
ON INNER-PRODUCT KERNELS OF HIGH DIMENSIONAL DATA

Zhenyu Liao, Romain Couillet
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ABSTRACT
In this article we investigate the eigenspectrum of inner-product ker-
nel matrices of the type

√
pK = {f(xT

i xj/
√
p)}ni,j=1. Under a

two-class mixture modeling of the input data xi ∈ Rp, we position
ourselves in the regime where the number of data n and their dimen-
sion p are both large and comparable, and show, for a wide range of
kernel functions f , that the spectrum of K only depends on f via
three key parameters, with only two of them useful in extracting the
statistical structure from the data. By carefully balancing these two
parameters, a huge gain in classification performance is observed on
real-world datasets.

Index Terms— High dimensional statistics, kernel methods,
random matrix theory, spectral analysis.

1. INTRODUCTION

Most theoretical analyses in statistical learning are derived under the
assumption that the number of available data n is overwhelmingly
larger than their dimension p. Nonetheless, under the current big
data paradigm, we constantly face the situation where not only the
size, but also the dimension of the data, are large. Understanding
the resulting impact of popular statistical learning methods when n
and p are both large and comparable is becoming a growing research
concern in modern statistics.

Despite a long history of successful applications (e.g., kernel
PCA, locally linear embedding [1], as well as the popular Ng–
Jordan–Weiss kernel spectral clustering [2]), the theoretical analysis
of kernel methods in the large n, p setting has not been investigated
until very recently. In the line of works [3, 4, 5], the authors con-
sidered the kernel matrix K = {f(xT

i xj/p)}ni,j=1 built from the
(nonlinear mapping of the) inner-product between n independent
Gaussian data vectors x1, . . . ,xn, and studied its eigenspectrum
behavior. Based on a local expansion of the nonlinear kernel func-
tion f , which follows from the “concentration” of the similarity
measure xT

i xj/p around 0, the authors showed that it is enough to
study a “linearized” version of K to characterize its eigenstructure,
for any locally smooth kernel function f . Intuitively speaking, all
off-diagonal entries of K evaluate f around 0 so that the eigen-
spectrum of K only depends on f via the successive derivatives
f(0), f ′(0) and f ′′(0). More specifically, they demonstrated that
the eigenvalue distribution of K is (asymptotically) propositional
to the more tractable sample covariance matrix model XTX/p and
tends to (a rescaled version of) the popular Marc̆enko-Pastur law [6]
in the limit n, p→∞ with p/n→ c ∈ (0,∞).

To better exploit the “global” information of the nonlinear func-
tion f , in [7, 8] the authors considered the inner-product kernel ma-
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trix of the type f(xT
i xj/

√
p)/
√
p which, thanks to the fact that

xT
i xj/

√
p → N (0, 1) (and thus of order O(1)) for i 6= j, avoids

the (asymptotic) “concentration” effect with the more natural
√
p

normalization. The point-wise concentration to zero being replaced
by a Gaussian limit, the authors in [7, 8] resort to an orthogonal
polynomial approach in place of the Taylor expansion performed in
[3, 4, 5]; this in particular allows for f to be non-differentiable.

Yet, only the spectrum of the “null model” for K (i.e., built upon
random independent measurements xi ∼ N (0, Ip)) was addressed
in [7, 8]. From a machine learning viewpoint, this provides little
understanding of the optimal nonlinear function f to be used for
classification tasks, with a mixture data model.

In this article, we investigate the eigenspectrum of the inner-
product kernel matrix K = f(xT

i xj/
√
p)/
√
p under a two-class

multivariate mixture model (detailed below) that captures the first
(µ) and second order (E) statistical information of the input data.
We show that K asymptotically follows an “information-plus-noise”
pattern in the sense that ‖K − K̃‖ → 0 as n, p → ∞ with p/n →
c ∈ (0,∞), for some K̃ = KN + K̃I with the “noise” part KN

characterized in [7, 8] and the “information” part K̃I depending on
the data statistics µ,E and the kernel function f via only two scalar
parameters. Empirical evidences on the popular MNIST [9] and
epileptic EEG time series data [10] establish a close match to our
theoretical prediction and thus convey a strong applicative motiva-
tion for this work.

Notations: Boldface lowercase (uppercase) characters stand for
vectors (matrices). The notation (·)T denotes the transpose operator.
The norm ‖ · ‖ is the Euclidean norm for vectors and the opera-
tor norm for matrices, and we denote ‖ · ‖F the Frobenius norm:
‖A‖2F = tr(AAT).

