

O(1/
√
np)

+o(1/
√
np), (3.38)1263

where we used the fact that αTXy =
∑p

i=1

∑n
j=1 αiyjXij ∼ N (0, n−1) as the weighted sum of1264

np independent Gaussian random variables. This concludes the proof of Proposition 3.18.1265

Hermite polynomial expansion for Linear Equivalent in the CLT regime. Now,1266

we evaluate the (same) scalar observation f(·) = aT(·)/√p as above, but of the nonlinear1267

random vector φCLT(
√
n · Xy) in the CLT regime, as in the second item of Example 3.16.1268

Its corresponding Linear Equivalent can be obtained using Hermite polynomial expansion in1269

Theorem 3.10 and is given in the following result.1270

Proposition 3.19 (Linear Equivalent in the CLT regime). Let X ∈ Rp×n be a random1271

matrix so that
√
nX has i.i.d. standard Gaussian entries with zero mean and unit variance, and1272

y ∈ Rn,a ∈ Rp be deterministic vectors of unit norm ‖y‖ = 1, ‖α‖ = 1, the following Linear1273

Equivalent (Definition 3.15) holds in the CLT regime (as in the second item of Example 3.16):1274

φCLT(
√
nXy)

f↔ a0,φ · 1p, (3.39)1275

for scalar observation f(·) = aT(·)/√p, up to some error of order O(p−1/2.1276

Proof of Proposition 3.19. To prove Proposition 3.19, note that for X ∈ Rp×n with i.i.d. stan-1277

dard Gaussian entries with zero mean and variance n−1, and y ∈ Rn of unit norm, the random1278

vector
√
nXy ∈ Rp has standard i.i.d. Gaussian entries of zero mean and unit variance, so that1279
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the nonlinear φCLT applied on the entries of
√
nXy in the CLT regime. We then proceed as1280

in Algorithm 2. It follows from Theorem 3.10 that, for the ith entry of the nonlinear random1281

vector φCLT(
√
nXy), we have the following formal expansion1282

φCLT(
√
nxT

i y) ∼
∞∑
`=0

aφ;`He`(
√
nxT

i y), (3.40)1283

where we denote xT
i ∈ R1×n the ith row of X, and aφ;` the `th Hermite coefficient of φCLT.1284

At this point, note from Equation (3.40) that the approximation of (the ith entry of) the1285

nonlinear random vector f(
√
nXy) in the CLT regime with Hermite polynomial is only “ac-1286

curate” as the degree L → ∞. As such, the direct accurate approximation of φ using the1287

orthogonal polynomial framework comes at the cost of computing a large (or even an infinite)1288

number of coefficients aφ;`. While it is possible to simplify such approximation by making addi-1289

tional regularity assumption on φCLT so that, e.g., the coefficients aφ;` decay sufficiently fast as1290

` grows large and that the higher-orders terms can be ignored in the approximation, not much1291

more can be said in the general case, for the nonlinear random vector φCLT(
√
nXy).1292

On the other hand, recall from Proposition 3.12 that, (very) simple Hermite polynomial ex-1293

pansion exists for the expectation E[φCLT(
√
nxTy)] of the nonlinear random variable φCLT(

√
nxTy),1294

which depends only on the zeroth-order Hermite coefficient of φCLT. This, together with the1295

fact that scalar observations (at least those discussed in Chapter 1, including the linear map1296

f(·) = aT(·)/√p) of large-dimensional random vectors concentrate around their expectations,1297

allows one to prove Proposition 3.19.1298

Precisely, recall that
√
nXy ∼ N (0, Ip), it follows the LLN and CLT that

f(φCLT(
√
nXy)) = aTφCLT(

√
nXy)/

√
p = aTE[φCLT(

√
nXy)]/

√
p︸ ︷︷ ︸

O(1)

+O(p−1/2)

= aφ;0 · aT1p/
√
p︸ ︷︷ ︸

O(1)

+O(p−1/2),

with high probability for p large.8 This concludes the proof of Proposition 3.19.1299

Remark 3.20 (Proposition 3.18 versus Proposition 3.19.). Comparing the Linear Equiv-1300

alents in Proposition 3.18 in the LLN regime to Proposition 3.19 in the CLT regime, we observe1301

the following.1302

• The two Linear Equivalents are similar, in that they are (in their first order) both pro-1303

portional to the vector of all ones.1304

• The two results are different, in that:1305

1. Proposition 3.18 performs a local Taylor expansion of φLLN in the LLN regime around1306

0, the point of LLN-concentration, so that the obtained Linear Equivalent depends on1307

φLLN only via its local behavior, while that in Proposition 3.19 in the CLT regime is1308

obtained via the Hermite polynomial expansion, and depends on the global behavior1309

of φCLT (e.g., via its zeroth order Hermite coefficient aφ;0); and1310

2. the form of the Linear Equivalent in the LLN regime in Proposition 3.18 is indepen-1311

dent of the observation f(·) (note that the derivation of Proposition 3.18 holds for1312

any f(·)), while that in the CLT regime in Proposition 3.19 and Algorithm 2 relies1313

on the computation of the expectation of E[f(·)] and thus depends on the form of f .1314

See Example 3.21 below for an example.1315

8Note that the LLN-type concentration of f(φCLT(
√
nXy)) = E[f(φCLT(

√
nXy))] +O(p−1/2) is not a conse-

quence of the Hermite polynomial expansion, and needs be proven separately using, e.g., LLN and CLT.
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Example 3.21 (Linear Equivalent in the CLT regime: random observation function).1316

Under the same notations and settings as in Proposition 3.19 but for random observation func-1317

tion1318

f(·) = yTXT(·)/
√
n, (3.41)1319

that is assumed to establish LLN-type concentrate around its expectation up to some error ε(n, p)1320

for n, p large9, the following Linear Equivalent (Definition 3.15) holds in the CLT regime (as1321

in the second item of Example 3.16):1322

φCLT(
√
nXy)

f↔ aφ;1 ·
√
nXy. (3.42)1323

Proof of Example 3.21. To prove Example 3.21, note that
√
nXy ∼ N (0, Ip) in the CLT regime,1324

so that by the (assumption of) LLN-type concentration , it remains to compute the following1325

expectation1326

E[f(φCLT(
√
nXy))] =

1√
n
E[yTXTφCLT(

√
nXy)] =

1

n

p∑
i=1

E[(
√
nxT

i y)φCLT(
√
nxT

i y)] =
p

n
aφ;1,

(3.43)1327

with high probability up to some error ε(n, p), for
√
nxT

i y ∼ N (0, 1). Note that this Linear1328

Equivalent is different from that in Proposition 3.19). Similarly, we have1329

1√
n

yTXT
(
a1,f ·

√
nXy

)
= a1,f · yTE[XTX]y +O

(√
p

n

)
=
p

n
aφ;1 +O

(√
p

n

)
, (3.44)1330

where the error term O(
√
p/n) arises due to the following concentration of yTXTXy:1331

yTXTXy =

p∑
i=1

(yTxi)
2 =

p∑
i=1

E[(yTxi)
2] +O

(√
p(yTxi)

2
)

= yTE[XTX]y +O

(√
p

n

)
, (3.45)1332

per the LLN and CLT, where xT
i ∈ R1×n is the ith row of X ∈ Rp×n.1333

The fact that in the CLT regime, linearization and the corresponding Linear Equivalent depend1334

on the observation function, as we shall see in ??, plays a crucial role in linearizing nonlinear1335

random matrices.1336

9Note that this concentration result looks like, but is formally different from that of quadratic or nonlinear
quadratic forms in Theorem 1.22 and Theorem 1.24, and needs be proven separately.



Part II1337

Four ways to characterize sample covariance1338

matrices1339

In this Part, we move on to consider the behavior of random matrices, starting with the1340

fundamental object of the sample covariance matrix (SCM).10 Let’s say we are given n inde-1341

pendent centered data samples, xi ∈ Rp, with E[xi] = 0p and E[xix
T
i ] = C. From this, one can1342

construct a data matrix X = [x1, . . . ,xn] ∈ Rp×n, the SCM of which is defined as follows.1343

Sample Covariance Matrix (SCM)

Definition 4.22 (Sample Covariance Matrix, SCM). The SCM Ĉ ∈ Rp×p of data
matrix X = [x1, . . . ,xn] ∈ Rp×n composed of n independent data samples xi ∈ Rp of zero
mean is given by

Ĉ =
1

n

n∑
i=1

xix
T
i =

1

n
XXT. (4.46)

1344

Depending on the dimensionality of n and p, we introduce two different scaling regimes, the1345

classical regime and the proportional regime,11 defined in the context of SCMs as follows.1346

Classical versus proportional regimes

Definition 4.23 (Classical versus proportional regimes). For a SCM Ĉ ∈ Rp×p
computed from n samples of dimension p, as in Definition 4.22, we consider the following
two regimes.

1. Classical regime: with n� p; this includes both asymptotic (n→∞ with p fixed)
and non-asymptotic (n� p for large but finite n) characterizations.

2. Proportional regime: with n ∼ p; this includes both asymptotic (n, p → ∞
with p/n → c ∈ (0,∞) and non-asymptotic (n ∼ p � 1 both large but finite)
characterizations.

1347

We will present different ways to characterize the (spectral) behavior of a SCM:1348

1. by considering the classical (n� p) as well as the proportional (n ∼ p) regimes; and1349

2. by providing asymptotic (as n → ∞ and/or p → ∞) as well as non-asymptotic (for1350

n, p large but finite) guarantees.1351

10Among other things, in the case that xi follows a multivariate Gaussian distribution with xi ∼ N (0,C), the
SCM is the maximum likelihood estimator [1] of the population covariance C.

11The proportional regime is sometimes known as the thermodynamic limit in the statistical physics litera-
ture [28, 39].

