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A Large Dimensional Analysis of
Least Squares Support Vector Machines

Zhenyu Liao, Romain Couillet

Abstract—In this article, a large dimensional performance
analysis of kernel least squares support vector machines (LS-
SVMs) is provided under the assumption of a two-class Gaussian
mixture model for the input data. Building upon recent advances
in random matrix theory, we show, when the dimension of
data p and their number n are both large, that the LS-SVM
decision function can be well approximated by a normally
distributed random variable, the mean and variance of which
depend explicitly on a local behavior of the kernel function. This
theoretical result is then applied to the MNIST and Fashion-
MNIST datasets which, despite their non-Gaussianity, exhibit
a convincingly close behavior. Most importantly, our analysis
provides a deeper understanding of the mechanism into play in
SVM-type methods and in particular of the impact on the choice
of the kernel function as well as some of their theoretical limits
in separating high dimensional Gaussian vectors.

Index Terms—High dimensional statistics, kernel methods,
random matrix theory, support vector machines

I. INTRODUCTION

In the past two decades, due to their surprising classification
capability and simple implementation, kernel support vector
machine (SVM) [1] and its variants [2–4] have been used
in a wide variety of classification applications, such as face
detection [5,6], handwritten digit recognition [7], and text
categorization [8,9]. In all aforementioned applications, the
dimension of data p and their number n are large: in the
hundreds and even thousands. The significance of working in
this large n, p regime is even more convincing in the Big Data
paradigm today where handling data which are both numerous
and large dimensional becomes increasingly common.

Firmly grounded in the framework of statistical learning
theory [10], support vector machine has two main features:
(i) in SVM, the training data x1, . . . ,xn ∈ Rp are mapped
into some feature space through a non-linear function ϕ,
which, thanks to the so-called “kernel trick” [11], needs
not be computed explicitly, so that some kernel function f
is introduced in place of the inner product in the feature
space: f(x,y) = ϕ(x)Tϕ(y), and (ii) a standard (convex)
optimization method is used to find the classifier that both
minimizes the training error and yields a good generalization
performance for unknown data.
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91192 Gif-sur-Yvette, France (email: zhenyu.liao@l2s.centralesupelec.fr; ro-
main.couillet@centralesupelec.fr).

As the training of SVMs involves a quadratic program-
ming problem, the computation complexity of SVM training
algorithms can be intensive when the number of training
examples n becomes large (at least quadratic with respect to
n). It is thus difficult to deal with large scale problems with
traditional SVMs. To cope with this limitation, least squares
SVM (LS-SVM, also later referred to as kernel regularized
least-squares estimator or kernel ridge regression [12–14]) was
proposed in [2], providing a more computationally efficient
implementation of the traditional SVMs, by taking equality
optimization constraints instead of inequalities, which results
in an explicit solution (from a set of linear equations) rather
than an implicit one in SVMs. This article is mostly concerned
with this particular type of SVMs.

Trained SVMs are strongly data-dependent: the data with
generally unknown statistics are passed through a nonlinear
kernel function f and standard optimization methods are
used to find the best classifier. All these features make the
performance of SVM hardly traceable (at least within the
classical finite n, p regime). To understand the mechanism of
SVMs, the notion of VC dimension was introduced to provide
bounds on the generalization performance of SVM [10], while
a probabilistic interpretation of LS-SVM was discussed in [15]
through a Bayesian inference approach. In other related works,
connections between LS-SVMs and SVMs were revealed in
[16], and more relationships were shown between SVM-type
and other learning methods, e.g., LS-SVMs and extreme learn-
ing machines (ELMs) [17]; SVMs and regularization networks
(RNs) [18], etc. Theoretical analyses on the generalization
performance of LS-SVM have been developed, under the
conventional asymptotic statistics framework (i.e., assuming
n → ∞), to obtain optimal convergence rates in [13,14].
Nonetheless, a proper adaptation to the large n, p setting to
address LS-SVM performance for large dimensional datasets
(of growing interest today) is still missing.

Similar to classical analysis of asymptotic statistics where
n → ∞ while p is fixed, where the diversity of the number
of data provides convergence through laws of large numbers,
working in the large n, p regime by letting in addition p→∞
helps exploit the diversity offered by the size of each data
vector, providing us with another dimension to guarantee the
convergence of some key objects in our analysis, and thus
makes the asymptotic analysis of the elusive kernel matrix
K = {f (xi,xj)}ni,j=1 technically more accessible. Recent
breakthroughs in random matrix theory have allowed one to
overtake the theoretical difficulty posed by the nonlinearity of
the aforementioned kernel function f [19,20] and thus make an
in-depth analysis of LS-SVM possible in the large n, p regime.
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These tools were notably used to assess the performance of the
popular Ng-Weiss-Jordan kernel spectral clustering methods
for large datasets [20], in the analysis of graphed-based semi-
supervised learning [21] or for the development of novel kernel
subspace clustering methods [22].

Similar to these works, in this article, we provide a per-
formance analysis of LS-SVM, in the regime of n, p → ∞
and p/n → c̄0 ∈ (0,∞), under the assumption of a two-
class Gaussian mixture model of means µ1,µ2 and covariance
matrices C1,C2 for the input data. The Gaussian assumption
may seem artificial to the practitioners, but reveals first insights
into how SVM-type methods deal with the information in
means and covariances from a more quantitative point of view.
Besides, the early investigations [20,21] have revealed that the
behavior of some machine learning methods under Gaussian or
deterministic practical input datasets are a close match, despite
the obvious non-Gaussianity of the latter.

Our main finding is that, as in [20], in the large n, p regime
and under suitable conditions on the input statistics, a non-
trivial asymptotic classification error rate (i.e., neither 0 nor
1) can be obtained and the decision function of LS-SVM
converges to a Gaussian random variable whose mean and
variance depend on the statistics of the two different classes
as well as on the behavior of the kernel function f evaluated
at 2 tr(n1C1 + n2C2)/(np), with n1 and n2 the number of
instances in each class. This brings novel insights into some
key issues of SVM-type methods such as kernel function
selection and parameter optimization (see for example [15,23–
27] and the references therein), as far as large dimensional
data are concerned. More importantly, we confirm through
simulations that our theoretical findings closely match the
performance obtained on the MNIST [28] and the Fashion-
MNIST datasets [29], which conveys a strong applicative
motivation for this work.

In the remainder of the article, we provide a rigorous
statement of our main results. The problem of LS-SVM is dis-
cussed in Section II and our model and main results presented
in Section III, while all proofs are deferred to the appendices
in the Supplementary Material. In Section IV, attention will
be paid on some special cases that are more analytically
tractable. Section V concludes the paper by summarizing the
main results and outlining future research directions.

Reproducibility: Python 3 codes to reproduce the results
in this article are available at https://github.com/Zhenyu-
LIAO/RMT4LSSVM.

Notations: Boldface lowercase (uppercase) characters stand
for vectors (matrices), and scalars non-boldface respectively.
1n is the column vector of ones of size n, 0n the column
vector of zeros, and In the n×n identity matrix. The notation
(·)T denotes the transpose operator. The norm ‖ · ‖ is the
Euclidean norm for vectors and the operator norm for matrices.
The notation P(·) denotes the probability measure of a random
variable. The notation d→ denotes convergence in distribution
and a.s.→ almost sure convergence, respectively. The operator
D(v) = D{va}ka=1 is the diagonal matrix having va, . . . , vk
as its ordered diagonal elements. We denote {va}ka=1 a column

vector with a-th entry (or block entry) va (which may be a
vector), while {Vab}ka,b=1 denotes a square matrix with entry
(or block-entry) (a, b) given by Vab (which may be a matrix).

