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Abstract—Recent advances in random matrix theory (RMT)
have shed light on the inadequacy of the sample covariance
matrix (SCM) as an estimator for population covariance in large-
dimensional scenarios. However, the applicability of this insight to
the widely used SCM-based ESPRIT Direction of Arrival (DoA)
estimation technique remains unresolved. This paper addresses
this gap by investigating the asymptotic behavior of ESPRIT
in the context of large arrays with limited samples, where the
number of samples/snapshots T and the number of sensors N
are both large and comparable. We demonstrate that classical
ESPRIT yields inconsistent DoA estimates as N,T → ∞ at the
same pace. We propose an improved G-ESPRIT method and
prove its asymptotic consistency in the same setting. Numerical
simulations are presented to validate our theoretical assertions.

Index Terms—DoA estimation, ESPRIT, random matrix the-
ory, sample covariance matrix, subspace method

I. INTRODUCTION

Commonly used subspace Direction-of-Arrival (DoA) meth-
ods such as MUSIC [1] and ESPRIT [2] propose to retrieve
DoA structural information from the sample covariance matrix
(SCM) of received signals. For a SCM computed from T
snapshots on an array of N sensors, it is now well known
that in the large array and limited sample regime when T
is not much larger than N , the SCM is a poor estimator of
the population covariance in an eigenspectral sense (see [3]
and Section II-B below for a brief review). As a consequence,
one should not expect that subspace methods could provide
consistent estimates of the true DoAs in the setting where
N,T are both large and comparable.

With the progress of random matrix theory (RMT) over the
past decade, many methods in statistics, signal processing, and
machine learning have been revisited in the large-dimensional
setting, resulting in novel insights and improved algorithms
better suited for large-dimensional data [3], [4]. In the case of
subspace DoA methods, it has been shown in [5] that the popu-
lar MUSIC method, despite the eigenspectral inconsistency of
SCM in the large N,T regime, still provides consistent DoA
estimates in widely spaced DoA scenario (see Assumption 3
below for a precise definition). In the case of closely spaced
sources, however, the classical MUSIC approach is bound to
fail, and improved estimators such as G-MUSIC should be
used instead [5], [6].

In this paper, we propose to analyze the equally popu-
lar DoA subspace method ESPRIT [2] (to be reviewed in
Section II-A below) in the large array and limited sample
regime. While it has been empirically observed that ESPRIT
outperforms MUSIC in some cases [7] but not in others [8],
its theoretical assessment in the large-dimensional setting
remains an open problem, see [9], due to its mathematically
involved form compared to, e.g., the MUSIC method.

Our main results can be summarized as follows:
1) we prove in the large array and limited sample regime

that the standard ESPRIT method (Algorithm 1) provides
inconsistent estimates of the true DoAs (Theorem 2),
unless the sources are uncorrelated (Remark 3); and

2) we propose an improved method called G-ESPRIT (Al-
gorithm 2) and show it provides asymptotically consistent
DoA estimates in the same setting as N,T → ∞.

II. MODELS AND PRELIMINARIES

A. ESPRIT DoA Estimation

We consider a unitary linear array (ULA) of N sensors
that receives K narrow-band and far-field source signals with
DoAs θ1, . . . , θK . The signal x(t) ∈ CN received by this array
of sensors at time t = 1, . . . , T is given by

x(t) =
∑K

k=1 a(θk)sk(t) + n(t) ∈ CN , (1)

with deterministic signal sk(t) ∈ C, a(θk) ∈ CN the steering
vector of source k ∈ {1, . . . ,K} at DoA θk given by1

a(θk) = [1, eıθk , . . . , eı(N−1)θk ]T/
√
N ∈ CN , (2)

and complex circular Gaussian noise n(t) ∈ CN having i.i.d.
CN (0, 1) entries. This model rewrites in matrix form as

X = AS+N, A = [a(θ1), . . . ,a(θK)] ∈ CN×K , (3)

with X = [x(1), . . . ,x(T )] ∈ CN×T the matrix of re-
ceived signals, A ∈ CN×K the matrix of steering vectors,
S = [s(1), . . . , s(T )] ∈ CK×T the matrix containing source
signals, and random noise N = [n(1), . . . ,n(T )] ∈ CN×T .