51
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Classical
Regime

Proportional
Regime

Non-asymptotic Characterizations

Asymptotic Characterizations

Law of Large
Numbers

in Theorem 5.1

Sample Covariance
Concentration

in Theorem 5.4

Asymptotic Deterministic
Equivalent in Theorem 6.5

Marc̆enko-Pastur law
in Theorem 5.7

Non-asymptotic
Deterministic

Equivalent
in Theorem 6.7

Figure 4.5: Taxonomy of four different ways to characterize the sample covariance matrix
Ĉ = 1

nXXT, depending on whether one works in the classical regime versus proportional regime,
and whether one is interested in asymptotic results or non-asymptotic results. More traditional
“old school” results are in white (see Chapter 5), while more modern “new school” results are
shaded (see Chapter 6)

With two regimes and two types of characterizations, there are four different characteriza-1352

tions. These four characterizations, together with their corresponding results, are summarized1353

in Figure 4.5. Informally, we distinguish more traditional “old school” statistics and RMT re-1354

sults (in Theorem 5.1 on the asymptotic law of large numbers for SCMs, and in Theorem 5.41355

on the non-asymptotic concentration of SCMs, both in the classical regime, as well as in The-1356

orem 5.7 on the asymptotic Marc̆enko-Pastur distribution, in the proportional regime) from1357

“new school” RMT results (in Theorem 6.5 and Theorem 6.7, establishing both asymptotic and1358

non-asymptotic results in the proportional regime). The latter are more relevant for modern1359

ML, and they are the main focus of our discussion in this monograph.1360



Chapter 51361

Traditional RMT analysis of SCM1362

eigenvalues1363

In this chapter, following the discussions on the classical versus proportional regime in Defini-1364

tion 4.23, we present “old school” results in Figure 4.5:1365

1. in the classical n � p regime, both asymptotic and non-asymptotic characterizations of1366

the sample covariance matrix (SCM) Ĉ around the population covariance C; and1367

2. in the proportional n ∼ p regime, different asymptotic behavior of the eigenvalue distri-1368

bution of the SCM.1369

In more detail, by considering n → ∞ with fixed p, the asymptotic behavior in the classical1370

regime is via a law of large numbers (Theorem 5.1) in Chapter 5.1; and, for n � p large1371

but finite, the non-asymptotic behavior is via a matrix concentration result (Theorem 5.4) in1372

Chapter 5.2. By considering the limiting behavior as n, p → ∞ with p/n → c ∈ (0,∞), the1373

asymptotic behavior in the proportional regime is via a traditional RMT result, the Marc̆enko-1374

Pastur theorem (Theorem 5.7) in Chapter 5.3.1375

These results are well-known and should be intuitive to most of the ML audience (at least1376

relative to some of the novel results we present), but we include them for completeness and for1377

comparison with our main results (which we describe in Chapter 6 and subsequent chapters).1378

5.1 Classical regime: asymptotic behavior of SCM via LLNs1379

Let us start with n→∞ with p fixed. This corresponds to the asymptotic characterization in1380

the classical regime in Definition 4.23. Assume that C = Ip, and consider each element of the1381

SCM Ĉ. By the strong law of large numbers in Theorem 1.7, one has that1382

[Ĉ]ij =
1

n

n∑
l=1

[X]il[X]jl
a.s.−−→

{
1, i = j;
0, i 6= j,

(5.1)1383

where [X]il is the (i, l) entry of X. Under a tail bound assumption on the entries of X, the
entry-wise convergence result in Equation (5.1) holds uniformly over all entries. That is,

max
1≤i,j≤p

∣∣∣[Ĉ− Ip]ij

∣∣∣ a.s.−−→ δij , as n→∞.

Thus, the convergence in max norm

‖Ĉ− Ip‖max
a.s.−−→ 0, as n→∞,

53
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holds, where ‖A‖max ≡ maxij |Aij |. Since ‖Ĉ− Ip‖2 ≤ p‖Ĉ− Ip‖max for any matrix Ĉ of size1384

p-by-p, it then follows that in spectral norm1385

‖Ĉ− Ip‖2
a.s.−−→ 0, as n→∞. (5.2)1386

As such, by the strong law of large numbers, if p is fixed, then Ĉ→ Ip almost surely as n→∞.1387

In this case, ‖Ĉ− Ip‖
a.s.−−→ 0 holds for any standard matrix norm, and in particular for the max1388

and the spectral norm. This result holds in the n � p regime. The following theorem makes1389

this discussion more precise.1390

Theorem 5.1 (Asymptotic Law of Large Numbers for SCMs). Let p be fixed, and
let X ∈ Rp×n be a random matrix with independent sub-gaussian columns xi ∈ Rp such
that E[xi] = 0 and E[xix

T
i ] = Ip. Then, one has

‖Ĉ− Ip‖2 → 0, (5.3)

almost surely, as n→∞.
1391

Proof of Theorem 5.1. By the definition of the SCM in Equation (4.46), one has1392

[Ĉ]ij =
1

n

n∑
l=1

[xl]i[xl]j , (5.4)1393

where [xl]i the ith entry of the sub-gaussian random vector xl ∈ Rp. As such, for i = j, the
quantity [Ĉ]ii − 1 = 1

n

∑n
l=1([xl]

2
i − 1) is the sum of n independent zero-mean sub-exponential

random variables. (This is since any one-dimensional marginal of a sub-gaussian random vector
is a sub-gaussian random variable, and the square of a sub-gaussian random variable is a sub-
exponential random variable.) It then suffices to apply Bernstein’s inequality for sub-exponential
distribution (see, e.g., [36, Theorem 2.8.2]) to obtain

P
(∣∣∣[Ĉ]ii − 1

∣∣∣ ≥ t) ≤ 2 exp
(
−C1nmin(t2, C2t)

)
,

for some constants C1, C2 > 0 that only depend on the sub-gaussian norm of the entries of X.
For i 6= j, one can similarly obtain

P
(∣∣∣[Ĉ]ij

∣∣∣ ≥ t) ≤ 2 exp
(
−C1nmin(t2, C2t)

)
,

where we used the fact that the product of sub-gaussian random variables is a sub-exponential
random variable, so that

P
(∣∣∣[Ĉ]ij − δij

∣∣∣ ≥ t) ≤ 2 exp
(
−C1nmin(t2, C2t)

)
.

Taking the union bound, one obtains

P
(

max
1≤i,j,≤p

∣∣∣[Ĉ− Ip]ij

∣∣∣ ≥ t) ≤ 2p2 exp
(
−C1 min(t2, C2t)

)
.

Equivalently,1394

P(‖Ĉ− Ip‖max ≥ t) ≤ 2p2 exp
(
−C1nmin(t2, C2t)

)
, (5.5)1395

where we recall the definition of the max norm, ‖A‖max ≡ maxij |Aij | of A. Since ‖A‖ ≤
p‖A‖max for A ∈ Rp×p, we further get

P(‖Ĉ− Ip‖2 ≥ t) ≤ P(‖Ĉ− Ip‖max ≥ t/p) ≤ 2 exp
(
−C1nmin(t2, C2t)

)
,
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for some constants C1, C2 > 0 that only depend on the sub-gaussian norm of the entries of1396

X and the dimension p. It then follows from the Borel–Cantelli lemma in Theorem A.1 of1397

Appendix A that ‖Ĉ − Ip‖2 → 0 almost surely as n → ∞. See This concludes the proof of1398

Theorem 5.1.1399

Remark 5.2 (Inverse of SCM). Theorem 5.1 states that, for fixed dimension p and in the1400

limit of infinitely many samples as n → ∞, the SCM Ĉ = 1
nXXT is close, in a spectral norm1401

sense, to the population covariance C = Ip. In this n→∞ with p fixed regime, this in particular1402

implies that the regularized SCM inverse Q(−γ) ≡ (Ĉ + γIp)
−1, should be close to the inverse1403

population covariance (C + γIp)
−1 with the same regularization γ > 0. This is a consequence1404

of the fact that1405

‖Q(−γ)− (C + γIp)
−1‖2 = ‖Q(−γ) · (C− Ĉ) · (C + γIp)

−1‖2 ≤ γ−2‖C− Ĉ‖2, (5.6)1406

where we used the fact that A−1−B−1 = A−1(B−A)B−1 (known as the resolvent identity) for1407

the equality, and that ‖(A + γIp)
−1‖2 ≤ γ−1 for all positive semi-definite A for the inequality.1408

As well shall see below in Remark 6.11, this conclusion is no longer valid in the proportional1409

n ∼ p� 1 regime.1410

Remark 5.3 (LLN and the classical versus proportional regime). Observe that the LLN1411

in Theorem 5.1 is “parameterized” to hold only in the classical limit, not the proportional limit,1412

and its proof fails in the limit of n, p → with p/n → c ∈ (0,∞). There are many variants and1413

extensions of the LLN; see, e.g., the non-asymptotic matrix concentration result in Theorem 5.41414

below. Most – if not all – of them become vacuous when applied to the proportional regime1415

where n, p→∞ and p/n→ c ∈ (0,∞). We will come back to this point in Remark 5.6 below,1416

and we will clarify the reason behind this in Remark 5.8.1417

5.2 Classical regime: non-asymptotic behavior of SCM via ma-1418

trix concentration1419

The asymptotic characterization of the SCM in Theorem 5.1 provides a precise statement in the1420

classical limit with n→∞ with fixed p. We next use a spectral norm concentration bound on1421

‖Ĉ− Ip‖2 to provide a more precise characterization of the SCM approximation ‖Ĉ− Ip‖2 ≈ 01422

that is non-asymptotic, in the sense that it holds for any finite n, p.1423

Theorem 5.4 (Non-asymptotic matrix concentration for SCMs, [36, Theo-
rem 4.6.1]). Let X ∈ Rp×n be a random matrix with independent sub-gaussian columns
xi ∈ Rp such that E[xi] = 0 and E[xix

T
i ] = Ip. Then, one has, with probability at least

1− 2 exp(−t2), for any t ≥ 0, that

‖Ĉ− Ip‖2 ≤ C1 max(δ, δ2), δ = C2(
√
p/n+ t/

√
n), (5.7)

for some constants C1, C2 > 0, independent of n, p.
1424

We reproduce the proof approach proposed in [36], which combines the Bernstein’s concentration1425

inequality with an ε-net argument.1426

Proof of Theorem 5.4. Using the ε-net argument (see, e.g., [36, Corollary 4.2.13]), one can find1427

a 1/4-net N of the unit sphere Sp−1 ⊂ Rp that has cardinality |N| ≤ 9p. The use of the ε-net1428

technique allows one to well approximate the spectral norm via an evaluation over an ε-net N1429

of the unit sphere Sp−1, rather than over the full unit sphere Sp−1 itself. We refer the interested1430

readers to [36, 37] for details. Then,1431 ∥∥∥Ĉ− Ip

∥∥∥
2

= sup
v∈Sp−1

∥∥∥(Ĉ− Ip)v
∥∥∥

2
≤ 2 max

v∈N

∥∥∥(Ĉ− Ip)v
∥∥∥

2
= 2 max

v∈N

∣∣∣∣ 1n‖XTv‖22 − 1

∣∣∣∣ , (5.8)1432
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where one uses [36, Lemma 4.4.1] for the inequality and recalls the definition X = [x1, . . . ,xn] ∈1433

Rp×n for sub-gaussian xi ∈ Rp with E[xi] = 0 and E[xix
T
i ] = Ip. To complete the proof of1434

Theorem 5.4, it then suffices to show, with the required probability, that1435

max
v∈N

∣∣∣∣ 1n‖XTv‖2 − 1

∣∣∣∣
2

≤ ε

2
, (5.9)1436

with ε = max(δ, δ2)/
√
C2. To that end, first note that for a fixed v ∈ R of unit norm ‖v‖2 = 1,1437

one has1438

1

n
‖XTv‖22 − 1 =

1

n

n∑
i=1

(xT
i v)2 − 1. (5.10)1439

By the sub-gaussianity of xi, one has that (i) xT
i v is sub-gaussian (one-dimensional marginal of

sub-gaussian random vector is sub-gaussian) with E[xT
i v] = 0 and E[(xT

i v)2] = vTE[xix
T
i ]v = 1;

so that (ii) (xT
i v)2, as the square of sub-gaussian random variable, is thus sub-exponential; and

therefore (iii) 1
n‖X

Tv‖22 − 1, as the sum of n independent zero-mean sub-exponential random
variables, satisfies the following sub-exponential Bernstein inequality (see, for example, [36,
Theorem 2.8.2]). For any t ≥ 0, one has

P
(∣∣∣∣ 1n‖XTv‖22 − 1

∣∣∣∣ ≥ ε

2

)
≤ 2 exp

(
−C1nmin

(
C2ε

2,
√
C2ε

))
= 2 exp

(
−C1nδ

2
)