II. PROBLEM STATEMENT

Least squares support vector machines (LS-SVMs) are
a modification of the standard SVM introduced in [2] to
overcome the drawbacks of SVM related to computational
efficiency. The optimization problem has half the number
of parameters and benefits from solving a linear system of
equations instead of a quadratic programming problem as in
standard SVM and is thus more practical for large dimensional
learning tasks. In this article, we will focus on a binary
classification problem using LS-SVM as described in the
following paragraph.

Given a training set {(x1, y1), . . . , (xn, yn)} of size n,
where data xi ∈ Rp and labels yi ∈ {−1, 1}, the objective
of LS-SVM is to devise a decision function g(x) that ideally
maps all xi in the training set to yi and subsequently all
unknown data x to their corresponding y value. Here we
denote xi ∈ C1 if yi = −1 and xi ∈ C2 if yi = 1 and
shall say that xi belongs to class C1 or class C2, respectively.
Due to the often nonlinear separability of these training data
in the input space Rp, in most cases, one associates the
training data xi to some feature space H through a nonlinear
mapping ϕ : xi 7→ ϕ(xi) ∈ H. Constrained optimization
methods are then used to define a separating hyperplane in
H with direction vector w and correspondingly to find a
function g(x) = wTϕ(x) + b that minimizes the training
errors ei = yi −

(
wTϕ(xi) + b

)
, and meanwhile yields good

generalization performance by minimizing the norm of w
[30]. More specifically, the LS-SVM approach consists in
minimizing the squared errors e2i , thus resulting in1

arg min
w,b

L(w, e) = ‖w‖2 +
γ

n

n∑
i=1

e2i (1)

such that yi = wTϕ(xi) + b+ ei, i = 1, . . . , n

where γ > 0 is a penalty factor that weights the structural risk
‖w‖2 against the empirical one 1

n

∑n
i=1 e

2
i .

The problem can be solved by introducing Lagrange mul-
tipliers αi, i = 1, . . . , n with solution w =

∑n
i=1 αiϕ(xi),

where, letting y = [y1, . . . , yn]T,α = [α1, . . . , αn]T, we
obtainα = S−1

(
In − 1n1

T
nS
−1

1T
nS
−11n

)
y = S−1 (y − b1n)

b =
1T
nS
−1y

1T
nS
−11n

(2)

with S = K + n
γ In and K ,

{
ϕ(xi)

Tϕ(xj)
}n
i,j=1

referred
to as the kernel matrix [2].

Given α and b, a new datum x is then classified into class
C1 or C2 depending on the value of the following decision
function

g(x) = αTk(x) + b (3)

1We include the bias term b as in the (classical) LS-SVM formulation [2],
which may be different from kernel ridge regression in some literature [12,15]
where no bias term is used.

https://github.com/Zhenyu-LIAO/RMT4LSSVM
https://github.com/Zhenyu-LIAO/RMT4LSSVM
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where k(x) =
{
ϕ(x)Tϕ(xj)

}n
j=1
∈ Rn. More precisely, x

is associated to class C1 if g(x) takes a small value (below a
certain threshold ξ) and to class C2 otherwise.2

With the “kernel trick” [11], as shown in (2) and (3) that,
both in the “training” and “testing” steps, one only needs to
evaluate the inner product ϕ(xi)

Tϕ(xj) or ϕ(x)Tϕ(xj), and
never needs to know explicitly the mapping ϕ(·). In the rest of
this article, we assume that the kernel is translation invariant
and focus on kernel functions f : R+ → R+ that satisfy
ϕ(xi)

Tϕ(xj) = f(‖xi − xj‖2/p) and shall redefine K and
k(x) for data point x as3

K =
{
f
(
‖xi − xj‖2/p

)}n
i,j=1

(4)

k(x) =
{
f
(
‖x− xj‖2/p

)}n
j=1

.

Some commonly used kernel functions are the Gaussian
radial basis (RGB) kernel f(x) = exp

(
− x

2σ2

)
with σ > 0

and the polynomial kernel f(x) =
∑d
i=0 aix

i with d ≥ 1.
In the rest of this article, we will focus on the performance

of LS-SVM, in the large n, p regime, by studying the asymp-
totic behavior of the decision function g(x) defined in (3), in
a binary classification problem with some statistical properties
of the data, the model of which will be specified in the next
section.

III. MAIN RESULTS

A. Model and assumptions

Evaluating the performance of LS-SVM is made difficult by
the heavily data-driven aspect of the method. In this article,
we assume that all xi’s are extracted from a Gaussian mixture,
thereby allowing for a thorough theoretical analysis.

Let x1, . . . ,xn ∈ Rp be independent vectors belonging to
two distribution classes C1, C2, with x1, . . . ,xn1 ∈ C1 and
xn1+1, . . . ,xn ∈ C2 (so that class C1 has cardinality n1 and
class C2 has cardinality n−n1 = n2). We assume that xi ∈ Ca
for a ∈ {1, 2} if

xi = µa +
√
pωi

for some µa ∈ Rp and ωi ∼ N (0,Ca/p), with Ca ∈ Rp×p
some positive definite matrix.

As the µa’s and Ca’s scale with p, to avoid asymptotic
trivial misclassification rates (i.e., neither 0 or 1 in the limit of
n, p→∞), we shall (as in [20,32]) technically place ourselves
under the following controlled growth rate assumption:

Assumption 1 (Growth Rate). As n→∞, for a ∈ {1, 2}, the
following conditions hold.
• Data scaling: p

n , c0 → c̄0 > 0.
• Class scaling: na

n , ca → c̄a > 0.
• Mean scaling: ‖µ2 − µ1‖ = O(1).

2Since data from C1 are labeled −1 while data from C2 are labeled 1.
3As shall be seen later, the division by p here is a convenient normalization

in the large n, p regime. For example, we have the (normalized) norm
‖xi‖/

√
p is of orderO(1) with high probability for large n, p. The motivation

of studying “translation invariant” kernel is that, being one of the most popular
types of kernel used in practice, it offers (additionally) technical tractability
as a result of the “concentration” phenomenon of large dimensional Gaussian
vector, as we shall see later for example in (5). Similar results can be obtained
for “inner-product” kernel of the type f(xT

i xj/p) as presented in [19,31].

• Covariance scaling: ‖Ca‖ = O(1) and tr(C2 −C1) =
O(
√
p).

• for C◦ , n1

n C1+ n2

n C2, 2
p tr C◦ → τ > 0 as n, p→∞.

From a practical aspect, where p and n are fixed quantities,
the dual condition n → ∞ and p

n → c̄0 > 0 must be
understood as requesting that both p and n be large and such
that the ratio p

n is sufficiently distinct from 0 and ∞.4

Aside from the last assumption, stated here mostly for
technical convenience, it can be shown that the growth rate
demanded in Assumption 1 is rate-optimal in the sense that
an oracle Neyman–Pearson hypothesis testing procedure (with
known µa and Ca) is (in general) ineffective at any smaller
distance rates (so that the misclassification rate will constantly
be 1), as discussed in the following remark.

Remark 1 (Optimal Growth Rate). Assume that both ‖Ca‖
and ‖C−1a ‖ are of order O(1) and let x be a vector belonging
to class C1, i.e., x ∼ N (µ1,C1). Then, for perfectly known
means µ1,µ2 and covariances C1,C2, the Neyman–Pearson
test for x to belong to C1 consists in the following comparison,

(x− µ2)
T

C−12 (x− µ2)−(x− µ1)
T

C−11 (x− µ1) ≶ log
det C1

det C2

which is further equivalent to

t(x) , ωT
(
C−12 −C−11

)
ω +

2
√
p

∆µTC−12 ω +
1

p
∆µTC−12 ∆µ

− 1

p
log

det C1

det C2
≶ 0

where we denote ∆µ , µ1 − µ2, ω , 1√
p (x − µ1) and

thus ω ∼ N (0,C1/p). To explore the difference in means
∆µ we take C1 = C2 = C and by Lyapunov’s CLT [33,
Theorem 27.3] we have, as p→∞,

t(x)− t̂ d→ 0.

where t̂ ∼ N
(

1
p∆µTC−1∆µ, 2p∆µTC−1∆µ

)
.