1The normalization by
√
N is made so that a(θk) is of unit norm. Here,

we use θk for the DoA in the Fourier space as in [5], which is related to the
physical angle ϕk of the source wave via θk = 2πd

λ0
sin(ϕk).



Under (3), subspace DoA methods such as MUSIC and
ESPRIT are based the following observation on the population
covariance C ∈ CN×N of the received signal:

C ≡ E[XXH]/T = ASSHAH/T + E[NNH]/T

= APAH + IN , (4)

for signal power matrix P = SSH/T ∈ CK×K . As such, the
top-K subspace (that corresponds to the largest K eigenvalues,
also known as the “signal subspace”) of the population covari-
ance C is closely connected to the steering vectors a(θk) and
can be used for DoA estimation. In practice, the population
covariance C in (4) is not accessible and one uses instead the
sample covariance matrix (SCM) Ĉ built from observations of
T snapshots given by

Ĉ = XXH/T. (5)

The ESPRIT method [2] then relies on the following struc-
ture of rotational invariance: For steering matrix A ∈ CN×K

defined in (3) and J1, J2 ∈ Rn×N two selection matrices that
select n among N rows of A with distance ∆ ≥ 1, i.e.,

JT
1 = [eℓ, . . . , en+ℓ−1], JT

2 = [eℓ+∆, . . . , en+ℓ+∆−1], (6)

for ei the canonical vector of RN with [ei]j = δij , one has

J1A diag{eı∆θk}Kk=1 = J2A. (7)

While the steering matrix A is unknown, it follows from (4)
that the top-K subspace UK ∈ CN×K of C is the same as
the subspace spanned by the columns of AP−1/2, so that

UK = AP−1/2M, (8)

for some M ∈ CK×K . Combing (7) with (8), the DoAs θk
can be written as the angles of the complex eigenvalues of

Φ = (UH
KJH

1J1UK)−1UH
KJH

1J2UK ≡ Φ−1
1 Φ2, (9)

assuming invertible Φ1 ≡ UH
KJH

1J1UK ∈ CK×K . Then,
ESPRIT proposes to estimate, when SCM Ĉ is “close” to the
population covariance C, by replacing the population subspace
UK in (9) with the empirical estimate ÛK obtained from the
SCM Ĉ. This leads to the ESPRIT DoA estimation procedure
summarized in Algorithm 1.

B. Eigenspectral Inconsistency for Large-dimensional SCM

When the number of snapshots T is much larger than the
array length N (i.e., as T → ∞ with N fixed), the SCM Ĉ in
(5) is known to be a good estimate of population covariance
C, as a consequence of the strong law of large numbers. In
the case of large array and/or limited sample with N,T of the
same order of magnitude, Ĉ is not a consistent estimator of
C in a eigenspectral norm sense, and we should, a priori,
not expect that the top subspace ÛK used in ESPRIT in
Algorithm 1 is a good estimate of the true signal subspace.

In the following, we recall a few RMT results that provide
precise eigenspectral characterization of the SCM in the large
N,T regime, under the following assumptions.

Algorithm 1 ESPRIT DoA estimation [2]
Input: Received signal X ∈ CN×T , number of sources K.
Output: Estimated DoA angles θ̂k, k ∈ {1, . . . ,K}.

1: Compute the SCM Ĉ = XXH/T as in (5) to retrieve
ÛK = [û1, . . . , ûK ] ∈ CN×K the estimated signal sub-
space composed of the top-K eigenvectors û1, . . . , ûK ∈
CN associated to the largest K eigenvalues of Ĉ;

2: Define two selection matrices J1,J2 ∈ Rn×N as in (6)
that both select n among N rows with a “distance” ∆ ≥ 1;

3: Compute Φ̂ = (ÛH
KJH

1J1ÛK)−1ÛH
KJH

1J2ÛK ∈ CK×K ,
for invertible ÛH

KJH
1J1ÛK , and then the angles of λk(Φ̂),

the kth (complex) eigenvalue of Φ̂;
4: return θ̂k = arg(λk(Φ̂))/∆.

