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Abstract
In this paper, built upon recent advances in the high-dimensional characterization of neural tangent
kernels (NTKs) with random matrix techniques [5], we derive precise high-dimensional training
dynamics for wide and deep neural networks (DNNs). By assuming a two-class Gaussian mixture
model for the input data, exact expression of the training mean squared error (MSE) is derived, as
a function of the dimension p, sample size n, and the statistics of input data, the depth L, as well as
the nonlinear activation function in each layer of the network. The theoretical results provide novel
insight into the inner mechanism of DNNs. Numerical experiments on not-so-wide networks are
provided to validate the proposed asymptotic results.

1. Introduction

Large-scale machine learning models such as deep neural networks (DNNs) have made remarkable
progress over the past decade, with a long list of successful applications ranging from computer
vision [11], game [17], to natural language processing [20] and AI-generated content [7].

Despite the notable empirical success of DNNs, our theoretical understanding of them is pro-
gressing at a more modest pace. As a telling example, it still remains unclear why over-parameterized
DNN models generally do not overfit, when trained on simple first-order methods such as the
(stochastic) gradient descent [1, 13, 15]. The neural tangent kernel (NTK) [10], in this respect,
provides a powerful tool in assessing the convergence and generalization properties of deep and
wide neural networks, via a study of the associated neural tangent kernel functional space.

Yet, the practical computation and/or the theoretical assessment of NTKs remains not easily
accessible, due to their mathematically involved and implicit form dependent on the input data and
network architecture. This further poses technical challenges in applying NTK in the theoretical
assessment of DNN models. These issues have been partially resolved in our recent paper [5],
by providing, for Gaussian mixture data, precise high-dimensional characterization of the NTK
matrices for a fully-connected DNN model. This further allows for:

(i) efficient numerical computation of the NTK matrix with complexity independent of the net-
work width or depth, and only depends on input data as well as the activation in each layer
through an iterative equation with a few parameters; and

(ii) theoretical assessment of, e.g., how different choice of activation functions affects the NTK,
and the consequence of the convergence and generalization of the network.
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In this paper, built upon recent progress in random matrix theory [3, 12], we derive precise
training dynamics for deep and wide neural networks, when the input data are drawn from a high-
dimensional two-class Gaussian mixture model. The obtained results can be used to “predict” the
training dynamics of a given (wide and deep) network, without explicit computing the correspond-
ing NTK matrix or its high-dimensional equivalent [5]. The proposed analysis provides novel in-
sights into the interplay between the input data distribution and the network under study (for which
a phase transition phenomenon might occur in the NTK eigenspectrum), and extends the analysis
in [12] (performed on a toy linear regression model) to the more involved DNN model.

Notations. We denote scalars in lowercase letters, vectors in bold lowercase, and matrices in bold
uppercase. We denote the transpose operator by (·)⊤, and use ∥ · ∥ to denote the Euclidean norm
for vectors and spectral/operator norm for matrices. For a random variable z, E[z] denotes the
expectation of z. We use 1p and Ip for the vector of all ones of dimension p and the identity matrix
of dimension p×p, respectively. We use O(·), o(·) notations as in standard asymptotic statistics [19].

Organization of the paper. In the remainder of this paper, we present the GMM data and fully-
connected DNN model under study, together with preliminary results in NTK in Section 2. Our
main results on the precise training dynamics are given in Section 3. Numerical experiments are
conducted in Section 4 to validate the proposed theoretical analysis.

2. System Model and Preliminaries

2.1. System model

We consider training data x1, . . . ,xn ∈ Rp and their labels y1, . . . , yn ∈ {±1} independently and
uniformly drawn from the following binary Gaussian mixture model (class C1 versus C2):

class Ca: yi = (−1)a,
√
pxi ∼ N (yiµ, Ip), a ∈ {1, 2}, (1)

for some deterministic mean vector µ ∈ Rp. Collecting the n data vectors into a matrix X =
[x1,x2, . . . ,xn] ∈ Rp×n and the associated labels into a column vector y = [y1, y2, . . . , yn]

⊤ ∈ Rn,
this leads to the “signal-plus-noise” model for (X,y) as

√
pX = µy⊤ + Z, with random matrix

Z ∈ Rp×n having i.i.d. standard Gaussian entries.
We focus here on the training dynamics of a deep fully-connected neural network with a scalar

output. Let W1 ∈ Rd1×p, · · · ,Wℓ ∈ Rdℓ×dℓ−1 be the (intermediate) weight matrices and σ1, · · · , σℓ
be the nonlinear activation function of each layer, the network first maps the input data X ∈ Rp×n

to their representations Σℓ(X) ∈ Rdℓ×n at layer ℓ, for ℓ = 1, . . . , L, given by (the columns of)

Σℓ ≡ Σℓ(X) =
1√
dℓ
σℓ

(
1√
dℓ−1

Wℓσℓ−1

(
. . .

1√
d2

σ2

(
1√
d1

W2σ1 (W1X)

)))
, (2)

and then to the (scalar) output f(X) = ΣL(X)⊤w ∈ Rn via the readout weight vector w ∈ RdL .
Our objective is to evaluate the high-dimensional dynamics of the model in (2) in minimizing

the following mean squared loss

L(θ) =
1

2
∥f(X)− y∥2, f(X) = ΣL(X)⊤w, (3)
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for θ = [vec(W1), · · · , vec(WL),w], with full-batch gradient descent, in the infinitely wide NTK
regime [10] as d1, · · · , dL → ∞, or more specifically, for dℓ ≫ max(n, p), ℓ = 1, · · · , L.

As in [3, 5, 10], we put ourselves under the following assumptions.

Assumption 1 (High-dimensional regime) The data dimension p and sample size n are both
large and comparable, that is, as n → ∞, n/p → c ∈ (0,∞) and ∥µ∥ = O(1).

Since the data are uniformly drawn from the binary GMM with prior probability 1/2 each, the
cardinalities n1, n2 for the two classes satisfy na/n → 1/2 almost surely as n → ∞, a ∈ {1, 2}.

Assumption 2 (Random weights initialization) The weights W1, . . . ,WL, and w at t = 0 are
independent and have i.i.d. zero-mean and unit-variance entries with finite eight-order moment.

Assumption 3 (Activation functions) The activations σ1, . . . , σL are (at least) four-times differ-
entiable for the standard normal measure, that is, maxk∈{0,1,2,3,4}{|E[σ

(k)
ℓ (ξ)]|} < C for some

constant C > 0, ξ ∼ N (0, 1), ℓ ∈ {1, . . . , L}.

2.2. Learning dynamics, NTK, CK, and their high-dimensional equivalents

The dynamics of the network output ft(X) in (2), when trained using gradient descent with a suffi-
ciently small learning rate, can be well described with the NTK, in the infinitely wide regime (also
known as the NTK regime, with dℓ ≫ max(n, p)), by the following differential equation [9, 10]:

∂tft(X) = ∂θtft(X) · ∂tθt = ∂θtft(X) · (−η · (∂θtft(X))⊤ · ∂ftL)
= −η · ∂θtft(X) · (∂θtft(X))⊤ · (ft(X)− y) = −η ·KNTK,L · (ft(X)− y). (4)

The solution to (4) is explicitly given by

ft(X) = e−ηt·KNTK,L · f0(X) + (In − e−ηt·KNTK,L) · y, (5)

so that the (normalized) training MSE is given by

Et ≡
1

2n
∥ft(X)− y∥2 = 1

2n
(f0(X)− y)⊤ · e−2ηt·KNTK,L · (f0(X)− y), (6)

which will be our central object to study in this work.
As we shall see below in Theorem 3, the DNN training dynamic Et in (6) can be expressed as an

explicit function of the conjugate kernel KCK,ℓ and neural tangent kernel KNTK,ℓ matrices, defined
respectively as [10]:

KCK,ℓ = E[Σ⊤
ℓ Σℓ] ∈ Rn×n, KNTK,ℓ = KCK,ℓ +KNTK,ℓ−1 ◦K′

CK,ℓ, ℓ ∈ {1, . . . , L}, (7)

with KNTK,0 = KCK,0 = X⊤X, ‘A ◦ B’ the Hadamard product between two matrices A,B,
Σℓ ∈ Rdℓ×n as defined in (2), and the matrix K′

CK,ℓ is obtained by changing the activations σℓ to
σ′
ℓ in the definition of Σℓ in (2). (Note the expectation is taken with respect to the random weights

W1, · · · ,Wℓ).
In the following, we recall the precise high-dimensional equivalent results in [5], under the

binary GMM setting of (1), for conjugate kernel (CK) and neural tangent kernel (NTK) matrix
in Theorem 1-2, respectively.
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Theorem 1 (High-dimensional equivalent for CK: two-class, [5, Theorem 1]) Under Assump-
tion 1–3, let τ0, . . . , τL ≥ 0 be a sequence given by the following recursion:

τℓ =
√
E[σ2

ℓ (τℓ−1ξ)], ξ ∼ N (0, 1), ℓ ∈ {1, . . . , L}, τ0 = 1, (8)

with “centered” activation functions such that E[σℓ(τℓ−1ξ)] = 0, we have, as n, p → ∞ that
∥KCK,ℓ − K̃CK,ℓ∥ → 0 almost surely, with

K̃CK,ℓ ≡ αℓ,1X
⊤X+ αℓ,2ψψ

⊤/p+ αℓ,31n1
⊤
n /p+ αℓ,0In, αℓ,0 ≡ τ2ℓ − τ20αℓ,1 − τ40αℓ,3, (9)

for data fluctuationψ =
√
p{∥xi−E[xi]∥2−E[∥xi−E[xi]∥2]}ni=1 ∈ Rn, and αℓ,0, αℓ,1, αℓ,2, αℓ,3 ≥

0 satisfying

αℓ,1 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,1, αℓ,2 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,2 +
1

4
E[σ′′

ℓ (τℓ−1ξ)]
2α2

ℓ−1,4, (10)

αℓ,3 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,3 +
1

2
E[σ′′

ℓ (τℓ−1ξ)]
2α2

ℓ−1,1, (11)

with αℓ,4 = αℓ−1,4E
[
(σ′

ℓ(τℓ−1ξ))
2 + σℓ(τℓ−1ξ)σ

′′
ℓ (τℓ−1ξ)

]
for ξ ∼ N (0, 1).