For a non-trivial classification rate, the mean of t̂ must scale
with p at least at the same rate as its standard deviation and
thus, since ‖C−1a ‖ = O(1), this implies that ‖∆µ‖ be at least
of order O(1). Similar analysis can be performed to obtain the
rate ‖C1−C2‖ = O(1/

√
p) and consequently tr(C2−C1) =

O(
√
p). We refer the readers to [32] for more discussions in

this respect.

A key observation, also made in [20], is that, as a conse-
quence of Assumption 1, for all pairs i 6= j,

‖xi − xj‖2/p
a.s.→ τ (5)

and the convergence is even uniform across all i 6= j.
This remark is the crux of all subsequent results (note that,
surprisingly at first, it states that all data are essentially at the
same distance from one another, irrespective of classes, and
that the matrix K defined in (4) has all its entries essentially
equal “in the limit” due to the the high dimensional nature
of the data; this can be seen as a manifestation of the “curse

4As a matter of fact, as our results will demonstrate, the case where p
n
→

c̄0 = 0 is also valid as an extension by continuity through c̄0 → 0.
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of dimensionality” with respect to the Euclidean distance in
high-dimensional space).

The function f defining the kernel matrix K in (4) shall be
requested to satisfy the following assumption:

Assumption 2 (Kernel Function). The function f is a three-
times differentiable function in a neighborhood of τ .

The objective of this article is to assess the performance
of LS-SVM, under the setting of Assumptions 1 and 2, by
studying the asymptotic behavior of the decision function
g(x) defined in (3). Following the work of [19] and [20],
under our basic settings, the convergence in (5) makes it
possible to linearize the kernel matrix K around the matrix
f(τ)1n1T

n, and thus the intractable nonlinear kernel matrix K
can be asymptotically linearized in the large n, p regime. As
such, since the decision function g(x) is explicitly defined
as a function of K (through α and b as defined in (2)),
one can work out an asymptotic linearization of g(x) as a
function of the kernel function f and the statistics of the
data. This analysis, presented in detail in Appendix A of the
Supplementary Material, allows one to reveal the relationship
between the performance of LS-SVM and the kernel function
f as well as the given learning task, for Gaussian input data
as n, p→∞, as presented in the following subsection.

B. Asymptotic behavior of the decision function g(x)

Before going into our main results, a few notations need to
be introduced. In the remainder of the article, we shall use the
following deterministic and random elements notations:

P , In − 1n1T
n/n ∈ Rn×n, Ω , [ω1, . . . ,ωn] ∈ Rp×n

ψ ,
{
‖ωi‖2 − E

[
‖ωi‖2

]}n
i=1
∈ Rn.

Under Assumptions 1 and 2, following up [20], one can
approximate the kernel matrix K by K̂ in such a way that

‖K− K̂‖ a.s.→ 0

with K̂ = −2f ′(τ)(M + VVT) + (f(0)− f(τ) + τf ′(τ)) In
for some matrices M and V, where M is a standard random
matrix model (of operator norm O(1)) and VVT a small
rank matrix (of operator norm O(n)), which depends both
on P,Ω,ψ and on the class statistics µ1,µ2 and C1,C2.
The same analysis is applied to the vector k(x) by similarly
defining the following random variables for a new datum
x ∈ Ca, a ∈ {1, 2}:

ωx , (x− µa)/
√
p ∈ Rp, ψx , ‖ωx‖2 − E

[
‖ωx‖2

]
∈ R.

Based on the (operator norm) approximation K ≈ K̂, a Taylor
expansion is then performed on S−1 = (K + nIn/γ)

−1 to ob-
tain an (asymptotic) approximation of S−1, and subsequently
on α and b which depend explicitly on S−1. At last, plugging
these results into (3), one finds the main technical result of
this article as follows.

Theorem 1 (Asymptotic Approximation). Let Assumptions 1
and 2 hold, and g(x) be defined by (3). Then, as n, p → ∞,
n(g(x)− ĝ(x))

a.s.→ 0, where

ĝ(x) =

{
c2 − c1 + γ

(
P− 2c1c

2
2D
)
, if x ∈ C1

c2 − c1 + γ
(
P + 2c21c2D

)
, if x ∈ C2

(6)

with

P = −2f ′(τ)

n
yTPΩTωx −

4c1c2f
′(τ)

√
p

(µ2 − µ1)
T
ωx

+ 2c1c2f
′′(τ)ψx

tr (C2 −C1)

p
(7)

D = −2f ′(τ)

p
‖µ2 − µ1‖2 +

f ′′(τ)

p2
(tr (C2 −C1))

2

+
2f ′′(τ)

p2
tr
(
(C2 −C1)2

)
. (8)

Leaving the proof to Appendix A in the Supplementary
Material, Theorem 1 tells us that the decision function g(x)
has an asymptotic equivalent ĝ(x) that consists of three parts:

1) the deterministic term c2−c1 of order O(1) that depends
on the number of instances in each class of the training
set, which essentially comes from the term 1T

ny/n in b;
2) the “noisy” term P of order O(n−1) which is a function

of the zero mean random variables ωx and ψx, thus in
particular E[P] = 0;

3) the “informative” term containing D, also of order
O(n−1), which features the deterministic differences be-
tween the two classes.

From Theorem 1, under the basic settings of Assumption 1,
for Gaussian data x ∈ Ca, a ∈ {1, 2}, we can show that ĝ(x)
(and therefore g(x)) converges to a random Gaussian variable
the mean and variance of which are given in the following
theorem. The proof is deferred to Appendix B.

Theorem 2 (Gaussian Approximation). Under the setting of
Theorem 1, n(g(x)−Ga)

d→ 0, where

Ga ∼ N (Ea,Vara)

with

Ea =

{
c2 − c1 − 2c2 · c1c2γD, a = 1

c2 − c1 + 2c1 · c1c2γD, a = 2

Vara = 8γ2c21c
2
2 (Va1 + Va2 + Va3 )

and

Va1 =
(f ′′(τ))

2

p4
(tr (C2 −C1))

2
trC2

a

Va2 =
2 (f ′(τ))

2

p2
(µ2 − µ1)

T
Ca (µ2 − µ1)

Va3 =
2 (f ′(τ))

2

np2

(
tr C1Ca

c1
+

tr C2Ca

c2

)
.

Theorem 2 is our main practical result as it allows one to
evaluate the large n, p performance of LS-SVM for Gaussian
data. While dwelling on the implications of Theorem 1 and 2,
several remarks and discussions are in order.

Remark 2 (Dominant Bias). From Theorem 1, under the key
Assumption 1, both the random noise P and the deterministic
“informative” term D are of order O(n−1), which means that
the decision function g(x) = c2 − c1 + O(n−1). This result
somehow contradicts the classical decision criterion proposed
in [2], based on the sign of g(x), i.e., x is associated to class
C1 if g(x) < 0 and to class C2 otherwise. When c1 6= c2,
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this would lead to an asymptotic classification of all new data
x’s in the same class as n → ∞. Practically speaking, this
means for n, p large that the decision function g(x) of a new
datum x lies (sufficiently) away from 0 (0 being the classically
considered threshold), so that the sign of g(x) is constantly
positive (in the case of c̄2 > c̄1) or negative (in the case of
c̄2 < c̄1). As such, all new data will be trivially classified
into the same class. Instead, a first result of Theorem 1 is
that the decision threshold ξ should be taken as ξ = ξn =
c2 − c1 +O(n−1) for imbalanced classification problem.