≤ 2 exp
(
−C1C

2
2 (p+ t2)

)
,

where we used the fact that ε = max(δ, δ2)/
√
C2 in the equality and the definition of δ in1440

Equation (5.7) as well as the fact that (a+ b)2 ≥ a2 + b2 for a, b ≥ 0 in the last inequality.1441

It remains to apply the union bound to see

P
(
‖Ĉ− Ip‖2 ≤ ε

)
= P

(
max
v∈N

∣∣∣∣ 1n‖XTv‖22 − 1

∣∣∣∣ ≤ ε

2

)
≤ 2 · 9p · exp

(
−C1C

2
2 (p+ t2)

)
≤ 2 exp(−t2),

by choosing the constant C2 in Equation (5.7) large enough. This concludes the proof of1442

Theorem 5.4.1443

Remark 5.5 (Derivation of Theorem 5.1 from Theorem 5.4). Instead of the simpler and1444

more direct proof of Theorem 5.1 that we provided, one could alternatively prove Theorem 5.11445

as a corollary of Theorem 5.4. To do so, take t =
√

2 lnn to see that for n ≥ p + 2 lnn, with1446

probability at least 1− 2n−2,1447

‖Ĉ− Ip‖2 ≤ C1C2(
√
p+
√

2 lnn)/n, (5.11)1448

with vanishing right-hand side as n → ∞ with fixed p. It then follows from Borel–Cantelli1449

lemma (in Theorem A.1 of Appendix A) that ‖Ĉ − Ip‖2 → 0 almost surely at n → ∞. This1450

concludes the (alternate) proof of Theorem 5.1.1451

Remark 5.6 (Matrix concentration and the classical versus proportional regime).1452

The non-asymptotic result in Theorem 5.4 is practical, in that its holds for an arbitrary choice1453

of n, p. Specifically, it should be compared to and contrasted with the asymptotic result in1454

Theorem 5.1. Depending on the (classical versus proportional) regime in which one is operating,1455

Theorem 5.4 conveys the following complementary messages.1456

1. Classical regime. Here, n � p. Let’s say that n ∼ p2. In this case, one has, with high1457

probability, that ‖Ĉ−Ip‖2 is of order O(n−1/4) and gets very small as n gets large. In this1458

regime, where n� p, the matrix concentration in Theorem 5.4 conveys a similar intuition1459

to the asymptotic LLN result in Theorem 5.1 and discussed in Remark 5.3.1460
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2. Proportional regime. Here, n, p are both large, and in particular n ∼ p. In this case,1461

one has, with high probability, that ‖Ĉ − Ip‖2 is of order
√
p/n = O(1). In this regime,1462

Theorem 5.4 is qualitatively different than Theorem 5.1: one can have, say, a vacuous1463

100% relative error, in the proportional limit of n, p→∞ with p/n→ c ∈ (0,∞).1464

Based on this discussion, the question then is the following: In the proportional regime,1465

where n is not much larger than p, what precisely does the sample covariance Ĉ “looks like”?1466

For example, is it close, say, in a spectral sense, to its population counterpart C = Ip? Can1467

we provide a more precise and quantitative description of, e.g., the maximum and minimum1468

eigenvalues of the SCM Ĉ, or the “distribution” of the eigenvalues of C around the population1469

eigenvalue 1? We discuss these topics next.1470

5.3 Proportional regime: eigenvalues via traditional RMT and1471

Marc̆enko-Pastur1472

Here, we will show that, in the asymptotic proportional regime of n, p → ∞ with p/n → c ∈1473

(0,∞), the limiting eigenvalue distribution of Ĉ takes a precise form, known as the Marc̆enko-1474

Pastur distribution. This is a classical topic in traditional RMT. The Marc̆enko-Pastur distri-1475

bution is a deterministic function whose shape is parameterized by the dimension ratio c and1476

whose scale parametrized by a variance parameter σ2; and it provides a more refined characteri-1477

zation of the eigenspectrum of Ĉ (than is provided by Theorem 5.4). It is given in the following1478

result, stated here in the case of sub-gaussian random vectors.12 We provide in Remark 6.6 of1479

Chapter 6.2 a proof of Theorem 5.7, as a consequence and corollary of our main Deterministic1480

Equivalent for SCM resolvent in Theorem 6.5.1481

Theorem 5.7 (Limiting spectral distribution for SCM: Marc̆enko-Pastur
law, [21]). Let X ∈ Rp×n be a random matrix with i.i.d. sub-gaussian columns xi ∈ Rp
such that E[xi] = 0 and E[xix

T
i ] = σ2Ip. Then, as n, p→∞ with p/n→ c ∈ (0,∞), with

probability one, the empirical spectral measure µ 1
n
XXT of 1

nXXT (as in Definition 2.20)

converges weakly to a probability measure µ given explicitly by

µ(dx) = (1− c−1)+δ0(x) +
1

2πcσ2x

√
(x− σ2E−)+(σ2E+ − x)+ dx, (5.12)

where E± = (1 ±
√
c)2 and (x)+ = max(0, x). In particular, taking σ2 = 1 in Equa-

tion (5.12), one obtains

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x− E−)+ (E+ − x)+ dx, (5.13)

which is known as the Marc̆enko-Pastur distribution.
1482

The following remark on Theorem 5.7 should be compared to and contrasted with Re-1483

mark 5.3 and 5.6.1484

Remark 5.8 (Marc̆enko-Pastur law and the classical versus proportional regime).1485

The behavior described in Theorem 5.7 takes a very different form than the behavior of ‖Ĉ −1486

C‖2 ≈ 0, as given by Theorem 5.1 and 5.4, in classical regime with n � p. Depending on1487

the (classical versus proportional) regime of interest, Theorem 5.7 can lead to very different1488

intuitions for the (eigenvalues of the) SCM Ĉ ∈ Rp×p composed of n samples.1489

12The sub-gaussian assumption here can be replaced by, e.g., random vectors having independent entries with a
uniform bound on the moments of order k for some k > 2. Determining the minimalistic conditions for these RMT
results to hold has been of long interest to mathematicians. We refer readers to [3, 5, 33] for more discussions.



58 CHAPTER 5. TRADITIONAL RMT ANALYSIS OF SCM EIGENVALUES

0 1 2 3 4 5 6
0

1

2

3

x

µ

c = 0.01

c = 0.1

c = 1

c = 4

Figure 5.1: Marc̆enko-Pastur distribution for different values of c, for σ2 = 1.

1. Classical regime. Here, n� p. Taking the dimension ratio c = p/n→ 0, the Marc̆enko-1490

Pastur law in Equation (5.13) of Theorem 5.7 shrinks to δ1, the Dirac measure at one. In1491

this regime, it is in agreement with ‖Ĉ− Ip‖2 ' 0 in Theorem 5.1 and 5.4.1492

2. Proportional regime. Here, n ∼ p � 1. In this regime, it follows from the (true but1493

vacuous) matrix concentration result in Theorem 5.4 that ‖Ĉ−Ip‖2 = O(p/n) = O(1), and1494

the (true but non-vacuous) result from Theorem 5.7 that, depending on the dimension1495

ratio c = p/n, the eigenvalues of Ĉ can be very different from unity. In particular,1496

‖Ĉ − Ip‖2 is not vanishing small as n, p → ∞, instead taking the form of the Marc̆enko-1497

Pastur distribution given in Equation (5.13).1498

Remark 5.9 (Precise behavior of the SCM eigenvalues). Theorem 5.7 provides access1499

to the averaged amount of eigenvalues of Ĉ lying within the interval [1− δ, 1 + δ], for δ ∈ (0, 1).1500

This can be seen by evaluating the following integral:1501

µ([1− δ, 1 + δ]) =

∫ 1+δ

1−δ

1

2πcx

√(
x− (1−

√
c)2
)+ (

(1 +
√
c)2 − x

)+
dx. (5.14)1502

Consider δ � 1 in Equation (5.14). By Taylor-expanding the expression around x = 1 for (say)
c = p/n < 4, one obtains

µ([1− δ, 1 + δ]) =

∫ δ

−δ

1

2πc(1 + ε)

√(
1 + ε− (1−

√
c)2
)+ (

(1 +
√
c)2 − 1− ε

)+
dε

=
1

2πc

∫ δ

−δ

(√
4c− c2 +O(ε)

)
dε =

√
4c−1 − 1

π
δ +O(δ2).

Thus, in particular, for p ≈ 4n there is asymptotically no eigenvalue of Ĉ close to one! This1503

is in accordance with the shape of the limiting Marc̆enko-Pastur law with c = 4, displayed in1504

Figure 5.1. More generally, one explicitly obtains from Equation (5.14) the limiting eigenvalue1505

distribution of Ĉ− Ip as1506

(1− c−1)+δ−1(x) +
1

2πc(x+ 1)

√(
x+ 1− (1−

√
c)2
)+ (

(1 +
√
c)2 − x− 1

)+
dx, (5.15)1507

where δ−1(x) is the Dirac measure at x = −1. This provides access to the spectral norm13
1508

‖Ĉ − Ip‖2 ' c + 2
√
c as well as more refined characterization such as the averaged amount of1509

eigenvalues of Ĉ− Ip within a given interval of interest, as in Equation (5.14).1510

13Technically speaking, the limiting eigenvalue distribution given in Theorem 5.7 only characterizes the propor-
tion of eigenvalues appearing within a given interval, and allows for an order of o(p) eigenvalues that may “leak”
from the interval. As a consequence, the Marc̆enko-Pastur law itself fails to assess the maximum or minimum
eigenvalue of Ĉ or Ĉ − Ip, which needs additional efforts to characterize; see [2] and [6, Section 2.3.2]. Our
conclusion on ‖Ĉ− Ip‖2 here remains correct though.
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Figure 5.2: Varying n and c = p/n for fixed p. Histogram of the eigenvalues of Ĉ versus
the limiting Marc̆enko-Pastur law in Theorem 5.7, for X having standard Gaussian entries with
p = 20 and different n = 1 000p, 100p, 10p from left to right.