2. SYSTEM MODEL AND PRELIMINARIES

2.1. Basic settings

Consider n data vectors x1, . . . ,xn ∈ Rp independently drawn
from the following two-class (C1 and C2) mixture model:{

C1 : x = µ1 + (Ip +E1)
1
2 z

C2 : x = µ2 + (Ip +E2)
1
2 z

(1)

each having cardinality n/2, for µa ∈ Rp, Ea ∈ Rp×p, a ∈
{1, 2} and random vector z ∈ Rp having i.i.d. entries of zero mean,
unit variance and bounded moments. To ensure the information of
µa,Ea is neither (asymptotically) too simple nor impossible to to
be exploited from the noisy data, we shall position ourselves (as in
[11]) under the following assumption.

Assumption 1 (Non-trivial classification). As n→∞ we have, for
a ∈ {1, 2},



1. p/n→ c ∈ (0,∞),

2. ‖µa‖ = O(1), ‖Ea‖ = O(p−1/4), | tr(Ea)| = O(
√
p) and

‖Ea‖2F = O(
√
p).

Following [4, 7], we consider the following random inner-
product kernel matrix

K =
{
δi6=jf(x

T
i xj/

√
p)/
√
p
}n
i,j=1

(2)

for some nonlinear function f : R 7→ R satisfying regularity con-
ditions detailed in Assumption 2 below. As in [4, 7], the diagonal
elements f(xT

i xi/
√
p) are discarded since, under Assumption 1,

xT
i xi/
√
p = O(

√
p) which is an “improper scaling” for the eval-

uation by f (unlike non-diagonal ones xT
i xj/

√
p = O(1) for inde-

pendent xi,xj).
In the null model where µa = 0, Ea = 0 for a = 1, 2, we write

K = KN with

[KN ]ij = δi 6=jf(z
T
i zj/
√
p)/
√
p. (3)

Let ξp ≡ zTi zj/
√
p. By the central limit theorem, ξp → N (0, 1) in

distribution as p→∞. As such, the entries [KN ]ij , 1 ≤ i 6= j ≤ n,
asymptotically behave like a family of dependent standard Gaussian
variables to which f is applied. To assess the joint behavior of this
family, some concepts in the theory of orthogonal polynomials and,
in particular, of the class of Hermite polynomials for the standard
Gaussian distribution [12, 13] need to be recalled.

2.2. The orthogonal polynomial framework

For a probability measure µ, we denote the set of orthonormal
polynomials with respect to the scalar product 〈f, g〉 =

∫
fgdµ as

{Pl(x), l = 0, 1, . . .}, obtained from the Gram-Schmidt procedure
on the monomials {1, x, x2, . . .} such that P0(x) = 1, Pl is of
degree l and 〈Pl1 , Pl2〉 = δl1−l2 . By the Riesz-Fischer theorem
[14, Theorem 11.43], for any function f ∈ L2(µ), the set of squared
integrable functions with respect to 〈·, ·〉, one can formally expand
f as

f(x) ∼
∞∑
l=0

alPl(x), al =

∫
f(x)Pl(x)dµ(x) (4)

where “f ∼
∑∞
l=0 alPl” indicates that ‖f −

∑L
l=0 alPl‖ → 0 as

L→∞ (and ‖f‖2 = 〈f, f〉).

To investigate the asymptotic behavior of K and KN as n, p→
∞, we assume the nonlinear function f can be well approximated
by a polynomial for p large enough.

Assumption 2. For each p, let ξp = zTi zj/
√
p and {Pl,p(x), l ≥

0} be the set of orthonormal polynomials with respect to the proba-
bility measure µp of ξp. For f ∈ L2(µp) we have the formal expan-
sion

f(x) ∼
∞∑
l=0

al,pPl,p(x)

for al,p defined in (4) we assume

1.
∑∞
l=0 al,pPl,p(x)µp(dx) converges in L2(µp) to f(x) uni-

formly over large p, i.e., for any ε > 0 there exists L such
that for all p large,∥∥∥f − L∑

l=0

al,pPl,p

∥∥∥2
L2(µp)

=

∞∑
l=L+1

|al,p|2 ≤ ε,

2. as p → ∞,
∑∞
l=1 |al,p|

2 → ν ∈ [0,∞). Moreover, for
l = 0, 1, 2, al,p converges and we denote a0, a1 and a2 their
limits, respectively.