Assumption 1 (Large array and limited sample regime). For
N the array size, T the number of samples/snapshots, and n
the size of selection matrices J1,J2 ∈ Rn×N as defined in
(6), we have, as T → ∞ that

(i) N/T → c ∈ (0,∞) and n/N → τ ∈ (0, 1), with the
number of sources K fixed; and

(ii) the deterministic signal matrix S ∈ CK×T is such that
P = SSH/T remains bounded as T → ∞.

For A the steering matrix as defined in (3), let the eigen-
decomposition of APAH ∈ CN×N be

APAH =
∑K

k=1 λk(APAH)·uk(APAH)uH
k (APAH). (10)

We assume that the eigenvalues of APAH are large enough
to separate from the random noise in the following sense.

Assumption 2 (Subspace separation). Under the settings and
notations of Assumption 1, we have, as N,T → ∞, that the
largest K eigenvalues λk(APAH) of APAH satisfy

λ1(APAH) → ℓ1 > . . . > λK(APAH) → ℓK >
√
c. (11)

Under Assumptions 1 and 2, we have the following RMT
result that precisely characterizes the SCM eigenspectral
behavior in the large N,T regime, due to a sequence of
remarkable previous efforts [10]–[13]. See also [3, Chapter 2]
for a review.

Theorem 1 (Eigenspectral characterization of large SCM). Let
Assumption 1 hold, we have, for X ∈ CN×T as defined in
(3) and as N,T → ∞ with N/T → c ∈ (0,∞) that, with
probability one, the eigenvalue distribution of the SCM Ĉ =
XXH/T converges weakly to the Marc̆enko-Pastur law:

µ(dx) = (1 + c−1)+δ0(x) +

√
(x− E−)+(E+ − x)+ dx

2πcx
,

with E± = (1 ±
√
c)2 and (x)+ = max(x, 0). Moreover, let

Assumption 2 hold and let λ̂1 > . . . > λ̂N be the eigenvalues
of Ĉ listed in a decreasing order with corresponding eigen-
vectors û1, . . . , ûN ∈ CN , we have

λ̂i →

{
λ̄i = 1 + ℓi + c 1+ℓi

ℓi
> E+, 1 ≤ i ≤ K,

E+ = (1 +
√
c)2, i > K;

(12)



and for all deterministic vectors a,b ∈ CN of bounded norm,

aHûkû
H
kb−

1− cℓ−2
k

1 + cℓ−1
k

aHuku
H
kb → 0, k ∈ {1, . . . ,K}, (13)

almost surely as N,T → ∞, with uk ≡ uk(APAH) in (10).

Theorem 1 states that for N,T both large and comparable,
the top eigenvalues λ̂k of the SCM Ĉ (that are due to the
“signal” APAH per (4)), instead of being close to those of its
population counterpart C = IN +APAH,

(i) are larger than the population eigenvalues (1 + ℓk), by a
term that is proportional to the dimension ratio c; and

(ii) have their associated eigenvectors ûk being “biased”
estimate of the population eigenvectors uk(APAH), in
the sense that for arbitrary deterministic a,b ∈ CN ,
the eigenspace ûkû

H
k is “biased” by a factor of (1 −

cℓ−2
k )/(1 + cℓ−1

k ) as stated in (13).
Note that these large-dimensional correction terms (in the
empirical eigenvalues or eigenvectors from their population
counterparts) vanish in the limit of infinite snapshots as
c = limN/T → 0 or in the high signal-to-noise ratio (SNR)
regime as ℓk → ∞.