Let us illustrate the results in Theorem 5.7 versus those in Theorem 5.1 and 5.4, as n and1511

p vary. See Figure 5.2 and Figure 5.3. Here, we consider a single realization of the (Gaussian)1512

random matrix X.1513

1. Figure 5.2 depicts the histogram of the eigenvalues of Ĉ as we vary n (and thus c = p/n),1514

for fixed p: for p = 20 and n = 1 000p, 100p, 10p. We see a “transition” from the classical1515

regime (Figure 5.2a with n = 1 000p � p, in which case the random SCM Ĉ strongly1516

concentrates around C = Ip, as predicted by Theorem 5.1 and 5.4) to the proportional1517

regime behavior (Figure 5.2c with n = 10p ∼ p, in which case the eigenvalues of Ĉ are1518

more “spread out” and take a Marc̆enko-Pastur shape, given in Theorem 5.7).1519

2. Figure 5.3 illustrates what happens as we vary n and p together, for fixed c = p/n: for1520

p/n = c = 0.01 with (in fact only moderately large) p = 20, 100, 500. This figure provides1521

a “finite-dimensional” confirmation of the limiting Marc̆enko-Pastur law in Theorem 5.7.1522

The eigenvalue histogram agrees with Marc̆enko-Pastur law, and this holds for any real-1523

ization with n, p large, showing an asymptotically deterministic behavior of the behavior1524

of the (distribution of the) eigenvalues of Ĉ. In particular, the Marc̆enko-Pastur law in1525

Equation (5.13) demonstrates that the eigenvalues of Ĉ, instead of concentrating at x = 1,1526

as the classical intuition would suggest, are spread from E− = (1−
√
c)2 to E+ = (1+

√
c)2.1527

That is, they are on a range1528

(1 +
√
c)2 − (1−

√
c)2 = 4

√
c. (5.16)1529

Observe that the convergence to the classical n � p regime, as a function of the ratio1530

c = p/n, is not very fast. In particular, even with n = 100p, one obtains an improved1531

accuracy of ±20% by considering the proportional instead of the classical regime. This is1532

numerically illustrated in Figure 5.3.1533

3. As a side remark, note that Figure 5.2b and 5.3a are two independent realizations of the1534

case p = 20 and n = 100p (with two different X-axis scalings, so we have intra-figure1535

consistency). This provides an estimate of the sample-to-sample variability. In particular,1536

the “shapes” of eigenvalue histograms remain random, differing from one realization to1537

another (due to the intrinsic randomness in X) in Figure 5.2b versus 5.3a, and they cannot1538

be accurately described by either Theorem 5.1 or Theorem 5.7 (which are essentially1539

deterministic). Also, while n = 100p (with a sample size n that is 100 times the data1540

dimension p) might seem “large enough” to be in the classical regime, we see that the1541

eigenvalues of Ĉ are very different from 1, being spread on the interval [0.8, 1.2] (that1542

diverges from 1 by a relative error of ±20%).1543
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Figure 5.3: Varying n and p for fixed c = p/n. Histogram of the eigenvalues of Ĉ versus
the Marc̆enko-Pastur law, for X having standard Gaussian entries with n = 100p and different
p = 20, 100, 500 from left to right.

By working in the special (yet realistic for modern ML) regime of n ∼ p� 1, RMT analysis such1544

as that in Theorem 5.7 allows for a more precise characterization of the (spectral) behavior of1545

popular matrix models such as the sample covariance matrix. This is accomplished by describing1546

how the full distribution of the eigenvalues of Ĉ around unity,14 and consequently the minimum1547

and maximum eigenvalues, as well as the “proportion” of eigenvalues within any interval of1548

interest.1549

Remark 5.10 (ESD of regularized inverse SCM). Similar to Remark 5.2, when the regu-1550

larized inverse SCM Q(−γ) ≡ (Ĉ + γIp)
−1, γ ≥ 0, is considered, Theorem 5.7 applies to assess1551

the (limiting) eigenvalue distribution of Q(−γ) with the change of variable x 7→ 1/(x + γ) in1552

Equation (5.13). Attention should be given to the inverse 1/(x + γ), which may not be well1553

defined for γ = 0, depending on the sign of c − 1, for dimension ratio c = p/n. This is again1554

an illustrative example of working in the proportional n ∼ p regime as opposed to its classical1555

counterpart.1556

14From Theorem 5.4, this distribution of eigenvalues is only known to be of order
√
p/n = O(1).



Chapter 61557

SCM analysis beyond eigenvalues: a1558

modern RMT approach1559

In this chapter, we discuss the “new school” results in Figure 4.5. In Chapter 5, we saw that,1560

for the SCM Ĉ ∈ Rp×p composed of n samples of dimension p, LLN and matrix concentration1561

methods provide information about the eigenvalues of large random matrices in the classical n�1562

p regime (in Theorem 5.1 and Theorem 5.4), both asymptotically and non-asymptotically; and1563

we also saw (in Theorem 5.7) how traditional RMT methods can be used to provide information,1564

asymptotically, about eigenvalues in the proportional n ∼ p� 1 regime. As we will see in this1565

chapter, RMT methods are much more powerful.1566

They can be used to provide information, both asymptotically and non-asymptotically, for1567

many other (eigenspectral) quantities, including those that depend on eigenvectors, of interest1568

in modern ML and beyond. This is accomplished by analyzing more sophisticated spectral1569

functionals of large random matrices that are of practical interest in a modern ML context.1570

(These functionals go beyond the trace, or Stieltjes transform in ??, which gives the limiting1571

eigenvalue distribution in Theorem 5.7, to include functionals listed in ?? of ??). To accomplish1572

this, we must consider the Deterministic Equivalent approach to the SCM resolvent, which will1573

be the major focus of this chapter.15
1574

See Figure 6.1 for a high-level summary of the general approach. The figure compares the1575

different objects of interest that can be analyzed with RMT: some with “old school” traditional1576

RMT (that involve only the trace function, and for which only eigenvalues are considered)1577

and “new school” modern RMT (that considers other eigenspectral functions, and that also1578

considers eigenvectors) as well as the corresponding mathematical tools. The most important1579

technical difference is the following:1580

traditional “old school” RMT mostly focuses on eigenvalue distributions of large1581

random matrices via a study of their Stieltjes transforms; while modern “new school”1582

RMT works with the resolvent matrix directly, and as such is much more flexible.1583

The modern approach to RMT provides a simultaneous access to the behavior of large random1584

matrices in the proportional regime via their eigenspectral functionals, as in ??. This in partic-1585

ular includes spectral functionals involving both eigenvalues and eigenvectors that are of direct1586

use in ML.1587

In Chapter 6.1, we first present the Deterministic Equivalent for resolvent framework, as a1588

unified approach to evaluate the behavior of the resolvent of random matrices in the propor-1589

tional regime. As an illustration of this approach, we provide in Chapter 6.2 and Chapter 6.31590

asymptotic (in Theorem 6.5) and non-asymptotic (in Theorem 6.7) characterizations of the1591

15This chapter remains a work-in-progress, as the Stieltjes transform and the Deterministic Equivalent for
resolvent approach have yet to be introduced. Nevertheless, we include it here to complete the broader discussion
in Part II on the four ways of characterizing sample covariance matrices.
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Stieltjes transform Eigenvalue distribution

trace form

Resolvent xxx 
and itsDeterministic
Equivalentxxxxx

RMT tools Objects of interest

Eigenvalues, eigenvectors,
and their (linear) functionals

Inverse, trace, and bilinear forms

Integration and differentiation
involving these quantities

special case

“Old school”

“New school”
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Figure 6.1: Different objects of interest and their corresponding technical tools for “old school”
traditional RMT and “new school” modern RMT.

Deterministic Equivalent for the resolvent QĈ(z) of the SCM Ĉ, respectively. These charac-1592

terizations provide analogues of Theorem 5.1 and Theorem 5.4 to the proportional regime, and1593

they complete the proposed four-way taxonomy given in Figure 4.5. Some discussions on Theo-1594

rem 6.5 and 6.7 are placed after these results, so as to connect the results in Theorems 6.5 and 6.71595

to those in Theorems 5.1 and 5.4.1596

6.1 Deterministic Equivalents: from vectors to resolvent matri-1597

ces1598

Here, we introduce the modern Deterministic Equivalent for resolvent approach to characterize1599

the statistical behavior of eigenvalues and eigenvectors of a matrix X, for X drawn from some1600

“generic” random matrix model. We will present the asymptotic and non-asymptotic results1601

for X following a sample covariance model (in Chapter 6.2 and Chapter 6.3, respectively).1602

Limitations of the Stieltjes transform and traditional “old school” RMT. In tradi-1603

tional “old school” RMT, the main focus is typically on the ESD of X ∈ Rp×p. That is, the1604

interest is in eigenvalues, in the characterization of a certain limit of the random spectral mea-1605

sure µX (see again Definition 2.20) of X, as the size p of X increases to infinity. The well-known1606

Marc̆enko-Pastur law in Theorem 5.7 provides a canonical example of this approach. For this1607

purpose (recall ??), a natural approach is to study the random Stieltjes transform mµX(z) and1608

show that it admits a limit (in probability or almost surely) m(z) as p→∞. While leading to1609

a large body of results in RMT, this approach has several strong limitations, in particular for1610

modern ML applications. The main limitations include:1611

1. it supposes that such a limit exists, therefore restricting the study to very regular random1612

matrix models for X; and1613

2. it only quantifies the functional 1
p tr QX(z) (through the Stieltjes transform), thereby1614

discarding all eigenspace information about X carried in the resolvent matrix QX; and1615

3. it focuses only on the limiting behavior as p → ∞ and in general fails to say any about1616

large but finite p, which is of core interest to ML.1617

Deterministic Equivalents. To avoid these limitations of traditional RMT, and to provide1618

“finite-dimensional” or non-asymptotic characterization of the quantities of interest in ML appli-1619
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cations, modern “new school” RMT focuses instead on the notion of Deterministic Equivalents.1620

Here is the basic definition.1621

High-dimensional Deterministic Equivalent

Definition 6.1 (High-dimensional Deterministic Equivalent). We say that Q̄ ∈
Rp×p is an (ε1, ε2, δ)-Deterministic Equivalent for the symmetric random matrix Q ∈
Rp×p if, for a deterministic matrix A ∈ Rp×p and vectors a,b ∈ Rp of unit norms
(spectral and Euclidean, respectively), we have, with probability at least 1− δ(p) that∣∣∣∣1p tr A(Q− Q̄)

∣∣∣∣ ≤ ε1(p),
∣∣∣aT(Q− Q̄)b

∣∣∣ ≤ ε2(p), (6.1)

for some non-negative functions ε1(p), ε2(p) and δ(p) that decrease to zero as p → ∞.
To denote this relation, we use the notation

Q
ε1,ε2,δ←→ Q̄, or simply Q↔ Q̄. (6.2)

1622

The Deterministic Equivalent relation Q ↔ Q̄ denotes the fact that Q̄, being a deterministic1623

matrix, can be used as a “proxy” in the study of the large random resolvent matrix Q, as1624

long as its trace, bilinear forms, and other matrix functionals (as well as their differentiations1625

and integrations as listed in ??) are considered. The “accuracy” of this approximation for1626

scalar observation is described by the error functions16 ε1, ε2 and the failure probability δ.1627

In particular, the Deterministic Equivalent in Definition 6.1 is a special case of the High-1628

dimensional Equivalent in Definition 1.1, when the (random) matrix of interest if the resolvent1629

Q(z), in the absence of entry-wise non-linearity φ, and for trace and bilinear observations1630

f(Q) = tr(X)/p and f(X) = aTQb that are both 1-Lipschitz for A ∈ Rp×p,a,b ∈ Rp of unit1631

norm.1632

Remark 6.2 (Asymptotic versus non-asymptotic aspects of of Deterministic Equiv-1633

alents). Definition 6.1 is non-asymptotic, in the sense that it holds for any value of p. As such,1634

it can be used as a basis to provide both non-asymptotic as well as asymptotic results. By1635

considering the asymptotic setting, as p→∞, one has1636

• by definition of convergence in probability, that 1
p tr A(Q − Q̄) → 0, aT(Q − Q̄)b → 01637

in probability as p→∞; and1638

• if, in addition, the failure probability satisfies δ(p) = O(p−`) for some ` > 1, then by the1639

Borel–Cantelli lemma (see Theorem A.1 of Appendix A) 1
p tr A(Q − Q̄) → 0, aT(Q −1640

Q̄)b→ 0 almost surely as p→∞.1641

This “general recipe” has been used in Theorem 5.1 to obtain asymptotic (convergence-type)1642

results from non-asymptotic results for SCM, and will be exploited in the reminder of the1643

monograph.1644

Remark 6.3 (Scalar observation function). The notion of Deterministic Equivalents focuses1645

on a scalar observation of the random matrix (recall Chapter 1.5 in Chapter 1). It does so by1646

describing the concentration behavior of the random matrix via an observation map f : Rp×p →1647

R (as in Definition 1.17 for vectors). In Definition 6.1 above, there are two observation functions,1648

one for each of the two expressions in Equation (6.1), and they take the form1649

f(X) =
1

p
tr(AX) and f(X) = aTXb. (6.3)1650

16Here we distinguish the two “rates of convergence” ε1(·), ε2(·) for trace and bilinear form, since they have
been extensively investigated in the random matrix literature and are observed to take rather different forms.
For instance, one commonly has ε1(p) ' p−1 while ε2(p) ' p−1/2 as p→∞; see also [6].



