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Abstract

This article characterizes the exact asymptotics of random Fourier feature (RFF)
regression, in the realistic setting where the number of data samples n, their
dimension p, and the dimension of feature space N are all large and comparable.
In this regime, the random RFF Gram matrix no longer converges to the well-
known limiting Gaussian kernel matrix (as it does when N → ∞ alone), but it
still has a tractable behavior that is captured by our analysis. This analysis also
provides accurate estimates of training and test regression errors for large n, p,N .
Based on these estimates, a precise characterization of two qualitatively different
phases of learning, including the phase transition between them, is provided;
and the corresponding double descent test error curve is derived from this phase
transition behavior. These results do not depend on strong assumptions on the data
distribution, and they perfectly match empirical results on real-world data sets.

1 Introduction

For a machine learning system having N parameters, trained on a data set of size n, asymptotic
analysis as used in classical statistical learning theory typically either focuses on the (statistical)
population n→∞ limit, for N fixed, or the over-parameterized N →∞ limit, for a given n. These
two settings are technically more convenient to work with, yet less practical, as they essentially
assume that one of the two dimensions is negligibly small compared to the other, and this is rarely the
case in practice. Indeed, with a factor of 2 or 10 more data, one typically works with a more complex
model. This has been highlighted perhaps most prominently in recent work on neural network models,
in which the model complexity and data size increase together. For this reason, the double asymptotic
regime where n,N →∞, with N/n→ c, a constant, is a particularly interesting (and likely more
realistic) limit, despite being technically more challenging [48, 51, 21, 15, 37, 32, 5]. In particular,
working in this regime allows for a finer quantitative assessment of machine learning systems, as

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



a function of their relative complexity N/n, as well as for a precise description of the under- to
over-parameterized “phase transition” (that does not appear in the N → ∞ alone analysis). This
transition is largely hidden in the usual style of statistical learning theory [49], but it is well-known in
the statistical mechanics approach to learning theory [48, 51, 21, 15], and empirical signatures of it
have received attention recently under the name “double descent” phenomena [1, 7].

This article considers the asymptotics of random Fourier features [43], and more generally random
feature maps, which may be viewed also as a single-hidden-layer neural network model, in this limit.
More precisely, let X = [x1, . . . ,xn] ∈ Rp×n denote the data matrix of size n with data vectors xi ∈
Rp as column vectors. The random feature matrix ΣX of X is generated by pre-multiplying some
random matrix W ∈ RN×p having i.i.d. entries and then passing through some entry-wise nonlinear
function σ(·), i.e., ΣX ≡ σ(WX) ∈ RN×n. Commonly used random feature techniques such as
random Fourier features (RFFs) [43] and homogeneous kernel maps [50], however, rarely involve a
single nonlinearity. The popular RFF maps are built with cosine and sine nonlinearities, so that ΣX ∈
R2N×n is obtained by cascading the random features of both, i.e., ΣT

X ≡ [cos(WX)T, sin(WX)T].
Note that, by combining both nonlinearities, RFFs generated from W ∈ RN×p are of dimension 2N .

The large N asymptotics of random feature maps is closely related to their limiting kernel matrices
KX. In the case of RFF, it was shown in [43] that entry-wise the Gram matrix ΣT

XΣX/N converges
to the Gaussian kernel matrix KX ≡ {exp(−‖xi − xj‖2/2)}ni,j=1, as N → ∞. This follows
from 1

N [ΣT
XΣX]ij = 1

N

∑N
t=1 cos(xT

i wt) cos(wT
t xj) + sin(xT

i wt) sin(wT
t xj), for wt independent

Gaussian random vectors, so that by the strong law of large numbers, for fixed n, p, [ΣT
XΣX/N ]ij

goes to its expectation (with respect to w ∼ N (0, Ip)) almost surely as N →∞, i.e.,

[ΣT
XΣX/N ]ij

a.s.−−→ Ew

[
cos(xT

i w) cos(wTxj) + sin(xT
i w) sin(wTxj)

]
≡ Kcos + Ksin, (1)

with

Kcos + Ksin ≡ e−
1
2 (‖xi‖2+‖xj‖2)

(
cosh(xT

i xj) + sinh(xT
i xj)

)
= e−

1
2 (‖xi−xj‖2) ≡ [KX]ij . (2)

While this result holds in theN →∞ limit, recent advances in random matrix theory [30, 27] suggest
that, in the more practical setting where N is not much larger than n, p and n, p,N →∞ at the same
pace, the situation is more subtle. In particular, the above entry-wise convergence remains valid, but
the convergence ‖ΣT

XΣX/N −KX‖ → 0 no longer holds in spectral norm, due to the factor n, now
large, in the norm inequality ‖A‖∞ ≤ ‖A‖ ≤ n‖A‖∞ for A ∈ Rn×n and ‖A‖∞ ≡ maxij |Aij |.
This implies that, in the large n, p,N regime, the assessment of the behavior of ΣT

XΣX/N via KX

may result in a spectral norm error that blows up. As a consequence, for various machine learning
algorithms [10], the performance guarantee offered by the limiting Gaussian kernel is less likely to
agree with empirical observations in real-world large-scale problems, when n, p are large.1

1.1 Our Main Contributions

We consider the RFF model in the more realistic large n, p,N limit. While, in this setting, the
RFF empirical Gram matrix does not converge to the Gaussian kernel matrix, we can characterize
its behavior as n, p,N → ∞ and provide asymptotic performance guarantees for RFF on large-
scale problems. We also identify a phase transition as a function of the ratio N/n, including the
corresponding double descent phenomenon. In more detail, our contributions are the following.

1.We provide a precise characterization of the asymptotics of the RFF empirical Gram matrix, in the
large n, p,N limit (Theorem 1). This is accomplished by constructing a deterministic equivalent for
the resolvent of the RFF Gram matrix. Based on this, the behavior of the RFF model is (asymptot-
ically) accessible through a fixed-point equation, that can be interpreted in terms of an angle-like
correction induced by the non-trivial large n, p,N limit (relative to the N →∞ alone limit).

2.We derive the asymptotic training and test mean squared errors (MSEs) of RFF ridge regression, as
a function of the ratio N/n, regularization penalty λ, training as well as test sets (Theorem 2 and 3,
respectively). We identify precisely the under- to over-parameterization phase transition, as a function

1For readers not familiar with the impact of spectral norm error in learning, or with the random matrix theory
techniques that we will use in our analysis, such as resolvent analysis and the use of deterministic equivalents,
see Appendix A for a warm-up discussion.
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of the relative model complexity N/n; we prove the existence of a “singular” peak of test error at the
N/n = 1/2 boundary; and we characterize the corresponding double descent behavior. Importantly,
our results are valid with almost no specific assumption on the data distribution. This is a significant
improvement over existing double descent analyses, which fundamentally rely on the knowledge of
the data distribution (often assumed to be multivariate Gaussian for simplicity) [20, 36].

3.We provide a detailed empirical evaluation of our theoretical results, demonstrating that the theory
closely matches empirical results on a range of real-world data sets (Section 3 and Section F in
the supplementary material). This includes the correction due to the large n, p,N setting, sharp
transitions (as a function of N/n) in angle-like quantities, and the corresponding double descent test
curves. This also includes an evaluation of the impact of training-test similarity and the effect of
different data sets, thus confirming, as stated in 2., that (unlike in prior work) the phase transition and
double descent hold with almost no specific assumption on the data distribution.

1.2 Related Work

Here, we provide a brief review of related previous efforts.

Random features and limiting kernels. In most RFF work [44, 4, 3, 45], non-asymptotic bounds
are given, on the number of random features N needed for a predefined approximation error of a
given kernel matrix with fixed n, p. A more recent line of work [2, 14, 22, 9] has focused on the
over-parameterized N → ∞ limit of large neural networks by studying the corresponding neural
tangent kernels. Here, we position ourselves in the more practical regime where n, p,N are all large
and comparable, and provide asymptotic performance guarantees that better fit large-scale problems.

Random matrix theory. From a random matrix theory perspective, nonlinear Gram matrices of the
type ΣT

XΣX have recently received an unprecedented research interests, due to their close connection
to neural networks [41, 39, 8, 38], with a particular focus on the associated eigenvalue distribution.
Here we propose a deterministic equivalent [11, 19] analysis for the resolvent matrix that provides
access, not only to the eigenvalue distribution, but also to the regression error of central interest in
this article. While most existing deterministic equivalent analyses are performed on linear models,
here we focus on the nonlinear RFF model. From a technical perspective, the most relevant work is
[30, 36]. We improve their results by considering generic data model on the popular RFF model.