III. INCONSISTENCY OF ESPRIT FOR LARGE ARRAYS

Built upon recent advances in RMT, we perform in this
section an in-depth analysis of the classical ESPRIT method
in Algorithm 1 for large arrays as N,T → ∞ at the same
pace. We show that in general classical ESPRIT provides
inconsistent estimates of the DoAs in the case of widely
spaced DoAs defined as follows.

Assumption 3 (Widely spaced DoAs). The DoAs θ1, . . . , θK
are fixed as N → ∞. This corresponds DoAs having angular
separation much larger than a beam-width 2π/N .

The case of widely spaced DoAs and large arrays as N →
∞, corresponds to the case of (asymptotically) orthogonal
steering vectors. This is discussed in the following remark.

Remark 1 (Steering matrix for widely spaced DoAs). Under
Assumptions 1 and 3, we have, as N,n, T → ∞ at the same
pace that AHA → IK , AHJH

1J1A− n
N IK → 0, and

AHJH
1J2A− n

N
diag{eı∆θi}Ki=1 → 0. (14)

This result will be exploited in our proof below.

A. Large-dimensional inconsistency of ESPRIT

Assume that Φ̂1 ≡ ÛH
KJH

1J1ÛK ∈ CK×K is invertible
(which happens with probability one in the large n,N, T → ∞
limit), one has, for Φ̂ defined in Algorithm 1 that

Φ̂ = (ÛH
KJH

1J1ÛK)−1ÛH
KJH

1J2ÛK ≡ Φ̂−1
1 Φ̂2, (15)

as empirical estimates of their population counterparts
Φ,Φ1,Φ2 defined in (9), need be evaluated to assess the
performance of ESPRIT.

In the following result, we provide a precise large-
dimensional characterization of the classical ESPRIT method
in the large array and limited sample regime.

Theorem 2 (Large-dimensional inconsistency of ESPRIT).
Under Assumptions 1–3, let θ̂k denote the DoA estimates
obtained from the ESPRIT method in Algorithm 1, we have,

θ̂k − arg(λk(Φ̄))/∆ → 0, k ∈ {1, . . . ,K}, (16)

almost surely as N,T → ∞, with λk(Φ̄) the kth largest
eigenvalue of Φ̄ = Φ̄−1

1 Φ̄2,

Φ̄1 = diag(
√
g)Φ1 diag(

√
g) + diag{hk}Kk=1,

Φ̄2 = diag(
√
g)Φ2 diag(

√
g), (17)

with
√
g = [

√
g1, . . . ,

√
gK ]T ∈ RK and

gk ≡
1− cℓ−2

k

1 + cℓ−1
k

> 0, hk ≡ n

N

c+ cℓ−1
k

c+ ℓk
≥ 0. (18)

Theorem 2 tells us that in the large N,T regime, the
matrices Φ̂1, Φ̂2 used in ESPRIT obtained from the SCM Ĉ,
due to the large-dimensional inconsistency of Ĉ discussed in
Section II-B, are “biased” from their population counterparts
Φ1,Φ2 defined in (9). As a direct consequence of Theorem 2,
we have, in the case of large arrays, that ESPRIT diverges
from its original design discussed in Section II-A and should
in general not be able to provide consistent DoA estimation.

In the following, we discuss scenarios where such large-
dimensional inconsistency holds true (or not).

To start with, one may expect that in the limit of infinite
snapshots and/or high SNR, the large-dimensional corrections
in Theorem 1 vanish and, as a consequence, ESPRIT becomes
consistent. This is true per the following remark.

Remark 2 (Limiting cases: infinite snapshots or high SNR).
In the limit of infinite snapshots as c = limN/T → 0 or
high SNR as ℓk → ∞, one has gk → 1 and hk → 0, so that
Φ̄ = Φ−1

1 Φ2 = Φ and classical ESPRIT provides consistent
DoA estimates in this setting.