Theorem 2 (High-dimensional equivalent for NTK: two-class, [5, Theorem 2]) Under the same
settings and notations as in Theorem 1, we have ∥KNTK,ℓ − K̃NTK,ℓ∥ → 0 almost surely, with

K̃NTK,ℓ ≡ βℓ,1X
⊤X+ βℓ,2ψψ

⊤/p+ βℓ,31n1
⊤
n /p+ βℓ,0In, βℓ,0 ≡ κ2ℓ − τ20βℓ,1 − τ40βℓ,3,

for ψ ∈ Rn, τℓ ≥ 0 as in Theorem 1, τ ′ℓ ≥ 0 as defined in (8) with activation σ′ instead of σ,
κ2ℓ = τ2ℓ + τ ′2ℓ , and non-negative scalars βℓ,0, βℓ,1, βℓ,2, βℓ,3 ≥ 0 satisfying

βℓ,1 = αℓ,1 + E
[
σ′
ℓ(τℓ−1ξ)

]2
βℓ−1,1, βℓ,2 = αℓ,2 + E

[
σ′
ℓ(τℓ−1ξ)

]2
βℓ−1,2, (12)

βℓ,3 = αℓ,3 + E
[
σ′
ℓ(τℓ−1ξ)

]2
βℓ−1,3 + E

[
σ′′
ℓ (τℓ−1ξ)

]2
αℓ−1,1βℓ−1,1. (13)

Theorem 1 and 2 provide a precise characterization of the CK and NTK matrix, respectively,
and pave the way for both efficient numerical computation and analytic assessment of these matrices
and their functionals (e.g., the training and generalization dynamics of the network).

From a computational perspective, the evaluation of CKs and NTKs relies on either high-
dimensional integration or averaging over a huge number of independent realizations of the net-
work [16], and can be burdensome particularly when the data dimension/size and/or the network
depth is large. In this vein, the high-dimensional equivalents in Theorem 1–2 provide, for high-
dimensional GMM data, a computationally more accessible “proxy” to CK and NTK matrices, and
their eigenspectral functionals such as the learning dynamics to be discussed in Section 3 below.

From a theoretical analysis perspective, the results in Theorem 1 and 2 provide a key enabler
to assess, e.g., how the choice of activations impacts the NTK via the parameter βℓs. Notably, it
is of interest to observe that even activations like σ(t) = cos(t) will lead to E[σ′(τξ)] = 0 so that
βℓ,1 = 0 for all ℓ ≥ 1, and will thus predictably perform poorly for GMM data with different means
as in (1); while odd activations such as σ(t) = sin(t) in general result in βℓ,1 ̸= 0 and thereby avoid
this issue. This observation is numerically supported by Figure 1 below, and we refer the readers to
[5] for more detailed discussions and numerical evidence.
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3. Main Results

With Theorem 1 and 2 at hand, we are ready to present the main results of this paper. Our first result
is the following high-dimensional characterization of the training MSE dynamics of Et in (6), the
proof of which can be found in Appendix B.

Theorem 3 (High-dimensional equivalent for training dynamics) Under Assumption 1–3 and
as n, p → ∞ with dℓ/max(n, p) → ∞, we have, for training MSE Et defined in (6) that

Et − Ẽt → 0, Ẽt ≡
1

2n
tr
(
e−2ηtK̃NTK,L · K̃CK,L

)
+

1

2n
y⊤ · e−2ηtK̃NTK,L · y

with K̃NTK,L, K̃CK,L the high-dimensional equivalents in Theorem 1–2 with ℓ = L, respectively.

As a consequence of the explicit expressions in Theorem 1 and 2, it follows from Theorem 3
that the training dynamics in (6) can be determined as an explicit function of the data Gram matrix
X⊤X (which is still random due to the randomness in X, but is now independent of the weights
W) and a few scalar parameters (the αs and βs) pertinent to network activation functions.

We further show, in the high-dimensional regime for n, p large, that the random Ẽt in Theorem 3
(and thus the training MSE Et) can be well approximated by a deterministic quantity, the expression
of which involves integration over the Marc̆enko-Pastur law [14] and is given as follows.

Theorem 4 (Precise high-dimensional training dynamics) Under the settings and notations of
Theorem 3, we have, for training MSE Et defined in (6) that Et − Ēt → 0 almost surely, with
deterministic Ēt explicitly given by

Ēt ≡
e−2ηβ0t

2

∫
e−2ηβ1tx

[(
α0 + α1x+

1

1 + ∥µ∥2

)
µ(dx) +

ν(dx)

1 + ∥µ∥−2

]
,

with the shortcuts αk ≡ αL,k, βk ≡ βL,k, k ∈ {0, 1} as defined in Theorem 1 and 2, two probability
measures

µ(dx) =

√
(x− λ−)+(λ+ − x)+

2πcx
dx+ (1− c−1)+δ0(x), (14)

ν(dx) =

√
(x− λ−)+(λ+ − x)+

2πc∥µ∥2(λµ − x)
dx+

(∥µ∥4 − c−1)+

∥µ∥4
δλµ(x), (15)

for (t)+ ≡ max(t, 0), λ± = (1 ±
√
c)2 the left and right edge of the popular Marc̆enko-Pastur

law [14], as well as

λµ =

{
1 + c+ c∥µ∥2 + ∥µ∥−2 ≥ λ+ if ∥µ∥2 > 1/

√
c,

(1 +
√
c)2 = λ+ otherwise.

(16)

Proof [Proof sketch of Theorem 4] By Theorem 3, our object of interest Et can be well approxi-
mated by Ẽt in the NTK regime, and it thus remains to evaluate the trace (i.e., tr(e−2ηtK̃NTK,LK̃CK,L))
and quadratic (i.e., y⊤e−2ηtK̃NTK,Ly) functional forms of the two random kernel matrices K̃NTK

and K̃CK, that are (deterministic) low-rank perturbations from standard Wishart random matri-
ces. As such, the proof of Theorem 4 can be achieved by (i) using Cauchy’s integral formula to

5
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rewrite the aforementioned matrix functionals as a complex integration of the resolvent functionals
of K̃NTK and K̃CK; and (ii) approximating the random integrand by their deterministic equiva-
lents [3, 6] (derived with the help of the Woodbury matrix identity in Lemma 2 and the Marc̆enko-
Pastur deterministic equivalent in Lemma 5); then, (iii) the (now deterministic) complex integration
can be explicitly computed by carefully decomposing the contour to encompass both the possible
isolated eigenvalues (due to the low-rank perturbation terms of µ,ψ and 1 in Theorem 1 and 2) and
the Marc̆enko-Pastur main bulk. The detailed derivations can be found in Appendix C.

The result in Theorem 4 provides novel insight into the impact of data (statistics) on the training
dynamics of DNNs. In particular, depending on the signal-to-noise ratio (SNR) ∥µ∥2 of the GMM
data in (1) and the dimension ratio c = limn/p, a “phase transition” can be observed for the largest
eigenvalue of X⊤X, and thus in the NTK eigenspectrum: as long as ∥µ∥2 > 1/

√
c, a “spiked”

eigenvalue (at λµ ≥ λ+) isolates from the main Marc̆enko-Pastur bulk, and gets larger as ∥µ∥2
increase. This has a direct consequence in the DNN learning dynamics and may dominate the
dynamics in the initial stage of training, see Section 4 below for numerical evidence.

4. Numerical Experiments

In this section, we provide numerical results to validate the asymptotic analysis in Theorem 3 and 4.
We train a fully-connected neural network model as defined in (2) with three hidden layers of width
dℓ = 10 000 and sine or cosine activation σℓ(t) = sin(t), cos(t), for all ℓ = 1, 2, 3. We compare,
in Figure 1(a), the temporal evolutions of the training MSE of (i) the actual training dynamics with
gradient descent (of learning rate 0.01) and sine activation, denoted RT-sin in Figure 1(a); and
(ii) its high-dimensional random equivalent Ẽt given in Theorem 3; and (iii) its high-dimensional
deterministic equivalent Ēt given in Theorem 4; as well as (iv) the training dynamics Et predicted
by the NTK theory as in (6). We observe that the proposed Theorem 3 and 4 allow for a rather
accurate assessment of the training dynamics within the reach of the NTK theory (i.e., Ẽt and Ēt

to compare with Et in (6) as proposed by the NTK theory), but nonetheless away from the actual
gradient descent dynamics of finite width networks by a significant gap.

To illustrate the impact of different activations on DNN performance, Figure 1(a) also depicts
the actual training dynamics of the same network, but with “centered” cosine activation. In this
case, it is known (see Theorem 2 and the discussion thereafter) that the network is not trainable in
the NTK regime and cannot yield satisfactory performance in classifying the Gaussian mixture in
(1), as demonstrated by the plateau at large MSE (denoted RT-cos) in Figure 1(a).