Statistical mechanics of learning. A long history of connections between statistical mechanics and
machine learning models (such as neural networks) exists, including a range of techniques to establish
generalization bounds [48, 51, 21, 15], and recently there has been renewed interest [32, 34, 33, 35, 5].
Their relevance to our results lies in the use of the thermodynamic limit (akin to the large n, p,N
limit), rather than the classical limits more commonly used in statistical learning theory, where
uniform convergence bounds and related techniques can be applied.

Double descent in large-scale learning systems. The large n,N asymptotics of statistical models
has received considerable research interests in the machine learning community [40, 20], resulting in
a (somehow) counterintuitive phenomenon referred to as the “double descent.” Instead of focusing
on different “phases of learning” [48, 51, 21, 15, 32], the “double descent” phenomenon focuses on
an empirical manifestation of the phase boundary and refers to the empirical observations of the test
error curve as a function of the model complexity, which differs from the usual textbook description
of the bias-variance tradeoff [1, 26, 7, 17]. Theoretical investigation into this phenomenon mainly
focuses on various regression models [13, 6, 12, 25, 20, 36]. In most cases, quite specific (and rather
strong) assumptions are imposed on the input data distribution. In this respect, our work extends the
analysis in [36] to handle the RFF model and its phase structure on real-world data sets.

1.3 Notations and Organization of the Paper

Throughout this article, we follow the convention of denoting scalars by lowercase, vectors by
lowercase boldface, and matrices by uppercase boldface letters. In addition, the notation (·)T denotes
the transpose operator; the norm ‖ · ‖ is the Euclidean norm for vectors and the spectral or operator
norm for matrices; and a.s.−−→ stands for almost sure convergence of random variables.
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Our main results on the asymptotic training and test MSEs of RFF ridge regression are presented
in Section 2, with proofs deferred to the Appendix. In Section 3, we provide detailed empirical
evaluations of our main results, as well as discussions on the corresponding phase transition behavior
and the double descent test curve. Concluding remarks are placed in Section 4. For more detailed
discussions and empirical evaluations, we refer the readers to an extended version of this article [28].

2 Main Technical Results

In this section, we present our main theoretical results. To investigate the large n, p,N asymptotics
of the RFF model, we shall technically position ourselves under the following assumption.
Assumption 1. As n→∞, we have

1. 0 < lim infn min{ pn ,
N
n } ≤ lim supn max{ pn ,

N
n } < ∞; or, practically speaking, the

ratios p/n and N/n are only moderately large or moderately small.

2. lim supn ‖X‖ <∞ and lim supn ‖y‖∞ <∞, i.e., they are normalized with respect to n.

Under Assumption 1, we consider the RFF regression model. For training data X ∈ Rp×n of size n,
the associated random Fourier features, ΣX ∈ R2N×n, are obtained by computing WX ∈ RN×n,
for standard Gaussian random matrix W ∈ RN×p, and then applying entry-wise cosine and sine
nonlinearities on WX, i.e., ΣT

X = [cos(WX)T, sin(WX)T] with Wij ∼ N (0, 1). Given this
setup, the RFF ridge regressor β ∈ R2N is given by, for λ ≥ 0,

β ≡ 1

n
ΣX

(
1

n
ΣT

XΣX + λIn

)−1

y · 12N>n +

(
1

n
ΣXΣT

X + λI2N

)−1
1

n
ΣX y · 12N<n. (3)

The two forms of β in (3) are equivalent for any λ > 0 and minimize the (ridge-regularized) squared
loss 1

n‖y −ΣT
Xβ‖2 + λ‖β‖2 on the training set (X,y). Our objective is to characterize the large

n, p,N asymptotics of both the training MSE, Etrain, and the test MSE, Etest, defined as

Etrain =
1

n
‖y −ΣT

Xβ‖2, Etest =
1

n̂
‖ŷ −ΣT

X̂
β‖2, (4)

with ΣT
X̂
≡ [cos(WX̂)T, sin(WX̂)T] ∈ Rn̂×2N on a test set (X̂, ŷ) of size n̂.

2.1 Asymptotic Deterministic Equivalent

To start, we observe that the training MSE, Etrain, in (4), can be written as Etrain = λ2

n ‖Q(λ)y‖2 =

−λ
2

n yT∂Q(λ)y/∂λ, which depends on the quadratic form yTQ(λ)y of

Q(λ) ≡
(

1

n
ΣT

XΣX + λIn

)−1

∈ Rn×n, (5)

the so-called resolvent of 1
nΣT

XΣX (also denoted Q when there is no ambiguity) with λ > 0.

In order to assess the asymptotic training MSE, it thus suffices to find a deterministic equivalent for
Q(λ) (i.e., a deterministic matrix that captures the asymptotic behavior of the latter). One possibility
is the expectation EW[Q(λ)]. Informally, if the training MSE Etrain (that is random due to random
W) is “close to” some deterministic quantity Ētrain, in the large n, p,N limit, then Ētrain must have
the same limit as EW[Etrain] = −λ

2

n ∂yTEW[Q(λ)]y/∂λ for n, p,N → ∞. However, EW[Q]
involves integration (with no closed-form due to the matrix inverse), and it is not a convenient quantity
with which to work. Our objective is to find an asymptotic “alternative” for EW[Q] that is (i) close
to EW[Q] in the large n, p,N →∞ limit and (ii) numerically more accessible.

In the following theorem (proved in Appendix B), we introduce an asymptotic equivalent for EW[Q].
Instead of being directly related to the Gaussian kernel KX = Kcos + Ksin as suggested by (2) in
the large-N -only limit, it depends on the two components Kcos,Ksin in a more involved manner.
Theorem 1 (Asymptotic equivalent for EW[Q]). Under Assumption 1, for Q defined in (5) and
λ > 0, we have, as n→∞

‖EW[Q]− Q̄‖ → 0
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for Q̄ ≡
(
N
n ( Kcos

1+δcos
+ Ksin

1+δsin
) + λIn

)−1

, Kcos ≡ Kcos(X,X),Ksin ≡ Ksin(X,X) ∈ Rn×n and

Kcos(X,X
′)ij = e−

‖xi‖
2+‖x′j‖

2

2 cosh(xT
i x′j), Ksin(X,X′)ij = e−

‖xi‖
2+‖x′j‖

2

2 sinh(xT
i x′j), (6)

where (δcos, δsin) is the unique positive solution to

δcos =
1

n
tr(KcosQ̄), δsin =

1

n
tr(KsinQ̄). (7)

Remark 1 (Correction to large-N behavior). Taking N/n→∞, one has δcos → 0, δsin → 0 so that
Kcos

1+δcos
+ Ksin

1+δsin
→ Kcos +Ksin = KX and Q̄ ' n

NK−1
X , for λ > 0, in accordance with the classical

large-N -only prediction. In this sense, the pair (δcos, δsin) introduced in Theorem 1 accounts for the
“correction” due to the non-trivial n/N , as opposed to the N →∞ alone analysis. Also, when the
number of features N is large (i.e., as N/n→∞), the regularization effect of λ flattens out and Q̄
behaves like (a scaled version of) the inverse Gaussian kernel matrix K−1

X (that is well-defined if
x1 . . . ,xn are all distinct, see [46, Theorem 2.18]).

Remark 2 (Geometric interpretation). Since Q̄ shares the same eigenspace with Kcos

1+δcos
+ Ksin

1+δsin
, one

can geometrically interpret (δcos, δsin) as a sort of “angle” between the eigenspaces of Kcos,Ksin and
that of Kcos

1+δcos
+ Ksin

1+δsin
. For fixed n, as N →∞, one has 1

N

∑N
t=1 cos(XTwt) cos(wT

t X)→ Kcos,
1
N

∑N
t=1 sin(XTwt) sin(wT

t X)→ Ksin, the eigenspaces of which are “orthogonal” to each other,
so that δcos, δsin → 0. On the other hand, as N,n→∞, the eigenspaces of Kcos and Ksin “intersect”
with each other, captured by the non-trivial (δcos, δsin).

2.2 Asymptotic Training Performance

Theorem 1 provides an asymptotically more tractable approximation of EW[Q]. Together with some
additional concentration arguments (e.g., from [30, Theorem 2]), this permits us to provide a complete
description of the limiting behavior of the random bilinear form aTQb, for a,b ∈ Rn of bounded
Euclidean norms, in such a way that aTQb− aTQ̄b

a.s.−−→ 0, as n, p,N →∞. This, together with
the fact that Etrain = λ2

n yTQ(λ)2y = −λ
2

n yT∂Q(λ)y/∂λ, leads to the following result on the
asymptotic training error, the proof of which is given in Appendix C.

