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Abstract

This article investigates the eigenspectrum of the inner product-type kernel matrix√
pK = {f(xT

i xj/
√
p)}ni,j=1 under a binary mixture model in the high dimen-

sional regime where the number of data n and their dimension p are both large
and comparable. Based on recent advances in random matrix theory, we show
that, for a wide range of nonlinear functions f , the eigenspectrum behavior is
asymptotically equivalent to that of an (at most) cubic function. This sheds new
light on the understanding of nonlinearity in large dimensional problems. As a
byproduct, we propose a simple function prototype valued in (−1, 0, 1) that, while
reducing both storage memory and running time, achieves the same (asymptotic)
classification performance as any arbitrary function f .

1 Introduction

Multivariate mixture models, especially Gaussian mixtures, play a fundamental role in statistics
and have received significant research attention in the machine learning community [KMV16,
ABDH+18], mainly due to the convenient statistical properties of Gaussian and sub-Gaussian
distributions. More generic mixture models, however, are somehow less covered.

On the other hand, in the study of large random matrices, one is able to reach in some cases “universal”
results in the sense that the (asymptotic) statistical behavior of the object of interest is independent
of the underlying distribution of the random matrix. Intuitively speaking, the “squared” number of
degrees of freedom in large matrices (e.g., sample covariance matrices 1

nXXT ∈ Rp×p based on n
observations of dimension p arranged in the columns of X) and their independent interactions induce
fast versions of central limit theorems irrespective of the data distribution, resulting in universal
statistical results.

In this paper, we consider the eigenspectrum behavior of the inner product “properly scaled” (see
details below) kernel matrix Kij = f(xT

i xj/
√
p)/
√
p, for n data xi ∈ Rp arising from an affine

transformation of i.i.d. random vectors with zero mean, unit covariance and bounded higher order
moments. Under this setting and some mild regularity condition for the nonlinear function f , the
spectrum of K can be shown to only depend on three parameters of f , in the regime where n, p are
both large and comparable.

The theoretical study of the eigenspectrum of large random matrices serves as a basis to understand
many practical statistical learning algorithms, among which are kernel spectral clustering [NJW02] or
sparse principle component analysis (PCA) [JL09]. In the large n, p regime, various types of “random
kernel matrices” have been studied from a spectral random matrix viewpoint. In [EK10b] the authors
considered kernel matrices based on the Euclidean distance f(‖xi − xj‖2/p) or the inner product
f(xT

i xj/p) between data vectors, and study the eigenvalue distribution by essentially “linearizing”
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the nonlinear function f via a Taylor expansion, which naturally demands f to be locally smooth.
Later in [CBG16] the authors followed the same technical approach and considered a more involved
Gaussian mixture model for the xi, providing rich insights into the impact of nonlinearity in kernel
spectral clustering application.

Nonetheless, these results are in essence built upon a local expansion of the nonlinear function
f , which follows from the “concentration” of the similarity measures ‖xi − xj‖2/p or xT

i xj/p
around a single value of the smooth domain of f , therefore disregarding most of the domain of
f . In this article, following [CS13, DV13], we study the inner product kernel f(xT

i xj/
√
p)/
√
p

which avoids the concentration effects with the more natural
√
p normalization. With the flexible

tool of orthogonal polynomials, we are able to prove universal results which solely depend on the
first two order moments of the data distribution and allow for nonlinear functions f that need not
even be differentiable. As a practical outcome of our theoretical results, we propose an extremely
simple piecewise constant function which is spectrally equivalent and thus performs equally well as
arbitrarily complex functions f , while inducing enormous gains in both storage and computational
complexity.

The remainder of this article is organized as follows. In Section 2 we introduce the object of interest
together with necessary assumptions to work along with. Our main theoretical findings are presented
in Section 3 with intuitive ideas, while detailed proofs are deferred to the supplementary material
due to space limitation. In Section 4 we discuss the practical consequence of our theoretical findings
and propose our piecewise constant function prototype which works in a universal manner for kernel
spectrum-based applications, for the system model under consideration. The article closes with
concluding remarks and envisioned extensions in Section 5.

Notations: Boldface lowercase (uppercase) characters stand for vectors (matrices). The notation (·)T
denotes the transpose operator. The norm ‖ · ‖ is the Euclidean norm for vectors and the operator
norm for matrices, and we denote ‖A‖∞ = maxi,j |Aij | as well as ‖ · ‖F the Frobenius norm:
‖A‖2F = tr(AAT). ξ is often used to denote standard Gaussian random variable, i.e., ξ ∼ N (0, 1).

2 System model and preliminaries

2.1 Basic setting

Let x1, . . . ,xn ∈ Rp be n feature vectors drawn independently from the following two-class (C1 and
C2) mixture model: {

C1 : x = µ1 + (Ip + E1)
1
2 z

C2 : x = µ2 + (Ip + E2)
1
2 z

(1)

each having cardinality n/2,2 for some deterministic µa ∈ Rp, Ea ∈ Rp×p, a = 1, 2 and random
vector z ∈ Rp having i.i.d. entries of zero mean, unit variance and bounded moments. To ensure that
the information of µa,Ea is neither (asymptotically) too simple nor impossible to be extracted from
the noisy features3, we work (as in [CLM18]) under the following assumption.