Besides, as discussed after Theorem 4, the “signal strength” ∥µ∥ of GMM data has a significant
impact on the DNN training dynamics. Experiments are conducted, in Figure 1(b) and Figure 1(c),
for GMM data with ∥µ∥2 = 32 and ∥µ∥2 = 0.5, respectively, with the same network and training
procedure as above. We observe in Figure 1(b) that a larger ∥µ∥2 leads to a rapid initial drop in
the training MSE, essentially due to the integration over ν, and more specifically, to the “spiked”
eigenvalue λµ in Theorem 4, referred to as the “Spiked term” in Figure 1(b) and Figure 1(c). It
can indeed be shown that λµ corresponds to the largest eigenvalue of the NTK matrix. These
observations align with previous studies [4, 10] that investigate the impacts of the largest eigenvalues
of the NTK. For ∥µ∥2 small, on the other hand, the training MSE decreases very slowly, and much
more time is needed for the training, as illustrated in Figure 1(c).

To evaluate the computational benefit of the proposed exact training dynamics in Theorem 4,
we compare in Table 1 the running time of (i) the actual gradient descent, (ii) the random equivalent
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Figure 1: Training dynamics of a 3-hidden-layer fully-connected network with “centered” activa-
tions sine and cosine, layer widths dℓ = 10 000, for Gaussian mixture input data with
n = 5200, p = 5000, with ∥µ∥2 = 32 and 1/2. Gradient descent with step size 0.01.

training dynamic Ẽt in Theorem 3, and (iii) the deterministic training dynamic Ēt given in Theo-
rem 4, for 500 times steps in the same setting as Figure 1(a). We see that the precise analysis in
Theorem 4 greatly accelerates the training dynamics prediction, since the integration in Theorem 4
can be computed much more efficiently than matrix products of huge size.1

Table 1: Running time (mean ± standard deviation) of gradient descent (RT-sin, with GPU acceler-
ation), random equivalent Ẽt, and deterministic equivalent Ēt in the setting of Figure 1(a),
for 500 time steps. Results are obtained by averaging over 10 independent runs.

RT-sin Ẽt Ēt

Running time (s) 99.6± 1.4 65.1± 5.3 4.9± 0.4
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In the appendix of this paper, we present in Appendix A the technical lemmas to be used
throughout the proof; in Appendix B the proof of Theorem 3; and in Appendix C the proof of
Theorem 4.

Appendix A. Useful lemmas

Lemma 1 (Quadratic-form-close-to-the-trace, trace lemma, [3, Lemma 2.11]) Let A ∈ Rn×n

be a deterministic matrix of bounded spectral norm and w = [w1, . . . , wn]
⊤ ∈ Rn be a random

vector having independent entries with zero mean E[wi] = 0, unit variance Var[wi] = 1, and finite
eighth-order moment E[w8

i ] < ∞. Then,

1

n
w⊤Aw − 1

n
trA → 0, (17)

almost surely as n → ∞.

Lemma 2 (Woodbury matrix identity)(
A+CBC⊤

)−1
= A−1 −A−1C

(
B−1 +C⊤A−1C

)−1
C⊤A−1, (18)

Lemma 3 ([18, Lemma 2.6]) For A,M ∈ Rp×p symmetric and nonnegative definite, u ∈ Rp, τ ∈
R and z ∈ C\ suppµ

(
M+ τuu

⊤
)

,∣∣∣∣trA(M+ τuu
⊤ − zIp

)−1
− trA (M− zIp)

−1

∣∣∣∣ ≤ ∥A∥
dist(z, suppµ

(
M+ τuu⊤)) .

with dist(z, suppµ
(
M+ τuu

⊤
)
) the distance between z and the support of the eigenvalue dis-

tribution of M+ τuu
⊤

. This lemma establishes that low-rank perturbations have a negligible effect
on the trace of the inverse of a matrix.

Lemma 4 (Cauchy’s integral formula) For Γ ⊂ C a positively (i.e., counterclockwise) oriented
simple closed curve and a complex function f(z) analytic in a region containing Γ and its inside,
then if z0 ∈ C is enclosed by Γ,

f (z0) = − 1

2πı

∮
Γ

f(z)

z0 − z
dz;

if not,
1

2πı

∮
Γ

f(z)

z0 − z
dz = 0.

Lemma 5 ([3, Theorem 2.4, Marčenko-Pastur]) Let X ∈ Rp×n with i.i.d. columns xi such that
xi has independent entries with zero mean, unit variance, and some light tail condition t and denote
Q(z) =

(
1
nXX⊤ − zIp

)−1
the resolvent of 1

nXX⊤. Then, as n, p → ∞ with p/n → c ∈ (0,∞),

Q(z) ↔ Q̄(z), Q̄(z) = m(z)Ip,

10
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zcm2(z)− (1− c− z)m(z) + 1 = 0

The function m(z) is the unique solution as the Stieltjes transform of the probability measure µ
given explicitly by

µ(dx) =
(
1− c−1

)+
δ0(x) +

1

2πcx

√
(x− E−)

+ (E+ − x)+dx

where E± = (1±
√
c)2 and (x)+ = max(0, x), and is known as the Marčenko-Pastur distribution.

In particular, with probability one, the empirical spectral measure µ 1
n
XXT converges weakly to µ.

Lemma 6 (Weyl’s inequality, [8, Theorem 4.3.1]) Let A,B ∈ Rp×p be symmetric matrices and
let the respective eigenvalues of A, B and A + B be arranged in nondecreasing order, i.e., λ1 ≤
λ2 ≤ . . . ≤ λp−1 ≤ λp. Then, for all i ∈ {1, . . . , p},

λi(A+B) ≤ λi+j(A) + λp−j(B), j = 0, 1, . . . , p− i,
λi−j+1(A) + λj(B) ≤ λi(A+B), j = 1, . . . , i

Lemma 7 (Eigenvalue phase transition, [2, Theorem 2.1]) Let Xn be an n × n symmetric (or
Hermitian) random matrix with ordered eigenvalues λ1 (Xn) ⩾ · · · ⩾ λn (Xn). Let µXn be the
empirical eigenvalue distribution defined as

µXn =
1

n

n∑
j=1

δλj(Xn).

Assume the probability measure µXn converges almost surely weakly, as n → ∞, to a nonrandom
compactly supported probability measure µX. We suppose the smallest and largest eigenvalue of
Xn converge almost surely to a and b.

Let Pn be an n× n symmetric (or Hermitian) random matrix having rank r with its r non-zero
eigenvalues equal to θ1, . . . , θr, which are deterministic non-zero real numbers. And we define index
s ∈ {0, . . . , r} such that θ1 ⩾ · · · ⩾ θs > 0 > θs+1 ⩾ · · · ⩾ θr.

Consider the rank r additive perturbation of the random matrix Xn given by

X̃n = Xn +Pn.

For the extreme eigenvalues of X̃n each 1 ⩽ i ⩽ s as n → ∞, we have

λi

(
X̃n

)
a.s.−→

{
m−1

µX
(1/θi) if θi > 1/mµX (b+) ,

b otherwise,

while for each fixed i > s, λi

(
X̃n

)
a.s.−→ b.

Similarly, for the small eigenvalues, we have that for each 0 ⩽ j < r − s,

λn−j

(
X̃n

)
a.s.−→

{
m−1

µX
(1/θr−j) if θj < 1/mµX (a−) ,

a otherwise,

while for each fixed j ⩾ r − s, λn−j

(
X̃n

)
a.s.−→ a.

Note that
mµX(z) =

∫
1

z − t
dµX(t) for z /∈ suppµX,

is the Stieltjes transform of µX,m−1
µX

(·) is its functional inverse.

11
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Appendix B. Proof of Theorem 3

In this section, we consider the fully-connected DNN model as in (2) of depth L:

Σℓ(X) =
1√
dℓ
σℓ

(
1√
dℓ−1

Wℓσℓ−1

(
. . .

1√
d2

σ2

(
1√
d1

W2σ1 (W1x)

)))
, ℓ = 1, . . . , L,

(19)
and denote W(0),w(0) the initial (random) states of the DNN weights W,w at time t = 0, and
collects all vectorized weights at initialization as

W(0) = [vec(W1(0)), · · · , vec(WL(0))] ,

θ = [vec(W1(0)), · · · , vec(WL(0)),w(0)].

For random x, we denote Ex[f(x)] the expectation of f(x) with respect to x.

Organization of the proof of Theorem 3 Recall our object of interest here in Theorem 3 is the
normalized training MSE Et in the (infinitely wide) NTK regime given in (6) as

Et =
1

2n
∥ft(X)− y∥22 =

1

2n
(f0(X)− y)⊤ · e−2ηt·KNTK,L · (f0(X)− y)

=
1

2n
f0(X)⊤e−2ηt·KNTK,Lf0(X)︸ ︷︷ ︸

≡Ea
t

− 1

n
f0(X)⊤e−2ηtKNTK,L · y︸ ︷︷ ︸

≡Eb
t

+
1

2n
y⊤e−2ηtKNTK,Ly︸ ︷︷ ︸

≡Ec
t

, (20)

with f0(X) the output of DNN at time step t = 0 as

f0(X) = Σ⊤
L (X)w(0) ∈ Rn, (21)

with ΣL(X) given in (19).
To prove Theorem 3, it suffices to show that under Assumption 1–3 and as n, p → ∞ with

dℓ/max(n, p) → ∞, we have

1. Ea
t − Ẽa

t → 0 with Ẽa
t = 1

2n tr
(
e−2ηt·K̃NTK,L · K̃CK,L

)
; and

2. Eb
t → 0; and

3. Ec
t − Ẽc

t → 0 with Ẽc
t ≡ 1

2ny
⊤ · e−2ηtK̃NTK,L · y,

for the high-dimensional equivalent CK and NTK matrices K̃CK,L and K̃NTK,L, given respectively
in Theorem 1 and Theorem 2. This allows one to conclude that Et − Ẽt → 0 as n, p → ∞ with
Ẽt = Ẽa

t + Ẽc
t , and thus the conclusion of Theorem 3.