Theorem 2 (Asymptotic training performance). Under Assumption 1, for a given training set (X,y)
and training MSE, Etrain defined in (4), as n→∞

Etrain−Ētrain
a.s.−−→ 0, Ētrain =

λ2

n
‖Q̄y‖2 +

N

n

λ2

n2

[
tr(Q̄KcosQ̄)

(1+δcos)2
tr(Q̄KsinQ̄)

(1+δsin)2

]
Ω

[
yTQ̄KcosQ̄y
yTQ̄KsinQ̄y

]
for Q̄ defined in Theorem 1 and

Ω−1 ≡ I2 −
N

n

[
1
n

tr(Q̄KcosQ̄Kcos)
(1+δcos)2

1
n

tr(Q̄KcosQ̄Ksin)
(1+δsin)2

1
n

tr(Q̄KcosQ̄Ksin)
(1+δcos)2

1
n

tr(Q̄KsinQ̄Ksin)
(1+δsin)2

]
. (8)

One can show that (i) for a given n and λ > 0, Ētrain decreases as the model size N increases; and
(ii) for a given ratio N/n, Ētrain increases as the regularization penalty λ grows large, as expected.

2.3 Asymptotic Test Performance

Theorem 2 holds without any restriction on the training set, (X,y), except for Assumption 1, since
only the randomness of W is involved, and thus one can simply treat (X,y) as known in this
result. This is no longer the case for the test error. Intuitively, the test data X̂ cannot be chosen
arbitrarily, and one must ensure that the test data “behave” statistically like the training data, in
a “well-controlled” manner, so that the test MSE is asymptotically deterministic and bounded as
n, n̂, p,N →∞. Following this intuition, we work under the following assumption.

Assumption 2 (Data as concentrated random vectors [29]). The training data xi ∈ Rp, i ∈
{1, . . . , n}, are independently drawn (non-necessarily uniformly) from one of K > 0 distribution
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classes2 µ1, . . . , µK . There exist constants C, η, q > 0 such that for any xi ∼ µk, k ∈ {1, . . . ,K}
and any 1-Lipschitz function f : Rp → R, we have

P (|f(xi)− E[f(xi)]| ≥ t) ≤ Ce−(t/η)q , t ≥ 0. (9)

The test data x̂i ∼ µk, i ∈ {1, . . . , n̂} are mutually independent, but may depend on training data X

and ‖E[σ(WX)− σ(WX̂)]‖ = O(
√
n) for σ ∈ {cos, sin}.

To facilitate the discussion of the phase transition and the double descent, we do not assume indepen-
dence between training data and test data (but we do assume independence between different columns
within X and X̂). In this respect, Assumption 2 is weaker than the classical i.i.d. assumption, and it
permits us to illustrate the impact of training-test similarity on the model performance (Section 3.3).

A first example of concentrated random vectors satisfying (9) is the random Gaussian vectorN (0, Ip)
[24]. Moreover, since the concentration property in (9) is stable over Lipschitz transformations [29],
it holds, for any 1-Lipschitz mapping g : Rd → Rp and z ∼ N (0, Id), that g(z) also satisfies (9).
In this respect, Assumption 2, although seemingly quite restrictive, represents a large family of
“generative models”, including notably the “fake images” generated by modern generative adversarial
networks (GANs) that are, by construction, Lipschitz transformations of large random Gaussian
vectors [18, 47]. As such, from a practical consideration, Assumption 2 provides a more realistic and
flexible statistical model for real-world data.

With Assumption 2, we have the following result on the asymptotic test error, proved in Section D.
Theorem 3 (Asymptotic test performance). Under Assumptions 1 and 2, we have, for test MSE
Etest defined in (4) and test data (X̂, ŷ) satisfying lim supn̂ ‖X̂‖ <∞, lim supn̂ ‖ŷ‖∞ <∞ with
n̂/n ∈ (0,∞) that, as n→∞

Etest − Ētest
a.s.−−→ 0, Ētest =

1

n̂
‖ŷ − N

n
Φ̂Q̄y‖2 +

N2

n2n̂

[
Θcos

(1+δcos)2
Θsin

(1+δsin)2

]
Ω

[
yTQ̄KcosQ̄y
yTQ̄KsinQ̄y

]
for Ω defined in (8),

Θσ =
1

N
tr Kσ(X̂, X̂) +

N

n

1

n
tr Q̄Φ̂

T
Φ̂Q̄Kσ −

2

n
tr Q̄Φ̂

T
Kσ(X̂,X), σ ∈ {cos, sin}, (10)

and Φ ≡ Kcos

1+δcos
+ Ksin

1+δsin
, Φ̂ ≡ Kcos(X̂,X)

1+δcos
+ Ksin(X̂,X)

1+δsin
, with Kcos(X̂,X),Ksin(X̂,X) ∈ Rn̂×n

and Kcos(X̂, X̂),Ksin(X̂, X̂) ∈ Rn̂×n̂ defined as in (6).

Taking (X̂, ŷ) = (X,y), one gets Ētest = Ētrain, as expected. From this perspective, Theorem 3
can be seen as an extension of Theorem 2, with the “interaction” between training and test data (i.e.,
training-versus-test Kσ(X̂,X) and test-versus-test Kσ(X̂, X̂) interaction matrices) summarized in
the scalar parameter Θσ defined in (10), for σ ∈ {cos, sin}.

3 Empirical Evaluations and Practical Implications

In this section, we provide a detailed empirical evaluation, including a discussion of the behavior
of the fixed-point equation in Theorem 1, and its consequences in Theorem 2 and Theorem 3. In
particular, we describe the behavior of the pair (δcos, δsin) that characterizes the necessary correction
in the large n, p,N regime, as a function of the regularization λ and the ratio N/n. This explains: (i)
the mismatch between empirical regression errors from the Gaussian kernel prediction (Figure 1); and
(ii) the behavior of (δcos, δsin) as a function of N/n, which clearly indicates two phases of learning
(Figure 3) and the corresponding double descent test error curves (Figure 4).

3.1 Correction due to the Large n, p,N Regime

The RFF Gram matrix ΣT
XΣX/N is not close to the classical Gaussian kernel matrix KX in the large

n, p,N regime; and, as a consequence, its resolvent Q, as well the training and test MSE, Etrain

and Etest (that are functions of Q), behave quite differently from the Gaussian kernel predictions.

2K ≥ 2 is included to cover multi-class classification problems; and K should remain fixed as n, p→∞.
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Figure 1: Training MSEs of RFF ridge regression on MNIST data (class 3 versus 7), as a function
of regression penalty λ, for p = 784, n = 1 000, N = 250, 500, 1 000, 2 000. Empirical results
displayed in blue circles; Gaussian kernel predictions (assuming N → ∞ alone) in black dashed
lines; and Theorems 2 in red solid lines. Results obtained by averaging over 30 runs.

10−4 10−1 102
10−3

100

103

N/n = 1/4

λ

δ

δcos
δsin

10−4 10−1 102
10−3

10−1

100

N/n = 1

λ

10−4 10−1 102
10−3

10−1

100

N/n = 4

λ

10−4 10−1 102
10−3

10−1

100

N/n = 16

λ

Figure 2: Behavior of (δcos, δsin) in (11) on MNIST data (class 3 versus 7), as a function of the
regularization parameter λ, for p = 784, n = 1 000, N = 250, 1 000, 4 000, 16 000.

As already discussed in Remark 1 after Theorem 1, for λ > 0, the pair (δcos, δsin) characterizes the
correction when considering n, p,N all large, compared to the large-N -only asymptotic behavior:

δcos =
1

n
tr KcosQ̄, δsin =

1

n
tr KsinQ̄, Q̄ =

(
N

n

(
Kcos

1 + δcos
+

Ksin

1 + δsin

)
+ λIn

)−1

. (11)

To start, Figure 1 compares the training MSEs of RFF ridge regression to the predictions from
Gaussian kernel regression and to the predictions from our Theorem 2, on the popular MNIST data
set [23]. Observe that there is a huge gap between empirical training errors and the Gaussian kernel
predictions, especially when N/n < 1, while our theory consistently fits empirical observations
almost perfectly.

Next, from (11) we know that both δcos and δsin are decreasing functions of λ. (See Lemma 7 in
Appendix E for a proof of this fact.) Figure 2 shows that: (i) over a range of different N/n, both δcos

and δsin decrease monotonically as λ increases; (ii) the behavior for N/n < 1, which is decreasing
from an initial value of δ � 1, is very different from the behavior for N/n & 1, where an initially
flat region is observed for small values of λ and we have δ < 1 for all values of λ; and (iii) the impact
of regularization λ becomes less significant as the ratio N/n becomes large. This is in accordance
with the limiting behavior of Q̄ ' n

NK−1
X in Remark 1 that is independent of λ as N/n→∞.