Beyond the limiting cases of infinite snapshots or high SNR
discussed in Remark 2, there exists scenarios in which classical
ESPRIT is “lucky” enough so that the large-dimensional cor-
rection terms cancel out and leads to consistent DoA estimates.
Below is an example of such special cases.

Remark 3 (Special case: Uncorrelated sources). In the case
of uncorrelated sources that P = SSH/T is (asymptoti-
cally) a diagonal matrix, we have, that the top-K population
subspace UK is approximately the same as that spanned
by the steering vectors. And it follows from Remark 1 that
Φ1 ≃ AHJH

1J1A ≃ n
N IK , Φ2 ≃ n

N diag{eı∆θk}Kk=1, so that
Φ̄ defined in (17) writes

Φ̄ ≃ diag(
√
g) diag{eı∆θk}Kk=1 diag(

√
g), (19)

for g a real vector. As such, Φ̄ has the same eigenvalues angles
as Φ, so that by Theorem 2 we have θ̂k − θk → 0 almost
surely, and that the classical ESPRIT provides consistent DoA
estimation in this setting.



In general, however, classical ESPRIT does not provide
consistent DoA estimates. See the following example for a
manifestation of this large-dimensional inconsistency.

Remark 4 (On correlated sources). In the case of correlated
sources where P = SSH/T ∈ CK×K is no longer a diag-
onal matrix. Let P = UPLU

H
P be its eigen-decomposition,

we have Φ1 ≃ UH
PA

HJH
1J1AUP ≃ n

N IK and Φ2 ≃
n
NUH

P diag{eı∆θi}Ki=1UP by Remark 1, so that

Φ̄ ≃ diag(
√
g)UH

P diag{eı∆θi}ki=1UP diag(
√
g). (20)

As such, Φ̄ has, in general, its eigenvalues different from those
of Φ. This leads to inconsistent ESPRIT estimates, and can
be checked, in the case of K = 2 sources with DoAs θ1 ̸=
θ2 ∈ (−π/2, π/2), by showing that λ = ae∆θ1 for any a ∈ R
cannot be an eigenvalue of Φ̄ unless UP = I2 (that is, when
the two sources are uncorrelated). Precisely, it can be checked
that λ = ae∆θ1 is an eigenvalue of Φ̄ if and only if (g1 −
g2)

2|[UP]1,1|2|[UP]1,2|2 = 0. This, in the case of correlated
sources (with UP ̸= I2), contradicts with Assumption 2. The
same conclusion can be similarly drawn for θ2.

B. Proof of Theorem 2
Here, we provide a proof sketch of Theorem 2, and refer to

an extended version of this paper for the detailed proof.
The major technical challenge in characterizing the large-

dimensional behavior of ESPRIT is that, the corresponding
DoA estimates, as (the angles of) the complex eigenvalues
of the K-by-K random matrix Φ̂ defined in (15), depend on
the entries of two strongly dependent random matrices Φ̂1

and Φ̂2 in a highly non-trivial fashion. Additionally, the (i, j)
(complex) entry of Φ̂2 in (15), for i ̸= j, writes

[Φ̂2]ij = ûH
i J

H
1J2ûj =

n+ℓ−1∑
m=ℓ

eTm+∆ûiû
H
j em, (21)

and cannot be handled using standard RMT techniques. In-
deed, standard RMT and contour integration techniques only
provides access to the (limit of) absolute value of such
complex random variable (but not its angle, see, e.g., [3, Sec-
tion 2.5]), making the complex eigenvalues of Φ̂ inaccessible.

To address this challenge, we propose to assess the eigen-
values of a (random or deterministic) matrix by working on
all (combinations of) its entries with their indices forming a
cycle. This is described in the following result.