64CHAPTER 6. SCM ANALYSIS BEYOND EIGENVALUES: A MODERN RMT APPROACH

Remark 6.4 (Deriving Deterministic Equivalents). Mathematically, the derivation
of a Deterministic Equivalent is generally accomplished via the following two steps:

1. Computing or approximating the expectation of the random matrix Q.
For the scalar random variable of interest f(Q) for Q ∈ Rp×p, the first (and often
most natural) deterministic quantity to describe its behavior is the expectation
E[f(Q)].

• In the case of linear or bilinear functional f(·), as in Definition 6.1, this is
equal to f(E[Q]).

• In the case where E[Q] is not easily accessible, one may resort to approximating
it using some deterministic matrix Q̄, rather than directly computing it (e.g.,
in the sense that ‖E[Q] − Q̄‖2 ≤ ε(p) for some function ε(·) that vanishes as
p grow large).

In this sense, a Deterministic Equivalent for a random matrix Q is not necessarily
unique. See Remark 6.11 below for a concrete example of this non-uniqueness.

2. Establishing the concentration of the random observation f(Q) around
the deterministic f(Q̄). This step often involves concentration inequalities of
the form

P(|f(Q)− f(Q̄)| ≥ t) ≤ δ(p, t) (6.4)

for some function δ(p, t) that decreases sufficiently fast as p grows large. This
can be achieved, e.g., by bounding sequentially, in a probabilistic sense and as in
Chapter 1.3 for scalar observations of the rando vectors, the differences f(Q) −
f(E[Q]) and f(E[Q])− f(Q̄). (The latter uses the fact that the two deterministic
matrices E[Q] and Q̄ are close, in a spectral norm sense, as established in the first
step.)

1651

In Chapter 6.2 and 6.3 below, we will use this Deterministic Equivalent approach to establish1652

asymptotic as well as non-asymptotic characterizations for the resolvent QĈ(z) for the SCM,1653

respectively.1654

6.2 Asymptotic Deterministic Equivalents for SCM resolvents1655

Here, we illustrate the use of the proposed Deterministic Equivalent framework, by providing1656

an asymptotic characterization of the random sample covariance resolvent1657

Q(z) ≡ QĈ(z) =

(
1

n
XXT − zIp

)−1

, (6.5)1658

for X ∈ Rp×n having i.i.d. “normalized” sub-gaussian entries with zero mean and unit variance.1659

This result can be used to derive the popular Marc̆enko-Pastur law in Theorem 5.7, and it is1660

a special case of our Linear Master Theorem, ??, used to assess the three linear ML models in1661

??.1662
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Theorem 6.5 (An asymptotic Deterministic Equivalent for resolvent, [6, The-
orem 2.4]). Let X ∈ Rp×n be a random matrix having i.i.d. sub-gaussian entries of zero
mean and unit variance, and denote Q(z) = ( 1

nXXT − zIp)−1 the resolvent of 1
nXXT

for z ∈ C not an eigenvalue of 1
nXXT. Then, as n, p → ∞ with p/n → c ∈ (0,∞), the

(sequence of) deterministic matrix Q̄(z) is a Deterministic Equivalent of the (sequence
of) random resolvent matrix Q(z) as in Definition 6.1 with

Q(z)↔ Q̄(z), Q̄(z) = m(z)Ip, (6.6)

with m(z) the unique valid Stieltjes transform as solution to

czm2(z)− (1− c− z)m(z) + 1 = 0. (6.7)
1663

One could prove Theorem 6.5 directly, but we prefer to prove it as a consequence of Theorem 6.71664

(below), analogous to what we described in Remark 5.5 for the classical regime.1665

Proof of Theorem 6.5. The proof of Theorem 6.5 follows from that of Theorem 6.7 and con-1666

centration results on the trace and bilinear forms of the type 1
p tr AQ and aTQb around their1667

expectations. Precisely, it follows from the proof of Theorem 6.7 that for A ∈ Rp×p of unit1668

norm, one has, as n, p→∞ that:1669

1. ‖E[Q]− Q̄‖2 = O(n−1/2); and1670

2. E[
(

1
p tr A(Q− E[Q])

)4
] = O(n−2).1671

As such, by Markov’s inequality (i.e., P(|X| ≥ t) ≤ E[|X|k]/tk) and the Borel–Cantelli lemma1672

(i.e., P(|X| ≥ t) = O(n−`) for ` > 1 and all t > 0 implies Xn → 0 almost surely as n→∞), it1673

follows that1674

1

p
tr AQ− 1

p
tr AE[Q]→ 0 (6.8)1675

almost surely as n, p → ∞. Thus, the conclusion tr A(Q− Q̄)/p → 0 follows almost surely. A1676

similar procedure can be performed on the bilinear form aTQb. This concludes the proof of1677

Theorem 6.5 for all real z < 0. For complex z ∈ C not an eigenvalue of 1
nXXT, since both Q(z)1678

and Q̄(z) in the theorem statement are complex analytic functions on their domain of definition1679

(see, e.g., [17]), by Vitali’s convergence theorem, Theorem A.2, the convergence results for all1680

z < 0 extend to z ∈ C. This concludes the proof of Theorem 6.5.1681

The function m(z) in Theorem 6.5 is the Stieltjes transform of limiting spectral/eigenvalue1682

distribution of the SCM. Thus, not surprisingly, one is able to retrieve the Marc̆enko-Pastur1683

law in Theorem 5.7 from Theorem 6.5, as described in the following remark.1684

Remark 6.6 (Derivation of Theorem 5.7, the Marc̆enko-Pastur law, from Theo-1685

rem 6.5). The equation of m(z) in Equation (6.7) is quadratic, and thus it has two solutions1686

defined via the (two values of) complex square root. That is, for z = ρeıθ for radius ρ ≥ 0 and1687

angle θ ∈ [0, 2π), we have
√
z ∈ {±√ρeıθ/2} and therefore1688

m(z) =
1− c− z

2cz
+

√
((1 +

√
c)2 − z) ((1−

√
c)2 − z)

2cz
. (6.9)1689

Among these, only one satisfies the relation =[z] · =[m(z)] > 0 as a “valid” Stieltjes transform1690

of a probability measure, per its definition in ??. By ??, one obtains that m(z) is the Stieltjes1691

transform of µ: with “continuous” part of the form

√
(E+−x)+(x−E−)+

2cπx for E± = (1±
√
c)2 and1692
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(x)+ = max(x, 0) (since the term under the square root is only non-negative for x ∈ [E−, E+]);1693

and with a discontinuity at zero with weight equal to1694

µ({0}) = − lim
y↓0

ıym(ıy) =
c− 1

2c
± sign(c− 1)

c− 1

2c
, (6.10)1695

and therefore a mass 1− 1/c at zero if and only if c > 1.1696

6.3 Non-asymptotic Deterministic Equivalents for SCM resol-1697

vents1698

Here, we focus on the non-asymptotic characterization of the random resolvent matrix Q(z) of1699

a SCM. We provide, for z < 0, a spectral norm error bound of ‖E[Q(z)]− Q̄(z)‖2 that depends1700

explicitly on the dimension n, p, under the same statistical assumptions as in Theorem 6.5.1701

Our main theorem, Theorem 6.7 below, is indeed a non-asymptotic version of the result in1702

Theorem 6.5, and it allows one to have a precise control on, e.g., the approximation error of1703

using the Deterministic Equivalent Q̄(z) in place of the expected resolvent E[Q(z)]. This is of1704

direct interest in ML, where non-asymptotic-type results are strongly desired.1705

Theorem 6.7 (A non-asymptotic Deterministic Equivalent for resolvent). Let
X ∈ Rp×n be a random matrix having i.i.d. sub-gaussian entries with zero mean and unit
variance, and denote Q(z) = ( 1

nXXT − zIp)−1 the resolvent of 1
nXXT for real z < 0.

Then, there exist universal constants C1, C2 > 0 depending only on the sub-gaussian norm
of the entries of X and |z|, such that for any ε ∈ (0, 1), if n ≥ (C1 + ε)p, one has∥∥E[Q(z)]− Q̄(z)

∥∥
2
≤ C2

ε
· n−

1
2 , Q̄(z) = m(z)Ip, (6.11)

for m(z) the unique positive solution to the Marc̆enko-Pastur equation czm2(z) − (1 −
c− z)m(z) + 1 = 0, c = p/n as in Equation (6.7).

1706

The proof of Theorem 6.7 provide a general recipe to get non-asymptotic Deterministic1707

Equivalents for common random matrix models, and it is given in details as follows.1708

Proof of Theorem 6.7. Let xi ∈ Rp denote the ith column of X ∈ Rp×n (so that xi has i.i.d.1709

sub-gaussian entries of zero mean and unit variance), and let X−i ∈ Rp×(n−1) denote the random1710

matrix X without its ith column xi (so that X−i is in particular independent of xi). Define1711

similarly Q−i(z) =
(

1
nX−iX

T
−i − zIp

)−1
so that1712

Q(z) =

(
1

n
X−iX

T
−i +

1

n
xix

T
i − zIp

)−1

=

(
Q−1
−i (z) +

1

n
xix

T
i

)−1

. (6.12)1713

First note that by definition,1714

Q̄(z) = m(z)Ip =

(
1

1 + cm(z)
− z
)−1

Ip, (6.13)1715

for c = p/n, so that for z < 0,1716

1

1 + cm(z)
‖Q̄‖2 ≤ 1. (6.14)1717

Similarly, one has1718

‖Q(z)‖2 ≤
1

|z|
,

∥∥∥∥Q(z)
1

n
XXT

∥∥∥∥
2

≤ 1,

∥∥∥∥Q(z)
1√
n

X

∥∥∥∥
2

=

√∥∥∥∥Q(z)
1

n
XXTQ(z)

∥∥∥∥
2

≤ 1√
|z|
.