Note also that, while δcos and δsin can be geometrically interpreted as a sort of weighted “angle”
between different kernel matrices (as in Remark 2), and therefore one might expect to have δ ∈ [0, 1],
this is not the case for the leftmost plot of Figure 1 with N/n = 1/4. There, for small values of λ
(say λ . 0.1), both δcos and δsin scale like λ−1, while they are observed to saturate to a fixed O(1)
value for N/n = 1, 4, 16. This corresponds to two different phases of learning in the ridgeless λ→ 0
limit, as discussed in the following section.

3.2 Phase Transition and Corresponding Double Descent

Both δcos and δsin in (11) are decreasing functions of N , as depicted in Figure 3. (See Lemma 6
in Appendix E for a proof.) More importantly, Figure 3 also illustrates that δcos and δsin exhibit
qualitatively different behavior, depending on the ratio N/n. For λ not too small (λ = 1 or 10), both
δcos and δsin decrease smoothly, as N/n grows large. However, for λ relatively small (λ = 10−3 and
10−7), we observe a “phase transition” on two sides of the interpolation threshold 2N = n. (Note
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Figure 3: Behavior of (δcos, δsin) on MNIST data (class 3 versus 7), as a function of N/n, p = 784,
n = 1 000, λ = 10−7, 10−3, 1, 10. The black dashed line is the interpolation threshold 2N = n.
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Figure 4: Empirical (blue crosses) and theoretical (red dashed lines) test errors of RFF regression
as a function of the ratio N/n, on MNIST data set (class 3 versus 7), for p = 784, n = 500,
λ = 10−7, 10−3, 1, 10. The black dashed line is the interpolation threshold 2N = n.

that the scale of the y-axis is different in different subfigures.) More precisely, in the leftmost plot
with λ = 10−7, δcos and δsin “jump” from order O(1) (when 2N > n) to much higher values of the
same order of λ−1 (when 2N < n). A similar behavior is also observed for λ = 10−3.

This phase transition can be theoretically justified by considering the ridgeless λ → 0 limit in
Theorem 1. First note that, for λ = 0 and 2N < n, the (random) resolvent Q(λ = 0) in (5) is simply
undefined, as it involves inverting a singular matrix ΣT

XΣX ∈ Rn×n that is of rank at most 2N < n.
As a consequence, we expect to see both Q and Q̄ scale like λ−1 as λ→ 0 for 2N < n, while for
2N > n this is no longer the case. As a consequence, we have the following two phases:

1.Under-parameterized with 2N < n. Here, Q is not well-defined (indeed Q scales like λ−1) and
one must consider instead the properly scaled λδcos, λδsin and λQ̄ as λ→ 0.

2.Over-parameterized with 2N > n, where one can take λ→ 0 in (11) to get δcos, δsin and Q̄.

Remark 3 (Double descent test error curves). On account of the above two phases, it is not surprising
to observe a “singular” behavior at 2N = n , when no regularization is applied. Here, we consider
the (asymptotic) test MSE in Theorem 3 in the ridgeless λ → 0 limit and focus on the situation
where the test data X̂ is sufficiently different from the training data X (see more discussions on this
point in Section 3.3 below). Then, the two-by-two matrix Ω defined in (8) diverges to infinity at
2N = n as λ→ 0. (Indeed, the determinant det(Ω−1) scales as λ, per Lemma 5 in Appendix E.)
As a consequence, we have Ētest →∞ as N/n→ 1/2, resulting in a sharp deterioration in the test
performance around the interpolation threshold 2N = n. It is also interesting to note that, while Ω
also appears in Ētrain, we still obtain (asymptotically) zero training MSE at 2N = n, despite the
divergence of Ω as λ→ 0, essentially due to the prefactor λ2 in Ētrain.

Figure 4 depicts the empirical and theoretical test MSEs with different λ. In particular, for λ = 10−7

and λ = 10−3, a double-descent-type behavior is observed, with a singularity at 2N = n, while
for larger values of λ (λ = 1 and 10), a smoother and monotonically decreasing test error curve is
observed, as a function of N/n, in accordance with the observations in [36] on Gaussian data.

Remark 4 (Double descent as a consequence of phase transition). While the double descent phe-
nomenon has received considerable attention recently, our analysis makes it clear that in this model
(and presumably many others) it is a natural consequence of the phase transition between two
qualitatively different phases of learning [32].

8



3.3 Impact of Training-test Similarity

We see that the (asymptotic) test error behaves entirely differently, depending on whether the test
data X̂ is “close to” the training data X or not. For X̂ = X, one has Ētest = Ētrain that decreases
monotonically as N grows large; while for X̂ sufficiently different from X (in the associated kernel
space in the sense that Kσ(X,X) is sufficiently different from Kσ(X̂,X) for σ ∈ {cos, sin}),
Ētest diverges at 2N = n and establishes a double descent behavior. To have a more quantitative
assessment of the impact of training-test similarity on the RFF model performance, we consider here
the special case ŷ = y. Since in the ridgeless λ→ 0 limit, Ω scales as λ−1 at 2N = n (Remark 3),
one must then have Θσ ∝ λ to “compensate” so that Ētest does not diverge at 2N = n as λ→ 0. A
first example is the case where the test data is a small perturbation of the training data. In Figure 5,
the test data are generated by adding Gaussian white noise of variance σ2 to the training data, i.e.,

x̂i = xi + σεi (12)

for independent εi ∼ N (0, Ip/p). In Figure 5, we observe that (i) below the threshold σ2 = λ, the
test error coincides with the training error and both are relatively small for 2N = n; and (ii) as soon
as σ2 > λ, the test error diverges from the training error and grows large (but linearly in σ2) as the
noise level increases. Note also from the two rightmost plots of Figure 5 that the training-to-test
“transition” at σ2 ' λ is sharp only for relatively small values of λ, as predicted by our theory.
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Noise variance σ2

M
SE
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10−5 10−3 10−1

10−1

100

λ = 1

Noise variance σ2

10−5 10−3 10−1
10−1

100
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Noise variance σ2

Figure 5: Empirical training (red crosses) and test (blue circles) errors of RFF ridge regression
on MNIST data (class 3 versus 7), as a function of the noise level σ2, for N = 512, p = 784,
n = n̂ = 1 024 = 2N , λ = 10−7, 10−3, 1, 10. Results obtained by averaging over 30 runs.

4 Conclusion

We have established a precise description of the resolvent of RFF Gram matrices, and provided
asymptotic training and test performance guarantees for RFF ridge regression, in the n, p,N →∞
limit. We have also discussed the under- and over-parameterized regimes, where the resolvent behaves
dramatically differently. These observations involve only mild regularity assumptions on the data,
yielding phase transition behavior and double descent test error curves for RFF regression that closely
match experiments on real-world data. Extended to a (technically more involved) multi-layer setting
in the more realistic large n, p,N regime as in [16], our analysis may shed new light on the theoretical
understanding of modern deep neural nets, beyond the large-N alone neural tangent kernel limit.

Broader Impact

In this article, we provide theoretical assessment of the popular random Fourier features (RFFs), in
the practical setting where n, p,N are all large and comparable. Asymptotic performance guarantees
are provided for RFF ridge regression in this n, p,N →∞ limit, as an important positive impact of
this work on the development of more reliable large-scale machine learning systems. The theoretical
framework developed in this article presents fair and non-offensive societal consequence.
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and ONR for providing partial support of this work. Our conclusions do not necessarily reflect the
position or the policy of our sponsors, and no official endorsement should be inferred. Couillet’s
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A Warm-up Example: Sample Covariance and Marc̆enko-Pastur Equation

Consider the sample covariance matrix Ĉ = 1
nXXT from some data X ∈ Rp×n composed of n

i.i.d. xi ∼ N (0,C) with positive definite C ∈ Rp×p. In this zero-mean Gaussian setting, the sample
covariance Ĉ, despite being the maximum likelihood estimator of the population covariance C and
providing entry-wise consistent estimate for it, is an extremely poor estimator of C in a spectral
norm sense, for n, p large. More precisely, ‖Ĉ −C‖ 6→ 0 as n, p → ∞ with p/n → c ∈ (0,∞).
Indeed, one has ‖Ĉ−C‖/‖C‖ ≈ 20%, even with n = 100p, in the simple C = Ip setting. Figure 6
compares the eigenvalue histogram of Ĉ with the population eigenvalue of C, in the setting of
C = Ip and n = 100p. In the C = Ip case, the limiting eigenvalue distribution of Ĉ as n, p→∞ is
known to be the popular Marc̆enko-Pastur law [31] given by

µ(dx) = (1− c−1) · δ0(x) +
1

2πcx

√(
x− (1−

√
c)2
)+ (

(1 +
√
c)2 − x

)+
dx (13)

with δ0(x) the Dirac mass at zero, c = lim p/n and (x)+ = max(x, 0), so that the support of µ has
length (1 +

√
c)2 − (1−

√
c)2 = 4

√
c = 0.4 for n = 100p.
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Marc̆enko-Pastur law
Population eigenvalue

Figure 6: Eigenvalue histogram of Ĉ versus the Marc̆enko-Pastur law, for p = 512 and n = 100p.