The conclusion of Remark 2 was in fact already known since
the work of [15] who reached the same conclusion through
a Bayesian inference analysis, for all finite n, p. From their
Bayesian perspective, the term c2 − c1 appears in the “bias
term” b under the form of prior class probabilities P(y = −1),
P(y = 1) and allows for adjusting classification problems
with different prior class probabilities in the training and test
sets. This idea of a (static) bias term correction has also
been applied in [34] in order to improve the validation set
performance. Here we confirm the problem of imbalanced
datasets in Remark 2 by Figure 1 with c1 = 1/4 and
c2 = 3/4, where the histograms of g(x) for x ∈ C1 and
C2 center somewhere close to c2 − c1 = 0.5, thus resulting
in a trivial classification by assigning all new data to C2 if
one takes ξ = 0 because P(g(x) < ξ | x ∈ C1) → 0 and
P(g(x) > ξ | x ∈ C2) → 1 as n, p → ∞ (the convergence
being in fact an equality for finite n, p in this particular figure).

0.49 0.5 0.51

g(x)x∈C1
g(x)x∈C2
G1

G2

Fig. 1. Gaussian approximation of g(x), n = 256, p = 512, c1 =
1/4, c2 = 3/4, γ = 1, Gaussian kernel with σ2 = 1, x ∼ N (µa,Ca)
with µa = [0a−1; 3;0p−a], C1 = Ip and {C2}i,j = .4|i−j|(1 + 5/

√
p).

An alternative to alleviate this imbalance issue is to nor-
malize the label vector y. From the proof of Theorem 1 in
Appendix A we see the term c2− c1 is due to the fact that in
b one has 1T

ny/n = c2−c1 6= 0. Thus, one may normalize the
labels yi as y∗i = −1/c1 if xi ∈ C1 and y∗i = 1/c2 if xi ∈ C2,
so that the relation 1T

ny∗ = 0 is satisfied. This formulation is
also referred to as the Fisher’s targets: {−n/n1, n/n2} in the
context of kernel Fisher discriminant analysis [35,36]. With the
aforementioned normalized labels y∗, we have the following
lemma that reveals the connection between the corresponding
decision function g∗(x) and g(x).

Lemma 1. Let g(x) be defined by (3) and g∗(x) be defined as
g∗(x) = (α∗)Tk(x)+ b∗, with (α∗, b∗) given by (2) for y∗ in

the place of y, where y∗i = −1/c1 if xi ∈ C1 and y∗i = 1/c2
if xi ∈ C2. Then,

g(x)− (c2 − c1) = 2c1c2g
∗(x).

Proof. From (2) and (3) we get

g(x) = yT

(
S−1 − S−11n1T

nS−1

1T
nS−11n

)
k(x) +

yTS−11n
1T
nS−11n

= yT$

with $ =
(
S−1 − S−11n1

T
nS
−1

1T
nS
−11n

)
k(x) + S−11n

1T
nS
−11n

. Besides,
note that 1T

n$ = 1. We thus have

g(x)− (c2 − c1) = yT$ − (c2 − c1)1T
n$

= 2c1c2

(
y − (c2 − c1)1n

2c1c2

)T

$

= 2c1c2(y∗)T$ = 2c1c2g
∗(x)

which concludes the proof.

As a consequence of Lemma 1, instead of Theorem 2 for
standard labels y, one would have the following corollary
for the corresponding Gaussian approximation of g∗(x) when
normalized labels y∗ are used.

Corollary 1 (Gaussian Approximation of g∗(x)). Under the
setting of Theorem 1, and with g∗(x) defined in Lemma 1,
n(g∗(x)−G∗a)

d→ 0, where

G∗a ∼ N (E∗a,Var∗a)

with

E∗a =

{
−c2γD, a = 1

+c1γD, a = 2

Var∗a = 2γ2 (Va1 + Va2 + Va3 )

and D is defined by (8), Va1 ,Va2 and Va3 as in Theorem 2.

Figure 2 illustrates this result in the same settings as
Figure 1. Compared to Figure 1, one can observe that in
Figure 2 both histograms are now centered close to 0 (at
distance O(n−1) from zero) instead of c2 − c1 = 1/2. Still,
even in the case where normalized labels y∗ are used as
observed in Figure 2 (where the histograms cross at about
−0.004 ≈ 1/n), taking ξ = 0 as a decision threshold may not
be an appropriate choice, as E∗1 6= −E∗2.

Remark 3 (Insignificance of γ). As a direct result of The-
orem 1 and Remark 2, note in (6) that ĝ(x) − (c2 − c1) is
proportional to the hyperparameter γ, which indicates that,
rather surprisingly, the tuning of γ is (asymptotically) of no
importance when n, p→∞ since it does not alter the classi-
fication statistics when one uses the sign of g(x)− (c2 − c1)
for the decision.5

5This remark is only valid under Assumption 1 and γ = O(1), i.e., γ is
considered to remain a constant as n, p → ∞. Recall that this is in sharp
contrast with [13] where γ = O(

√
n) (or O(n), depending on the problem) is

claimed optimal in the large n only regime. From Remark 1 on the growth rate
optimality reached by LS-SVM, we see here that γ = O(1) is rate-optimal
under the present large n, p setting; yet we believe that more elaborate kernels
(such as those explored in [37]) may allow for improved performances (not in
the rate but in the constants), possibly for different scales of γ. This intuition
will be explored in future investigations.
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−0.02 −0.01 0 0.01 0.02

g∗(x)x∈C1
g∗(x)x∈C2
G∗1
G∗2

Fig. 2. Gaussian approximation of g∗(x), n = 256, p = 512, c1 =
1/4, c2 = 3/4, γ = 1, Gaussian kernel with σ2 = 1, x ∼ N (µa,Ca),
with µa = [0a−1; 3;0p−a], C1 = Ip and {C2}i,j = .4|i−j|(1 + 5/

√
p).

Letting Q(x) = 1√
2π

∫∞
x

exp
(
−t2/2

)
dt, from Theorem 2

and Corollary 1, we now have the following immediate corol-
lary for the (asymptotic) classification error rate.

Corollary 2 (Asymptotic Error Rate). Under the setting of
Theorem 1, for a threshold ξn possibly depending on n, as
n→∞,

P(g(x) > ξn | x ∈ C1)−Q
(
ξn − E1√

Var1

)
→ 0 (9)

P(g(x) < ξn | x ∈ C2)−Q
(

E2 − ξn√
Var2

)
→ 0 (10)

with Ea and Vara given in Theorem 2.

Obviously, Corollary 2 is only meaningful when ξn =
c2 − c1 +O(n−1) as recalled earlier. Besides, it is clear from
Lemma 1 and Corollary 1 that P(g(x) > ξn | x ∈ Ca) =
P(2c1c2g

∗(x) > ξn− (c2− c1) | x ∈ Ca), so that Corollary 2
extends naturally to g∗(x) when normalized labels y∗ are
applied.

Corollary 2 allows one to compute the asymptotic misclas-
sification rate as a function of Ea,Vara and the threshold ξn.
Combined with Theorem 2, one may note the significance
of a proper choice of the kernel function f . For instance, if
f ′(τ) = 0, the term µ2 − µ1 vanishes from the mean and
variance of Ga, meaning that the classification of LS-SVM
will not rely (at least asymptotically and under Assumption 1)
on the differences in means of the two classes. Figure 3
corroborates this finding with the same theoretical Gaussian
approximations G1 and G2 in subfigures (a) and (b). When
‖µ2 −µ1‖2 varies from 0 in (a) to 18 in (b), the distribution
of g(x), and in particular, the overlap between two classes,
remain almost the same in (a) and (b).

More traceable special cases and discussions on the choice
of kernel function f will be given in the next section.