(6.15)1719



6.3. NON-ASYMPTOTIC DETERMINISTIC EQUIVALENTS FOR SCM RESOLVENTS67

In the remainder of the proof, we will, for notational simplicity, drop the argument z and simply1720

write Q = Q(z), Q−i = Q−i(z), and Q̄ = Q̄(z).1721

It follows from the resolvent identity, Lemma A.7, that

E[Q− Q̄] = E
[
Q

(
Ip

1 + cm(z)
− 1

n
XXT

)]
Q̄

=
E[Q]

1 + cm(z)
Q̄− 1

n
E[QXXT]Q̄

=
E[Q]

1 + cm(z)
Q̄−

n∑
i=1

1

n
E[Qxix

T
i ]Q̄

=
E[Q]

1 + cm(z)
Q̄−

n∑
i=1

E

[
Q−i

1
nxix

T
i

1 + 1
nxT

i Q−ixi

]
Q̄,

where we applied Woodbury identity, Lemma A.5, to obtain the last equality.1722

Further write

E[Q− Q̄] =
E[Q]

1 + cm(z)
Q̄−

n∑
i=1

E
[
Q−i

1
nxix

T
i

]
Q̄

1 + cm(z)
+

n∑
i=1

E
[
Q 1
nxix

T
i di
]
Q̄

1 + cm(z)

=
E[Q]

1 + cm(z)
Q̄−

n∑
i=1

E
[
Q−i

1
nxix

T
i

]
Q̄

1 + cm(z)
+

E
[
diQxix

T
i

]
Q̄

1 + cm(z)
,

where we have introduced1723

di =
1

n
xT
i Q−ixi − cm(z), (6.16)1724

and used again Woodbury identity to write
Q−i

1
n
xix

T
i

1+ 1
n
xT
iQ−ixi

= Q 1
nxix

T
i in the first equality, as well1725

as the fact that the law of the random matrix diQxix
T
i is independent of the index i in the1726

second equality. Since E[Q−ixix
T
i ] = E[Q−i] by independence and the law of Q−i is independent1727

of the index i, this can be expressed as1728

E[Q− Q̄] = (E[Q−Q−i])
Q̄

1 + cm(z)
+

E
[
diQxix

T
i

]
Q̄

1 + cm(z)
. (6.17)1729

As such, to bound the spectral norm ‖E[Q − Q̄]‖2, it suffices to bound the following two1730

quantities1731

T1 = ‖E[Q−Q−i]‖2, T2 =
∥∥∥E [diQxix

T
i

]∥∥∥
2
, (6.18)1732

and then use the fact that ‖AB‖2 ≤ ‖A‖2 · ‖B‖2, together with the bound in Equation (6.13).1733

For the first term T1, it follows again from Woodbury identity that1734

0 � E[Q−i −Q] = E

[
Q−i

1
nxix

T
i Q−i

1 + 1
nxT

i Q−ixi

]
� 1

n
E[Q−ixix

T
i Q−i] =

1

n
E
[
Q2
−i
]

(6.19)1735

where we used the fact that 1+ 1
nxT

i Q−ixi ≥ 1, so that by Equation (6.15) one has ‖Q−i‖ ≤ |z|−1,1736

and therefore1737

T1 = ‖E[Q−Q−i]‖2 = O(n−1). (6.20)1738

We now move on to bound the second quantity T2 as defined in Equation (6.18).1739
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It follows from the definition of the spectral norm that

T2 =
∥∥∥E [diQxix

T
i

]∥∥∥
2

= sup
‖u‖=1,‖v‖=1

E
[
diu

TQxix
T
i v
]

≤
√

E[d2
i ] · sup
‖u‖=1,‖v‖=1

√
E[(uTQxixT

i v)2]

≤
√
E[d2

i ]︸ ︷︷ ︸
T2,1

· sup
‖u‖=1

4

√
E[(uTQxi)4]︸ ︷︷ ︸
T2,2

· sup
‖v‖=1

4

√
E[(xT

i v)4]︸ ︷︷ ︸
T2,3

,

where we have applied the Cauchy-Schwarz inequality twice.1740

We first treat the term T2,2. Note that

E[(uTQxi)
4] = E

[
(uTQ−ixi)

4

(1 + 1
nxT

i Q−ixi)4

]
≤ E[(uTQ−ixi)

4] = E[(xT
i Q−iuuTQ−ixi)

2],

with1741

‖Q−iuuTQ−i‖2 = uTQ2
−iu ≤ |z|−2, (6.21)1742

for ‖u‖ = 1 according to Equation (6.15). As such, it follows from the Hanson–Wright inequality,
Theorem 1.22, that there exists C,C ′ > 0 such that

E[(uTQ−ixi)
4] = E

[
E[(uTQ−ixi)

4|Q−i]
]
≤ EQ−i

[∫ ∞
0

2t · P
(
xT
i Q−iuuTQ−ixi ≥ t

)
dt

]
≤ 2C ′ · EQ−i

[∫ ∞
0

t exp
(
−Ct/(uTQ2

−iu)
)
dt

]
= 2C ′E

[
(uTQ2

−iu)2

C2

]
≤ (Cz2)−2,

where we first consider the expectation with respect to xi and then that with respect to Q−i.1743

This allows us to conclude that T2,2 = O(1). And we can analogously conclude that T2,3 = O(1).1744

We thus have1745

‖E[Q]− Q̄‖2 ≤ T1 + T2 ≤ C1n
−1 + C2

√
E[d2

i ], (6.22)1746

for some universal constants C1, C2 and di ≡ 1
nxT

i Q−ixi − cm(z) as defined in Equation (6.16).1747

Now, note that

d2
i =

(
1

n
xT
i Q−ixi − cm(z)

)2

=

(
1

n
xT
i Q−ixi −

1

n
trE[Q−i] +

1

n
trE[Q−i]− cm(z)

)2

≤ 2

(
1

n
xT
i Q−ixi −

1

n
trE[Q−i]

)2

+ 2

(
1

n
trE[Q−i]− cm(z)

)2

= 2

(
1

n
xT
i Q−ixi −

1

n
tr Q−i +

1

n
tr Q−i −

1

n
trE[Q−i]

)2

+ 2

(
1

n
trE[Q−i]− cm(z)

)2

,

so that

1

2
E[d2

i ] ≤ E
(

1

n
xT
i Q−ixi −

1

n
tr Q−i

)2

︸ ︷︷ ︸
D1

+E
(

1

n
tr Q−i −

1

n
trE[Q−i]

)2

︸ ︷︷ ︸
D2

+

(
1

n
trE[Q−i]− cm(z)

)2

,
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where the expectation of the cross terms vanishes due to the independence between Q−i and xi.1748

For the term D1, it follows from the same line of arguments as the term T2,2 above that1749

D1 ≤ Cn−2 for some constant C > 0.1750

For the term D2, which characterizes the concentration property of the resolvent trace1751

tr Q−i, it can be bounded via a martingale difference argument using the Burkholder inequal-1752

ity, Lemma A.11.1753

For the sake of further use (e.g., in the proof of Theorem 6.5), we will prove a slightly more1754

general result on E[(tr Q−i− trE[Q−i])
2]. First note that by Lemma A.6 we may freely replace1755

Q−i with Q without altering the desired bound, and that we may generalize the bound to1756

E[(tr AQ− trE[AQ])2] for any deterministic matrix A of unit spectral norm, that is, such that1757

‖A‖2 = 1.1758

Specifically, under the notation of Lemma A.11, observe that we may write

1

n
tr A(EQ−Q) =

n∑
i=1

(
Ei
[

1

n
tr AQ

]
− Ei−1

[
1

n
tr AQ

])

=
1

n

n∑
i=1

(Ei − Ei−1) [tr(AQ−AQ−i)] ,

(since Ei[tr AQ−i] = Ei−1[tr AQ−i]) for Fi the σ-field generating the columns xi+1, . . . ,xn of X
and with the convention E0[f(X)] = f(X). This forms a martingale difference sequence so that

we fall under the scope of Burkholder inequality. Now, from the identity Q = Q−i− 1
n

Q−ixixT
iQ−i

1+ 1
n
xT
iQ−ixi

(by Lemma A.5), we have that∣∣∣∣(Ei − Ei−1)

[
1

n
tr(AQ−i −AQ)

]∣∣∣∣ =

∣∣∣∣∣(Ei − Ei−1)
1

n

1
nxT

i Q−iAQ−ixi

1 + 1
nxT

i Q−ixi

∣∣∣∣∣
≤ 1

n|z|
·

∣∣∣∣∣(Ei − Ei−1)
1
nxT

i Q−ixi

1 + 1
nxT

i Q−ixi

∣∣∣∣∣
≤ 2

n|z|
.

As a consequence, it follows from Lemma A.11 that1759

E

[(
1

n
tr A(Q− EQ)

)2
]
≤ Cn−1 and E

[(
1

n
tr A(Q− EQ)

)4
]
≤ Cn−2, (6.23)1760

for any A ∈ Rp×p of unit norm and some constant C > 0, and thus in particular for A = Ip.1761

Having obtained the above bounds on both D1 and D2, we can thus conclude that1762

E[d2
i ] ≤ 2(D1 +D2) + 2

(
1

n
trE[Q−i]− cm(z)

)2

≤ Cn−1 + 2

(
1

n
trE[Q−i]− cm(z)

)2

, (6.24)1763

for some universal constant C > 0. Therefore, from Equation (6.22) and Lemma A.6, it follows1764

that1765

‖E[Q]− Q̄‖2 ≤ C1n
− 1

2 + C2

∣∣∣∣ 1n trE[Q]− cm(z)

∣∣∣∣ . (6.25)1766

Further note from Equation (6.13) that 1
n tr Q̄ = p

nm(z) = cm(z), so that1767 ∣∣∣∣ 1n trE[Q]− cm(z)

∣∣∣∣ ≤ p

n
‖E[Q]− Q̄‖2 ≤

p

n

(
C1n

− 1
2 + C2

∣∣∣∣ 1n trE[Q]− cm(z)

∣∣∣∣) , (6.26)1768



70CHAPTER 6. SCM ANALYSIS BEYOND EIGENVALUES: A MODERN RMT APPROACH

and therefore for any ε > 0 and n > (C2 + ε)p, one has1769 ∣∣∣∣ 1n trE[Q]− cm(z)

∣∣∣∣ ≤ C1

ε
· n−

1
2 , (6.27)1770

and thus1771

‖E[Q]− Q̄‖2 ≤
C

ε
· n−

1
2 , (6.28)1772

for some universal constant C > 0. This concludes the proof of Theorem 6.7.1773

Theorem 6.5 and 6.7 extend, in an asymptotic and non-asymptotic manner, respectively, the1774

LLN and matrix concentration results in Theorem 5.1 and 5.4, by providing precise characteri-1775

zation of the expectation of the random resolvent QĈ(z) of the SCM Ĉ. This characterization1776

is technically challenging, due to the nonlinear matrix inverse in QĈ(z) = (Ĉ− zIp)−1; but it1777

is of great significance in the proportional n ∼ p regime.1778

A few remarks on Theorem 6.5 and 6.7 are in order.1779

Remark 6.8 (Extension of Theorem 6.7 to z = 0). Theorem 6.7 is stated for any negative
z < 0. The condition z < 0 is crucial in the proof presented above since it allows for a
direct control on the random resolvent ‖QĈ(z)‖2 ≤ 1/|z|. This, however, does not exploit

the information in the random sample covariance matrix Ĉ = 1
nXXT ∈ Rp×n on, e.g., how it

concentrates around its population counterpart C = E[Ĉ]. To extend the results in Theorem 6.7
to, say, an inverse SCM of the type

