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ABSTRACT

Federated domain adaptation (FDA) allows one to train large-scale
machine learning models over networked systems that adapt to novel
target domains. Existing FDA methods suffer from an excessive
communication overhead in aligning feature distributions between
source and target domains. In this paper, we propose FedRF-Adapt,
a communication-efficient FDA protocol that enjoys a sample-size-
independent communicational complexity and is robust to limited
network reliability. Extensive numerical experiments are provided
to support the advantageous performance of FedRF-Adapt.

Index Terms— Random features, maximum mean discrepancy,
federated domain adaptation

1. INTRODUCTION

Federated learning, by performing local computation and between-
user information exchange, allows to train large-scale machine learn-
ing (ML) models in a collaborative manner, without sharing the pri-
vate data of end-users. Despite its rapid growth within the ML
community, the practical use of federated learning is limited by its
poor generalization performance in the presence of domain shift [1],
when, e.g., a novel end-user is present in the network. In the respect,
domain adaptation (DA) appears as a compelling technique to learn
to “align” features (by minimizing their Maximum Mean Discrep-
ancy, MMD, distance [2,3] say) from source and target domains in a
common space. Downstream tasks such as classification and regres-
sion can then be further performed on these aligned features.

In this paper, we focus on the federate domain adaptation (FDA)
approach that exploits DA to resolve the issue of domain shift in
federated ML model training. Existing FDA protocols either rely on
feature alignment [4] or adversarial learning [1], that both necessitate
extensive information (e.g., features of source and target data and/or
model parameters). This generally leads to a huge communication
overhead and quickly becomes burdensome as the number of users
and/or training samples increase. To address the computational and
communicational challenges inherent in FDA, the FedKA method
was introduced in [5]. This method leverages a less computationally
intensive feature extractor to compute the MMD distance between
source and target features. Building upon this idea, the authors in [6]
further refined the approach by approximating the MMD distance in-
stead of computing it exactly. Despite these advancements, a notable
communication overhead persists, particularly due to the necessity
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of exchanging features or gradient information. This communica-
tional complexity in general grows rapidly with the size of training
samples.

In this paper, we propose Federated Random Features-based
Adaptation (FedRF-Adapt), a novel FDA scheme with significantly
less communication overhead (that is almost independent of the sam-
ple size), strong robustness against (the possibly limited) network
reliability, and added privacy protection. FedRF-Adapt achieves
these by leveraging the efficient RF-MMD method (to be discussed
in details in Section 2.1 below) that compresses exchanged mes-
sages via low-rank approximation and randomization technique. In
comparison to existing MMD-based FDA protocols, FedRF-Adapt
offers significant reductions in both communication and computa-
tion complexity, while maintaining commendable performance.

Notations. We denote scalars by lowercase letters, vectors by bold
lowercase, and matrices by bold uppercase. We denote the transpose
operator by (⋅)T, and use ‖⋅‖2 to denote the Euclidean norm for vectors
and spectral/operator norm for matrices. For a random variable 𝑧,
𝔼[𝑧] denotes the expectation of 𝑧. We use 𝟏𝑝 and 𝐈𝑝 for the vector of
all ones of dimension 𝑝 and the identity matrix of dimension 𝑝 × 𝑝,
respectively. We use Θ, 𝑂 and Ω notations as in classical computer
science literature [7, 8].

2. SETUP AND OUR APPROACH

The Maximum Mean Discrepancy (MMD) was first proposed as a
test statistic in [2, 3] to assess whether data points are drawn in a
i.i.d. fashion from the same distribution, by evaluating their features
in a Reproducing Kernel Hilbert Space (RKHS). It has then gained
wide popularity as the preferred optimization metric to align distinct
feature distributions across diverse domains, of direct use in DA [9,
10]. Given source 𝐗𝑆 and target dataset 𝐗𝑇 , their MMD distance can
be empirically estimated as