IV. SPECIAL CASES AND FURTHER DISCUSSIONS

A. More discussions on the kernel function f

Following the discussion at the end of Section III, if
f ′(τ) = 0, the information about the statistical means of the
two different classes is lost and will not help perform the
classification. Nonetheless, we find that, rather surprisingly,

−0.05 0 0.05

(a) µdif = 0

−0.05 0 0.05

(b) µdif = 3

Fig. 3. Gaussian approximation of g(x), n = 256, p = 512, c1 = c2 =
1/2, γ = 1, polynomial kernel with f(τ) = 4, f ′(τ) = 0, and f ′′(τ) = 2.
x ∼ N (µa,Ca), with µa = [0a−1;µdif ;0p−a], C1 = Ip and {C2}i,j =
.4|i−j|(1 + 5/

√
p).

if one further assumes tr C1 = tr C2 + o(
√
p) (which is

beyond the minimum “distance” rate in Assumption 1), using
a kernel f that satisfies f ′(τ) = 0 results in Vara = 0
while Ea may remain non-zero, thereby ensuring a vanishing
misclassification rate (as long as f ′′(τ) 6= 0). Intuitively
speaking, the kernels with f ′(τ) = 0 play an important role in
extracting the information of “shape” of both classes, making
the classification extremely accurate even in cases that are
deemed impossible to classify according to Remark 1. This
phenomenon was also remarked in [20] and deeply investi-
gated in [22]. Figure 4 substantiates this finding for µ1 = µ2,
C1 = Ip and {C2}i,j = .4|i−j|, for which tr C1 = tr C2 = p.
We observe a rapid drop of the classification error as f ′(τ)
gets close to 0.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

f ′(τ)

C
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ifi

ca
tio

n
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ro
r6

Empirical error for p = 512

Empirical error for p = 1024

Theoretical error

Fig. 4. Performance of LS-SVM, c0 = 1/4, c1 = c2 = 1/2, γ = 1,
polynomial kernel with f(τ) = 4, f ′′(τ) = 2. x ∼ N (µa,Ca), with
µ1 = µ2 = 0p, C1 = Ip and {C2}i,j = .4|i−j|.

Remark 4 (Condition on Kernel Function f ). From Theo-
rem 2 and Corollary 1, one observes that |E1 −E2| is always
proportional to the “informative” term D and should, for fixed
Vara, be made as large as possible to avoid the overlap of
g(x) for x from different classes. Since Vara does not depend
on the signs of f ′(τ) and f ′′(τ), it is easily deduced that,
to achieve optimal classification performance, one needs to

6Unless particularly stated, the classification error will be understood as
c1P(g(x) > ξn|x ∈ C1) + c2P(g(x) < ξn|x ∈ C2).
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choose the kernel function f such that f(τ) > 0, f ′(τ) < 0
and f ′′(τ) > 0.

Incidentally, the condition in Remark 4 is naturally satisfied
for Gaussian kernel f(x) = exp

(
−x/(2σ2)

)
for any σ,

meaning that, even without specific tuning of the kernel
parameter σ through cross validation or other techniques, LS-
SVM is expected to perform rather well with a Gaussian
kernel (as shown in Figure 5), which is not always the case
for polynomial kernels. This especially entails, for a second-
order polynomial kernel given by f(x) = a2x

2 + a1x + a0,
that attention should be paid to meeting the aforementioned
condition when tuning the kernel parameters a2, a1 and a0.
Figure 6 attests of this remark with Gaussian input data. A
rapid increase in classification error rate can be observed
both in theory and in practice as soon as the condition
f ′(τ) < 0, f ′′(τ) > 0 is no longer satisfied.

2−5 2−3 2−1 21 23 25 27
0

0.05

0.1

0.15

0.2

0.25

σ2

C
la

ss
ifi

ca
tio

n
er

ro
r

Empirical error for n = 256

Empirical error for n = 512

Theoretical error

Fig. 5. Performance of LS-SVM, c0 = 2, c1 = c2 = 1/2, γ = 1, Gaussian
kernel. x ∼ N (µa,Ca), with µa = [0a−1; 2;0p−a], C1 = Ip and
{C2}i,j = .4|i−j|(1 + 4/

√
p).

Note also from both Figure 4 and Figure 5 that, when n, p
are doubled (from 2048, 512 to 4 096, 1 024 in Figure 4 and
from 256, 512 to 512, 1 024 in Figure 5), the empirical error
becomes closer to the theoretical one, which confirms the
asymptotic result as n, p→∞.
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(a) f(τ) = 4, f ′′(τ) = 1

0 2 4
0

0.2

0.4

0.6

f ′′(τ)

Empirical error
Theoretical error

(b) f(τ) = 4, f ′(τ) = −1

Fig. 6. Performance of LS-SVM, n = 256, p = 512, c1 = c2 = 1/2, γ =
1, polynomial kernel. x ∼ N (µa,Ca), with µa = [0a−1; 2;0p−a], C1 =
Ip and {C2}i,j = .4|i−j|(1 + 4/

√
p).

Clearly, for practical use, one needs to know in advance
the value of τ before training so that the kernel f can be
properly chosen during the training step. The estimation of τ
is possible, in the large n, p regime, with the following lemma.

Lemma 2. Under Assumptions 1 and 2, as n→∞,

2

n

n∑
i=1

‖xi − x̄‖2

p

a.s.→ τ (11)

with x̄ , 1
n

∑n
i=1 xi.

Proof: Since

2

n

n∑
i=1

‖xi − x̄‖2

p
=

2c1c2‖µ2 − µ1‖2

p
+

2

n

n∑
i=1

‖ωi−ω̄‖2+κ

with κ = 4
n
√
p (µ2 −µ1)T

(
−c2

∑
xi∈C1 ωi + c1

∑
xj∈C2 ωj

)
and ω̄ = 1

n

∑n
i=1 ωi.

According to Assumption 1 we have 2c1c2
p ‖µ2 − µ1‖2 =

O(n−1). The term κ is a linear combination of independent
zero-mean Gaussian variables and thus κ ∼ N (0,Var[κ])
with Var[κ] = 16c1c2

np2 (µ2−µ1)T (c2C1 + c1C2) (µ2−µ1) =

O(n−3). We thus deduce from Chebyshev’s inequality and
Borel-Cantelli lemma that κ a.s.→ 0.

We then work on the last term 2
n

∑n
i=1 ‖ωi − ω̄‖2 as

2

n

n∑
i=1

‖ωi − ω̄‖2 =
2

n

n∑
i=1

‖ωi‖2 − 2‖ω̄‖2.

Since ω̄ ∼ N (0,C◦/np), we deduce that ‖ω̄‖2 a.s.→ 0.
Ultimately by the strong law of large numbers, the term
2
n

∑n
i=1 ‖ωi‖2

a.s.→ τ , which concludes the proof.

B. Some limiting cases

1) Dominant information in means: When ‖µ2 − µ1‖2
is largely dominant over (tr(C2 − C1))2/p and tr((C2 −
C1)2)/p, from Theorem 2, both Ea−(c2−c1) and

√
Vara are

(approximately) proportional to f ′(τ), which eventually makes
the choice of the kernel irrelevant (as long as f ′(τ) 6= 0). This
result also holds true for E∗a and

√
Var∗a when normalized

labels y∗ are applied, as a result of Lemma 1.
2) c0 large or small: Note that, different from both V1 and
V2, V3 is a function of c0 as it can be rewritten as

Va3 =
2c0 (f ′(τ))

2

p3

(
tr C1Ca

c1
+

tr C2Ca

c2

)
which indicates that the variance of g(x) grows as c0 be-
comes large. This result is easily understood since, with p
fixed, a small c0 means a larger n, and with more training
samples, one may “gain” more information of the two different
classes, which reduces the “uncertainty” of the classifier. When
n → ∞ with a fixed p, we have c0 → 0 and the LS-
SVM is considered “well-trained” and its performance can
be described with Theorem 2 by taking V3 = 0. However,
it is worthy noting that the misclassification rate may not
be 0 even in this case, since V1 and V2 may differ from
0, which indicated the theoretical limitation of LS-SVM in
separating high dimensional Gaussian vectors. On the contrary,
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when c0 → ∞, with few training data, LS-SVM does not
sample sufficiently the high dimensional space of the x’s, thus
resulting in a classifier with arbitrarily large variance (for fixed
means). Moreover, since the term Va3 is proportional to n−1,
we see that for f ′(τ) away from zero and fixed large p, as
n grows large, the two Gaussians G1 and G2 in Theorem 2
separate from each other at a rate of n−

1
2 , the overlapping

section of the Gaussian tails then provides the misclassification
rate via Corollary 2. Figure 7 confirms this result with p fixed
to 256 while n varies from 8 to 8 192.
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0

0.05

0.1

0.15

0.20

0.25

0.30

0.35

c0 = p
n

C
la

ss
ifi

ca
tio

n
er

ro
r

Empirical error
Theoretical error

Fig. 7. Performance of LS-SVM, p = 256, c1 = c2 = 1/2, γ = 1, Gaussian
kernel with σ2 = 1. x ∼ N (µa,Ca), with µa = [0a−1; 2;0p−a], C1 =
Ip and {C2}i,j = .4|i−j|(1 + 4/

√
p).