Detailed derivation of Ea
t − Ẽa

t → 0 For the term Ea
t = 1

2nf0(X)⊤ · e−2ηt·KNTK,L · f0(X), by
substituting f0(X) with the definition in (21), we get

Ea
t =

1

2n
f0(X)⊤ · e−2ηt·KNTK,L · f0(X) =

1

2n
w(0)⊤ΣL(X)e−2ηt·KNTK,LΣL(X)⊤w(0),

for which we would like to apply Lemma 1 with A = ΣL(X) · e−2ηt·KNTK,L ·ΣL(X)⊤ to conclude
that Ea

t ≃ 1
2n tr(ΣL(X)e−2ηt·KNTK,LΣL(X)⊤) under Assumption 2.

12
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To that end, we need to first establish a spectral norm bound for the random matrix ΣL(X) ·
e−2ηt·KNTK,L ·ΣL(X) in the large dℓ, n, p regime. Note that with dℓ ≫ max(n, p) with dℓ, n, p →
∞, we have, by the law of large numbers that

ΣL(X)⊤ΣL(X)− EW

[
ΣL(X)⊤ΣL(X)

]
→ 0, (22)

almost surely, so that

ΣL(X)⊤ΣL(X) = EW

[
ΣL(X)⊤ΣL(X)

]
+ o∥·∥2(1) = KCK,L + o∥·∥2(1) = K̃CK,L + o∥·∥2(1)

(23)
where we denote o∥·∥2(1) a matrix having (almost sure) vanishing spectral norm as n, p → ∞ and
used the definition of CK matrix KCK,L in (7) in the second and Theorem 1 in the third approxima-
tion. We thus have

∥ΣL(X) · e−2ηt·KNTK,L ·ΣL(X)⊤∥2 ≤ ∥ΣL(X)⊤ΣL(X)∥2 · ∥e−2ηt·KNTK,L∥2
≤ ∥ΣL(X)⊤ΣL(X)∥2 = ∥K̃CK,L∥2 + o(1) = O(1)

almost surely as dℓ, n, p → ∞, where we used the non-negative definiteness of KNTK,L per its
definition and the approximation in (23) in the second line. The conclusion that ∥K̃CK,L∥2 = O(1)
can be reached by using Theorem 1 and standard RMT arguments. This allows us to write with
Lemma 1 that

Ea
t =

1

2n
w(0)⊤ΣL(X) · e−2ηt·KNTK,L ·ΣL(X)⊤w(0)

=
1

2n
tr
(
ΣL(X) · e−2ηt·KNTK,L ·ΣL(X)⊤

)
+ o(1)

=
1

2n
tr
(
e−2ηt·KNTK,L ·KCK,L

)
+ o(1) =

1

2n
tr
(
e−2ηt·K̃NTK,L · K̃CK,L

)
+ o(1) = Ea

t + o(1),

where we used Theorem 1 and Theorem 2 in the last line. This concludes the proof of Ea
t −Ẽa

t → 0.

Detailed derivation of Eb
t → 0 For the term Eb

t = 1
nf0(X)⊤ · e−2ηt·KNTK,L · y, we compute its

mean and variance as follows. First, note that

Eθ[Eb
t ] =

1

n
Eθ
[
f0(X)⊤ · e−2ηt·KNTK,L · y

]
=

1

n
Eθ
[
w(0)⊤ΣL(X) · e−2ηt·KNTK,L · y

]
(24)

=
1

n
Ew(0)

[
w(0)⊤

]
· EW(0)

[
ΣL(X) · e−2ηt·KNTK,L · y

]
= 0, (25)

where we used the independence between w(0) and W(0), together with the fact that E[w(0)] = 0.
For the variance of Eb

t , we have

Eθ
[
(Eb

t )
2
]
=

1

n2
Eθ
[
f0(X)⊤ · e−2ηt·KNTK,L · y · y⊤ · e−2ηt·KNTK,L · f0(X)

]
=

1

n2
Eθ
[
w(0)⊤ΣL(X) · e−2ηt·KNTK,L · y · y⊤ · e−2ηt·KNTK,L ·ΣL(X)⊤w(0)

]
13
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=
1

n2
tr
(
EW(0)

[
ΣL(X) · e−2ηt·KNTK,L · y · y⊤ · e−2ηt·KNTK,L ·ΣL(X)⊤

]
Idℓ

)
=

1

n2
tr
(
EW(0)

[
e−2ηt·KNTK,L · y · y⊤ · e−2ηt·KNTK,L ·ΣL(X)⊤ΣL(X)

])
=

1

n2
tr
(
e−2ηt·KNTK,L · y · y⊤ · e−2ηt·KNTK,L ·KCK,L

)
≤ 1

n
∥e−2ηt·KNTK,L ·KCK,L · e−2ηt·KNTK,L∥2 = O(n−1), (26)

where we used again the definition of CK matrix in the fourth, the fact that ∥y∥22 = n in the fifth,
and ∥KCK,L∥2 = ∥K̃CK,L∥2 + o(1) = O(1) in the last line. The results in (24) and (26) are
sufficient to show that

Eb
t =

1

n
f0(X)⊤ · e−2ηt·KNTK,L · y → 0 (27)

in probability as dℓ, n, p → ∞. To establish an almost sure convergence result, one can similarly
bound the fourth-order moment of Eb

t and apply Borel–Cantelli lemma.
Further, note that

Ec
t =

1

2n
y⊤e−2ηtKNTK,Ly =

1

2n
y⊤e−2ηtK̃NTK,Ly + o(1) = Ẽc

t + o(1), (28)

with Theorem 2 and the fact that ∥y∥22 = n. This concludes the proof of Theorem 3.

14



HLDS OF DNNS IN THE NTK REGIME

Appendix C. Precise high-dimensional training dynamics

The proof of Theorem 4 is shown in this section. We first introduce the process of the proof and
elaborate on each step in Appendix C.1, which will be helpful for readers to follow the detailed
proof shown in Appendix C.2. We follow notations in the main paragraphs and in Appendix B.

C.1. The calculation process with random matrix tools

Notations and Setup What we encounter in this work is to calculate a scalar mapping of a func-
tion f(M̃) of M̃ ∈ Rn×n (e.g., tr(f(M̃)) and a⊤f(M̃)b), with M̃ a (deterministic) low-rank
perturbation from a Wishart random matrix M, in particular, both KCK and KNTK belong to this
kind of matrix. And f is an analytic function at the area of interest.

C.1.1. COMPUTATIONAL PROCEDURE FOR THE CALCULATION OF A SCALAR FUNCTION f(M̃)

The calculation is performed by first converting the mapping of f(M̃) to a complex integration of
the resolvent QM̃(z) = (M̃− zIn)

−1 per Cauchy’s integral formula, then by replacing QM̃(z) with
its deterministic equivalent 2 matrix Q̄M̃(z), we manage to convert the integral of a function of the
random matrix QM̃(z) into the integral of a function of the deterministic matrix Q̄M̃(z), which also
makes it feasible to perform the complex integral followed.

As an illustration, we consider the process for the calculation tr(f(M̃)), which is as follows:

Cauchy’s integral formula︷ ︸︸ ︷
tr(f(M̃)) = ︸ ︷︷ ︸

Deterministic Equivalent

− 1

2πi

∮
γ
f(z) tr(QM̃(z))dz = − 1

2πi

∮
γ
f(z) tr(Q̄M̃(z))dz =

Complex integral︷ ︸︸ ︷
− 1

2πi

∮
γ
f(z)m(z)dz

(29)
with m(z) ≡ tr(Q̄M̃(z)) and γ the contour encompassing all eigenvalues of M̃ .

We will then elaborate on each step.

Cauchy’s integral formula As a symmetric matrix, we can perform spectral decomposition on
M̃ and get M̃ = UΛU⊤ , with U = [u1, . . . ,un] ∈ Rn×n and Λ = diag

{
λ1(M̃), . . . , λn(M̃)

}
.

And thus

f(M̃) = f(UΛU⊤) = Uf(Λ)U⊤ = U diag
{
f(λ1(M̃)), . . . , f(λn(M̃))

}
U⊤

then per Cauchy’s integral formula as Lemma 4, we have

f(M̃) = − 1

2πı
Udiag

{∮
Γ

f(z)

λ1(M̃)− z
dz, . . . ,

∮
Γ

f(z)

λn(M̃)− z
dz

}
U⊤

= − 1

2πı

∮
Γ
f(z)(M̃− zIn)

−1dz = − 1

2πı

∮
Γ
f(z)QM̃(z)dz

with Γ a contour encompassing all eigenvalues of M̃ and thus we have

tr(f(M̃)) = − 1

2πı

∮
Γ
f(z) tr(QM̃(z))dz (30)

2. We follow notations of matrix equivalents in [3, Notation 1], that is, for X,Y ∈ Rn×n, we denote X ↔ Y if, for
all unit norm A ∈ Rn×n and a,b ∈ Rn, 1

n
trA(X−Y)

a.s.−→ 0,a⊤(X−Y)b
a.s.−→ 0 and ∥E[X−Y]∥ → 0

15
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Deterministic Equivalent As noticed before, M̃ is a (deterministic) low-rank perturbation from
a Wishart random matrix M, that is:

M̃ = M+CBC⊤ (31)

for B ∈ Rr×r a low-rank matrix. When it comes to finding the deterministic equivalent for QM̃(z),
one efficient way to leverage the Woodbury matrix identity and get

QM̃(z) =
(
M+CBC⊤ − zIn

)−1
= QM(z)−QM(z)C

(
B−1 +C⊤QM(z)C

)−1
C⊤QM(z),

to convert it to the deterministic equivalent Q̄M(z) of the QM(z) which has already existed, also
known as part of the result the Marčenko-Pastur shown as in Lemma 5, that is:

QM(z) ↔ Q̄M(z), Q̄M(z) = m(z)Ip,

with (z,m(z)) the unique solution in Z
(
C\
[
(1−

√
c)2, (1 +

√
c)2
])

of

zcm2(z)− (1− c− z)m(z) + 1 = 0

Complex Integral In the final step, a complex integral is performed with a contour encompassing
all eigenvalues of M̃, thus we focus on the spectral distribution of M first.