In the regression analysis (such as ridge regression) based on X, of more immediate interest is the
resolvent QĈ(λ) ≡ (Ĉ + λIp)

−1, λ > 0 of the sample covariance Ĉ, and more concretely, the
bilinear forms of the type aTQĈ(λ)b for a,b ∈ Rp. As a result of the spectral norm inconsistency
‖Ĉ−C‖ 6→ 0 in the large n, p regime, it is unlikely that for most a,b, the convergence aTQĈ(λ)b−
aT(C + λIp)

−1b→ 0 would still hold.

While the random variable aTQĈ(λ)b is not getting close to aT(C + λIp)
−1b as n, p→∞, it does

exhibit a tractable asymptotically deterministic behavior, described by the Marc̆enko-Pastur equation
[31] for C = Ip. Notably, for a,b ∈ Rp deterministic vectors of bounded Euclidean norms, we have,
as n, p→∞ and p/n→ c ∈ (0,∞),

aTQĈ(λ)b−m(λ) · aTb
a.s.−−→ 0,

with m(λ) the unique positive solution to the following Marc̆enko-Pastur equation [31]

cλm2(λ) + (1 + λ− c)m(λ)− 1 = 0. (14)

In a sense, Q̄(λ) ≡ m(λ)Ip can be seen as a deterministic equivalent [19, 11] for the random QĈ(λ)
that asymptotically characterizes the behavior of the latter, when bilinear forms are considered. In
Figure 7 we compare the quadratic forms aTQĈ(λ)a as a function of λ, for n = 10p and n = 2p.
We observe that, in both cases, the RMT prediction in (14) provides a much closer match than the
large-n alone asymptotic given by aT(C + λIp)

−1a. This, together with Figure 1 on RFF ridge
regression model, conveys a strong practical motivation of this work.
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2p (right). Empirical results displayed in blue circles; population predictions aT(C + λIp)
−1a

(assuming n→∞ alone with p fixed) in black dashed lines; and RMT prediction from (14) in red
solid lines. Results obtained by averaging over 50 runs.

B Proof of Theorem 1

Our objective is to prove, under Assumption 1, the asymptotic equivalence between the expectation
(with respect to W, omitted from now on) E[Q] and

Q̄ ≡
(
N

n

(
Kcos

1 + δcos
+

Ksin

1 + δsin

)
+ λIn

)−1

for Kcos ≡ Kcos(X,X),Ksin ≡ Ksin(X,X) ∈ Rn×n defined in (6), with (δcos, δcos) the unique
positive solution to

δcos =
1

n
tr(KcosQ̄), δsin =

1

n
tr(KsinQ̄).

The existence and uniqueness of the above fixed-point equation is standard in random matrix literature
and can be reached for instance with the standard interference function framework [54].

The asymptotic equivalence should be announced in the sense that ‖E[Q]−Q̄‖ → 0 as n, p,N →∞
at the same pace. We shall proceed by introducing an intermediary resolvent Q̃ (see definition in
(16)) and show subsequently that

‖E[Q]− Q̃‖ → 0, ‖Q̃− Q̄‖ → 0.

In the sequel, we use o(1) and o‖·‖(1) for scalars or matrices of (almost surely if being random)
vanishing absolute values or operator norms as n, p→∞.

We start by introducing the following lemma.
Lemma 1 (Expectation of σ1(xT

i w)σ2(wTxj)). For w ∼ N (0, Ip) and xi,xj ∈ Rp we have (per
Definition in (6))

Ew[cos(xT
i w) cos(wTxj)] = e−

1
2 (‖xi‖2+‖xj‖2) cosh(xT

i xj) ≡ [Kcos(X,X)]ij ≡ [Kcos]ij

Ew[sin(xT
i w) sin(wTxj)] = e−

1
2 (‖xi‖2+‖xj‖2) sinh(xT

i xj) ≡ [Ksin(X,X)]ij ≡ [Ksin]ij

Ew[cos(xT
i w) sin(wTxj)] = 0.

Proof of Lemma 1. The proof follows the integration tricks in [52, 30]. Note in particular that the
third equality holds in the case of (cos, sin) nonlinearity but in general not true for arbitrary Lipschitz
(σ1, σ2).

Let us focus on the resolvent Q ≡
(

1
nΣT

XΣX + λIn

)−1

of 1
nΣT

XΣX ∈ Rn×n, for random Fourier

feature matrix ΣX ≡
[
cos(WX)
sin(WX)

]
that can be rewritten as

ΣT
X = [cos(XTw1), . . . , cos(XTwN ), sin(XTw1), . . . , sin(XTwN )] (15)
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for wi the i-th row of W ∈ RN×p with wi ∼ N (0, Ip), i = 1, . . . , N , that is at the core of our
analysis. Note from (15) that we have

ΣT
XΣX =

N∑
i=1

(
cos(XTwi) cos(wT

i X) + sin(XTwi) sin(wT
i X)

)
=

N∑
i=1

UiU
T
i

with Ui =
[
cos(XTwi) sin(XTwi)

]
∈ Rn×2.

Letting

Q̃ ≡
(
N

n

Kcos

1 + αcos
+
N

n

Ksin

1 + αsin
+ λIn

)−1

(16)

with
αcos =

1

n
tr(KcosE[Q]), αsin =

1

n
tr(KsinE[Q]) (17)

we have, with the resolvent identity (A−1 −B−1 = A−1(B−A)B−1 for invertible A,B) that

E[Q]− Q̃ = E
[
Q

(
N

n

Kcos

1 + αcos
+
N

n

Ksin

1 + αsin
− 1

n
ΣT

XΣX

)]
Q̃

= E[Q]
N

n

(
Kcos

1 + αcos
+

Ksin

1 + αsin

)
Q̃− N

n

1

N

N∑
i=1

E[QUiU
T
i ]Q̃

= E[Q]
N

n

(
Kcos

1 + αcos
+

Ksin

1 + αsin

)
Q̃− N

n

1

N

N∑
i=1

E[Q−iUi(I2 +
1

n
UT
i Q−iUi)

−1UT
i ]Q̃,

for Q−i ≡
(

1
nΣT

XΣX − 1
nUiUi + λIn

)−1

that is independent of Ui (and thus wi), where we
applied the following Woodbury identity.
Lemma 2 (Woodbury). For A,A + UUT ∈ Rp×p both invertible and U ∈ Rp×n, we have

(A + UUT)−1 = A−1 −A−1U(In + UTA−1U)−1UTA−1

so that in particular (A + UUT)−1U = A−1U(In + UTA−1U)−1.

Consider now the two-by-two matrix

I2 +
1

n
UT
i Q−iUi =

[
1 + 1

n cos(wT
i X)Q−i cos(XTwi)

1
n cos(wT

i X)Q−i sin(XTwi)
1
n sin(wT

i X)Q−i cos(XTwi) 1 + 1
n sin(wT

i X)Q−i sin(XTwi)

]
which, according to the following lemma, is expected to be close to

[
1 + αcos 0

0 1 + αsin

]
as defined

in (17).
Lemma 3 (Concentration of quadratic forms). Under Assumption 1, for σ1(·), σ2(·) two real 1-
Lipschitz functions, w ∼ N (0, Ip) and A ∈ Rn×n independent of w with ‖A‖ ≤ 1, then

P
(∣∣∣∣ 1nσa(wTX)Aσb(X

Tw)− 1

n
tr(AEw[σb(X

Tw)σa(wTX)])

∣∣∣∣ > t

)
≤ Ce−cnmin(t,t2)

for a, b ∈ {1, 2} and some universal constants C, c > 0.

Proof of Lemma 3. Lemma 3 can be easily extended from [30, Lemma 1], where one observes
the proof actually holds when different types of nonlinear Lipschitz functions σ1(·), σ2(·) (and in
particular cos and sin) are considered.

For W−i ∈ R(N−1)×p the random matrix W ∈ RN×p with its i-th row wi removed, Lemma 3,
together with the Lipschitz nature of the map W−i 7→ 1

nσa(wT
i X)Q−iσb(X

Twi) for Q−i =

( 1
n cos(W−iX)T cos(W−iX) + 1

n sin(W−iX)T sin(W−iX) +λIn)−1, leads to the following con-
centration result

P
(∣∣∣∣ 1nσa(wT

i X)Q−iσb(X
Twi)−

1

n
tr
(
E[Q−i]E[σb(X

Twi)σa(wT
i X)]

)∣∣∣∣ > t

)
≤ C ′e−c

′nmax(t2,t)

(18)
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the proof of which follows the same line of argument of [30, Lemma 4] and is omitted here.