Q(z = 0) =

(
1

n
XXT

)−1

,

with z = 0, one first needs to ensure the inverse is properly defined for sub-gaussian X and for a1780

specific choice of p, n. An improved bound can be obtained by considering the concentration of1781

the sample covariance 1
nXXT around its expectation. For instance, it follows from Theorem 5.41782

that there exists universal constant C > 0 such that for n ≥ C(p + ln(1/δ)), one has, with1783

probability at least 1− δ, δ ∈ (0, 1/2] that1784 ∥∥∥∥ 1

n
XXT − Ip

∥∥∥∥
2

≤ 1

2
, (6.29)1785

and therefore ‖Q(z)‖2 ≤ 1
1/2−z ≤ 2 for any z ≤ 0. This allows for a control of the spectral1786

norm ‖Q(z)‖ ≤ 2 that is independent of z ≤ 0 and holds with probability at least 1− δ. Within1787

RandNLA, this strategy has been adopted [10], where results similar to Theorem 6.7 have been1788

proved, by replacing the expectation E[Q(z = 0)] with a conditional expectation E[Q(z = 0) | E ]1789

on an event E that holds with probability at least 1 − δ and ensures the inverse ( 1
nXXT)−1 is1790

well defined as in Equation (6.29).1791

Remark 6.9 (Inversion bias). Continuing with Remark 6.8, the fact that for a symmetric1792

and non-singular random matrix X, one in general has that1793

E[X−1] 6= (E[X])−1 (6.30)1794

is referred to as the inversion bias [10]. The inversion bias has direct consequences for ML. As1795

an instance, the authors of [10] identified the difference between (E[Ĉ])−1 and E[Ĉ−1] in the1796

context where Ĉ is a sketched estimate of some covariance matrix; and they show how this dif-1797

ference impacts the performance of statistical inference and the convergence rate of distributed1798

optimization. Also, although we have proven it here only for X having sub-gaussian entries,1799

results of the type provided in Theorem 6.7 have been extended to a wide range of random ma-1800

trices of interest in RandNLA [8, 11]. This includes so-called LEverage Score Sparsified (LESS)1801

sketching matrices that have numerous numerical advantages, e.g., in stochastic optimization [9,1802

10].1803
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Remark 6.10 (Theorem 6.5 and 6.7 as extensions of Theorem 5.1 and 5.4). The-1804

orems 6.5 and 6.7 provide characterizations of the SCM in the proportional, and should be1805

compared and contrasted to Theorems 5.1 and 5.4 in the classical regime. Precisely, depending1806

on the dimension ratio p/n, we have the following dual observation:1807

1. Classical regime. In the “easy” classical regime, with n � p (and thus p/n → c = 0),1808

one has that Ĉ ≡ 1
nXXT → E[Ĉ] = Ip as n→∞, so that1809

(Ĉ− zIp)−1 ' (E[Ĉ]− zIp)−1 = (1− z)−1Ip = Q̄(z). (6.31)1810

2. Proportional regime. In the “harder” proportional regime, for n ∼ p with p/n → c ∈1811

(0,∞), one has instead1812

Q̄(z) ' E[Q(z)] ≡ E[(Ĉ− zIp)−1] 6' (E[Ĉ]− zIp)−1. (6.32)1813

In this case, a Deterministic Equivalent Q̄(z) can be very different from the inverse ex-1814

pectation (E[Ĉ]− zIp)−1.1815

Equation (6.32) in the proportional regime is not surprising since the matrix inverse is not a1816

linear operator, and so one can not swap the expectation and the inverse.17 This observation1817

on the random resolvent matrix and its Deterministic Equivalent explains the different between1818

the spectral behaviors of Ĉ in Theorem 5.1 and 5.4 for n� p and in Theorem 5.7 and 6.7, for1819

n ∼ p with p/n → c ∈ (0,∞). The former is indeed as special case of the latter. It holds due1820

to the convergence Ĉ → C = Ip that gets rid of the intrinsic non-linearity (due to inverse) in1821

the evaluation of eigenvalues and eigenvectors.1822

Non-uniqueness of Deterministic Equivalents. We have said that, for a given random1823

matrix model of interest, Deterministic Equivalents are not necessarily unique. For example, it1824

suffices that they approximate the expectation E[Q(z)] up to small error terms. In the Gaussian1825

case (as opposed to the more general sub-gaussian case, discussed in Theorem 6.7), an exact1826

Deterministic Equivalent for the SCM resolvent can be obtained. This can be used to provide1827

a very simple example of non-uniqueness, as is discussed in the following remark.1828

Remark 6.11 (Deterministic Equivalents for Gaussian inverse SCM). A very simple1829

example of Deterministic Equivalents is the following. Consider the sample covariance matrix1830

Ĉ = 1
nXXT, for X = C

1
2 Z and positive definite C ∈ Rp×p and Z ∈ Rp×n having i.i.d. standard1831

Gaussian entries, i.e., Zij ∼ N (0, 1). In this case, the inverse18 Ĉ−1 is known to follow the1832

inverse-Wishart distribution [22] with p degrees of freedom and scale matrix C−1, such that1833

E[Ĉ−1] =
n

n− p− 1
C−1, (6.33)1834

for n ≥ p+2. On the other hand, it follows from Theorem 6.5 by taking z = 0 in Equation (6.7)1835

that19
1836

E[Q(z)]↔ Q̄(z) = m(z)Ip =
n

n− p
Ip (6.34)1837

17More generally, the basic issue is that, since it corresponds to an inverse, the expectation of the resolvent
E[Q(z)] is often much less accessible, when compared to the expectation E[Ĉ], unless Ĉ ' E[Ĉ] in a fairly strong
sense (which happens in the classical regime).

18In the Gaussian setting, the sample covariance Ĉ is known to be invertible with probability one if n ≥ p and
C is invertible.

19Formally, neither Theorem 6.5 nor Theorem 6.7 holds for z = 0 and an arbitrary choice of p/n, since we
have assumed that |z| > 0 in the proof. This is, however, not an issue in the Gaussian setting, in which case the
explicit inverse Wishart moments can be used to replace the “rough” control on the ‖Q(z)‖ for z = 0.
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with m(z) = 1
1−c = n

n−p . Equation (6.34) is an approximation (a “first-order” characterization)1838

of the explicit form in Equation (6.33), for n, p� 1 and C = Ip. This example also illustrates1839

that the Deterministic Equivalents are not unique: we could replace the “−1” in denominator1840

of Equation (6.33) by any constant C ′ � n, p to obtain another (equally correct) Deterministic1841

Equivalent.1842
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[14] Géza Freud. Orthogonal polynomials. Elsevier, 2014.1873

[15] Generalized Inverses. CMS Books in Mathematics. New York: Springer-Verlag, 2003.1874

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Ed. by Francis Bach.1875

Adaptive Computation and Machine Learning series. MIT Press, 2016.1876

[17] Walid Hachem, Philippe Loubaton, and Jamal Najim. “Deterministic equivalents for cer-1877

tain functionals of large random matrices”. In: The Annals of Applied Probability 17.31878

(2007), pp. 875–930.1879

73



74 BIBLIOGRAPHY

[18] Roger A. Horn and Charles R. Johnson. Matrix Analysis. 2nd ed. Cambridge University1880

Press, 2012.1881

[19] Cosme Louart and Romain Couillet. “Concentration of Measure and Large Random Ma-1882

trices with an application to Sample Covariance Matrices”. In: arXiv (2018).1883

[20] Cosme Louart, Zhenyu Liao, and Romain Couillet. “A random matrix approach to neural1884

networks”. In: Annals of Applied Probability 28.2 (2018), pp. 1190–1248.1885

[21] Vladimir A Marcenko and Leonid Andreevich Pastur. “Distribution of eigenvalues for1886

some sets of random matrices”. In: Mathematics of the USSR-Sbornik 1.4 (1967), p. 457.1887

[22] Kanti Mardia, J. Kent, and J. Bibby. Multivariate Analysis. 1st ed. Probability and Math-1888

ematical Statistics. Academic Press, Dec. 1979.1889

[23] Song Mei and Andrea Montanari. “The Generalization Error of Random Features Regres-1890

sion: Precise Asymptotics and the Double Descent Curve”. In: Communications on Pure1891

and Applied Mathematics (2021).1892

[24] L Mirsky. “Symmetric Gauge Functions And Unitarily Invariant Norms”. In: The Quar-1893

terly Journal of Mathematics 11.1 (1960), pp. 50–59.1894

[25] Andrew Ng, Michael I. Jordan, and Yair Weiss. “On spectral clustering: Analysis and an1895

algorithm”. In: Advances in Neural Information Processing Systems. Vol. 14. NIPS’02.1896

MIT Press, 2002, pp. 849–856.1897

[26] Walter Rudin. Principles of Mathematical Analysis. 3rd ed. Vol. 3. International Series in1898

Pure and Applied Mathematics. McGraw-Hill Education, 1964.1899

[27] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Ma-1900

chines, Regularization, Optimization, and Beyond. The MIT Press, 2018.1901

[28] H. S. Seung, H. Sompolinsky, and N. Tishby. “Statistical mechanics of learning from1902

examples”. In: Physical Review A 45.8 (1992), pp. 6056–6091.1903

[29] Jack W. Silverstein and Zhidong Bai. “On the Empirical Distribution of Eigenvalues of a1904

Class of Large Dimensional Random Matrices”. In: Journal of Multivariate Analysis 54.21905

(1995), pp. 175–192.1906

[30] Elias M. Stein and Rami Shakarchi. Fourier Analysis: An Introduction. Princeton Univer-1907

sity Press, Feb. 2011.1908

[31] Elias M Stein and Rami Shakarchi. Functional Analysis, Introduction to Further Topics1909

in Analysis. 2012.1910

[32] Gabor Szeg. Orthogonal polynomials. Vol. 23. American Mathematical Soc., 1939.1911

[33] Terence Tao. Topics in Random Matrix Theory. Vol. 132. Graduate Studies in Mathemat-1912

ics. 2012.1913

[34] E. C. Titchmarsh. The Theory of Functions. New York, NY, USA: Oxford University1914

Press, 1939.1915

[35] Aad W. Van der Vaart. Asymptotic Statistics. Vol. 3. Cambridge Series in Statistical and1916

Probabilistic Mathematics. Cambridge University Press, 2000.1917

[36] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in1918

Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge1919

University Press, 2018.1920

[37] Roman Vershynin. “Introduction to the non-asymptotic analysis of random matrices”. In:1921

Compressed Sensing: Theory and Applications. Ed. by Yonina C. Eldar and GittaEditors1922

Kutyniok. Cambridge University Press, 2012, 210–268.1923



BIBLIOGRAPHY 75

[38] Martin J. Wainwright. High-Dimensional Statistics: : A Non-Asymptotic Viewpoint. Cam-1924

bridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,1925

2019.1926

[39] Timothy L. H. Watkin, Albrecht Rau, and Michael Biehl. “The statistical mechanics of1927

learning a rule”. In: Reviews of Modern Physics 65.2 (1993), pp. 499–556.1928

[40] Svante Wold, Kim Esbensen, and Paul Geladi. “Principal component analysis”. In: Chemo-1929

metrics and Intelligent Laboratory Systems 2.1-3 (1987), pp. 37–52.1930

[41] Forrest W. Young. Multidimensional Scaling: History, Theory, and Applications. New1931