Assumption 1 (Non-trivial classification). As n→∞, we have for a ∈ {1, 2}

(i) p/n = c→ c̄ ∈ (0,∞),

(ii) ‖µa‖ = O(1), ‖Ea‖ = O(p−1/4), | tr(Ea)| = O(
√
p) and ‖Ea‖2F = O(

√
p).

Following [EK10a, CS13] we consider the following nonlinear random inner-product matrix

K =
{
δi 6=jf(xT

i xj/
√
p)/
√
p
}n
i,j=1

(2)

for function f : R 7→ R satisfying some regularity conditions (detailed later in Assumption 2).
As in [EK10a, CS13], the diagonal elements f(xT

i xi/
√
p) have been discarded. Indeed, under

2We restrict ourselves to binary classification for readability, but the presented results easily extend to a
multi-class setting.

3We refer the readers to Section A in Supplementary Material for a more detailed discussion on this point.
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Assumption 1, xT
i xi/
√
p = O(

√
p) which is an “improper scaling” for the evaluation by f (unlike

xT
i xj/

√
p which properly scales as O(1) for all i 6= j).

In the absence of discriminative information (null model), i.e., if µa = 0 and Ea = 0 for a = 1, 2,
we write K = KN with

[KN ]ij = δi 6=jf(zTi zj/
√
p)/
√
p. (3)

Letting ξp ≡ zTi zj/
√
p, by the central limit theorem, ξp

L−→ N (0, 1) as p → ∞. As such, the
[KN ]ij , 1 ≤ i 6= j ≤ n, asymptotically behave like a family of dependent standard Gaussian
variables to which f is applied. In order to analyze the joint behavior of this family, we shall exploit
some useful concepts of the theory of orthogonal polynomials and, in particular, of the class of
Hermite polynomials defined with respect to the standard Gaussian distribution [AS65, AAR00].

2.2 The Orthogonal Polynomial Framework

For a real probability measure µ, we denote the set of orthogonal polynomials with respect to the
scalar product 〈f, g〉 =

∫
fgdµ as {Pl(x), l = 0, 1, . . .}, obtained from the Gram-Schmidt procedure

on the monomials {1, x, x2, . . .} such that P0(x) = 1, Pl is of degree l and 〈Pl1 , Pl2〉 = δl1−l2 . By
the Riesz-Fisher theorem [Rud64, Theorem 11.43], for any function f ∈ L2(µ), the set of squared
integrable functions with respect to 〈·, ·〉, one can formally expand f as

f(x) ∼
∞∑
l=0

alPl(x), al =

∫
R
f(x)Pl(x)dµ(x) (4)

where “f ∼
∑∞
l=0 Pl” indicates that ‖f −

∑N
l=0 Pl‖ → 0 as N →∞ (and ‖f‖2 = 〈f, f〉).

To investigate the asymptotic behavior of K and KN as n, p→∞, we position ourselves under the
following technical assumption.
Assumption 2. For each p, let ξp = zTi zj/

√
p and let {Pl,p(x), l ≥ 0} be the set of orthonormal

polynomials with respect to the probability measure µp of ξp.4 For f ∈ L2(µp) for each p, i.e.,

f(x) ∼
∞∑
l=0

al,pPl,p(x)

for al,p defined in (4), we demand that

(i)
∑∞
l=0 al,pPl,p(x)µp(dx) converges in L2(µp) to f(x) uniformly over large p, i.e., for any

ε > 0 there exists L such that for all p large,∥∥∥f − L∑
l=0

al,pPl,p

∥∥∥2
L2(µp)

=

∞∑
l=L+1

|al,p|2 ≤ ε,

(ii) as p → ∞,
∑∞
l=1 |al,p|2 → ν ∈ [0,∞). Moreover, for l = 0, 1, 2, al,p converges and we

denote a0, a1 and a2 their limits, respectively.

(iii) a0 = 0.

Since ξp → N (0, 1), the limiting parameters a0, a1, a2 and ν are simply (generalized) moments of
the standard Gaussian measure involving f . Precisely,

a0 = E[f(ξ)], a1 = E[ξf(ξ)], a2 =
E[(ξ2 − 1)f(ξ)]√

2
=

E[ξ2f(ξ)]− a0√
2

, ν = Var[f(ξ)] ≥ a21+a22

for ξ ∼ N (0, 1). These parameters are of crucial significance in determining the eigenspectrum
behavior of K. Note that a0 will not affect the classification performance, as described below.
Remark 1 (On a0). In the present case of balanced mixtures (equal cardinalities for C1 and C2), a0
contributes to the polynomial expansion of KN (and K) as a non-informative rank-1 perturbation of
the form a0(1n1T

n−In)/
√
p. Since 1n is orthogonal to the “class-information vector” [1n/2,−1n/2],

its presence does not impact the classification performance.5
4Note that µp is merely standard Gaussian in the large p limit.
5If mixtures are unbalanced, the vector 1n may tend to “pull” eigenvectors aligned to [1n1 ,−1n2 ], with ni

the cardinality in Ci, so away from purely noisy eigenvectors and thereby impacting classification performance.
See [CBG16] for similar considerations.
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2.3 Limiting spectrum of KN

It was shown in [CS13, DV13] that, for independent zi’s with independent entries, the empirical
spectral measure Ln = 1

n

∑n
i=1 δλi(KN ) of the null model KN has an asymptotically deterministic

behavior as n, p→∞ with p/n→ c̄ ∈ (0,∞).
Theorem 1 ([CS13, DV13]). Let p/n = c → c̄ ∈ (0,∞) and Assumption 2 hold. Then, the
empirical spectral measure Ln of KN defined in (3) converges weakly and almost surely to a
probability measure L. The latter is uniquely defined through its Stieltjes transform m : C+ → C+,
z 7→

∫
(t− z)−1L(dt), given as the unique solution in C+ of the (cubic) equation6

− 1

m(z)
= z +

a21m(z)

c+ a1m(z)
+
ν − a21
c

m(z).