3. the function f is “centered” with respect to the standard
Gaussian measure, i.e., a0 = 0.

Since ξp → N (0, 1), the parameters a0, a1, a2 and ν are simply
(generalized) moments of the standard Gaussian measure involving
f . Precisely, a0 = E[f(ξ)], a1 = E[ξf(ξ)],

√
2a2 = E[(ξ2 −

1)f(ξ)] = E[ξ2f(ξ)] − a0 and ν = E[f2(ξ) − a20] ≥ a21 + a22,
for ξ ∼ N (0, 1). As we shall see in Theorem 1 and 2, the three
parameters (a1, a2, ν) are of crucial significances in determining the
eigenspectrum behavior of the kernel matrix K.

Let us first focus on the null model KN . It has been shown in
[7, 8] that the empirical spectral measure ωn = 1

n

∑n
i=1 δλi(KN )

of the null model KN has an asymptotically deterministic behavior
(also referred to as the limiting spectral measure of KN ) as n, p →
∞, described as follows.

Theorem 1 (from [7, 8]). Let n, p → ∞ with p/n → c ∈ (0,∞)
and Assumption 2 hold. Then, with probability one, the empirical
spectral measure ωn of KN defined in (3) converges weakly to a
probability measure ω. The latter is uniquely defined through its
Stieltjes transform m : C+ → C+, m(z) ≡

∫
(t − z)−1ω(dt),

given as the unique solution in C+ of the cubic equation1

− 1

m(z)
= z +

a21m(z)

c+ a1m(z)
+
ν − a21
c

m(z). (5)

Note that, by taking a1 = 0 in (5) one gets ν
c
m2(z)+ zm(z) +

1 = 0 which corresponds to (a rescaled version of) the well-known
Wigner semi-circle law [15]

ωSC(dx) =

√
(4− x)+
2π

dx

with (x)+ ≡ max(0, x). On the other hand, with ν = a21 (so that
al = 0 for l ≥ 2) one retrieves the popular Marc̆enko-Pastur law [6]
(of parameter c−1)

ωMP,c−1(dx) = (1− c)+δ(x) +
c
√

(x− a)+(b− x)+
2πx

dx

for a = (1 −
√
c−1)2 and b = (1 +

√
c−1)2. Indeed, the spectral

measure ω presented in Theorem 1 is a “mix” of the semicircle law
ωSC and the Marc̆enko-Pastur law ωMP,c−1 in the sense of additive
free convolution [16]

ω = a1(ωMP,c−1 − 1)�
√

(ν − a21)c−1ωSC (6)

as pointed out in [17], where we denote a1(ωMP,c−1 − 1) the law
of a1(x − 1) for x ∼ ωMP,c−1 and

√
(ν − a21)c−1ωSC the law of√

(ν − a21)c−1x for x ∼ ωSC . From its form in (6), the limiting
measure ω is of compact support and admits a density [18]. Figure 1
illustrates this mixed limiting measure. A key observation here is
that, for a given a1, having larger values for ν enlarges the support
of ω as per (6) and Figure 1.

1C+ ≡ {z ∈ C, =[z] > 0}. We also recall that, for m(z) the Stieltjes
transform of a measure ω, ω can be obtained from m(z) via ω([a, b]) =

limε↓0
1
π

∫ b
a =[m(x+ ıε)]dx for all a < b continuity points of ω.
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Fig. 1. Comparison between the Marc̆enko-Pastur law ωMP , the
semicircle law ωSC and the limiting spectral measure ω given in
Theorem 1 with a1 = a2 = 1, ν = 2 and c = 1/3.

3. MAIN RESULTS

Built upon the spectral characterization of the “noise-only” model
KN in Theorem 1, the major contribution of this article is to provide
an asymptotically accurate and theoretically tractable approximation
matrix K̃ for the “informative” kernel matrix K, as detailed in the
following theorem.