As a (deterministic) low-rank perturbation from a Wishart random matrix M, the eigenvalues of
M̃ contain eigenvalues of M, the “main bulk”, and some “possible” isolated eigenvalues to the right
of the “main bulk” (if the perturbations are nonnegative) per Weyl’s Theorem shown in Lemma 6.
The isolated eigenvalues are not always existing only when “Phase Transition” occurs, in other
words, the disturbance will lead to isolated eigenvalues only when it is greater than the threshold of
“Phase Transition”, and the threshold is defined in Lemma 7, as for a Wishart random matrix M, it
is:

λi
a.s.−→

{
1

cm(λi)+1 − 1
m(λi)

if m(λi) > − 1
c+

√
c
,

(1 +
√
c)2 otherwise,

(32)

with m(λi) obtained by letting det(M̃− λiIn) = 0, and c a constant associated with M as defined
in the MP Lemma 5. We recommend readers to see [2] for more details about eigenvalues for
low-rank disturbed random matrices.

After calculating eigenvalues of M̃, the complex integral performed is then performed by divid-
ing the eigenvalues into two groups and calculating them separately, including the “main bulk” of
the eigenvalues calculated by contour integral but selecting a rectangular contour γa with upper and
lower sides extremely close to the real axis and with the left and right sides holding a tiny distance ϵ
from the edges of the main bulk; and some isolated eigenvalues of which integration can be tackled
by the residue theorem, encompassed by a contour γb, as illustrated in the following figure.

With these preliminaries, we are prepared for the proof of Theorem 4.
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1 2 3 4 5

−1
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ε

ϵ ϵ

ℜ(z)

ℑ(z) Eigenvalues of M̃
Integration path γ

Figure 2: Eigenvalue distribution of M̃ with the “main bulk” surrounded by γa and some isolated
eigenvalues encompassed by γb.

C.2. Precise high-dimensional training dynamics

The proof is organized following the process introduced in Appendix C.1, and we will still introduce
each step separately.

Cauchy’s integral formula Recall results in Appendix B, we have that

Et =
1

2n
∥ft(X)− y∥22 = Ea

t + Eb
t + Ec

t = Ẽa
t + Ẽc

t + o(1)

= tr

(
1

2n
e−2ηt·K̃NTK,L · K̃CK(X,X)

)
︸ ︷︷ ︸

Ẽa
t

+
1

2n
y⊤ · e−2ηt·K̃NTK,L · y︸ ︷︷ ︸

Ẽc
t

+o(1).

And then substituting K̃NTK,L, K̃CK(X,X) with expressions in Theorem 1 and Theorem 2, we get:

Ẽa
t = tr

(
1

2n
e−2ηt·K̃NTK,L · K̃CK(X,X)

)
= tr

(
e
−2ηt

(
βL,1X

⊤X+βL,2
1
p2
ψψ⊤+βL,3

1
p
1n1⊤

n+βL,0In
)
·[

1

2n

(
αL,1X

⊤X+ αL,2
1

p
ψψ⊤ + αL,3

1

p
1n1

⊤
n + αL,0In

)])
= tr

(
e−2ηtβL,0Ine−2ηtβL,1(A⊤A) ·

[
1

2n

(
αL,1

βL,1

(
βL,1A

⊤A− βL,2
1

p
ψψ⊤ − βL,3

1

p
1n1

⊤
n

)
+αL,2

1

p
ψψ⊤ + αL,3

1

p
1n1

⊤
n + αL,0In

)])
= tr

(
e−2ηtβL,0Ine−2ηtβL,1(A⊤A) ·

(
1

2n
αL,1A

⊤A+
1

2n
αL,0In

+
1

2n

(
αL,2 −

αL,1βL,2
βL,1

)
1

p
ψψ⊤ +

1

2n

(
αL,3 −

αL,1βL,3
βL,1

)
1

p
1n1

⊤
n

))
+ o(1)

= e−2ηβL,0t

(
1

2n
tr
(
αL,1e

−2ηtβL,1(A⊤A) ·A⊤A
)
+

1

2n
tr
(
αL,0e

−2ηtβL,1(A⊤A) · In
))

17
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+ e−2ηβL,0t · ( 1

2n
· 1
p
ψ⊤

(
αL,2 −

αL,1βL,2
βL,1

)
ψ︸ ︷︷ ︸

o(n−1) per Lemma 1

+
1

2n
· 1
p
1⊤n

(
αL,3 −

αL,1βL,3
βL,1

)
1n︸ ︷︷ ︸

o(n−1) per Lemma 1

)

= e−2ηβL,0t

[
1

2n
tr
(
αL,1e

−2ηtβL,1(A⊤A) ·A⊤A
)
+

1

2n
tr
(
αL,0e

−2ηtβL,1(A⊤A) · In
)]

+ o(1)

where we denote βL,1A
⊤A = βL,1X

⊤X+ βL,2
1
pψψ

⊤ + βL,3
1
p1n1

⊤
n , and

Ẽc
t =

1

2n
y⊤ · e−2ηt·K̃NTK,L · y =

1

2n
y⊤ · e−2ηt

(
βL,1X

⊤X+βL,2
1
p2
ψψ⊤+βL,3

1
p
1n1⊤

n+βL,0In
)
· y

= e−2ηβL,0t · 1

2n
y⊤e−2ηtβL,1(A⊤A) · y

And therefore we have

Et = Ẽa
t + Ẽc

t + o(1) =
1

2n
e−2ηβL,0t tr

(
e−2ηtβL,1(A⊤A) ·

(
αL,1A

⊤A+ αL,0In

))
+ e−2ηβL,0t · 1

2n
y⊤e−2ηtβL,1(A⊤A) · y + o(1)

And then with Cauchy’s integral formula, we have:

Et = − 1

2πı
· 1

2n
e−2ηβL,0t

∮
γ
(αL,1z + αL,0) e

−2ηβL,1tz · tr
((

A⊤A− zIn

)−1
)
dz

− 1

2πı
· 1

2n
e−2ηβL,0t

∮
γ
e−2ηβL,1tz · y⊤ ·

(
A⊤A− zIn

)−1
· ydz + o(1)

= − 1

2πı
· e−2ηβL,0t

∮
γ
(αL,1z + αL,0) e

−2ηβL,1tz · 1

2n
tr (QA⊤A(z)) dz︸ ︷︷ ︸

Ẽa
t

− 1

2πı
· e−2ηβL,0t

∮
γ
e−2ηβL,1tz · 1

2n
y⊤ ·QA⊤A(z) · y dz︸ ︷︷ ︸

Ẽc
t

+o(1) (33)

with and λ a contour containing all eigenvalues of A⊤A.

Remark 1 (On the limitations of β and its consequences on activation functions.) In [5], differ-
ent datasets may require different activation functions to achieve optimal classification perfor-
mance. In particular, datasets with distinct means may require activations with corresponding
non-zero βℓ,1, while those with distinct variances may necessitate activations with non-zero βℓ,2 or
βℓ,3. For a general analysis, we restrict βℓ,1 to non-zero in Appendix C.

And recall settings in (1), we are considering binary-class GMM data

X =
1
√
p
· (µ · y⊤ + Z) ∈ Rp×n, (34)
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Deterministic equivalence for QA⊤A(z) The subsequent procedure is to find the deterministic
equivalent for QA⊤A(z). As declared in Appendix C.1, we leverage Woodbury Theorem to convert
the identification of the deterministic equivalent of QA⊤A(z) to the deterministic equivalents of
Q 1

p
Z⊤Z(z), shown below.

QA⊤A(z) =
(
A⊤A− zIn

)−1
(35)

=

(
1

βL,1

(
βL,1X

⊤X+ βL,2
1

p
ψψ⊤ + βL,3

1

p
1n1

⊤
n

)
− zIn

)−1

=

(
1

βL,1

([
1√
py

1√
pZ

⊤µ
] [βL,1∥µ∥2 βL,1

βL,1 0

][ 1√
py

⊤

1√
pµ

⊤Z

]
+ βL,2

1

p
ψψ⊤ + βL,3

1

p
1n1

⊤
n

)

+
1

p
Z⊤Z− zIn

)−1

=


[

1√
py

1√
pZ

⊤µ 1√
pψ

1√
p1n

]
∥µ∥2 1 0 0
1 0 0 0

0 0
βL,2

βL,1
0

0 0 0
βL,3

βL,1




1√
py

⊤

1√
pµ

⊤Z
1√
pψ

⊤

1√
p1

⊤
n

+
1

p
Z⊤Z− zIn


−1

= Q(z)−Q(z)
[

1√
py

1√
pZ

⊤µ 1√
pψ

1√
p1n

]
·

1
py

⊤Q(z)y 1
py

⊤Q(z)Z⊤µ+ 1 1
py

⊤Q(z)ψ 1
py

⊤Q(z)1n
1
pµ

⊤ZQ(z)y + 1 1
pµ

⊤ZQ(z)Z⊤µ− ∥µ∥2 1
pµ

⊤ZQ(z)ψ 1
pµ

⊤ZQ(z)1n
1
pψ

⊤Q(z)y 1
pψ

⊤Q(z)Z⊤µ 1
pψ

⊤Q(z)ψ +
βL,1

βL,2

1
pψ

⊤Q(z)1n
1
p1

⊤
nQ(z)y 1

p1
⊤
nQ(z)Z⊤µ 1

p1
⊤
nQ(z)ψ 1

p1
⊤
nQ(z)1n +

βL,1

βL,3


−1

·


1√
py

⊤

1√
pµ

⊤Z
1√
pψ

⊤

1√
p1

⊤
n

Q(z)

for Q(z) =
(
1
pZ

⊤Z− zIn

)−1
.