Theorem 1 is “universal” with respect to the law of the (independent) entries of zi. While universality
is classical in random matrix results, with mostly first and second order statistics involved, the present
universality result is much less obvious since (i) the nonlinear application f(xT

i xj/
√
p) depends

in an intricate manner on all moments of xT
i xj and (ii) the entries of KN are strongly dependent.

In essence, universality still holds here because the convergence speed to Gaussian of xT
i xj/

√
p is

sufficiently fast to compensate the residual impact of higher order moments in the spectrum of KN .

As an illustration, Figure 1a compares the empirical spectral measure of KN to the limiting measure
µ of Theorem 1.7

From a technical viewpoint, the objective of the article is to go beyond the null model described in
Theorem 1 by providing a tractable random matrix equivalent K̃ for the kernel matrix K, in the sense
that ‖K− K̃‖ → 0 almost surely in operator norm, as n, p→∞. This convergence allows one to
identify the eigenvalues and isolated eigenvectors (that can be used for spectral clustering purpose)
of K by means of those of K̃, see for instance [HJ12, Corollary 4.3.15]. More importantly, while
not visible from the expression of K, the impact of the mixture model (µ1,µ2,E1,E2) on K is
readily accessed from K̃ and easily related to the Hermite coefficients ( a1, a2, ν ) of f . This allows
us to further investigate how the choice of f impacts the asymptotically feasibility and efficiency of
spectral clustering from the top eigenvectors of K.

0 5 10

0 5 10(a) Eigenvalues of KN

0 5 10

0 5 10(b) Eigenvalues of K

−5
0

5 ·10
−2

−5
0

5 ·10
−2

(c) Top eigenvectors of KN (top) and K (bottom)

Figure 1: Eigenvalue distribution and top eigenvector of KN and K, together with the limiting
spectral measure L (from Theorem 1) in red; f(x) = sign(x), Gaussian zi, n = 2 048, p = 512,
µ1 = −[3/2; 0p−1] = −µ2 and E1 = E2 = 0. X = [x1, . . . ,xn] ∈ Rp×n with x1, . . . ,xn/2 ∈ C1
and xn/2+1, . . . ,xn ∈ C2.

3 Theoretical results

The main idea for the asymptotic analysis of K comes in two steps: (i) first, by an expansion of xT
i xj

as a function of zi, zj and the statistical mixture model parameters µ,E, we decompose xT
i xj (under

6C+ ≡ {z ∈ C, =[z] > 0}. We also recall that, for m(z) the Stieltjes transform of a measure µ, µ can be
obtained from m(z) via µ([a, b]) = limε↓0

1
π

∫ b
a
=[m(x+ ıε)]dx for all a < b continuity points of µ.

7For all figures in this article, the eigenvalues (that produce the empirical histograms) as well as the associated
eigenvectors are computed by MATLAB’s eig(s) function and correspond to a single realization of the random
kernel matrix K or KN .
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Assumption 1) into successive orders of magnitudes with respect to p; this, as we will show, further
allows for a Taylor expansion of f(xT

i xj/
√
p) for at least twice differentiable functions f around its

dominant term f(zTi zj/
√
p). Then, (ii) we rely on the orthogonal polynomial approach of [CS13]

to “linearize” the resulting matrix terms {f(xT
i xj/

√
p)}, {f ′(xT

i xj/
√
p)} and {f ′′(xT

i xj/
√
p)} (all

terms corresponding to higher order derivatives asymptotically vanish) and use Assumption 2 to
extend the result to arbitrary square-summable f .

Our main conclusion is that K asymptotically behaves like a matrix K̃ following a so-called “spiked
random matrix model” in the sense that K̃ = KN + K̃I is the sum of the full-rank “noise” matrix
KN having compact limiting spectrum (the support of L) and a low-rank “information” matrix K̃I

[BAP05, BGN11].

3.1 Information-plus-noise decomposition of K

We first show that K can be asymptotically approximated as KN + KI with KN defined in (3) and
KI an additional (so far full-rank) term containing the statistical information of the mixture model.

As announced, we start by decomposing xT
i xj into a sequence of terms of successive orders of

magnitude using Assumption 1 and xi = µa + (Ip + Ea)
1
2 zi, xj = µb + (Ip + Eb)

1
2 zj for xi ∈ Ca

and xj ∈ Cb. We have precisely, for i 6= j,

xT
i xj√
p

=
µT
aµb√
p

+
1
√
p

(µT
a (Ip + Eb)

1
2 zj + µT

b (Ip + Ea)
1
2 zi) +

1
√
p
zTi (Ip + Ea)

1
2 (Ip + Eb)

1
2 zj

=
zTi zj√
p︸ ︷︷ ︸

O(1)

+
zTi (Ea + Eb)zj

2
√
p︸ ︷︷ ︸

≡Aij=O(p−1/4)

+
µT
aµb + µT

azj + µT
b zi√

p
− zTi (Ea −Eb)

2zj
8
√
p︸ ︷︷ ︸

≡Bij=O(p−1/2)

+o(p−1/2) (5)

where in particular we performed a Taylor expansion of (Ip + Ea)
1
2 (since ‖Ea‖ = O(p−

1
4 )) around

Ip, and used the fact that with high probability zTi Eazj = O(p1/4) and zTi (Ea −Eb)
2zj = O(1).