As a consequence, we continue to write, with again the resolvent identity, that

(I2 +
1

n
UT
i Q−iUi)

−1 −
[
1 + αcos 0

0 1 + αsin

]−1

=

[
1 + 1

n cos(wT
i X)Q−i cos(XTwi)

1
n cos(wT

i X)Q−i sin(XTwi)
1
n sin(wT

i X)Q−i cos(XTwi) 1 + 1
n sin(wT

i X)Q−i sin(XTwi)

]−1

−
[
1 + αcos 0

0 1 + αsin

]−1

= (I2 +
1

n
UT
i Q−iUi)

−1

[
αcos − 1

n cos(wT
i X)Q−i cos(XTwi) − 1

n cos(wT
i X)Q−i sin(XTwi)

− 1
n sin(wT

i X)Q−i cos(XTwi) αsin − 1
n sin(wT

i X)Q−i sin(XTwi)

]
×
[ 1

1+αcos
0

0 1
1+αsin

]
≡ (I2 +

1

n
UT
i Q−iUi)

−1Di

[ 1
1+αcos

0

0 1
1+αsin

]
,

where we note from (18) (and ‖Q−i‖ ≤ λ−1) that the matrix E[Di] = o‖·‖(1) (in fact of spectral
norm of order O(n−

1
2 )). So that

E[Q]− Q̃ = E[Q]
N

n

(
Kcos

1 + αcos
+

Ksin

1 + αsin

)
Q̃− N

n

1

N

N∑
i=1

E[Q−iUi(I2 +
1

n
UT
i Q−iUi)

−1UT
i ]Q̃

= E[Q]
N

n

(
Kcos

1 + αcos
+

Ksin

1 + αsin

)
Q̃− N

n

1

N

N∑
i=1

E[Q−iUi

[ 1
1+αcos

0

0 1
1+αsin

]
UT
i ]Q̃

− N

n

1

N

N∑
i=1

E[Q−iUi(I2 +
1

n
UT
i Q−iUi)

−1Di

[ 1
1+αcos

0

0 1
1+αsin

]
UT
i ]Q̃

= (E[Q]− 1

N

N∑
i=1

E[Q−i])
N

n

(
Kcos

1 + αcos
+

Ksin

1 + αsin

)
Q̃− N

n

1

N

N∑
i=1

E[QUiDi

[ 1
1+αcos

0

0 1
1+αsin

]
UT
i ]Q̃,

where we used Ewi
[UiU

T
i ] = Kcos + Ksin by Lemma 1 and then Lemma 2 in reverse for the last

equality. Moreover, since

E[Q]− 1

N

N∑
i=1

E[Q−i] =
1

N

N∑
i=1

E[Q−Q−i] = − 1

n

1

N

N∑
i=1

E[QUi(I2 +
1

n
UT
i Q−iUi)

−1UT
i Q]

so that with the fact 1√
n
‖QΣT

X‖ ≤ ‖
√

Q 1
nΣT

XΣXQ‖ ≤ λ− 1
2 we have for the first term

‖E[Q]− 1

N

N∑
i=1

E[Q−i]‖ = O(n−1).

It thus remains to treat the second term, which, with the relation ABT + BAT � AAT + BBT (in
the sense of symmetric matrices), and the same line of arguments as above, can be shown to have
vanishing spectral norm (of order O(n−

1
2 )) as n, p,N →∞.

We thus have ‖E[Q]− Q̃‖ = O(n−
1
2 ), which concludes the first part of the proof of Theorem 1.

We shall show next that ‖Q̃ − Q̄‖ → 0 as n, p,N → ∞. First note from previous derivation that
ασ − 1

n tr KσQ̃ = O(n−
1
2 ) for σ = cos, sin. To compare Q̃ and Q̄, it follows again from the

resolvent identity that

Q̃− Q̄ = Q̃

(
N

n

Kcos(αcos − δcos)

(1 + δcos)(1 + αcos)
+
N

n

Ksin(αsin − δsin)

(1 + δsin)(1 + αsin)

)
Q̄

so that the control of ‖Q̃ − Q̄‖ boils down to the control of max{|αcos − δcos|, |αsin − δsin|}. To
this end, it suffices to write

αcos − δcos =
1

n
tr Kcos(E[Q]− Q̄) =

1

n
tr Kcos(Q̃− Q̄) +O(n−

1
2 )
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where we used | tr(AB)| ≤ ‖A‖ tr(B) for nonnegative definite B, together with the fact that
1
n tr Kσ is (uniformly) bounded under Assumption 1, for σ = cos, sin.

As a consequence, we have

|αcos − δcos| ≤ |αcos − δcos|
N

n

1
n tr(KcosQ̃KcosQ̄)

(1 + δcos)(1 + αcos)
+ o(1).

It thus remains to show

N

n

1
n tr(KcosQ̃KcosQ̄)

(1 + δcos)(1 + αcos)
< 1

or alternatively, by the Cauchy–Schwarz inequality, to show

N

n

1
n tr(KcosQ̃KcosQ̄)

(1 + δcos)(1 + αcos)
≤

√
N

n

1
n tr(KcosQ̄KcosQ̄)

(1 + δcos)2
· N
n

1
n tr(KcosQ̃KcosQ̃)

(1 + αcos)2
< 1.

To treat the first right-hand side term (the second can be done similarly), it unfolds from | tr(AB)| ≤
‖A‖ · tr(B) for nonnegative definite B that

N

n

1
n tr(KcosQ̄KcosQ̄)

(1 + δcos)2
≤
∥∥∥∥Nn KcosQ̄

1 + δcos

∥∥∥∥ 1
n tr(KcosQ̄)

1 + δcos
=

∥∥∥∥Nn KcosQ̄

1 + δcos

∥∥∥∥ γcos

1 + δcos
≤ γcos

1 + δcos
< 1

where we used the fact that Nn
KcosQ̄
1+δcos

= In− N
n

KsinQ̄
1+δsin

− λQ̄. This concludes the proof of Theorem 1.
�

C Proof of Theorem 2

To prove Theorem 2, it indeed suffices to prove the following lemma.

Lemma 4 (Asymptotic behavior of E[QAQ]). Under Assumption 1, for Q defined in (5) and
symmetric nonnegative definite A ∈ Rn×n of bounded spectral norm, we have∥∥∥∥E[QAQ]−

(
Q̄AQ̄ +

N

n

[
1
n tr(Q̄AQ̄Kcos)

(1+δcos)2

1
n tr(Q̄AQ̄Ksin)

(1+δsin)2

]
Ω

[
Q̄KcosQ̄
Q̄KsinQ̄

])∥∥∥∥→ 0

almost surely as n→∞, with Ω−1 ≡ I2−N
n

[ 1
n tr(Q̄KcosQ̄Kcos)

(1+δcos)2

1
n tr(Q̄KcosQ̄Ksin)

(1+δsin)2
1
n tr(Q̄KcosQ̄Ksin)

(1+δcos)2

1
n tr(Q̄KsinQ̄Ksin)

(1+δsin)2

]
. In particular,

we have ∥∥∥∥E [QKcosQ
QKsinQ

]
−Ω

[
Q̄KcosQ̄
Q̄KsinQ̄

]∥∥∥∥→ 0.

Proof of Lemma 4. The proof of Lemma 4 essentially follows the same line of arguments as that of
Theorem 1. Writing

E[QAQ] = E[Q̄AQ] + E[(Q− Q̄)AQ]

' Q̄AQ̄ + E
[
Q

(
N

n

Kcos

1 + δcos
+
N

n

Ksin

1 + δsin
− 1

n
ΣT

XΣX

)
Q̄AQ

]
= Q̄AQ̄ +

N

n
E[QΦQ̄AQ]− 1

n

N∑
i=1

E[QUiU
T
i Q̄AQ]

17



where we note ' by ignoring matrices with vanishing spectral norm (i.e., o‖·‖(1)) in the n, , p,N →
∞ limit and recall the shortcut Φ ≡ Kcos

1+δcos
+ Ksin

1+δsin
. Developing rightmost term with Lemma 2 as

E[QUiU
T
i Q̄AQ] = E

[
Q−iUi(I2 +

1

n
UT
i Q−iUi)

−1UT
i Q̄AQ

]
= E

[
Q−iUi(I2 +

1

n
UT
i Q−iUi)

−1UT
i Q̄AQ−i

]
− 1

n
E
[
Q−iUi(I2 +

1

n
UT
i Q−iUi)

−1UT
i Q̄AQ−iUi(I2 +

1

n
UT
i Q−iUi)

−1UT
i Q−i

]
' E[Q−iΦQ̄AQ−i]