Then we resort to deterministic equivalent Q̄(z) = m(z)In of Q(z) in Lemma 5, with m(z)
satisfying the following equation:

zcm2(z)− (1− c− z)m(z) + 1 = 0 (36)

with c = n/p, and obtain:

1
py

⊤Q(z)y = cm(z), 1
py

⊤Q(z)Z⊤µ = o(1), 1
py

⊤Q(z)ψ = o(1),
1
py

⊤Q(z)1n = 1
p(na − nb)m(z) = 0, 1

pµ
⊤ZQ(z)ψ = o(1), 1

pµ
⊤ZQ(z)1n = o(1),

1
pψ

⊤Q(z)ψ = 2cm(z), 1
pψ

⊤Q(z)1n = o(1), 1
p1

⊤
nQ(z)1n = cm(z),
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here we consider a “balanced sample” with (na−nb) in order O(1) and thus frac1p(na−nb)m(z) =
o(1), as well as

1

p
µ⊤ZQ(z)Z⊤µ =

1

p
µ⊤Q̃(z)ZZ⊤µ = µ⊤Q̃(z)(

1

p
ZZ⊤ − zIp + zIp)µ

= µ⊤(In + zQ̃(z))µ = (∥µ∥2In + zµ⊤Q̃(z)µ)

= (∥µ∥2 + zm̃(z)∥µ∥2)
= ∥µ∥2(1 + zm̃(z))

for

m̃(z) = cm(z) +
(c− 1)

z
(37)

Then Equation (35) becomes:

QA⊤A(z) =
(
A⊤A− zIn

)−1

= Q(z)−Q(z)
[

1√
py

1√
pZ

⊤µ 1√
pψ

1√
p1n

]
·

cm(z) o(1) + 1 o(1) o(1)
o(1) + 1 ∥µ∥2zm̃(z) o(1) o(1)

o(1) o(1) 2cm(z) +
βL,1

βL,2
o(1)

na−nb
p m(z) o(1) o(1) cm(z) +

βL,1

βL,3


−1

·


1√
py

⊤

1√
pµ

⊤Z
1√
pψ

⊤

1√
p1

⊤
n

Q(z)

= Q(z)−Q(z)
[

1√
py

1√
pZ

⊤µ 1√
pψ

1√
p1n

]
·

cm(z) 1 0 0
1 ∥µ∥2zm̃(z) 0 0

0 0 2cm(z) +
βL,1

βL,2
0

na−nb
p m(z) 0 0 cm(z) +

βL,1

βL,3


−1


1√
py

⊤

1√
pµ

⊤Z
1√
pψ

⊤

1√
p1

⊤
n

Q(z) + o∥·∥(1)

= Q(z)−Q(z)
[

1√
py

1√
pZ

⊤µ 1√
pψ

1√
p1n

]
· Λ ·


1√
py

⊤

1√
pµ

⊤Z
1√
pψ

⊤

1√
p1

⊤
n

Q(z) + o∥·∥(1) (38)

in which we denote :

Λ =


s2

−s25+s1s2

s5
s25−s1s2

0 0
s5

s25−s1s2

s1
−s25+s1s2

0 0

0 0 1
s3

0

0 0 0
s1s2−s25

−s4s25+s1s2s4

 , (39)

for

s1 = cm(z), s2 = ∥µ∥2zm̃(z), s3 = 2cm(z) +
βL,1
βL,2

,
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s4 = cm(z) +
βL,1
βL,3

, s5 = 1.

Thus for
1

2n
y⊤QA⊤A(z) · y , we have

1

2n
y⊤QA⊤A(z) · y =

1

2n
y⊤
(
A⊤A− zIn

)−1
· y

=
1

2n
y⊤Q(z)y − 1

2c

[
1
py

⊤Q(z)y 1
py

⊤Q(z)Z⊤µ 1
py

⊤Q(z)ψ 1
py

⊤Q(z)1n
]
· Λ·

1
py

⊤Q(z)y
1
pµ

⊤ZQ(z)y
1
pψ

⊤Q(z)y
1
p1

⊤
nQ(z)y



=
1

2
m(z)− 1

2c

[
cm(z) 0 0 0

]
· Λ ·


cm(z)

0
0
0

+ o(1)

=
1

2
m(z) +

cm2(z)

2
· s2
−s1s2 + s25

=
1

2
m(z) +

cm2(z)

2
· s2
−s1s2 + s25

=
1

2
m(z) +

cm2(z)

2
· 1

−cm(z)− 1
∥µ∥2 · (cm(z) + 1)

=
1

2
m(z)− cm2(z)

2
· ∥µ∥2

(1 + ∥µ∥2)cm(z)− 1

=
1

2
m(z) ·

(
1− cm(z)∥µ∥2

(1 + ∥µ∥2)cm(z) + 1

)
=

1

2
m(z) · cm(z) + 1

(1 + ∥µ∥2)cm(z) + 1

And for
1

2n
tr (QA⊤A(z)) , Lemma 3 shows that for z ∈ C\ support

(
µ(AA⊤)

)
:

∣∣∣∣ 12n tr

((
A⊤A− zIn

)−1
)
− 1

2n
tr (Q(z))

∣∣∣∣ ≤ 1

2n

1

dist(z, support(µ(AA⊤)))︸ ︷︷ ︸
O(n−1)

.

For rectangular contour γ with its left and right sides slightly away from the edges of the “bulk”,
we can obtain:∮

γ

1

2n
tr

((
A⊤A− zIn

)−1
)

=

∮
γ

1

2n
tr (Q(z)) + o(1) =

∮
γ

1

2
m(z) + o(1)

21



HLDS OF DNNS IN THE NTK REGIME

Calculation of the eigenvalues and “Phase Transition” Then we narrow in on the complex
integrations with the results above at hand, and we still focus our attention on each component
separately below.

As declared in Appendix C.1, we need to obtain the isolated eigenvalues of AA⊤ first, shown
below.

det
(
A⊤A− λIn

)
= 0

⇔ det


[

1√
py

1√
pZ

⊤µ 1√
pψ

1√
p1n

]
∥µ∥2 1 0 0
1 0 0 0
0 0 βL,2/βL,1 0
0 0 0 βL,3/βL,1




1√
py

⊤

1√
pµ

⊤Z
1√
pψ

⊤

1√
p1

⊤
n


+
1

p
Z⊤Z− λIn

)
= 0

⇔ det

Q(λ)
[

1√
py

1√
pZ

⊤µ 1√
pψ

1√
p1n

]
∥µ∥2 1 0 0
1 0 0 0
0 0 βL,2/βL,1 0
0 0 0 βL,3/βL,1




1√
py

⊤

1√
pµ

⊤Z
1√
pψ

⊤

1√
p1

⊤
n


+In) · det

(
1

p
Z⊤Z− λIn

)
= 0

⇔ det



∥µ∥2 1 0 0
1 0 0 0
0 0 βL,2/βL,1 0
0 0 0 βL,3/βL,1




1√
py

⊤

1√
pµ

⊤Z
1√
pψ

⊤

1√
p1

⊤
n

Q(λ)
[

1√
py

1√
pZ

⊤µ 1√
pψ

1√
p1n

]

+I4) = 0

⇔ det

I4 +


∥µ∥2 1 0 0
1 0 0 0
0 0 βL,2/βL,1 0
0 0 0 βL,3/βL,1

 ·


cm(λ) 0 0 0

0 ∥µ∥2(1 + λm̃(λ)) 0 0
0 0 2cm(λ) 0
0 0 0 cm(λ)


 = 0

⇔ det


cm(λ)∥µ∥2 + 1 ∥µ∥2λ(1 + m̃(λ)) 0 0

cm(λ) 1 0 0

0 0 2cm(λ)
βL,2

βL,1
+ 1 0

0 0 0 cm(λ)βL,3/βL,1 + 1

 = 0

⇔
(
1 +

2cβL,2m(λ)

βL,1

)
·
(
−∥µ∥2(1 + λm̃(λ)) · det

[
cm(λ) 0

0 cm(λ)βL,3/βL,1 + 1

]
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+det

[
cm(λ)∥µ∥2 + 1 0

0 cm(λ)βL,3/βL,1 + 1

])
= 0

⇔
(
1 +

2cβL,2m(λ)

βL,1

)
·
(
−∥µ∥2(1 + λm̃(λ)) ·

(
cm(λ) ·

(
cm(λ)

βL,3
βL,1

+ 1

))
+
(
cm(λ)∥µ∥2 + 1

)
·
(
cm(λ)

βL,3
βL,1

+ 1

))
= 0

⇔
(
1 +

2cβL,2m(λ)

βL,1

)
·
(
(cm(λ)

βL,3
βL,1

+ 1)− λm̃(λ) ·
(
∥µ∥2 · (cm(λ)·(

cm(λ)
βL,3
βL,1

+ 1

))))
= 0

Refer to equation (37), and rearrange equation (36) as :

(zm(z) + 1)(cm(z) + 1) = m(z). (40)

And therefore, we can get the following:

−λm̃(λ) = −(c(λm(λ) + 1)− 1) = 1− cm(λ)

cm(λ) + 1
=

1

cm(λ) + 1

with m(λ) ̸= −1
c . Thus the equation for the isolated eigenvalue mentioned earlier becomes:(

1 +
2cβL,2m(λ)

βL,1

)
·
(
∥µ∥2

(
1

cm(λ) + 1

)
·
(
c2m2(λ)βL,3/βL,1 + cm(λ)

)
+cm(λ)βL,3/βL,1 + 1) = 0.(
1 +

2cβL,2m(λ)

βL,1

)
·
(
∥µ∥2

(
1

cm(λ) + 1

)
· (c2m2(λ)

βL,3
βL,1

+ cm(λ)) + cm(λ)
βL,3
βL,1

+ 1

)
= 0.