As a consequence of this expansion, for at least twice differentiable f ∈ L2(µp), we have

Kij =
f(xT

i xj/
√
p)

√
p

=
f(zTi zj/

√
p)

√
p

+
f ′(zTi zj/

√
p)

√
p

(Aij + Bij) +
f ′′(zTi zj/

√
p)

2
√
p

A2
ij + o(p−1)

where o(p−1) is understood with high probability and uniformly over i, j ∈ {1, . . . , n}. This entry-
wise expansion up to order o(p−1) is sufficient since, matrix-wise, if Aij = o(p−1) uniformly on i, j,
from ‖A‖ ≤ p‖A‖∞ = pmaxi,j |Aij |, we have ‖A‖ = o(1) as n, p→∞.

In the particular case where f is a monomial of degree k ≥ 2, this implies the following result.
Proposition 1 (Monomial f ). Under Assumptions 1–2, let f(x) = xk, k ≥ 2. Then, as n, p→∞,

‖K− (KN + KI)‖ → 0 (6)

almost surely, with KN defined in (3) and

KI =
k
√
p

(ZTZ/
√
p)◦(k−1) ◦ (A + B) +

k(k − 1)

2
√
p

(ZTZ/
√
p)◦(k−2) ◦ (A)◦2 (7)

for Z = [z1, . . . , zn] ∈ Rp×n and A,B ∈ Rn×n defined in (5) with Aii = Bii = 0. Here
X ◦ Y denotes the Hadamard product between X,Y and X◦k the k-th Hadamard power, i.e.,
[X◦k]ij = (Xij)

k.

Since f ∈ L2(µ) can be decomposed into its Hermite polynomials, Proposition 1 along with
Theorem 1 allows for an asymptotic quantification of K. However, the expression of KI in (7) does
not so far allow for a thorough understanding of the spectrum of K, due to (i) the delicate Hadamard
products between purely random (ZTZ) and informative matrices (A,B) and (ii) the fact that KI

is full rank (so that the resulting spectral properties of KN + KI remains intractable). We next
show that, as n, p → ∞, KI admits a tractable low-rank approximation K̃I , thereby leading to a
spiked-model approximation of K.
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3.2 Spiked-model approximation of K

Let us then consider KI defined in (7), the (i, j) entry of which can be written as the sum of terms
containing µa,µb (treated separately) and random variables of the type

φ =
C
√
p

(xTy/
√
p)α(xTFy)β

for independent random vectors x,y ∈ Rp with i.i.d. zero mean, unit variance and finite moments
(uniformly on p) entries, deterministic F ∈ Rp×p, C ∈ R, α ∈ N and β ∈ {1, 2}.
For Gaussian x,y, the expectation of φ can be explicitly computed via an integral trick [Wil97,
LLC18]. For more generic x,y with i.i.d. bounded moment entries, a combinatorial argument
controls the higher order moments of the expansion which asymptotically result in (matrix-wise)
vanishing terms. See Sections B–C of the supplementary material. This leads to the following result.
Proposition 2 (Low rank asymptotics of KI ). Under Assumptions 1–2, for f(x) = xk, k ≥ 2,

‖KI − K̃I‖ → 0

almost surely as n, p→∞, for KI defined in (7) and

K̃I =

{
k!!
p (JMTMJT + JMTZ + ZTMJT), for k odd
k(k−1)!!

2p J (T + S) JT, for k even
(8)

where8

M = [µ1,µ2] ∈ Rp×2, T = {tr(Ea + Eb)/
√
p}2a,b=1, S = {tr(EaEb)/

√
p}2a,b=1 ∈ R2×2

and J = [j1, j2] ∈ Rn×2 with ja ∈ Rn the canonical vector of class Ca, i.e., [ja]i = δxi∈Ca .

We refer the readers to Section C of the supplementary material for a detailed exposition of the proof.

Proposition 2 states that KI is asymptotically equivalent to K̃I that is of rank at most two.9 Note that
the eigenvectors of K̃I are linear combinations of the vectors j1, j2 and thus provide the data classes.

From the expression of K̃I , quite surprisingly, it appears that for f(x) = xk, depending on whether
k is odd or even, either only the information in means (M ) or only in covariance (T and S) can be
(asymptotically) preserved.

By merely combining the results of Propositions 1–2, the latter can be easily extended to polynomial
f . Then, by considering f(x) = Pκ(x), the Hermite polynomial of degree κ, it can be shown
that, quite surprisingly, one has K̃I = 0 if κ > 2 (see Section D of the supplementary material).
As such, using the Hermite polynomial expansion P0, P1, . . . of an arbitrary f ∈ L2(µ) satisfying
Assumption 2 leads to a very simple expression of our main result.
Theorem 2 (Spiked-model approximation of K). For an arbitrary f ∈ L2(µ) with f ∼∑∞

l=0 alPl(x), under Assumptions 1–2,

‖K− K̃‖ → 0, K̃ = KN + K̃I

with KN defined in (3) and

K̃I =
a1
p

(JMTMJT + JMTZ + ZTMJT) +
a2
p

J(T + S)JT. (9)

The detailed proof of Theorem 2 is provided in Section D of the supplementary material.