3) c1 → 0 : As revealed in Remark 2, the ratio c1/c2 plays
a significant role in the performance of classification. A natural
question arises: what happens when one class is strongly
dominant over the other? Take the case of c1 → 0, c2 → 1.
From Corollary 1, one has E∗1 → −γD, E∗2 → 0 and Va3 →∞
because of c1 → 0 in the denominator, which then makes the
ratio E∗a√

Var∗a
(and thus Ea−(c2−c1)√

Vara
) go to zero, resulting in a

poorly-performing LS-SVM. The same occurs when c1 → 1
and c2 → 0. Figure 8 collaborates this remark with c1 = 1/32
in subfigure (a) and 1/2 in (b). Note that in subfigure (a), even
with a smartly chosen threshold ξ, LS-SVM is impossible to
perform as well as in the case c1 = c2, as a result of the
significant overlap between the two histograms.

0.936 0.937 0.938

(a) c1 = 1/32

−0.01 0 0.01

(b) c1 = 1/2

Fig. 8. Gaussian approximation of g(x), n = 256, p = 512, c2 = 1 −
c1, γ = 1, Gaussian kernel with σ2 = 1. x ∼ N (µa,Ca), with µa =
[0a−1; 2;0p−a], C1 = Ip and {C2}i,j = .4|i−j|(1 + 4/

√
p).

C. Applying to real-world datasets

When the classification performance of real-world datasets
is concerned, our theory may be limited by: i) the fact that it
is an asymptotic result and allows for an estimation error of
order O(n−

1
2 ) between theory and practice and ii) the strong

Gaussian assumption for the input data.
However, when applied to real-world datasets, here to the

popular MNIST [28] and Fashion-MNIST [29] datasets, our
asymptotic results, which are theoretically only applicable for
Gaussian data, show an unexpectedly similar behavior. Here
we consider a two-class classification problem with a training
set of n = 256 vectorized images of size p = 784 randomly
selected from the MNIST and Fashion-MNIST datasets (num-
bers 8 and 9 in both cases as an example). Then a test set of
ntest = 256 is used to evaluate the classification performance.
Means and covariances are empirically obtained from the
full set of 11 800 MNIST images (5 851 images of number
8 and 5 949 of number 9) and of 11 800 Fashion-MNIST
images (5 851 images of number 8 and 5 949 of number 9),
respectively. Despite the obvious non-Gaussianity as well as
the clearly different nature of the input data (from the two
datasets), the distribution of g(x) is still surprisingly close
to its Gaussian approximation computed from Theorem 2, as
shown in Figure 9 and 10 for MNIST and Fashion-MNIST,
respectively. In both cases we plot the results from (a) raw
images as well as (b) when Gaussian white noise is artificially
added to the image vectors.

−0.05 0 0.05

(a) without noise

−0.02 0 0.02

(b) with 0dB noise

Fig. 9. Gaussian approximation of g(x), n = 256, p = 784, c1 = c2 =
1
2
, γ = 1, Gaussian kernel with σ = 1, MNIST data (numbers 8 and 9)

without and with 0dB noise.

−0.1 0 0.1

(a) without noise

−0.04 −0.02 0 0.02 0.04

(b) with 0dB noise

Fig. 10. Gaussian approximation of g(x), n = 256, p = 784, c1 = c2 =
1
2
, γ = 1, Gaussian kernel with σ = 1, Fashion-MNIST data (numbers 8 and

9) without and with 0dB noise.
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In Figure 11 we plot the misclassification rate as a function
of the decision threshold ξ for MNIST and Fashion-MNIST
data (number 8 and 9). We observe that although derived from
a Gaussian mixture model, the conclusion from Remark 2,
Lemma 1 and Corollary 1 that the decision threshold should
approximately be c2 − c1 rather than 0 approximately holds
true in both cases.
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5 · 10−2 0.1 0.15 0.2

ξopt

ξ = c2 − c1

Decision threshold ξ

Fig. 11. n = 512, p = 784, c2 − c1 = 0.125, γ = 1, Gaussian kernel
with σ = 1 for MNIST (left) and Fashion-MNIST data (right). With optimal
decision threshold ξopt = 0.12 (left) and 0.11 (right) in red.

In Figure 12 and 13 we evaluated the performance of
LS-SVM on the MNIST and Fashion-MNIST datasets (with
and without noise) as a function of the kernel parameter
σ of Gaussian kernel f(x) = exp(−x/2σ2). Surprisingly,
compared to Figure 5, we face the situation where there is
little difference in the performance of LS-SVM as soon as
σ2 is away from 0, which likely comes from the fact that
the difference in means µ2 − µ1 is so large that it becomes
predominant over the influence of covariances as mentioned
in the first paragraph of Section IV-B. This argument is
numerically sustained by Table I. The gap between theory and
practice observed as σ2 → 0 is likely a result of the finite n, p
(as in Figure 5) rather than of the Gaussian assumption of the
input data, since we observe a similar behavior even when
Gaussian white noise is added.
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Fig. 12. n = 256, p = 784, c1 = c2 = 1/2, γ = 1, Gaussian kernel,
MNIST data (numbers 8 and 9) with and without noise.

V. CONCLUDING REMARKS

In this work, through a performance analysis of LS-SVM for
large dimensional data, we reveal the significance of balanced
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Fig. 13. n = 256, p = 784, c1 = c2 = 1/2, γ = 1, Gaussian kernel,
Fashion-MNIST data (numbers 8 and 9) with and without noise.

TABLE I
EMPIRICAL ESTIMATION OF DIFFERENCES IN MEANS AND COVARIANCES

OF MNIST/FASHION-MNIST DATA (NUMBERS 8 AND 9)

MNIST/Fashion-MNIST
without noise

MNIST/Fashion-MNIST
with 0dB noise

‖µ2 − µ2‖2 251/483 96/197
1
p

(tr (C2 −C1))2 19/89 3/13
1
p

tr
(
(C2 −C1)2

)
30/86 5/13

dataset with c1 = c2, as well as the interplay between the
pivotal kernel function f and the statistical structure of the
data. The normalized labels y∗i ∈ {−1/c1, 1/c2} are proposed
to mitigate the damage of c2 − c1 in the decision function.
We prove the irrelevance of γ when it is considered to remain
constant in the large n, p regime; however, this argument is
not guaranteed to hold true when γ scales with n, p. Our
theoretical results, even though built upon the assumption of
Gaussian data, provide similar results when tested on real-
world large dimensional datasets, which offers a possible
application despite the strong Gaussian assumption in the
general context of large scale supervised learning.