MMD(𝐗𝑆 ,𝐗𝑇 ) =
‖‖‖‖‖
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= 𝓁T𝐊𝓁, (1)

where label vector 𝓁 ∈ ℝ𝑛 with its 𝑖th entry given by

𝓁𝑖 =
1
𝑛𝑆

1𝐱𝑖∈𝐗𝑆 −
1
𝑛𝑇

1𝐱𝑖∈𝐗𝑇 , (2)

by lifting the source 𝐱𝑖 ∈ 𝐗𝑆 and target 𝐱𝑗 ∈ 𝐗𝑇 data to some prede-
fined RKHS  via the kernel trick ⟨𝜙(𝐱𝑖), 𝜙(𝐱𝑗 )⟩ = 𝐾(𝐱𝑖, 𝐱𝑗 ) [11],
to form the kernel matrix 𝐊 ∈ ℝ𝑛×𝑛, with 𝑛 = 𝑛𝑆 + 𝑛𝑇 .
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Note, however, from its definition in (1) that the computation of
MMD necessitates access to data from both source and target do-
mains. This, in the case of multi-source FDA, results in substantial
communication costs between clients.

In the following, we propose a computationally efficient ap-
proach to MMD distance based on random features technique.

2.1. Our Approach: Random Features-based MMD

In the following, we introduce RF-MMD, a random features-based
approach to computationally efficient MMD. Here, we focus on ran-
dom Fourier features (RFFs) and Gaussian kernel. The same idea
applies to other shift-invariant kernels (such as the Laplacian and
Cauchy kernels), see [12]. We refer the readers to [13] for a review.

Definition 1 (Random Fourier features, [12]). For data matrix 𝐗 =
[𝐱1,… , 𝐱𝑛] ∈ ℝ𝑝×𝑛 of size 𝑛, the random Fourier feature (RFF) matrix
𝚺 ∈ ℝ2𝑁×𝑛 of 𝐗 is given by

𝚺 =
1√
𝑁 [

cos(𝛀𝐗)
sin(𝛀𝐗)] ∈ ℝ2𝑁×𝑛, (3)

with 𝑁 the number of random features, 𝛀 ∈ ℝ𝑁×𝑝 a random ma-
trix having i.i.d. standard Gaussian entries with mean zero and vari-
ance 1/𝜎2, i.e., [𝛀]𝑖𝑗 ∼  (0, 1/𝜎2), and cosine and sine functions
cos(⋅), sin(⋅) applied entry-wise on 𝛀𝐗.

Denote dim(𝐊) ≡ tr𝐊/‖𝐊‖2 the intrinsic dimension of the Gaus-
sian kernel matrix 𝐊 = 𝐊Gauss, it is known that an order of 𝑁 =
Θ(dim(𝐊) log(𝑛)) RFFs suffices to well approximate the kernel ma-
trix 𝐊 in a spectral norm sense, as given in the following result.

Theorem 1 (RFFs approximation of Gaussian kernels, [14, Sec-
tion 6.5]). For random Fourier features 𝚺 ∈ ℝ2𝑁×𝑛 of data 𝐗 ∈ ℝ𝑝×𝑛

as defined in Definition 1, one has

𝔼‖𝚺T𝚺 − 𝐊‖2 ≤ 𝐶
(

√
𝑛 log(𝑛)

𝑁
‖𝐊‖2 +

𝑛 log(𝑛)
𝑁 )

,

holds for some universal constant 𝐶 > 0 independent of 𝑁 and 𝑛,
with 𝐊 = 𝐊Gauss = {exp(−‖𝐱𝑖 − 𝐱𝑗 ‖2/(2𝜎2))}𝑛𝑖,𝑗=1 the Gaussian kernel
matrix of 𝐗.

As a direct consequence of Theorem 1, it can be shown that an
order of Θ(log(𝑛)) random features suffice to well approximate the
MMD distance in (1), as in the following result.