8For mental reminder, M stands for means, T accounts for the difference in traces of covariance matrices
and S for the “shapes” of the covariances.

9Note that, as defined, K̃I has non-zero diagonal elements, while [KI ]ii = 0. This is not contradictory as
the diagonal matrix diag(K̃I) has vanishing norm and can thus be added without altering the approximation
‖KI − K̃I‖ → 0; it however appears convenient as it ensures that K̃I is low rank (while without its diagonal,
K̃I is full rank).

6



−1 0 1 1.5

−1 0 1 1.5

(a)N : eigs of K for P1

−1 0 1 1.5

−1 0 1 1.5

(b)N : eigs of K̃ for P1

−2 −1 0 1 2

−2 −1 0 1 2−2 −1 0 1 2

(c)N : eigs of K for P2

−2 −1 0 1 2

−2 −1 0 1 2−2 −1 0 1 2

(d)N : eigs of K̃ for P2

−1 0 1 1.5

−1 0 1 1.5

(e) Stud: eigs of K for P1

−1 0 1 1.5

−1 0 1 1.5

(f) Stud: eigs of K̃ for P1

−2 −1 0 1 2

(g) Stud: eigs of K for P3

−2 −1 0 1 2

(h) Stud: eigs of K̃ for P3

Figure 2: Eigenvalue distributions of K and K̃ from Theorem 2 (blue) and L from Theorem 1
(red), for zi with Gaussian (top) or Student-t with degree of freedom 7 (bottom) entries; functions
f(x) = P1(x) = x, f(x) = P2(x) = (x2 − 1)

√
2, f(x) = P3(x) = (x3 − 3x)/

√
6; n = 2 048,

p = 8 192, µ1 = −[2; 0p−1] = −µ2 and E1 = −10Ip/
√
p = −E2.

Figure 2 compares the spectra of K and K̃ for random vectors with independent Gaussian or
Student-t entries, for the first three (normalized) Hermite polynomials P1(x), P2(x) and P3(x).
These numerical evidences validate Theorem 2: only for P1(x) and P2(x) is an isolated eigenvalue
observed. Besides, as shown in the bottom display of Figure 1c, the corresponding eigenvector is, as
expected, a noisy version of linear combinations of j1, j2.

Remark 2 (Even and odd f ). While rank(K̃I) ≤ 4 (as the sum of two rank-two terms), in Figure 2
no more than two isolated eigenvalues are observed (for f = P1 only one on the right side, for
f = P2 one on each side). This follows from a2 = 0 when f = P1 and a1 = 0 for f = P2. More
generally, for f odd (f(−x) = −f(x) ), a2 = 0 and the statistical information on covariances
(through E) asymptotically vanishes in K; for f even (f(−x) = f(x)), a1 = 0 and information
about the means µ1,µ2 vanishes. Thus, only f neither odd nor even can preserve both first and
second order discriminating statistics (e.g., the popular ReLU function f(x) = max(0, x)). This was
previously remarked in [LC18] based on a local expansion of smooth f in a similar setting.

4 Practical consequences: universality of binary kernels

As a direct consequence of Theorem 2, the performance of spectral clustering for large dimensional
mixture models of the type (1) only depends on the three parameters of the nonlinear function f :
a1 = E[ξf(ξ)], a2 = E[ξ2f(ξ)]/

√
2 and ν = E[f2(ξ)]. The parameters a1, ν determine the limiting

spectral measure L of K (since K and KN asymptotically differ by a rank-4 matrix, they share the
same limiting spectral measure) while a2, a2 determine the low rank structure within K̃I .

As an immediate consequence, arbitrary (square-summable) kernel functions f (with a0 = 0) are
asymptotically equivalent to the simple cubic function f̃(x) = c3x

3 + c2x
2 + c1x− c2 having the

same Hermite polynomial coefficients a1, a2, ν.10

The idea of this section is to design a prototypical family F of functions f having (i) universal
properties with respect to (a1, a2, ν), i.e., for each (a1, a2, ν) there exists f ∈ F with these Hermite
coefficients and (ii) having numerically advantageous properties. Thus, any arbitrary kernel function
f can be mapped, through (a1, a2, ν), to a function in F with good numerical properties.

10The coefficients being related through a1 = 3c3 + c1, a2 =
√
2c2 and ν = (3c3 + c1)

2 + 6c23 + 2c22.

7



Table 1: Storage size and top eigenvector running
time of K for piecewise constant and cubic f , in
the setting of Figure 2 and 4.

f Size (Mb) Running time (s)

Piecewise 4.15 0.2390
Cubic 16.75 0.4244 Figure 3: Piecewise constant (green) versus cu-

bic (blue) function with equal (a1, a2, ν).

One such prototypical family F can be the set of f , parametrized by (t, s−, s+), and defined as

f(x) =


−rt x ≤

√
2s−

0
√

2s− < x ≤
√

2s+
t x >

√
2s+

with


a1 = t√

2π
(e−s

2
+ + re−s

2
−)

a2 = t√
2π

(s+e
−s2+ + rs−e

−s2−)

ν = t2

2 (1− erf(s+)) (1 + r)

(10)

where r ≡ 1−erf(s+)
1+erf(s−) . Figure 3 displays f given in (10) together with the cubic function c3x3 +

c2(x2 − 1) + c1x sharing the same Hermite coefficients (a1, a2, ν).