York: Psychology Press, May 2013.1932

[42] Y. Yu, T. Wang, and R. J. Samworth. “A useful variant of the Davis–Kahan theorem for1933

statisticians”. In: Biometrika 102.2 (2015), pp. 315–323.1934



Appendix A1935

Technical Results and Lemmas1936

Here, we describe important technical results that we use.1937

Borel–Cantelli lemma. Borel–Cantelli lemma is among the most commonly used results1938

in probability, and asserts that if the sum of the probabilities of a sequence of events {An} is1939

finite, then the set of all outcomes that are “repeated” infinitely many times must occur with1940

probability zero.1941

Theorem A.1 (Borel–Cantelli lemma). For a sequence of events A1, A2, . . ., if
∑∞

n=1 Pr(An) <1942

∞, then Pr(lim supn→∞ An) = 0.1943

We will use Borel–Cantelli lemma to prove almost sure convergence of random quantities. For1944

example, if the sequence of random variables x1, x2, . . . satisfy Pr(xn = O(n−1/2)) = n−2,1945

then by the fact that
∑∞

n=1 Pr(xn = O(n−1/2)) = π2/6 < ∞ and Borel–Cantelli lemma in1946

Theorem A.1, we have that xn → 0 almost surely as n→∞.1947

Vitali’s convergence theorem. Vitali’s convergence theorem is generalization of the domi-1948

nated convergence theorem, which gives a sufficient condition under which limits and integrals of1949

a sequence of functions can be interchanged. Among other things, it gives a sufficient condition1950

for the convergence of expected values of random variables.1951

Theorem A.2 (Vitali’s convergence theorem [34]). Let f1, f2, . . . be a sequence of functions,1952

analytic on a region D ⊂ C, such that |fn(z)| ≤M uniformly on n and z ∈ D. Further assume1953

that fn(zj) converges for a countable set z1, z2, . . . ∈ D having a limit point inside D. Then1954

fn(z) converges uniformly in any region bounded by a contour interior to D. This limit is1955

furthermore an analytic function of z.1956

We will heavily exploit Vitali’s convergence theorem to study the behavior of resolvents QM(z)1957

and of Stieltjes transforms near the real axis (where it is almost singular but of utmost interest)1958

by instead studying its properties far from the real axis (where it is mathematically more1959

convenient). The theorem is particularly interesting as it states that the knowledge of fn at a1960

countable number of points z1, z2, . . . is sufficient to fully characterize the limit f . In practice,1961

we will use this property when proving convergence of functionals fn(z) = g(QM(z)−Q̄(z))→ 01962

of random resolvents QM(z) to deterministic equivalents Q̄(z) (here n is the growing size of1963

the resolvents). For example, if fn(zj) → 0 almost surely for each z1, z2, . . ., then by the1964

countable union of probability one events, fn(zj) → 0 with probability one uniformly on the1965

set {z1, z2, . . .}, and by Vitali we obtain that fn(z) → 0 with probability one uniformly on a1966

possibly very large subset of C.1967

76



77

Weyl’s inequality. Weyl’s inequality is a result that can be used to estimate the eigenvalues1968

of a perturbed Hermitian matrix.1969

Lemma A.3 (Weyl’s inequality, [18, Theorem 4.3.1]). Let A,B ∈ Rp×p be symmetric matrices1970

and let the respective eigenvalues of A, B and A + B be arranged in decreasing order, i.e.,1971

λ1 ≥ λ2 ≥ . . . ≥ λp. Then, for all i ∈ {1, . . . , p},1972

λi+j−1(A) + λp+1−j(B) ≤ λi(A + B) ≤ λi−j(A) + λj+1(B) (A.1)1973

In particular,

max
1≤i≤p

|λi(A)− λi(B)| ≤ ‖A−B‖2.

We will use Weyl’s inequality to bound the difference between eigenvalues of two matrices, using1974

the spectral norm of their matrix difference.1975

Davis-Kahan lemma. The Davis-Kahan lemma is a result that uses the eigengap to show1976

how eigenspaces of a matrix change under perturbation. The following is a special case of it.1977

Lemma A.4 (Davis-Kahan lemma, [7]). Let A,B ∈ Rp×p be symmetric matrices and let the1978

respective eigenvalues of A and B be arranged in decreasing order, i.e., λ1 ≥ λ2 ≥ . . . ≥ λp.1979

Then,1980

sin θ (ui(A),ui(B)) ≤ ‖A−B‖2
min{|λi−1(A)− λi(B)|, |λi+1(A)− λi(B)|}

(A.2)1981

for sin θ(u1,u2) ≡
√

1− (uT
1 u2)2, and ui(A),ui(B) the eigenvector that corresponds to the1982

eigenvalue of λi(A) and λi(B), respectively. The right-hand side bound may depend only on the1983

eigengap of either A or B, at the price of a multiplicative factor of two, see [42].1984

We will use the Davis-Kahan lemma to bound the angle, as well as the difference in Euclidean1985

norm, between eigenvectors of two matrices, using the spectral norm of their difference.1986

Woodbury identity and rank-1 perturbation lemma. The Woodbury identity is a result1987

that relates the inverse of a rank-k perturbation of a matrix to a rank-k correction to the inverse1988

of the original matrix. As such, it allows cheap formal computation of inverses and solutions to1989

linear equations.1990

Lemma A.5 (Woodbury identity). For A ∈ Rp×p, U,V ∈ Rp×n, such that both A and A +
UVT are invertible, we have

(A + UVT)−1 = A−1 −A−1U(In + VTA−1U)−1VTA−1.

In particular, for n = 1, i.e., UVT = uvT for U = u ∈ Rp and V = v ∈ Rp, the above identity
specializes to the following Sherman–Morrison formula,

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
, and (A + uvT)−1u =

A−1u

1 + vTA−1u
.

And the matrix A + uvT ∈ Rp×p is invertible if and only if 1 + vTA−1u 6= 0.1991

Letting A = M− zIp, z ∈ C, and v = τu for τ ∈ R in Lemma A.5 leads to the following rank-11992

perturbation lemma for the resolvent of M.1993
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Lemma A.6 (Rank-1 perturbation lemma, [29, Lemma 2.6]). For A,M ∈ Rp×p symmetric,
u ∈ Rp, τ ∈ R and z ∈ C \ R,∣∣∣tr A(M + τuuT − zIp)−1 − tr A(M− zIp)−1

∣∣∣ ≤ ‖A‖2|=(z)|
.

Also, for A,M ∈ Rp×p symmetric and nonnegative definite, u ∈ Rp, τ > 0 and z < 0,∣∣∣tr A(M + τuuT − zIp)−1 − tr A(M− zIp)−1
∣∣∣ ≤ ‖A‖2|z| .

We will use these results to perform “leave-one-out” type analysis and obtain a self-consistent1994

equation to retrieve Deterministic Equivalents for (random) resolvent matrices.1995

Resolvent identities. The resolvent identities allow one to manipulate the difference and1996

products involving resolvent matrices (or inverse of matrices).1997

Lemma A.7 (Resolvent identity). For invertible matrices A and B, we have

A−1 −B−1 = A−1(B−A)B−1.

Proof of Lemma A.7. This can be easily checked by multiplying both sides on the left by A1998

and on the right by B.1999

Lemma A.8 (Resolvent trick). For A ∈ Rp×n and B ∈ Rn×p, we have

A(BA− zIn)−1 = (AB− zIp)−1A,

for z ∈ C distinct from 0 and from the eigenvalues of AB.2000

Proof of Lemma A.8. Left-multiply both ends of the equality by AB−zIp to obtain A = A.2001

We will use the above resolvent identities to retrieve Deterministic Equivalents for random2002

resolvent matrices.2003

For AB and BA symmetric, Lemma A.8 is a special case of the more general relation

A · f(BA) = f(AB) ·A,

with f(M) ≡ Uf(Λ)UT under the eigen-decomposition M = UΛUT and f complex analytic.2004

Since f is analytic, f(BA) =
∑∞

i=0 ci(BA)i for some sequence {ci}∞i=0 and thus A · f(BA) =2005 ∑∞
i=0 ci(AB)i ·A = f(AB) ·A.2006

Sylvester’s identity. Sylvester’s identity connects the determinant and thus eigenvalues of2007

AB to those of BA, that is, when the (multiplication) order in a matrix product is swapped.2008

Lemma A.9 (Sylvester’s identity, also known as the Weinstein–Aronszajn identity). For A ∈
Rp×n, B ∈ Rn×p and z ∈ C \ {0},

det (AB− zIp) = det (BA− zIn) (−z)p−n.

Proof of Lemma A.9. It suffices to develop the block-matrix determinant (recall that det
(
A B
C D

)
=

det D · det(A−BD−1C) = det A · det(D−CA−1B) when A,D are invertible)

det

(
zIp zA
B zIn

)
= det(zIp) · det(zIn −BA) = det(zIn) · det(zIp −AB).

This concludes the proof of Lemma A.9.2009

We will use Sylvester’s identity to obtain self-consistent equations and to retrieve Deterministic2010

Equivalents for (random) resolvent matrices.2011
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Block matrix inversion lemma. An immediate consequence of Sylvester’s identity is that2012

AB and BA have the same nonzero eigenvalues (those nonzero values of z for which both left-2013

and right-hand sides vanish). Thus, say for n ≥ p, AB ∈ Rp×p and BA ∈ Rn×n have the same2014

spectrum, except for the additional n−p zero eigenvalues of BA. This remark implies the next2015

identity.2016

Lemma A.10 (Block matrix inversion lemma). For A ∈ Rp×p, B ∈ Rp×n, C ∈ Rn×p and
D ∈ Rn×n with D invertible, we have(

A B
C D

)−1

=

(
S−1 −S−1BD−1

−D−1CS−1 D−1 + D−1CS−1BD−1

)
,

where S ≡ A−BD−1C is the Schur complement (for the block D) of
(
A B
C D

)
.20

2017

We will use the block matrix inversion lemma in handling inverse/resolvent matrices.2018

Burkholder inequality. Burkholder inequality is a concentration result concerning (the sum2019

of) martingale difference sequences, and is of particular interest when the independence struc-2020

ture exists but is highly complex for the objective of interest.2021

Lemma A.11 (Burkholder inequality, [3, Lemma 2.13] ). Let {Xi}∞i=1 be a martingale difference
for the increasing σ-field {Fi} and denote Ek the expectation with respect to Fk. Then, for k ≥ 2,
and some constant Ck only dependent on k,

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
k
 ≤ Ck

E

[
n∑
i=1

Ei−1[|Xi|2]

]k/2
+

n∑
i=1

E[|Xi|k]

 .

We will use Burkholder inequality specifically to prove concentration result involving resol-2022

vent/inverse matrices. Precisely, denote Ei[Q] the expectation of the random matrix Q condi-2023

tioned on its first (or last) i columns inside the inverse, the sequence {(Ei−Ei−1)[Q]}pi=1 forms2024

a martingale difference sequence (of matrices); the fluctuation and concentration of such objects2025

(which in a way extend the notion of series of independent random variables) can be controlled2026

with Burkholder inequality.2027

20The Schur complement S = A − BD−1C is particularly known for its providing the block determinant
formula det ( A B

C D ) = det(D) det(S), already exploited in the proof of Sylvester’s identity, Lemma A.9.
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