⇔
(
1 +

2cβL,2m(λ)

βL,1

)
·
(
∥µ∥2

(
cm(λ)

cm(λ) + 1

)
+ 1

)
· (cm(λ)βL,3/βL,1 + 1) = 0

⇔
(
1 +

2cβL,2m(λ)

βL,1

)
·
(
∥µ∥2cm(λ) + cm(λ) + 1

cm(λ) + 1

)
· (cm(λ)βL,3/βL,1 + 1) = 0

Then we get the solution of the equation of eigenvalues as:

m(λµ) = − 1

c(∥µ∥2 + 1)
, m(λ1n) = −

βL,1
cβL,3

, m(λψ) = −
βL,1
2cβL,2

;

then we shall consider the threshold of m(λ) when the “phase transition” phenomenon [2] occurs,
indicating that the corresponding λ is isolated from the “main-bulk”, as declared in Appendix C.1
and Lemma 7, we thus get the corresponding eigenvalues as follows:

λµ =

{
1 + c+ c∥µ∥2 + 1

∥µ∥2 if ∥µ∥2 > 1√
c
,

(1 +
√
c)2 otherwise,

,
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λ1n =

1 + c+ 1
βL,3
βL,1

−1
+ c

(
βL,3

βL,1
− 1
)

if βL,3

βL,1
> 1√

c
+ 1,

(1 +
√
c)2 otherwise,

, (41)

λψ =

1 + c+ 1
2βL,2
βL,1

−1
+ c

(
2βL,2

βL,1
− 1
)

if 2βL,2

βL,1
> 1√

c
+ 1,

(1 +
√
c)2 otherwise,

.

Integrals Then we are prepared for calculations of complex integral in (33), As declared in Ap-
pendix C.1, it is helpful to divide the eigenvalues into two groups and calculate them separately, the
main bulk of the eigenvalues of matrix 1

pZ
⊤Z (between λ− ≡ (1−

√
c)2 and λ+ ≡ (1 +

√
c)2
)

of
the Marčenko-Pastur distribution

µ(dx) =

√
(x− λ−)

+ (λ+ − x)+

2πcx
dx+

(
1− 1

c

)+

δ(x)),

and some isolated eigenvalues in (41). of which integration can be tackled by the residue theorem.
And it boils down to the calculation of the following two items as mentioned above.

1

2n
∥ft(X)− y∥22 = − 1

2πı
· e−2ηβL,0t

∮
γ
(αL,1z + αL,0) e

−2ηβL,1tz · 1

2n
tr (QA⊤A(z)) dz

− 1

2πı
· e−2ηβL,0t

∮
γ
e−2ηβL,1tz · 1

2n
y⊤ ·QA⊤A(z) · y dz + o(1)

= − 1

2πi
· e−2ηβL,0t

∮
γ
(αL,1z + αL,0) e

−2ηβL,1tz · m(z)

2
dz︸ ︷︷ ︸

Ẽa
t

+− 1

2πi
· e−2ηβL,0t

∮
γ
e−2ηβL,1tz ·

(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
dz︸ ︷︷ ︸

Ẽc
t

+o(1) (42)

with γ a contour encompassing all the eigenvalues of A⊤A, as mentioned above, we calculate the
complex contour integrations by dividing the contour into two parts, one encompassing the “main-
bulk” corresponding to the eigenvalues of 1

pZ
⊤Z, we call it γa and one surrounding the isolated

eigenvalues which we have calculated in (41), we call it γb, and additionally, if c > 1, there will be
isolated eigenvalue at 0 (see Lemma 5 for details), and we also consider this. We still compute Ẽa

t

and Ẽc
t separately.

Ẽa
t = − 1

2πi
· e−2ηβL,0t

∮
γ
(αL,1z + αL,0) e

−2ηβL,1tz · m(z)

2
dz

= − 1

2πi
· e−2ηβL,0t

∮
γa

(αL,1z + αL,0) e
−2ηβL,1tz · m(z)

2
dz︸ ︷︷ ︸

Ẽaa
t

+− 1

2πi
· e−2ηβL,0t

∮
γb

(αL,1z + αL,0) e
−2ηβL,1tz · m(z)

2
dz︸ ︷︷ ︸

Ẽab
t

,
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and

Ẽc
t = − 1

2πi
· e−2ηβL,0t

∮
γ
e−2ηβL,1tz ·

(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
dz

= − 1

2πi
· e−2ηβL,0t

∮
γa

e−2ηβL,1tz ·
(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
dz︸ ︷︷ ︸

Ẽca
t

+− 1

2πi
· e−2ηβL,0t

∮
γb

e−2ηβL,1tz ·
(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
dz︸ ︷︷ ︸

Ẽcb
t

.

Here we recall expressions of m(z) as:

m(z) =
1− c− z

2cz
± ı

2cz

√
4cz − (1− c− z)2 =

1− c− z

2cz
± ı

2cz

√
(z − λ−) (λ+ − z)

and thus for z extremely close to the real axis, we have

ℜ(m(z)) =
1− c− z

2cz
, ℑ(m(z)) =

1

2cz

√
(z − λ−) (λ+ − z)

with the branch of ± is determined by the imaginary part of z such that ℑ(z)·ℑm(z) > 0, illustrated
in Remark 2. And thus we can get

Ẽaa
t = − 1

2πi
· e−2ηβL,0t

∮
γa

(αL,1z + αL,0) e
−2ηβL,1tz · m(z)

2
dz

= − 1

π
· e−2ηβL,0t

∫ λ+

λ−

(αL,1x+ αL,0) e
−2ηβL,1tx · −ℑm(x)

2
dx

+−e−2ηβL,0t lim
z→0

(z − 0) · e−2ηβL,1tz · (αL,1z + αL,0) ·
m(z)

2︸ ︷︷ ︸
per Residue Theorem

if c > 1

=
1

2
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx · (αL,1x+ αL,0)

√
(x− λ−) (λ+ − x)

2πcx
dx

+ e−2ηβL,0tαL,0 ·
c− 1

2c
if c > 1

and per Residue Theorem, we have

Ẽab
t = − 1

2πi
· e−2ηβL,0t

∮
γb

(αL,1z + αL,0) e
−2ηβL,1tz · m(z)

2
dz

= − 1

2πi
· e−2ηβL,0t

∮
γλµ

(αL,1z + αL,0) e
−2ηβL,1tz · m(z)

2
dz if ∥µ∥2 > 1√

c
,
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+− 1

2πi
· e−2ηβL,0t

∮
γλ1n

(αL,1z + αL,0) e
−2ηβL,1tz · m(z)

2
dz if

βL,3
βL,1

>
1√
c
+ 1,

+− 1

2πi
· e−2ηβL,0t

∮
γλψ

(αL,1z + αL,0) e
−2ηβL,1tz · m(z)

2
dz if

2βL,2
βL,1

>
1√
c
+ 1,

= −e−2ηβL,0t lim
z→λµ

(z − λµ)

(
(αL,1z + αL,0) e

−2ηβL,1tz · m(z)

2

)
if ∥µ∥2 > 1√

c
,

− e−2ηβL,0t lim
z→λ1n

(z − λ1n) (αL,1z + αL,0) e
−2ηβL,1tz · m(z)

2
if
βL,3
βL,1

>
1√
c
+ 1,

− e−2ηβL,0t lim
z→λψ

(z − λψ) (αL,1z + αL,0) e
−2ηβL,1tz · m(z)

2
if
2βL,2
βL,1

>
1√
c
+ 1,

= 0,

Similarly, when choose contour γa as declared in Appendix C.1, we have

Ẽca
t = − 1

2πi
· e−2ηβL,0t

∮
γa

e−2ηβL,1tz ·
(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
dz

= − 1

π
· e−2ηβL,0t ·

∫ λ+

λ−

e−2ηβL,1tz · ℑ
(
m(x)

2
· cm(x) + 1

c(1 + ∥µ∥2)m(x) + 1

)
dx

+−e−2ηβL,0t lim
z→0

(z − 0) · e−2ηβL,1tz ·
(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
︸ ︷︷ ︸

per Residue Theorem

if c > 1

= − 1

π
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx · ℑ

(
m(x)

2(1 + ∥µ∥2)
+

1

2

(1− 1
1+∥µ∥2 )m(x)

c(1 + ∥µ∥2)m(x) + 1

)
dx

− e−2ηβL,0t lim
z→0

(z − 0) · e−2ηβL,1tz ·

(
m(x)