The class of equivalence of kernel functions induced by this mapping is quite unlike that raised in
[EK10b] or [CBG16] in the “improper” scaling f(xT

i xj/p) regime. While in the latter, functions
f(x) of the same class of equivalence are those having common f ′(0) and f ′′(0) values, in the present
case, these functions may have no similar local behavior (as shown in the example of Figure 3).

For the piecewise constant function defined in (10) and the associated cubic function having the same
(a1, a2, ν), a close match is observed for both eigenvalues and top eigenvectors of K in Figure 4,
with gains in both storage size and computational time displayed in Table 1.

−0.5 0 0.5 1−0.5 0 0.5 1(a) Piecewise constant

−0.5 0 0.5 1−0.5 0 0.5 1(b) Cubic polynomial
−5

0

·10−2

(c) Cubic (blue) versus piecewise (green) function

Figure 4: Eigenvalue distribution and top eigenvectors of K for the piecewise constant function (in
green) and the associated cubic function (in blue) with the same (a1, a2, ν), performed on Bernoulli
distribution with zero mean and unit variance, in the setting of Figure 2.

5 Concluding remarks

We have shown that inner-product kernel matrices
√
pK = f(xT

i xj/
√
p) with xi = µa + (Ip +

Ea)
1
2 zi, a ∈ {1, 2}, asymptotically behave as a spiked random matrix model which spectrally only

depends on three defining parameters of f . Turning Ip into a generic C covariance is more technically
challenging, breaking most of the orthogonality properties of the orthogonal polynomial approach of
the proofs, but a needed extension of the result.

Interestingly, this study can be compared to analyses in neural networks (see e.g., [PW17, BP19])
where it has been shown that in the case of sub-Gaussian entries for both random layer W and input
data X the (limiting) spectrum of the Gram matrix f(WX)f(WX)T ( f understood entry-wise) is
uniquely determined by the same (a1, ν) coefficients. Our results may then be adapted to an improved
understanding of classification in random neural networks.
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Supplementary Material
Inner-product Kernels are Asymptotically Equivalent to Binary Discrete Kernels

A The non-trivial classification regime

In the ideal case where µ1,µ2 and E1,E2 are perfectly known, the (decision optimal) Neyman-
Pearson test to decide on the class of an unknown and normally distributed x, genuinely belonging to
C1, consists in the following comparison

(x− µ2)T(Ip + E2)−1(x− µ2)− (x− µ1)T(Ip + E1)−1(x− µ1)
C1
≷
C2

log
det(Ip + E1)

det(Ip + E2)
.

Writing x = µ1 + (Ip + E1)
1
2 z so that z ∼ N (0, Ip), the above test is then equivalent to

T (x) =
1

p
zT
(

(Ip + E1)
1
2 (Ip + E2)−1(Ip + E1)

1
2 − Ip

)
z +

2

p
∆µT(Ip + E2)−1(Ip + E1)

1
2 z

+
1

p
∆µT(Ip + E2)−1∆µ− 1

p
log

det(Ip + E1)

det(Ip + E2)

C1
≷
C2

0

where ∆µ ≡ µ1 − µ2. Since, for U ∈ Rp×p an eigenvector basis for (Ip + E1)
1
2 (Ip + E2)−1(Ip +

E1)
1
2 − Ip, Uz has the same distribution as z, with a careful application of the Lyapunov’s central

limit theorem (see for example [Bil12, Theorem 27.3]), along with the assumption ‖Ea‖ = o(1) for
a ∈ {1, 2}, we obtain

V
− 1

2

T (T (x)− ET )
L−→ N (0, 1)

as p→∞, with

ET ≡
1

p
tr
(
(Ip + E1)(Ip + E2)−1

)
− 1 +

1

p
∆µT(Ip + E2)−1∆µ− 1

p
log

det(Ip + E1)

det(Ip + E2)

VT ≡
2

p2
‖(Ip + E1)

1
2 (Ip + E2)−1(Ip + E1)

1
2 − Ip‖2F

+
4

p2
∆µT(Ip + E2)−1(Ip + E1)(Ip + E2)−1∆µ.

The classification error rate is thus non-trivial (i.e., converging neither to 0 not 1 as p→∞) if ET
and
√
VT are of the same order of magnitude (with respect to p).

In the case where E1 = E2 = E,

ET =
1

p
∆µT(Ip+E)−1∆µ = O(‖∆µ‖2p−1),

√
VT =

2

p

√
∆µT(Ip + E)−1∆µ = O(‖∆µ‖p−1)

so that we must as least demand ‖∆µ‖ ≥ O(1) (which, up to centering, is equivalent to asking
‖µa‖ ≥ O(1) for a ∈ {1, 2}).
Under the critical condition ‖∆µ‖ = O(1), we move on to the study of the condition on the
covariance Ea. To this end, a Taylor expansion can be performed for Ip + E2 around Ip + E1 so that

ET =
1

p
∆µT(Ip + E1)−1∆µ +

1

2p
‖(Ip + E1)−1∆E‖2F + o(p−1)

VT =
2

p2
‖(Ip + E1)−1∆E‖2F +

4

p2
∆µT(Ip + E1)−1∆µ + o(p−2).

with ∆E ≡ E1 − E2. Thus one must have ‖∆E‖ ≥ O(p−1/2) for ‖(Ip + E1)−1∆E‖2F not
to vanish for p large and for ∆E to have discriminating power. It is thus convenient to request
‖Ea‖ ≥ O(p−1/2) for a ∈ {1, 2}, which unfolds from

| tr Ea| ≥ O(
√
p), or ‖Ea‖2F ≥ O(1).