Theorem 3 (Eigenvalue approximation between two matrices).
For two matrices A,B ∈ CK×K , if for any m-node cycle of
indices 1 ≤ i1 < . . . < im ≤ K, the entries of A,B satisfy,
for ε ∈ [0, 1) that

|Ai1i2Ai2i3 . . . Aimi1 −Bi1i2Bi2i3 . . . Bimi1 | ≤ ε, (22)

then, the eigenvalues of A,B satisfy

|λk(A)− λk(B)| ≤ K+1
√
ε, k ∈ {1, . . . ,K}. (23)

Proof of Theorem 3. It is known, e.g., from [14] that the
characteristic polynomial of A ∈ CK×K is given by

det(λIK−A) = λK−S1(A)λK−1 . . .+(−1)KSK(A), (24)

for Sm(A), the sum of all m-by-m principal minors of A,
with S1(A) = tr(A) and SK(A) = det(A).

Consider now one of m-by-m principal minors of
A and B, denoted A[Jm] and B[Jm], with ordered
indices Jm : 1 ≤ i1 < . . . < im ≤ K, we have, by
definition of principal minor that A[Jm] − B[Jm] =∑m!

(−1)τ(j1,...,jm) (Ai1j1 . . . Aimjm −Bi1j1 . . . Bimjm),
with τ(j1, . . . , jm) =

∑m−1
a=1

∑m
b=a+1 H(ja − jb) with H(x)

the Heaviside step function that is 1 if x > 0 and 0 otherwise.
It then follows from the uniqueness of decomposition of

permutation into (pairwise) disjoint cycles (see [15]) and the
inequality in (22) that |Ai1j1 . . . Aimjm − Bi1j1 . . . Bimjm | ≤∑p

q=1 cqε
q , for some 1 ≤ p ≤ m and constant cq > 0

that depends m. As such, one has |Sm(A) − Sm(B)| ≤∑(Km)
|Jm|=m |A[Jm]−B[Jm]| ≤ Cmε for some constant Cm.

This, together with (24) and the continuity of polynomials (see
[16]), concludes the proof of Theorem 3.

With Theorem 3 at hand, it then suffices to apply stan-
dard RMT techniques to derive asymptotic approximations of
products of the entries of Φ̂1 and Φ̂2 (that forms a cycle as
in Theorem 3), and thus the conclusion of Theorem 2. We
refer the readers to an extended version of this paper for the
detailed calculation for Theorem 2.

IV. CONSISTENT DOA ESTIMATION WITH G-ESPRIT

We have seen in Theorem 2 that classical ESPRIT is, in
general, incapable of providing consistent DoA estimates for
large arrays. In this section, we propose an improved approach:
the generalized ESPRIT (G-ESPRIT) method, that fixes this
large-dimensional inconsistency of classical ESPRIT.

The G-ESPRIT method is almost identity to classical ES-
PRIT, but with large-dimensional extra terms of the latter
consistently estimated and removed. Precisely, it follows from
Theorem 2 that the top subspace ÛK of the SCM Ĉ leads
to additional large-dimensional bias terms in Φ̄ of the form
gk, hk defined in (18). These quantities, for known and large
N,n, T , can be empirically and consistently estimated from
the SCM Ĉ per the following result.

Lemma 1 (Consistent estimates of gk and hk). Under As-
sumptions 1 and 2, let λ̂k be the kth largest eigenvalue of
SCM Ĉ as in Theorem 1 and gk, hk be defined in (18), one
has, for k ∈ {1, . . . ,K} that ĝk − gk → 0 and ĥk − hk → 0
almost surely as N,T → ∞ with

ĝk =
1− N

T ℓ̂−2
k

1 + N
T ℓ̂−1

k

, ĥk =
n

T

1 + ℓ̂−1
k

N
T + ℓ̂k

, (25)

for ℓ̂k = 1
2

(
λ̂k − 1− N

T +
√
(λ̂k − 1− N

T )2 − 4N
T

)
.

Lemma 1 provides consistent estimates of the bias terms
in classical ESPRIT and leads to the following result, as
well as the proposed G-ESPRIT DoA estimation procedure
summarized in Algorithm 2.



Algorithm 2 The proposed G-ESPRIT DoA estimation
Input: Received signal X ∈ CN×T , number of sources K.
Output: Estimated DoA angles θ̂k, k ∈ {1, . . . ,K}.