Theorem 2 (Asymptotic approximation of K). Let Assumptions 1–
2 hold. Then, with probability one,

‖K− K̃‖ → 0, K̃ = KN + K̃I

for KN defined in (3) and

K̃I =
a1
p
(JMTMJT+JMTZ+ZTMJT)+

a2
p
J(T+S)JT (7)

with Z =
[
z1, . . . , zn

]
∈ Rp×n, a1, a2 the coefficients (of the nor-

malized Hermite polynomials) defined in Assumption 2 and2

M =
[
µ1 µ2

]
∈ Rp×2, J =

[
j1 j2

]
∈ Rn×2

√
pT = {tr(Ea +Eb)}2a,b=1,

√
pS = {tr(EaEb)}2a,b=1

for ja the canonical vector of class Ca with [ja]i = δxi∈Ca .

Sketch of proof. The asymptotic spectral analysis of K comes in two
steps: i) first, by an expansion of xT

i xj as a function of zi, zj and the
statistical mixture model parameters µ,E, we decompose xT

i xj (un-
der Assumption 1) into successive orders of magnitudes with respect
to p. This further allows for a Taylor expansion of f(xT

i xj/
√
p) for

at least three-times differentiable functions f around its dominant
term f(zTi zj/

√
p). Then, ii) we rely on the orthogonal poly-

nomial approach of [7] to “linearize” the resulting matrix terms
{f(xT

i xj/
√
p)}, {f ′(xT

i xj/
√
p)} and {f ′′(xT

i xj/
√
p)} (all terms

corresponding to higher order derivatives have entries of o(n−1)
and thus asymptotically vanishing operator norm as n, p → ∞,
since ‖A‖ ≤ n‖A‖∞ = nmaxi,j |Aij | for A ∈ Rn). Eventually,
Assumption 2 is used to extend this approximation (that solely holds
for differentiable functions) to arbitrary square-summable f . We
leave the complete derivation of the theorem to an extended version
of this article.

2As a mental reminder, M stands for means, T accounts for the differ-
ence in traces of covariance matrices and S for the “shapes” of covariances.

Theorem 2, together with Theorem 1, unveils the surprising fact
that, under the mixture model in (1) and the non-trivial classification
condition in Assumption 1, the eigenspectrum of the kernel matrix K
depends on the square-summable nonlinear function f only through
the three parameters (a1, a2, ν). More precisely, the (limiting) spec-
tral measure3 of K is the same as that of KN and is determined only
by a1 and ν. For the information matrix K̃I , both a1 and a2 play an
important role and they control respectively the statistical informa-
tion in means (µa) and covariances (Ea). As a consequence, every
square-summable f is asymptotically equivalent to a cubic function
f̃(x) = c3x

3+ c2(x
2−1)+ c1x from a kernel spectrum viewpoint,

so long that the parameters (a1, a2, ν) of both functions match.4

To visually confirm the fact that the eigenspectrum of K re-
mains (asymptotically) identical for functions f sharing the same
(a1, a2, ν), we compare, for Gaussian random vectors zi ∼
N (0, Ip), the eigenvalue distribution of K with the sign func-
tion f(x) = sign(x) in 2(a), as well as the (equivalent) cubic
function f̃(x) in Figure 2(b). The (top) eigenvectors associated to
the largest isolated eigenvalues are plotted in 2(c), which turn out to
be “noisy” versions of the class structure information j1 − j2. It is
also interesting to remark that, even though in the setting of Figure 2
the mixtures differ in both their first and second orders (µa and Ea),
one observes only one isolated eigenvalue in the spectrum of K,
which is here due to the fact that a2 = 0.

4. NUMERICAL VALIDATION

Aiming to find the optimal design for the kernel function f , a di-
rect consequence of Theorem 1 and 2 is that, for any pair (a1, a2)
the informative matrix K̃I has the same expression, while letting
al 6= 0, l ≥ 3, one enlarges the support of the (limiting) eigen-
value distribution of the “noisy” matrix KN , as per (6). This re-
sults in a smaller eigengap between the informative and noisy eigen-
values, which deteriorates the performance of any spectrum-based
algorithms[20, 21].

In Figure 3 we display the performance of kernel spectral clus-
tering to separate a two-class Gaussian mixture. More precisely, we
exploit the top two eigenvectors to form a two-dimensional repre-
sentation for all the n data and perform a k-means clustering on
the resulting 2D representation. Figure 3 shows that the classifi-
cation error increases monotonously as ν increases and the mini-
mal error rate is achieved, as expected, with ν = a21 + a22(= 2)
which is the minimal value possible for the given (a1, a2). As such,
we shall constantly take ν = a21 + a22 which imposes the function
f(x) = c3x

3 + c2(x
2 − 1) + c1x to have c3 = 0. Clearly, depend-

ing on the values of µa and Ea, the optimal choice of (c1, c2) (or
equivalently (a1, a2)) varies from task to task.