Yet, as noticed in [CLM18], many classification algorithms, either supervised, semi-supervised or
unsupervised, are not able to achieve the optimal rate ‖Ea‖2F = O(1) when n, p are of the same
order of magnitude. Indeed, the best possible rate ‖Ea‖2F = O(

√
p) can only be obtained in very

particular cases, for instance if | tr Ea| = o(
√
p) and ‖µa‖ = o(1) as investigated in [LC19]. This

thus leads to the non-trivial classification condition demanded in Assumption 1.
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B Exact computation of φ in the Gaussian case

In the Gaussian case where z ∼ N (0, Ip) we resort to computing, as in [Wil97, LLC18], the integral

Ez[(zTa)k1(zTb)k2 ] = (2π)−p/2
∫
Rp

(zTa)k1(zTb)k2e−‖z‖
2/2dz

=
1

2π

∫
R2

(z̃1ã1)k1(z̃1b̃1 + z̃2b̃2)k2e−(z̃
2
1+z̃

2
2)/2dz̃1dz̃2 =

1

2π

∫
R2

(z̃Tã)k1(z̃Tb̃)k2e−‖z̃‖
2/2dz̃

where we apply the Gram-Schmidt procedure to project z into the two-dimensional space11 spanned

by a,b with ã1 = ‖a‖, b̃1 = aTb
‖a‖ , b̃2 =

√
‖b‖2 − (aTb)2

‖a‖2 and denote z̃ = [z̃1; z̃2], ã = [ã1; 0] and

b̃ = [b̃1; b̃2]. As a consequence, we obtain, for k even,

E
[
(zTi zj/

√
p)k
]

= E[ξk] = (k − 1)!!;

Ezi

[
(zTi zj/

√
p)k(zTi b)

]
= Ezi

[
(zTi zj/

√
p)k−1(zTi b)2

]
= 0;

Ezi

[
(zTi zj/

√
p)k−1(zTi b)

]
= (k − 1)!!(‖zj‖/

√
p)k−2(zTj b)/

√
p;

Ezi

[
(zTi zj/

√
p)k(zTi b)2

]
= (k − 1)!!

(
k(‖zj‖/

√
p)k−2(zTj b/

√
p)2 + (‖zj‖/

√
p)k‖b‖2

)
;

where we denote k!! the double factorial of an integral k such that k!! = k(k − 2)(k − 4) · · ·. This
futher leads to, in the Gaussian case, the expression of K̃I in Proposition 2.

C Proof of Proposition 2

Define by L the matrix with Lij ≡ [ 1p (JMTMJT + JMTZ + ZTMJT)]ij for i 6= j and Lii = 0.
Then KI can be written as

KI = k(ZTZ/
√
p)◦(k−1) ◦ L + Φ,

Φij ≡
k

p
(zTi zj/

√
p)k−1zTi

(
1

2
(Ea + Eb)−

1

8
(Ea −Eb)

2

)
zj

+
k(k − 1)

8p
(zTi zj/

√
p)k−2

1
√
p

(zTi (Ea + Eb)zj)
2

for i 6= j and Φii = 0. With this expression, the proof of Proposition 2 can be divided into three
steps.

Concentration of Φ. We first show that, ‖Φ − E[Φ]‖ → 0 almost surely, as n, p → ∞. This
follows from the observation that Φ is a p−1/4 rescaling (since ‖Ea‖ = O(p−1/4)) of the null
model KN , which concentrates around its expectation in the sense that ‖KN − E[KN ]‖ = O(1)
for E[KN ] = O(

√
p) if a0 6= 0 (see Remark 1). Indeed, it is shown in [FM19, Theorem 1.7] that,

the leading eigenvalue of order O(
√
p) discarded (arising from E[KN ]), KN is of bounded operator

norm for all large n, p with probability one; this, together with the fact that ‖E[Φ]‖ = O(1) that will
be shown subsequently, allows us to conclude that ‖Φ− E[Φ]‖ → 0 as n, p→∞.

Computation of E[Φ]: beyond the Gaussian case. We then show that, for random vectors z with
zero mean, unit variance and bounded moments entries, the expression of E[Φ] coincides with the
Gaussian case. To this end, recall that the entries of Φ are the sum of random variables of the type

φ =
C
√
p

(xTy/
√
p)α(xTFy)β

for independent random vectors x,y ∈ Rp with i.i.d. zero mean, unit variance and finite moments
(uniformly on p) entries, deterministic F ∈ Rp×p, C ∈ R, α ∈ N and β ∈ {1, 2}. Let us start with
the case β = 1 and expand φ as

φ =
C
√
p

(
1
√
p

p∑
i1=1

xi1yi1

)
. . .

(
1
√
p

p∑
iα=1

xiαyiα

) p∑
j1,j2=1

Fj1,j2xj1yj2

 (11)

11By assuming first that a,b are linearly independent before extending by continuity to a,b proportional.

12



with xi and yi the i-th entry of x and y, respectively, so that (i) xi is independent of yj for all i, j
and (ii) xi is independent of xj for i 6= j with E[xi] = 0, E[x2i ] = 1 and E[|xi|k] ≤ Ck for some Ck
independent of p (and similarly for y).