1: Compute the SCM Ĉ = XXH/T as in (5) to retrieve
ÛK = [û1, . . . , ûK ] ∈ CN×K the estimated signal sub-
space composed of the top-K eigenvectors û1, . . . , ûK ∈
CN associated to the largest K eigenvalues of Ĉ;

2: Define two selection matrices J1,J2 ∈ Rn×N as in (6)
that both select n among N rows with a “distance” ∆ ≥ 1;

3: Compute Φ̂1, Φ̂2 using ÛK and J1,J2 as in (15);
4: Compute Φ̃ as in Corollary 1 and then the angles of

λk(Φ̃), the kth (complex) eigenvalue of Φ̃;
5: return θ̂k = arg(λk(Φ̃))/∆.

Corollary 1 (Consistent DoA estimation with G-ESPRIT).
Define λk(Φ̃) the kth largest eigenvalue of Φ̃ = Φ̃−1

1 Φ̃2 with

Φ̃1 = diag(ĝ−1/2)
(
Φ̂1 − diag{ĥk}Kk=1

)
diag(ĝ−1/2),

Φ̃2 = diag(ĝ−1/2)Φ̂2 diag(ĝ
−1/2), (26)

for ĝ−1/2 = [1/
√
ĝ1, . . . , 1/

√
ĝK ]T and ĝk, ĥk as defined in

(25). Then, under the same settings and notations as in The-
orem 2, we have, for k ∈ {1, . . . ,K} that arg(λk(Φ̃))/∆ −
θk → 0 almost surely as N,T → ∞.

V. NUMERICAL SIMULATIONS

We provide numerical simulations in Figure 1 to support
the asymptotic results derived in previous sections.

In the left plot of Figure 1, we consider the case of K = 2
correlated sources at DoA θ1 = 0 and θ2 = π/4, with
N = 400, T = 1000, and P = ( 1.9953 0.7981

0.7981 1.9953 ), ℓ = 1,
n = N − 1, ∆ = 1, We compare the DoAs estimates θ̂ from
classical ESPRIT (as well as its theoretical characterization θ̄
given in Theorem 2), to θ̃ those from the proposed G-ESPRIT
method in Algorithm 2 and Corollary 1. We observe that (i)
the theoretical analysis (θ̄) perfectly match the behavior of
ESPRIT (θ̂, that is biased from the true DoAs θ); and (ii) the
proposed G-ESPRIT method θ̃ successfully removes this bias.

The right plot of Figure 1 illustrates the decreases in mean
squared errors (MSEs) and variances of DoA estimates from
both ESPRIT (θ̂) and G-ESPRIT (θ̃), as the array length N
increases, with a fixed ratio N/T = 0.4. One observes that
(i) the classical ESPRIT provides inconsistent DoA estimates,
with MSE much larger than the variance; and (ii) G-ESPRIT
provides consistent estimates and, in addition, yields smaller
variances than classical ESPRIT.

VI. CONCLUSION

In this paper, we exploit RMT to examine the performance
of ESPRIT in the case of large arrays, revealing its tendency
for inconsistent DoA estimates. Introducing the improved G-
ESPRIT, we prove its asymptotic consistency in the same sce-
nario. Numerical simulations confirm G-ESPRIT’s consistent
performance and reduced variance compared to ESPRIT. It

0 π/8 π/4
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Fig. 1. Left: comparison between θ̂ from ESPRIT, θ̄ from Φ̄ in Theorem 2, θ̃
from Φ̃ of G-ESPRIT in Corollary 1, and true DoAs θ. Right: DoA estimation
MSEs and variances of ESPRIT and the improved G-ESPRIT methods as the
array length N increases. Results estimated over 100 independent runs.

would be of future interest to extend the RMT analysis here
to characterize the second-order behavior of both ESPRIT and
G-ESPRIT, as to assess quantitatively their performance gaps
from the Cramér–Rao bound.
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