The major difference of the present work compared to other
theoretical analyses (for example [13]) is that, by studying
the rather simple problem of a two-class Gaussian mixture
separation with comparably large instance number and data
dimension, together with sufficiently smooth kernel function
f and regularization parameter γ of order O(1), we deduce
explicit results for the output of LS-SVM which surprisingly
coincide with observations on some large dimensional real-
world datasets (including MNIST and beyond) and therefore
allowing for novel insights into the behavior of LS-SVM for
large dimensional datasets. Of interest to future work is the
remark that, unlike in the work of [13] where, in the large
n alone asymptotics, γ is best scaled large with n, in the
present large p, large n setting, where we demonstrate rate-
optimality of LS-SVM for γ = O(1). This apparent paradox
could be deciphered through the analysis of more advanced
(normalized inner product) kernels of the type f(xT

i xj/
√
p),

studied notably in [37], for which we believe that other
scalings for γ would be optimal; it is also importantly believed
that such kernels could lead to improved performances (not
in rate, as those are already optimal in the present setting,
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but possibly in absolute performance). These technically more
involved considerations are left for future investigations.

The extension of the present work to the asymptotic perfor-
mance analysis of the classical SVM requires more efforts
since, there, the decision function g(x) depends implicitly
(through the solution to a quadratic programming problem)
rather than explicitly on the underlying kernel matrix K.
Additional technical tools are thus required to cope with this
dependence structure.

The link between LS-SVM and extreme learning machine
(ELM) was brought to light in [17] and the performance
analysis of ELM in large dimension has been investigated in
the recent article [38]. Together with these works, we have
the possibility to identify the tight but subtle relation between
the kernel function and the activation function in the context
of some simple structured neural networks. This is notably
of interest when the datasets are so large that computing K
and the decision function g(x) becomes prohibitive, a problem
largely alleviated by neural networks with controllable number
of neurons. This link also generally opens up a possible
direction of research into the complex neural networks realm.
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Supplementary Material
A Large Dimensional Analysis of

Least Squares Support Vector Machines

APPENDIX A
PROOF OF THEOREM 1

Our key interest here is on the decision function of LS-
SVM: g(x) = αTk(x) + b with (α, b) given byα = S−1

(
In − 1n1

T
nS
−1

1T
nS
−11n

)
y

b =
1T
nS
−1y

1T
nS
−11n

and S−1 =
(
K + n

γ In

)−1
.

Before going into the detailed proof, as we will frequently
deal with random variables evolving as n, p grow large, we
shall use the extension of the O(·) notation introduced in [20]:
for a random variable x ≡ xn and un ≥ 0, we write x =
O(un) if for any η > 0 and D > 0, we have nDP(x ≥
nηun)→ 0. Note that under Assumption 1 it is equivalent to
use either O(un) or O(up) since n, p scales linearly. In the
following we shall use constantly O(un) for simplicity.

When multidimensional objects are concerned, v = O(un)
means the maximum entry of a vector (or a diagonal matrix)
v in absolute value is of order O(un) and M = O(un) means
that the operator norm of M is of order O(un). We refer
the reader to [20] for more discussions on these practical
definitions.

Under the growth rate settings of Assumption 1, from [20],
the approximation of the kernel matrix K is given by

K = −2f ′(τ)
(
PΩTΩP + A

)
+ βIn +O(n−

1
2 ) (12)

with β = f(0) − f(τ) + τf ′(τ) and A = An + A√n + A1,
An = − f(τ)

2f ′(τ)1n1T
n and A√n, A1 given by (18) and (19) at

the top of next page, where we denote

ta ,
tr(Ca −C◦)

√
p

= O(1)

(ψ)2 , [(ψ1)2, . . . , (ψn)2]T.

We start with the term S−1. The terms of leading order in
K, i.e.,−2f ′(τ)An and n

γ In are both of operator norm O(n).
Therefore a Taylor expansion can be performed as

S−1 =

(
K +

n

γ
In

)−1
=

1

n

[
L−1 − 2f ′(τ)

n(
A√n + A1 + PΩTΩP

)
+
βIn
n

+O(n−
3
2 )

]−1
=

L

n
+

2f ′(τ)

n2
LA√nL + L

(
Q− β

n2
In

)
L +O(n−

5
2 )

with L =
(
f(τ)

1n1
T
n

n + In
γ

)−1
of order O(1) and Q =

2f ′(τ)
n2

(
A1 + PΩTΩP + 2f ′(τ)

n A√nLA√n

)
.

With the Sherman-Morrison formula we are able to compute
explicitly L as

L =

(
f(τ)

1n1T
n

n
+

In
γ

)−1
= γ

(
In −

γf(τ)

1 + γf(τ)

1n1T
n

n

)
=

γ

1 + γf(τ)
In +

γ2f(τ)

1 + γf(τ)
P = O(1). (13)

Writing L as a linear combination of In and P is useful
when computing L1n or 1T

nL, because by the definition of
P = In − 1n1

T
n

n , we have 1T
nP = P1n = 0.

We shall start with the term 1T
nS−1, since it is the basis of

several other terms appearing in α and b,

1T
nS−1 =

γ1T
n

1 + γf(τ)

[
In
n

+
2f ′(τ)

n2
A√nL +

(
Q− β

n2
In

)
L

]
+O(n−

3
2 )

since 1T
nL = γ

1+γf(τ)1
T
n.

With 1T
nS−1 at hand, we next obtain,

1n1T
nS−1 =

γ

1 + γf(τ)

[
1n1T

n

n︸ ︷︷ ︸
O(1)

+
2f ′(τ)

n2
1n1T

nA√nL︸ ︷︷ ︸
O(n−1/2)

+ 1n1T
n

(
Q− β

n2
In

)
L︸ ︷︷ ︸

O(n−1)

]
+O(n−

3
2 ) (14)

1T
nS−1y =

γ

1 + γf(τ)

[
c2 − c1︸ ︷︷ ︸
O(1)

+
2f ′(τ)

n2
1T
nA√nLy︸ ︷︷ ︸

O(n−1/2)

+ 1T
n

(
Q− β

n2
In

)
Ly︸ ︷︷ ︸

O(n−1)

]
+O(n−

3
2 )

1T
nS−11n =

γ

1 + γf(τ)

[
1︸︷︷︸

O(1)

+
2f ′(τ)

n2
γ1T

nA√n1n

1 + γf(τ)︸ ︷︷ ︸
O(n−1/2)

+
γ

1 + γf(τ)
1T
n

(
Q− β

n2
In

)
1n︸ ︷︷ ︸

O(n−1)

]
+O(n−

3
2 ).

The inverse of 1T
nS−11n can consequently be computed

using a Taylor expansion around its leading order, allowing
an error term of O(n−

3
2 ) as

1

1T
nS−11n

=
1 + γf(τ)

γ

[
1︸︷︷︸

O(1)

− 2f ′(τ)

n2
γ1T

nA√n1n

1 + γf(τ)︸ ︷︷ ︸
O(n−1/2)

− γ

1 + γf(τ)
1T
n

(
Q− β

n2
In

)
1n︸ ︷︷ ︸

O(n−1)

]
+O(n−

3
2 ).