At this point, note that to ensure E[KI ] has non-vanishing operator norm as n, p → ∞, we need
E[φ] ≥ O(p−1) since ‖A‖ ≤ p‖A‖∞ for A ∈ Rp×p. Also, note that (as β = 1), all terms in
the sum

∑p
j1,j2=1 Fj1,j2xj1yj2 with j1 6= j2 must be zero since in other terms xi always appears

together with yi, so that all terms with j1 6= j2 give rise to zero in expectation. Hence, the p2
terms of the sum only contain p nonzero terms in expectation (those with j1 = j2). The arbitrary
(absolute) moments of x and y being finite, the first αp terms must be divided into dαe/2 groups of
size two (containing O(p) terms) so that, with the normalization by p−1 for each group of size two,
the associated expectation is not vanishing. We shall thus discuss the following two cases:

1. α even: the α terms in the sum form α/2 groups with different indices each and also
different from j1 = j2. Therefore we have Exj [φ] = 0 and E[φ] = 0.

2. α odd: the α terms in the sum form (α− 1)/2 groups with indices different from each other
and the remaining one goes with the last term containing F and one has E[φ] = Cα!!

p tr(F)

by a simple combinatorial argument.

The case β = 2 follows exactly the same line of arguments except that j1 may not equal j2 to give
rise to non-vanishing terms.

Concentration of Hadamard product. It now remains to treat the term k(ZTZ/
√
p)◦(k−1) ◦ L

and show it also has an asymptotically deterministic behavior (as Φ). It can be shown that

‖N ◦ L‖ → 0, n, p→∞

with N = (ZTZ/
√
p)�(k−1) − (k − 2)!!1n1T

n for k odd and N = (ZTZ/
√
p)�(k−1) for k even.

To prove this, note that, depending on the key parameter a0 = E[f(ξ)], the operator norm of
f(ZTZ/

√
p)/
√
p is either of orderO(

√
p) for a0 6= 0 orO(1) for a0 = 0. In particular, for monomial

f(x) = xk under study here, we have a0 = E[ξk] = 0 for k odd and a0 = E[ξk] = (k− 1)!! 6= 0 for
k even, ξ ∼ N (0, 1). To control the operator norm of the Hadamard product between matrices, we
introduce the following lemma.
Lemma 1. For A,B ∈ Rp×p, we have ‖A ◦B‖ ≤ √p‖A‖∞‖B‖.

Proof of Lemma 1. Let e1, . . . , ep be the canonical basis vectors of Rp, then for all 1 ≤ i ≤ p,

‖(A ◦B)ei‖ ≤ max
i,j
|Aij |‖Bei‖ = ‖A‖∞‖Bei‖ ≤ ‖A‖∞‖B‖.

As a consequence, for any v =
∑p
i=1 viei, we obtain

‖(A ◦B)v‖ ≤
p∑
i=1

|vi|‖(A ◦B)ei‖ ≤
p∑
i=1

|vi|‖A‖∞‖B‖

which, by Cauchy-Schwarz inequality further yields
∑p
i=1 |vi| ≤

√
p‖v‖. This concludes the proof

of Lemma 1.

Lemma 1 tells us that the Hadamard product between a matrix with o(p−1/2) entry and a matrix with
bounded operator norm is of vanishing operator norm, as p→∞. As such, since ‖N‖ = O(1) and
L has O(p−1) entries, we have ‖N ◦ L‖ → 0. This concludes the proof of Proposition 2.

D Proof of Theorem 2

The proof follows from the fact that the individual coefficients of the Hermite polynomials Pκ(x) =∑κ
l=0 cκ,lx

l satisfy the following recurrent relation [AS65]

cκ+1,l =

{
−κcκ−1,l l = 0;

cκ,l−1 − κcκ−1,l l ≥ 1;
(12)
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with c0,0 = 1, c1,0 = 0 and c1,1 = 1. As a consequence, by indexing the informative matrix in
Proposition 2 of the monomial f(x) = xl as K̃I,l, we have for odd κ ≥ 3,

K̃I =

κ∑
l=1,3,...

cκ,lK̃I,l =

κ∑
l=1,3,...

cκ,ll!!(JMTMJT + JMTZ + ZTMJT)/p− diag(·) = 0

with [X − diag(·)]ij = Xijδi6=j . This follows from the fact that, for κ ≥ 3, we have both∑κ
l=1,3,... cκ,ll!! = 0 and

∑κ+1
l=0,2,... cκ+1,l(l + 1)!! = 0. The latter is proved by induction on κ:

first, for κ = 3, we have c3,1 + 3c3,3 = c4,0 + 3c4,2 + 15c4,4 = 0; then, assuming κ odd, we have∑κ
l=1,3,... cκ,ll!! =

∑κ+1
l=0,2,... cκ+1,l(l + 1)!! = 0 so that, together with (12)

κ+2∑
l=1,3,...

cκ+2,ll!! =

κ+2∑
l=1,...

(cκ+1,l−1−(κ+1)cκ,l)l!! =

κ+2∑
l=1,...

cκ+1,l−1l!! =

κ+1∑
l=0,2,...

cκ+1,l(l+1)!! = 0

as well as
κ+3∑

l=0,2,...

cκ+3,l(l + 1)!! = −(κ+ 2)cκ+1,0 +

κ+3∑
l=2,4,...

(cκ+2,l−1 − (κ+ 2)cκ+1,l)(l + 1)!! = 0

where we used cκ,l = 0 for l ≥ κ+1. Similar arguments hold for the case of κ even, which concludes
the proof.
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