− E
[
Q−iUi

[ 1
1+δcos

0

0 1
1+δsin

] [
1
n tr(Q̄AQ̄Kcos) 0

0 1
n tr(Q̄AQ̄Ksin)

] [ 1
1+δcos

0

0 1
1+δsin

]
UT
i Q−i

]
so that

E[QAQ] ' Q̄AQ̄ +
N

n
E
[
Q

( 1
n tr(Q̄AQ̄Kcos)

(1 + δcos)2
Kcos +

1
n tr(Q̄AQ̄Ksin)

(1 + δsin)2
Ksin

)
Q

]
= Q̄AQ̄ +

N

n

[
1
n tr(Q̄AQ̄Kcos)

(1+δcos)2

1
n tr(Q̄AQ̄Ksin)

(1+δsin)2

]
E
[
QKcosQ
QKsinQ

]
(19)

by taking A = Kcos or Ksin, we result in

E[QKcosQ] ' c

ac− bd
Q̄KcosQ̄ +

b

ac− bd
Q̄KsinQ̄

E[QKsinQ] ' a

ac− bd
Q̄KsinQ̄ +

d

ac− bd
Q̄KcosQ̄

with a = 1 − N
n

1
n tr(Q̄KcosQ̄Kcos)

(1+δcos)2
, b = N

n

1
n tr(Q̄KcosQ̄Ksin)

(1+δsin)2 , c = 1 − N
n

1
n tr(Q̄KsinQ̄Ksin)

(1+δsin)2 and

d = N
n

1
n tr(Q̄KsinQ̄Kcos)

(1+δcos)2
such that (1 + δsin)2b = (1 + δcos)

2d.

E
[
QKcosQ
QKsinQ

]
'
[
a −b
−d c

]−1 [
Q̄KcosQ̄
Q̄KsinQ̄

]
≡ Ω

[
Q̄KcosQ̄
Q̄KsinQ̄

]
for Ω ≡

[
a −b
−d c

]−1

. Plugging back into (19) we conclude the proof of Lemma 4.

Theorem 2 can be achieved by considering the concentration of (the bilinear form) 1
nyTQ2y around

its expectation 1
nyTE[Q2]y (with for instance Lemma 3 in [30]), together with Lemma 4. This

concludes the proof of Theorem 2. �

D Proof of Theorem 3

Recall the definition of Etest = 1
n̂‖ŷ −ΣT

X̂
β‖2 from (4) with ΣX̂ =

[
cos(WX̂)

sin(WX̂)

]
∈ R2N×n̂ on a

test set (X̂, ŷ) of size n̂, and first focus on the case 2N > n where β = 1
nΣXQy as per (3). By

(15), we have

Etest =
1

n̂

∥∥∥∥ŷ − 1

n
ΣT

X̂
ΣXQy

∥∥∥∥2

=
1

n̂

∥∥∥∥∥ŷ − 1

n

N∑
i=1

ÛiU
T
i Qy

∥∥∥∥∥
2

where, similar to the notation Ui =
[
cos(XTwi) sin(XTwi)

]
∈ Rn×2 as in the proof of Theo-

rem 1, we denote
Ûi ≡

[
cos(X̂Twi) sin(X̂Twi)

]
∈ Rn̂×2.

18



As a consequence, we further get

E[Etest] =
1

n̂
‖ŷ‖2 − 2

nn̂

N∑
i=1

ŷTE[ÛiU
T
i Q]y +

1

n2n̂

N∑
i,j=1

yTE[QUiÛ
T
i ÛjU

T
j Q]y

=
1

n̂
‖ŷ‖2 − 2

nn̂

N∑
i=1

ŷTE
[
Ûi(I2 +

1

n
UT
i Q−iUi)

−1UT
i Q−i

]
y +

1

n2n̂

N∑
i,j=1

yTE[QUiÛ
T
i ÛjU

T
j Q]y

' 1

n̂
‖ŷ‖2 − 2

nn̂

N∑
i=1

ŷTE
[
Ûi

[ 1
1+δcos

0

0 1
1+δsin

]
UT
i Q−i

]
y +

1

n2n̂

N∑
i,j=1

yTE[QUiÛ
T
i ÛjU

T
j Q]y

' 1

n̂
‖ŷ‖2 − 2

n̂
ŷT

(
N

n

Kcos(X̂,X)

1 + δcos
+
N

n

Ksin(X̂,X)

1 + δsin

)
Q̄y +

1

n2n̂

N∑
i,j=1

yTE[QUiÛ
T
i ÛjU

T
j Q]y

where we similarly denote

Kcos(X̂,X) ≡
{
e−

1
2 (‖x̂i‖2+‖xj‖2) cosh(x̂T

i xj)
}n̂,n
i,j=1

Ksin(X̂,X) ≡
{
e−

1
2 (‖x̂i‖2+‖xj‖2) sinh(x̂T

i xj)
}n̂,n
i,j=1

∈ Rn̂×n.

Note that, different from the proof of Theorem 1 and 2 where we constantly use the fact that
‖Q‖ ≤ λ−1 and

1

n
ΣT

XΣXQ = In − λQ

so that ‖ 1
nΣT

XΣXQ‖ ≤ 1, we do not have in general a simple control for ‖ 1
nΣT

X̂
ΣXQ‖, when

arbitrary X̂ is considered. Intuitively speaking, this is due to the loss-of-control for ‖ 1
n (ΣX̂ −

ΣX)TΣXQ‖ when X̂ can be chosen arbitrarily with respect to X. It was remarked in [30, Remark 1]
that in general only a O(

√
n) upper bound can be derived for ‖ 1√

n
ΣX‖ or ‖ 1√

n
ΣX̂‖. Nonetheless,

this problem can be resolved with the additional Assumption 2.

More precisely, note that

‖ 1

n
ΣT

X̂
ΣXQ‖ ≤ 1

n
‖ΣT

XΣXQ‖+
1

n
‖(ΣX̂ −ΣX)TΣXQ‖ ≤ 1 +

1√
n
‖ΣX̂ −ΣX‖ ·

1√
n
‖ΣXQ‖

(20)
it remains to show that ‖ΣX −ΣX̂‖ = O(

√
n) under Assumption 2 to establish ‖ 1

nΣT
X̂

ΣXQ‖ =
O(1), that is, to show that

‖σ(WX)− σ(WX̂)‖ = O(
√
n) (21)

for σ ∈ {cos, sin}. Note this cannot be achieved using only the Lipschitz nature of σ(·) and the fact
that ‖X− X̂‖ ≤ ‖X‖+ ‖X̂‖ = O(1) under Assumption 1 by writing

‖σ(WX)− σ(WX̂)‖ ≤ ‖σ(WX)− σ(WX̂)‖F ≤ ‖W‖F · ‖X− X̂‖ = O(n). (22)
where we recall that ‖W‖ = O(

√
n) and ‖W‖F = O(n). Nonetheless, from [29, Proposition B.1]

we have that the product WX, and thus σ(WX), strongly concentrates around its expectation in the
sense of (9), so that

‖σ(WX)− σ(WX̂)‖ ≤ ‖σ(WX)− E[σ(WX)]‖+ ‖E[σ(WX)− σ(WX̂)]‖
+ ‖σ(WX̂)− E[σ(WX̂)]‖ = O(

√
n)

under Assumption 2. As a results, we are allowed to control 1
nΣT

X̂
ΣXQ and similarly 1

nΣT
X̂

ΣX̂Q in
the same vein as 1

nΣT
XΣXQ in the proof of Theorem 1 and 2 in Appendix B and C, respectively.