Corollary 1 (RFFs approximation of MMD distance). Let

RF-MMD(𝐗𝑆 ,𝐗𝑇 ) = 𝓁T𝚺T𝚺𝓁 = ‖𝚺𝓁‖22 (4)

denote the approximated MMD distance between source 𝐗𝑆 and tar-
get data 𝐗𝑇 using RFFs with 𝐗 = [𝐗𝑆 ,𝐗𝑇 ] as in Definition 1 and
𝓁 ∈ ℝ𝑛 defined in (2) with 𝑛 = 𝑛𝑆 + 𝑛𝑇 . Then, we have, for MMD
distance defined in (1) with 𝑛𝑠 , 𝑛𝑇 = Θ(𝑛) that

𝔼[|RF-MMD(𝐗𝑆 ,𝐗𝑇 ) −MMD(𝐗𝑆 ,𝐗𝑇 )|] ≤ 𝜀 (5)

holds for 𝑁 ≥ 𝐶 log(𝑛)/(dim(𝐊)𝜀2) with some constant 𝐶 > 0 inde-
pendent of 𝑛.

Proof of Corollary 1. Given a desired error 𝜀 ∈ (0, 1), taking 𝑁 ≥
𝐶′ dim(𝐊) log(𝑛)/𝜀2 in Theorem 1 for some universal constant 𝐶′ >
0 independent of 𝑛, with dim(𝐊) ≡ tr𝐊/‖𝐊‖2 = 𝑛/‖𝐊‖2 the intrin-
sic dimension of Gaussian kernel matrix 𝐊 = 𝐊Gauss, we have that
the expected error satisfies 𝔼‖𝚺T𝚺 − 𝐊‖2 ≤ 𝜀‖𝐊‖2. Further note that
𝔼[|RF-MMD − MMD|] ≤ ‖𝓁‖2 ⋅ 𝔼‖𝚺T𝚺 − 𝐊‖2 ≤ 𝑛𝜀

𝑛𝑆𝑛𝑇
‖𝐊‖2, a change of

variable in 𝜀 allows us to conclude the proof of Corollary 1.

Corollary 1 tells us that a number of 𝑁 = Θ(log(𝑛)) random fea-
tures are sufficient to well approximate the MMD distance in (1).
More importantly, the computation of RF-MMD requires only the
matrix-vector product 𝚺𝓁 ∈ ℝ2𝑁 instead of quadratic form in (1) of
the original kernel matrix 𝐊 of size 𝑛 by 𝑛. This, as we shall see
in Section 3, leads to a significant reduction in the communication
complexity of FDA.

3. MAIN RESULTS

In this section, we extend the RF-MMD approach in Corollary 1 to
a multi-source FDA scenario, and introduce the FedRF-Adapt pro-
tocol that offers a significant reduction in the FDA communication
overhead, and strong robustness to network condition.

3.1. FedRF-Adapt: multi-source FDA via RF-MMD

Consider the following multi-source FDA classification problem:
for 𝐾 source domains (𝑖)

𝑆 with corresponding data and labels
(𝐗(𝑖)

𝑆 ,𝐘
(𝑖)
𝑆 ), 𝑖 ∈ {1,… , 𝐾 }. we aim to leverage source domain in-

formation to classify the target data 𝐗𝑇 on a solitary target domain
𝑇 . The proposed FedRF-Adapt scheme proposes to perform the
FDA classification according to the following two steps:

(i) local domain alignment with RF-MMD, that learns to align
source and target features by minimizing their MMD dis-
tance, via the exchange of 𝚺𝓁 ∈ ℝ2𝑁 as in Corollary 1; and

(ii) global parameter aggregation via FedAvg [15], that aggre-
gates the source classifiers for final decision on the target data.

We discuss these two step in details as follows.