We complete this article by showing that our theoretical under-
standing, derived from the simple mixture model in (1), generalizes
well to some popular real-world datasets. We consider the classifi-
cation of i) the MNIST handwritten digits (numbers 1 and 5) and ii)
the epileptic EEG time series data (sets A and E) [10]. In Figure 4
we depict the kernel spectral clustering error rate as a function of the
ratio a1/a2 under the condition ν = 2 = a21 + a22. We see that for
MNIST data, low error is obtained for large |a1/a2|; on the contrary,
for EEG time series data the error rapidly decreases as a1/a2 gets

3As a finite rank perturbation of KN , adding the informative matrix K̃I

to KN does not change the limiting spectral measure, see [19, Lemma 2.6].
4The coefficients are precisely related through a1 = 3c3 + c1, a2 =√
2c2 and ν = (3c3 + c1)2 + 6c23 + 2c22.
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Fig. 2. Comparison between the eigenvalue distribution of K and the limiting spectral measure given in Theorem 1 (red), for n = 2048,
p = 8192, j1 = [1n/2;0n/2], j2 = 1n − j1, µ1 = −[3;0p−1] = −µ2 and E1 = −10Ip/

√
p = −E2. f(x) = sign(x) in Figure 2(a) and

f(x) =
√

(π − 2)/(6π) · x3 + (2−
√

3(π − 2))/
√
2π · x in Figure 2(b) such that a1 =

√
2/π, a2 = 0 and ν = 1 in both cases.

close to zero. This is because the first (µ) and second order (E) in-
formation weighs in a strikingly different manner in each case. This
is numerically confirmed in Table 1, where we estimate empirically
the differences in means and covariances between the two classes
(using all available samples in the class with the empirical mean es-
timator µ̂ and the sample covariance matrix Ĉ), for both datasets.
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Fig. 3. Kernel spectral clustering error rate as a function of ν for cu-
bic function such that a1 = a2 = 1. With n = 512, p = 2048 and
the same expressions of j1, j2,µa,Ea as in Figure 2. Performance
obtained by averaging over 50 realizations of Gaussian Z.

Table 1. Empirical estimation of the differences in means and co-
variances of the MNIST and epileptic EEG datasets.

‖µ̂1 − µ̂2‖2 ‖Ĉ1 − Ĉ2‖
MNIST (number 1 versus 5) 464.17 166.35

EEG (set A versus E) 2.41 14.90

5. CONCLUDING REMARKS

Note that, although derived from a local Taylor expansion based on
a Gaussian mixture model, the simpler “α−β” inner-product kernel
proposed in [22] and defined by f(xT

i xj/p) with f ′(0) = α/
√
p,

f ′′(0) = 2β for (α, β) ∈ R2 asymptotically behaves similar to the
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Fig. 4. Kernel spectral clustering error rate versus a1/a2 for quartic
function f(x) = a2x

2 +
√
2a1x − a2. With n = 512, p = 784

for MNIST and p = 100 for EEG data. Performance obtained by
averaging over 50 runs.

present “properly scaled” inner-product kernel, yet with the addi-
tional constraint that f(x) is at least three-times continuously differ-
entiable in a neighborhood of x = 0. In a sense we thus extended the
results in [22] to cover non-differentiable f with the conclusion that,
among this large class of functions f , the second-order polynomials
have the best discriminative power (not only for Gaussian mixture,
but also for more generic mixture models with bounded moments).
This paradoxically suggests that, as far as large dimensional data
are concerned, elaborate kernels are less efficient than the simplest
quadratic kernels.

As random projections are intimately related to kernels [23],
the proposed orthogonal polynomial framework can also be ap-
plied to the understanding of nonlinear activation functions in the
spectral analysis of large neural networks with random weights.
In this respect, the recent line of works [24, 25] showed that the
(limiting) eigenvalue distribution of the nonlinear Gram matrix5

σ(WX)Tσ(WX) depends on the nonlinear activation function
σ(·) via its two Hermite coefficients a1 and ν, for W,X with i.i.d.
sub-Gaussian entries. It is thus of future interest to see how the
introduction of informative patterns in X or W may affect this con-
clusion and how to extend the present analysis to deeper networks
that are of more practical relevance today.

5With W the (random) network weights and X the input data.
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