2 · (1 + ∥µ∥2)
+

1

2

(1− 1
1+∥µ∥2 )m(x)

c(1 + ∥µ∥2)m(x) + 1

)
if c > 1

= − 1

π
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx ·
(

−ℑm(x)

2 · (1 + ∥µ∥2)

+
1

2

∥µ∥2

1 + ∥µ∥2
ℑ
(

ℜm(x)− iℑm(x)

c(1 + ∥µ∥2) (ℜm(x)− iℑm(x)) + 1

))
dx

− e−2ηβL,0t lim
z→0

(z − 0) · e−2ηβL,1tz ·
(

m(x)

2 · (1 + ∥µ∥2)

)
+ o(1) if c > 1

= − 1

π
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx ·
(

−ℑm(x)

2 · (1 + ∥µ∥2)

+
1

2

∥µ∥2

1 + ∥µ∥2
−ℑm(x)

2c(1 + ∥µ∥2)ℜm(x) + 1 + c2(1 + ∥µ∥2)2 · 1
cx

)
dx

+ e−2ηβL,0t · c− 1

2c(1 + ∥µ∥2)
+ o(1) if c > 1

=
1

2π(1 + ∥µ∥2)
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx · ℑm(x)dx
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+
∥µ∥2 · e−2ηβL,0t

2π(1 + ∥µ∥2)

∫ λ+

λ−

e−2ηβL,1tx · ℑm(x)

2c(1 + ∥µ∥2)ℜm(x) + 1 + c2(1 + ∥µ∥2)2 · 1
cx

dx

+ e−2ηβL,0t · c− 1

2c(1 + ∥µ∥2)
+ o(1) if c > 1

=
1

2π(1 + ∥µ∥2)
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx ·
(

1

2cx

√
(x− λ−) (λ+ − x)

)
dz

+
∥µ∥2 · e−2ηβL,0t

2π(1 + ∥µ∥2)

∫ λ+

λ−

e−2ηβL,1tx ·

(
1

2cx

√
(x− λ−) (λ+ − x)

)
2c(1 + ∥µ∥2)

(
1−c−x
2cx

)
+ 1 + c2(1 + ∥µ∥2)2 · 1

cx

dx

+ e−2ηβL,0t · c− 1

2c(1 + ∥µ∥2)
+ o(1) if c > 1

=
1

4πc(1 + ∥µ∥2)
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx ·
(
1

x

√
(x− λ−) (λ+ − x)

)
dx

+
∥µ∥2 · e−2ηβL,0t

4πc(1 + ∥µ∥2)

∫ λ+

λ−

e−2ηβL,1tx ·
√
(x− λ−) (λ+ − x)

(1 + ∥µ∥2) (1− c− x) + x+ c(1 + ∥µ∥2)2
dx

+ e−2ηβL,0t · c− 1

2c(1 + ∥µ∥2)
+ o(1) if c > 1

=
1

2(1 + ∥µ∥2)
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx · 1

2πcx

√
(x− λ−) (λ+ − x)dx

+
1

2(1 + ∥µ∥2)
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx ·
√
(x− λ−) (λ+ − x)

2πc(λµ − x)
dx

+ e−2ηβL,0t · c− 1

2c(1 + ∥µ∥2)
+ o(1) if c > 1

and again, per Residue Theorem, we have

Ẽcb
t = − 1

2πi
· e−2ηβL,0t

∮
γb

e−2ηβL,1tz ·
(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
dz

= − 1

2πi
· e−2ηβL,0t

∮
γλµ

e−2ηβL,1tz ·
(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
dz if ∥µ∥2 > 1√

c
,

− 1

2πi
· e−2ηβL,0t

∮
γλ1n

e−2ηβL,1tz ·
(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
dz if

βL,3
βL,1

>
1√
c
+ 1,

− 1

2πi
· e−2ηβL,0t

∮
γλψ

e−2ηβL,1tz ·
(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
dz if

2βL,2
βL,1

>
1√
c
+ 1,

= − 1

2πi
· e−2ηβL,0t

∮
γλµ

e−2ηβL,1tz ·
(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
dz if ∥µ∥2 > 1√

c

+ 0 + 0

= −e−2ηβL,0t lim
z→λµ

(z − λµ) · e−2ηβL,1tz ·
(
m(z)

2
· cm(z) + 1

c(1 + ∥µ∥2)m(z) + 1

)
if ∥µ∥2 > 1√

c

= −e−2ηβL,0t · e−2ηβL,1λµt ·
(
m(λµ)

2
· cm(λµ) + 1

c(1 + ∥µ∥2)m′(λµ)

)
if ∥µ∥2 > 1√

c
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= −e−2ηβL,0t · e−2ηβL,1λµt ·
− 1

c(∥µ∥2+1)
· ∥µ∥2
(∥µ∥2+1)

2c(1 + ∥µ∥2)
(

∥µ∥4
(c∥µ∥4−1)·c(1+∥µ∥2)2

) if ∥µ∥2 > 1√
c

= −e−2ηβL,0t · e−2ηβL,1λµt · −1

2c(1 + ∥µ∥2) ∥µ∥2
(c∥µ∥4−1)

if ∥µ∥2 > 1√
c

= −e−2ηβL,0t · e−2ηβL,1λµt · −(c∥µ∥4 − 1)

2c(1 + ∥µ∥2) · ∥µ∥2
if ∥µ∥2 > 1√

c

Note we calculate m′(λµ) by taking the derivative of both sides of the equation:

z =
1

cm(z) + 1
− 1

m(z)
,

and we get:

1 =
m′(z)

m2(z)
− cm′(z)

(cm(z) + 1)2
,

1 = m′(z) ·
(

1

m2(z)
− c

(cm(z) + 1)2

)
,

then substitute λµ in it, and additionally with

m(λµ) = − 1

c(∥µ∥2 + 1)
,

we get

m′(λµ) =
∥µ∥4

(c∥µ∥4 − 1) · c(1 + ∥µ∥2)2
.

Remark 2 (The detail of determining the sign of the imaginary part of m(z))
Take z = (x+ iy) with y ↑ 0 for example, we have:

m(z) =
1− c− z

2cz
± i

2cz

√
(z − λ−) (λ+ − z)

=
1− c− (x+ iy)

2c(x+ iy)
± i

2c(x+ iy)

√
((x+ iy)− λ−) (λ+ − (x+ iy))

= ℜm(z) + ℑm(z)

with

ℑm(z) = lim
y↑0

(
(c− 1)y

2c(x2 − y2)
±ℑ

(
i

2c(x+ iy)

√
(x− λ− + iy) (λ+ − x− iy)

))
= lim

y↑0

(
(c− 1)y

2c(x2 − y2)
±ℑ

(
ix+ y

2c(x2 − y2)

√
(x− λ−)(λ+ − x) + iy(λ+ + λ− − 2x)

))
= ℑ

(
± i

2cx

√
(x− λ−)(λ+ − x)

)
= ± 1

2cx

√
(x− λ−)(λ+ − x).

then to satisfy ℑ(z) · ℑm(z) > 0, the minus is selected as the sign, and we finally get:

ℑm(z) = − 1

2cx

√
(x− λ−)(λ+ − x), for z = (x+ iy) with y ↑ 0.
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Combination and final result Combining results for Eaa
t , Eab

t , Eca
t , and Ecb

t , we finally get:

Et = Eaa
t + Eab

t + Eca
t + Ecb

t

=
1

2
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx · (αL,1x+ αL,0)

√
(x− λ−) (λ+ − x)

2πcx
dx

+
1

2(1 + ∥µ∥2)
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx · 1

2πcx

√
(x− λ−) (λ+ − x)dx

+
1

2(1 + ∥µ∥2)
· e−2ηβL,0t

∫ λ+

λ−

e−2ηβL,1tx ·
√
(x− λ−) (λ+ − x)

2πc(λµ − x)
dx

+
(∥µ∥2 + 1/

√
c)(∥µ∥2 − 1/

√
c)+

∥µ∥4 + ∥µ∥2
+ (α0 + (1 + ∥µ∥2)−1)(1− c−1)+ + o(1)

This eventually leads to Et − Ēt → 0 with

Ēt =
e−2ηβ0t

2

∫ λ+

λ−

e−2ηβ1tx

[
α1x+ α0 +

1

1 + ∥µ∥2
+

1

1 + ∥µ∥2
· x

λµ − x

] √
(x− λ−)+(λ+ − x)+

2πcx
dx

+
e−2ηβ0t

2

[
(∥µ∥2 + 1/

√
c)(∥µ∥2 − 1/

√
c)+

∥µ∥4 + ∥µ∥2
e−2ηβ1λµt + (α0 + (1 + ∥µ∥2)−1)(1− c−1)+

]
,

where we recall λµ ≡ 1+ c+ c∥µ∥2+∥µ∥−2, which, by introducing the following two probability
measures (similar to [12]) as defined in the statement of Theorem 4,

µ(dx) =

√
(x− λ−)+(λ+ − x)+

2πcx
dx+ (1− c−1)+δ0(x), (43)

ν(dx) =

√
(x− λ−)+(λ+ − x)+

2πc∥µ∥2(λµ − x)
dx+

(∥µ∥4 − c−1)+

∥µ∥4
δλµ(x), (44)

can be compactly written as

Ēt =
e−2ηβ0t

2

∫
e−2ηβ1tx

[(
α0 + α1x+

1

1 + ∥µ∥2

)
µ(dx) +

ν(dx)

1 + ∥µ∥−2

]
with (t)+ ≡ max(t, 0), the shortcuts αk ≡ αL,k, βk ≡ βL,k, k ∈ {0, 1} as in Theorem 3. This
concludes proof of Theorem 4.
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