3.1.1. Local domain alignment

In each training round 𝑡, some randomly selected source clients are
chosen and communicate with the target client, to exchange mes-
sages {𝚺(𝑖)

𝑆 𝓁
(𝑖)
𝑆 }𝑖∈𝑡 and 𝚺𝑇 𝓁𝑇 , where 𝑡 ⊂ {1,… , 𝐾 } is a randomly drawn

index set (that can even be a null set). These messages are then used
to minimize the following objective functions:

𝐿(𝑖)𝑆 = 𝐿(𝑖)𝐶 + 𝜆𝐿(𝑖)MMD(
(𝑖)
𝑆 ,𝑇 ), for 𝑖 ∈ 𝑡 , (6)

𝐿(𝑗)𝑆 = 𝐿(𝑗)𝐶 , otherwise, (7)

for selected and non-selected source clients, respectively, with 𝜆 > 0
some hyper-parameter, 𝐿(𝑖)𝐶 the classification loss computed at source
client 𝑖, and

𝐿(𝑖)MMD(
(𝑖)
𝑆 ,𝑇 ) = RF-MMD(𝐅(𝑖)𝑆 , 𝐅𝑇 ), (8)

the approximated RF-MMD distance between source 𝐅(𝑖)𝑆 and target
features 𝐅𝑇 (obtained from local feature exactors 𝐆(𝑖)

𝑆 and 𝐆𝑇 , respec-
tively, see an illustration in Figure 1) as in (4). The target client is
trained by minimizing the MMD loss at round 𝑡 as

𝐿𝑇 = ∑
𝑖∈𝑡

𝐿(𝑖)MMD(
(𝑖)
𝑆 ,𝑇 ). (9)

All clients update their models locally. To compute the RFFs as in
Definition 1, the Gaussian random matrix 𝛀 is locally accessible to
all clients through a shared random seed S.

The carefully designed random communication mechanism
(with random index set 𝑡) significantly enhances the robustness
of FedRF-Adapt against poor network condition. Precisely, under
ideal communication conditions, no message drop occurs and this
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Fig. 1: Illustration of the proposed FedRF-Adapt protocol includes
feature extractors (𝐆𝑆 and 𝐆𝑇 for source and target, respectively)
and classifiers (𝐂𝑆 and 𝐂𝑇 ). Only messages of type 𝚺𝓁 ∈ ℝ2𝑁 are ex-
changed between clients, and the classifiers are aggregated through
a trustworthy server.

is modeled with 𝑡 = {1,… , 𝐾 } as setting (I) in Table 2 and 3 of
the numerical experiments in Section 4. In most real-world FDA
scenarios, however, there may occur client and/or message drops
during training (as a consequence of the unreliable network) and
this is modeled by taking 𝑡 as a random subset of {1,… , 𝐾 }. This
corresponds to setting (II) and setting (III) in Table 2 and 3 of Sec-
tion 4. Notably, we observe comparably good performance of the
proposed FedRF-Adapt approach in such challenging environments
under poor network condition.

3.1.2. Global classifier aggregation

To obtain a classifier at target client, we adopt the FedAvg proto-
col [15] to aggregate the parameters of selected source classifiers
via a trustworthy server, and then sync the aggregated classifier 𝐂
on both the source and target clients. Since the classifier aggrega-
tion can also be communicational burdensome, in the FedRF-Adapt
scheme we propose to aggregate the classifiers {𝐂𝑆}𝑖∈𝑡 only every
𝑇𝐶 ≫ 1 time intervals, to further reduce the communication over-
head. This infrequent aggregation, as we shall see below in setting
(III) of in Table 2 and 3, as well as in Figure 2, of the numerical ex-
periments in Section 4 while significantly reduce the communication
complexity, does not degenerate the performance of FedRF-Adapt.

The FedRF-Adapt training procedure is summarized in Algo-
rithm 1 and illustrated in Figure 1.

3.2. Advantages of FedRF-Adapt

Here, we discuss the advantages of the proposed FedRF-Adapt in
terms of its communication efficiency and robustness, as well as
added privacy protection, when compared to popular federate DA
methods such as FADA [1], FedKA [5], and FDA [6]. These results
are summarized in Table 1.