It thus remains to handle the last term (noted Z) as follows

Z ≡ 1

n2n̂

N∑
i,j=1

yTE[QUiÛ
T
i ÛjU

T
j Q]y

=
1

n2n̂

N∑
i=1

yTE[QUiÛ
T
i ÛiU

T
i Q]y +

1

n2n̂

N∑
i=1

∑
j 6=i

yTE[QUiÛ
T
i ÛjU

T
j Q]y = Z1 + Z2

19



where Z1 term can be treated as

Z1 ≡
1

n2n̂

N∑
i=1

yTE[QUiÛ
T
i ÛiU

T
i Q]y

=
1

nn̂

N∑
i=1

yTE[Q−iUi(I2 +
1

n
UT
i Q−iUi)

−1 1

n
ÛT
i Ûi(I2 +

1

n
UT
i Q−iUi)

−1UT
i Q−i]y

' 1

nn̂

N∑
i=1

yTE[Q−iUi

[ 1
1+δcos

0

0 1
1+δsin

] [
1
n tr

ˆ̂
Kcos 0

0 1
n tr

ˆ̂
Ksin

] [ 1
1+δcos

0

0 1
1+δsin

]
UT
i Q−i]y

' N

n

1

n̂
yTE

[
Q

(
1
n tr Kcos(X̂, X̂)

(1 + δcos)2
Kcos +

1
n tr Ksin(X̂, X̂)

(1 + δsin)2
Ksin

)
Q

]
y

' N

n

1

n̂

[
1
n tr Kcos(X̂,X̂)

(1+δcos)2

1
n tr 1

n tr Ksin(X̂,X̂)

(1+δsin)2

]
Ω

[
yTQ̄KcosQ̄y
yTQ̄KsinQ̄y

]

where we apply Lemma 4 and recall

Kcos(X̂, X̂) ≡
{
e−

1
2 (‖x̂i‖2+‖x̂j‖2) cosh(x̂T

i x̂j)
}n̂
i,j=1

, Ksin(X̂, X̂) ≡
{
e−

1
2 (‖x̂i‖2+‖x̂j‖2) sinh(x̂T

i x̂j)
}n̂
i,j=1

Moving on to Z2 and we write

Z2 ≡
1

n2n̂
E

N∑
i=1

∑
j 6=i

yTQUiÛ
T
i ÛjU

T
j Qy

=
1

n2n̂
E

N∑
i=1

∑
j 6=i

yTQ−jUiÛ
T
i Ûj(I2 +

1

n
UT
j Q−jUj)

−1UT
j Q−jy

− 1

n2n̂
E

N∑
i=1

∑
j 6=i

yTQ−jUj(I2 +
1

n
UT
j Q−jUj)

−1UT
j Q−jUiÛ

T
i Ûj(I2 +

1

n
UT
j Q−jUj)

−1UT
j Q−jy

' 1

nn̂
E

N∑
i=1

∑
j 6=i

yTQ−jUiÛ
T
i

(
Kcos(X̂,X)

1 + δcos
+

Ksin(X̂,X)

1 + δsin

)
Q−jy

− 1

n2n̂
E

N∑
i=1

∑
j 6=i

yTQ−jUj

[ 1
1+δcos

0

0 1
1+δsin

] [
1
n tr(Q−jUiÛ

T
i Kcos(X̂,X)) 0

0 1
n tr(Q−jUiÛ

T
i Ksin(X̂,X))

]
[ 1

1+δcos
0

0 1
1+δsin

]
UT
j Q−jy ≡ Z21 − Z22.
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For the term Z21, note that Q−j ' Q and depends on Ui (and Ûi), such that

Z21 ≡
1

n2n̂
E

N∑
i=1

∑
j 6=i

yTQ−jUiÛ
T
i

(
Kcos(X̂,X)

1 + δcos
+

Ksin(X̂,X)

1 + δsin

)
Q−jy

' N

n

1

nn̂
E

N∑
i=1

yTQUiÛ
T
i

(
Kcos(X̂,X)

1 + δcos
+

Ksin(X̂,X)

1 + δsin

)
Qy

=
N

n

1

nn̂
E

N∑
i=1

yTQ−iUi(I2 +
1

n
UT
i Q−iUi)

−1ÛT
i Φ̂Q−iy

− N

n

1

nn̂
E

N∑
i=1

yTQ−iUi(I2 +
1

n
UT
i Q−iUi)

−1ÛT
i Φ̂Q−iUi(I2 +

1

n
UT
i Q−iUi)

−1UT
i Q−iy

' N

n

1

nn̂
E

N∑
i=1

yTQ−i

(
Kcos(X̂,X)

1 + δcos
+

Ksin(X̂,X)

1 + δsin

)T

Φ̂Q−iy

− N

n

1

n̂
E

N∑
i=1

yTQ−iUi

[ 1
1+δcos

0

0 1
1+δsin

]
1

n
ÛT
i Φ̂Q−iUi

[ 1
1+δcos

0

0 1
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where we recall the shortcut Φ ≡ Kcos
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As a consequence, we further have, with Lemma 4 that
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The last term Z22 can be similarly treated as
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so that by again Lemma 4
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Assembling the estimates for Z1, Z21 and Z22, we get
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which, up to further simplifications, concludes the proof of Theorem 3.

E Several Useful Lemmas

Lemma 5 (Some useful properties of Ω). For any λ > 0 and Ω defined in (8), we have

1. all entries of Ω are positive;
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so that 1) det(Ω−1) > 0 and 2) for 2N = n, det(Ω−1) scales like λ as λ→ 0.
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Lemma 6 (Derivatives with respect to N ). Let Assumption 1 holds, for any λ > 0 andδcos = 1
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defined in Theorem 1, we have that (δcos, δsin) and ‖Q̄‖ are all decreasing functions of N . Note in
particular that the same conclusion holds for 2N > n as λ→ 0.
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for Ω defined in (8) and Φ = Kcos
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+ Ksin

1+δsin
, which, together with Lemma 5, allows us to conclude

that ∂δcos∂N , ∂δsin∂N < 0. Further note that
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which concludes the proof.

Lemma 7 (Derivative with respect to λ). For any λ > 0, (δcos, δsin) and ‖Q̄‖ defined in Theorem 1
decrease as λ grows large.

Proof. Taking the derivative of (δcos, δsin) with respect to λ > 0, we have explicitly[
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which, together with the fact that all entries of Ω are positive (Lemma 5), allows us to conclude that
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and thus the conclusion for Q̄.

F Additional Real-world Data sets

We have presented results in detail for one particular real-world data set, the MNIST data set, but
we have extensive empirical results demonstrating that similar conclusions hold more broadly. As
an example of this, here we present numerical evaluations of our results on several other real-world
image data sets. We consider the classification task on another two MNIST-like data sets composed
of 28× 28 grayscale images: the Fashion-MNIST [53] and the Kannada-MNIST [42] data sets. Each
image is represented as a p = 784-dimensional vector and the output targets y, ŷ are taken to have
−1,+1 entries depending on the image class. As a consequence, both the training and test MSEs
defined in (4) are approximately 1 for N = 0 and not-too-large regularization λ, as observed in
Figure 4 and Figure 10 below. For each data set, images were jointly centered and scaled so to fall
close to the setting of Assumption 1 on X and X̂.

In Figure 8, we compare the empirical training and test NSEs with their limiting behaviors derived
from Theorem 2 and 3, as a function of the penalty parameter λ, on a training set of size n = 1 024
(512 images from class 5 and 512 images from class 6) with feature dimension N = 256, on both
data sets. A close fit between theory and practice is observed, for moderately large values of n, p,N ,
demonstrating thus a wide practical applicability of the proposed asymptotic analyses, particularly
compared to the (limiting) Gaussian kernel predictions per Figure 1.

In Figure 9, we report the behavior of the pair (δcos, δsin) for small values of λ = 10−7 and 10−3.
Similar to the two leftmost plots in Figure 3 for MNIST, a jump from the under- to over-parameterized
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Figure 8: MSEs of RFF regression on Fashion-MNIST (left two) and Kannada-MNIST (right
two) data (class 5 versus 6), as a function of regression parameter λ, for p = 784, n = n̂ = 1 024,
N = 256 and 512. Empirical results displayed in blue (circles for training and crosses for test); and
the asymptotics from Theorem 2 and 3 displayed in red (sold lines for training and dashed for test).
Results obtained by averaging over 30 runs.

10−2 100 102
10−3

102

107

λ = 10−7

N/n

δ

δcos

δsin

10−2 100 102
10−3

100

103

λ = 10−3

N/n

10−2 100 102
10−3

102

107

λ = 10−7

N/n

10−2 100 102
10−3

100

103

λ = 10−3

N/n

Figure 9: Behavior of (δcos, δsin) in (11), on Fashion-MNIST (left two) and Kannada-MNIST (right
two) data (class 8 versus 9), for p = 784, n = 1000, λ = 10−7 and 10−3. The black dashed line is
the interpolation threshold 2N = n.

regime occurs at the interpolation threshold 2N = n, in both Fashion- and Kannada-MNIST data
sets, clearly indicating the two phases of learning and the phase transition between them.

In Figure 10, we report the empirical and theoretical test errors as a function of the ratio N/n,
on a training test of size n = 500 (250 images from class 8 and 250 images from class 9), by
varying feature dimension N . An exceedingly small regularization λ = 10−7 is applied to mimic
the “ridgeless” limiting behavior as λ→ 0. On both data sets, double-descent-type test curves are
observed where the test errors goes down and up, with a singular peak around 2N = n, and then
goes down monotonically as N continues to increase when 2N > n.
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Figure 10: Empirical (crosses) and theoretical (dashed lines) test error of RFF regression, as a function
of the ratioN/n, on Fashion-MNIST (left two) and Kannada-MNIST (right two) data (class 8 versus
9), for p = 784, n = 500, λ = 10−7 and 10−3. The black dashed line is the interpolation threshold
2N = n. Results obtained by averaging over 30 runs.
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