By first applying random features technique to approximate the
MMD distance and then “compressing” the RFFs into a single vector
of the form 𝚺𝓁 ∈ ℝ2𝑁 with the RF-MMD approach in (4), the com-
munication overhead of FedRF-Adapt in each round is independent
of the sample size 𝑛, as opposed to existing federated DA methods

Algorithm 1 FedRF-Adapt training protocol

1: Input: Feature extractors and classifiers of 𝐾 sources
{𝐆(𝑖)

𝑆 ,𝐂
(𝑖)
𝑆 }𝐾𝑖=1 and of target 𝐆𝑇 ,𝐂𝑇 .

2: Output: Target classifier 𝐂𝑇 .
3: Initialization
4: Determine 𝑇𝐶 the time interval for aggregation.
5: Generate a random seed S and send to all clients.
6: for each round 𝑡 = 1, 2,… do
7: Sample a random subset 𝑡 from the index set {1,… , 𝐾 }.
8: ▶ Local domain alignment:
9: Each source client 𝑖 ∈ 𝑡 :

10: Sample a mini-batch from (𝐗(𝑖)
𝑆 ,𝐘

(𝑖)
𝑆 ).

11: Compute source message 𝚺(𝑖)
𝑆 𝓁

(𝑖)
𝑆 as in (4).

12: Update {𝐆(𝑖)
𝑆 ,𝐂

(𝑖)
𝑆 } by minimizing {𝐿(𝑖)𝑆 }𝑖∈𝑡 as in (6) or

{𝐿(𝑖)𝑆 }𝑖∉𝑡 as in (7).
13: Target client:
14: Sample a mini-batch from 𝐗𝑇 .
15: Compute target message 𝚺𝑇 𝓁𝑇 as in (4).
16: Update 𝐆𝑇 by minimizing 𝐿𝑇 as in (9).
17: ▶ Parameter aggregation and model update:
18: if 𝑡 % 𝑇𝐶 = 0 then
19: For each client 𝑖 ∈ 𝑡 , aggregate 𝐂(𝑖)

𝑆 to get 𝐂.
20: Assign 𝐂 to 𝐂𝑇 and {𝐂(𝑖)

𝑆 }𝑖∈𝑡 .
21: end if
22: end for
23: return Target classifier 𝐂𝑇 .

listed in Table 1. Also, the computation of the RFFs 𝚺 in Equa-
tion (3) involves periodic trigonometric functions and Gaussian ran-
dom matrix 𝛀, making it impossible for a malicious third party to
reveal users’ privacy data 𝐗.

Table 1: Comparison between different federated DA methods, with
𝐾 the number of clients, 𝑛 the sample size, 𝑁 the dimension of fea-
tures in different methods, and 𝑃 ≥ 1 is the ciphertext size of Paillier
encryption used in FDA [6].

Federated DA methods FADA [1] FedKA [5] FDA [6] FedRF-Adapt (ours)

Communication overhead 𝑂(𝐾𝑛𝑁 ) 𝑂(𝐾𝑛𝑁 ) 𝑂(𝐾𝑛𝑁𝑃) 𝑂(𝐾𝑁 )
Robustness % % % !

Added privacy % % ! !

We further demonstrate, with extensive numerical experiments
in Table 2, Figure 2 and 3 of Section 4, that the proposed FedRF-
Adapt shows excellent robustness in unreliable networks with ran-
dom message and/or client dropouts.

4. NUMERICAL EXPERIMENTS

In this section, we provide comprehensive numerical results on
the proposed FedRF-Adapt protocol on commonly used Office-
Caltech [16] and Digit-Five [17] datasets, showing its advantageous
performance as well as communicational efficiency and robustness.
The code to reproduce the results in this section is available at
https://github.com/yjwang346/FedRF-Adapt.

In particular, FedRF-Adapt improves over our previous FedRF-
TCA protocol [18] by adopting a simpler FDA framework that fur-
ther reduces communication overhead between clients, see [18] for
further discussions and numerical experiments on FedRF-TCA.
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Table 2: Classification accuracy (%) on Office-Caltech [16]. Base-
line repeated from [1, 18]. Setting (I): all clients aggregate the clas-
sifier in each communication round; (II): only a random subset 𝑡 of
source clients are involved; (III): as for (II) with classifier aggrega-
tion interval 𝑇𝐶 = 100. Best performance shown in boldface.

Methods C,D,W→A A,D,W→C A,C,W→D A,C,D→W Avg

ResNet101 [19] 81.9 87.9 85.7 86.9 85.6
AdaBN [20] 82.2 88.2 85.9 87.4 85.7

AutoDIAL [21] 83.3 87.7 85.6 87.1 85.9
f-DAN1 [22] 82.7 88.1 86.5 86.5 85.9

f-DANN2 [23] 83.5 88.5 85.9 87.1 86.3
FADA [1] 84.2 88.7 87.1 88.1 87.1

FedRF-TCA [18] (III) 94.5 98.6 98.8 90.0 95.5

FedRF-Adapt (I) 92.6 85.3 97.6 97.0 93.1
FedRF-Adapt (II) 93.4 84.8 97.7 96.9 93.2
FedRF-Adapt (III) 92.7 82.8 96.5 96.2 92.1

Table 3: Classification accuracy (%) on Digit-Five [17]. Baseline
repeated from [1]. “→mt” means “mm,sv,sy,up→mt.” Settings (I),
(II), and (III) as in Table 2.

Methods →mt →mm →up →sv →sy Avg

Source Only 75.4 49.6 75.5 22.7 44.3 53.5
f-DAN1 [22] 86.4 57.5 90.8 45.3 58.4 67.7

f-DANN2 [23] 86.1 59.5 89.7 44.3 53.4 66.6
FADA [1] 91.4 62.5 91.7 50.5 71.8 73.6

FedRF-TCA [18] (III) 97.4 64.3 89.5 41.9 44.4 67.5

FedRF-Adapt (I) 98.5 76.3 95.4 46.5 52.1 73.8
FedRF-Adapt (II) 98.5 74.3 95.1 45.1 52.9 73.2
FedRF-Adapt (III) 98.5 75.5 95.7 46.0 50.4 73.2

In Table 2 and 3, setting (I) represents the most ideal federate
DA scenario where all source clients exchange information with the
target client in each round of communication. Settings (II) and (III),
on the other hand, consider more practical scenarios for which (ran-
dom) message and/or client dropouts occur. It can be seen from
Table 2 and 3 that the performance of the proposed FedRF-Adapt
protocol under setting (II) and (III) is equally good as setting (I),
demonstrating the excellent robustness of FedRF-Adapt against un-
reliable network conditions.

Further note that under setting (III), the source classifiers are
aggregated only every 𝑇𝐶 ≫ 1 rounds, leading to additional reduction
in communication overhead. We further show in Figure 2 that the
robustness to network reliability can be consistently observed across
various communication interval choices 𝑇𝐶 in Algorithm 1, with a
performance fluctuation less than 1% for 𝑇𝐶 ranging from 50 to 800.

5. CONCLUSION

In this paper, we propose RF-MMD as a computational efficient
“proxy” to the original MMD distance. We further extend RF-
MMD to a FDA setting by introducing FedRF-Adapt, that is both
communication-efficient and robust to unreliable network condi-
tions. Numerical experiments show that the proposed FedRF-Adapt
scheme yields performance comparable to state-of-the-art FDA
methods with a significant reduction in communication overhead.

1Here, f-DAN is a federated DA method based on DAN [22].
2Here, f-DANN is a federated DA method based on DANN [23].

50 100 200 400 800

0.95

1

Communication interval of classifiers 𝑇𝐶

A
cc

ur
ac

y

mm,sv,sy,up→mt
mm,mt,sv,sy→up

Fig. 2: Classification accuracy (mean ± standard deviation)
of FedRF-Adapt with different communication intervals 𝑇𝐶 ∈
{50, 100, 200, 400, 800}, with in total 1 650 rounds of communication,
under Setting (III) of Table 3.

Note that RF-MMD avoids the stringent requirement of simulta-
neous access to all data for MMD distance computation, and it shows
promise for wider applications in other MMD-based methods.
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