(15)
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A√n = −1

2

ψ1T
n + 1nψ

T +

{
ta

1na√
p

}2

a=1

1T
n + 1n

{
tb

1T
nb√
p

}2

b=1

 (18)

A1 = −1

2

{‖µa − µb‖2 1na
1T
nb

p

}2

a,b=1

+ 2

{
(ΩP)Ta (µb − µa)1T

nb√
p

}2

a,b=1

− 2

{
1na

(µb − µa)T(ΩP)b√
p

}2

a,b=1


− f ′′(τ)

4f ′(τ)

(ψ)21T
n + 1n[(ψ)2]T +

{
t2a

1na

p

}2

a=1

1T
n + 1n

{
t2b

1T
nb

p

}2

b=1

+ 2

{
tatb

1na
1T
nb

p

}2

a,b=1

+ 2D{taIna
}2a=1ψ

1T
n√
p

+ 2ψ

{
tb

1T
nb√
p

}2

b=1

+ 2
1n√
p

(ψ)TD{ta1na
}2a=1 + 2

{
ta

1na√
p

}2

a=1

(ψ)T + 4

{
tr(CaCb)

1na1T
nb

p2

}2

a,b=1

+ 2ψ(ψ)T


(19)

k̃(x) = f ′(τ)

[{
‖µb − µa‖2

p
1nb

}2

b=1

− 2
√
p

{
1nb

(µb − µa)T
}2
b=1

ωx +
2
√
p
D
({

1nb
(µb − µa)T

}2
b=1

Ω
)]

+
f ′′(τ)

2

[{
(ta + tb)

2

p
1nb

}2

b=1

+ 2D
({

ta + tb√
p

1nb

}2

b=1

)
ψ + 2

{
ta + tb√

p
1nb

}2

b=1

ψx + (ψ)2 + 2ψxψ + ψ2
x1n

+

{
4

p2
tr(CaCb)1nb

}2

b=1

]
(20)

Combing (14) with (15) we deduce

1n1T
nS−1

1T
nS−11n

=
1n1T

n

n︸ ︷︷ ︸
O(1)

+
2f ′(τ)

n2
1n1T

nA√n

[
L−

γ
1n1

T
n

n

1 + γf(τ)

]
︸ ︷︷ ︸

O(n−1/2)

+ 1n1T
n

(
Q− β

n2
In

)[
L−

γ
1n1

T
n

n

1 + γf(τ)

]
︸ ︷︷ ︸

O(n−1)

+O(n−
3
2 ) (16)

and similarly the following approximation of b as

b = c2 − c1︸ ︷︷ ︸
O(1)

− 2γ
√
p
c1c2f

′(τ)(t2 − t1)︸ ︷︷ ︸
O(n−1/2)

− γf ′(τ)

n
yTPψ︸ ︷︷ ︸

O(n−1)

−γf
′′(τ)

2n
yTP(ψ)2 +

4γc1c2
p

[c1T1 + (c2 − c1)D − c2T2]︸ ︷︷ ︸
O(n−1)

+O(n−
3
2 ) (17)

where

D =
f ′(τ)

2
‖µ2 − µ1‖2 +

f ′′(τ)

4
(t1 + t2)2 + f ′′(τ)

tr C1C2

p

Ta = f ′′(τ)t2a + f ′′(τ)
tr C1C2

p

which gives the asymptotic approximation of b.
Moving to α, note from (13) that L− γ

1+γf(τ)
1n1

T
n

n = γP,
and we can thus rewrite:

1n1T
nS−1

1T
nS−11n

=
1n1T

n

n
+

2γf ′(τ)

n2
1n1T

nA√nP

+ γ1n1T
n

(
Q− β

n2
In

)
P +O(n−

3
2 ).

At this point, for α = S−1
(
In − 1n1

T
nS
−1

1T
nS
−11n

)
y, we have

α = S−1
[
In −

2γf ′(τ)

n2
1n1T

nA√n

− γ1n1T
n

(
Q− β

n2
In

)]
Py +O(n−

5
2 ).

Here again, we use 1T
nL = γ

1+γf(τ)1
T
n and L −

γ
1+γf(τ)

1n1
T
n

n = γP, to eventually get

α =
γ

n
Py︸ ︷︷ ︸

O(n−1)

+ γ2P

(
Q− β

n2
In

)
Py︸ ︷︷ ︸

O(n−2)

(21)

− γ2

1 + γf(τ)

(
2f ′(τ)

n2

)2

LA√n1n1T
nA√nPy︸ ︷︷ ︸

O(n−2)

+O(n−
5
2 ).

Note here the absence of a term of order O(n−3/2) in the
expression of α since PA√nP = 0 from (18).

We shall now work on the vector k(x) for a new datum x,
following the same analysis as in [20] for the kernel matrix
K, assuming that x ∼ N (µa,Ca) and recalling the random
variables definitions,

ωx , (x− µa)/
√
p

ψx , ‖ωx‖2 − E‖ωx‖2
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we show that the j-th entry of k(x) can be written as

[k(x)]j = f(τ)︸︷︷︸
O(1)

+f ′(τ)

[
ta + tb√

p
+ ψx + ψj − 2(ωx)Tωj︸ ︷︷ ︸

O(n−1/2)

+
‖µb − µa‖2

p
+

2
√
p

(µb − µa)T(ωj − ωx)︸ ︷︷ ︸
O(n−1)

]
+
f ′′(τ)

2

[(
ta + tb√

p
+ ψj + ψx

)2

+
4

p2
tr CaCb︸ ︷︷ ︸

O(n−1)

]
+O(n−

3
2 ). (22)

Combining (21) and (22), we deduce

αTk(x) =
2γ
√
p
c1c2f

′(τ)(t2 − t1)︸ ︷︷ ︸
O(n−1/2)

+
γ

n
yTPk̃(x)︸ ︷︷ ︸
O(n−1)

+
γf ′(τ)

n
yTP(ψ − 2PΩTωx)︸ ︷︷ ︸

O(n−1)

+O(n−
3
2 ) (23)

with k̃(x) given in (20).
At this point, note that the term of order O(n−

1
2 ) in the final

object g(x) = αTk(x)+b disappears because in both (17) and
(23) the term of order O(n−1/2) is 2γ√

pc1c2f
′(τ)(t2 − t1) but

of opposite signs. Also, we see that the leading term c2 − c1
in b will remain in g(x) as stated in Remark 2.

The development of yTPk̃(x) induces many simplifica-
tions, since i) P1n = 0 and ii) random variables as ωx and
ψ in k̃(x), once multiplied by yTP, thanks to probabilistic
averaging of independent zero-mean terms, are of smaller
order and thus become negligible. We thus get

γ

n
yTPk̃(x) = 2γc1c2f

′(τ)

[
‖µ2 − µa‖2 − ‖µ1 − µa‖2

p

− 2(ωx)T
µ2 − µ1√

p

]
+
γf ′′(τ)

2n
yTP(ψ)2 + γc1c2f

′′(τ)

[
2

(
ta√
p

+ ψx

)
t2 − t1√

p
+
t22 − t21
p

+
4

p2
tr(CaC2 −CaC1)

]
+O(n−

3
2 ). (24)

This result, together with (23), completes the analysis of the
term αTk(x). Combining (23)-(24) with (17) we conclude the
proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

This section is dedicated to the proof of the central limit
theorem for

ĝ(x) = c2 − c1 + γ (P + cxD)

with the shortcut cx = −2c1c
2
2 for x ∈ C1 and cx = 2c21c2 for

x ∈ C2, and P,D as defined in (7) and (8).
Our objective is to show that for a ∈ {1, 2}, n(ĝ(x) −

Ga)
d→ 0 with

Ga ∼ N (Ea,Vara)

where Ea and Vara are given in Theorem 2. We recall that
x = µa +

√
pωx with ωx ∼ N (0,Ca/p).

Letting zx such that ωx = C
1/2
a zx/

√
p, we have zx ∼

N (0, In) and we can rewrite ĝ(x) in the following quadratic
form (of zx) as

ĝ(x) = zTxAzx + zTxb + c

with

A = 2γc1c2f
′′(τ)

tr(C2 −C1)

p

Ca

p

b = −2γf ′(τ)

n

(Ca)
1
2

√
p

ΩPy − 4c1c2γf
′(τ)

√
p

(Ca)
1
2

√
p

(µ2 − µ1)

c = c2 − c1 + γcxD− 2γc1c2f
′′(τ)

tr(C2 −C1)

p

tr Ca

p
.

Since zx is (standard) Gaussian and has the same distri-
bution as Uzx for any orthogonal matrix U (i.e., such that
UTU = UUT = In), we choose U that diagonalize A such
that A = UΛUT, with Λ diagonal so that ĝ(x) and g̃(x)
have the same distribution where

g̃(x) = zTxΛzx + zTxb̃ + c =

n∑
i=1

(
z2i λi + zib̃i +

c

n

)
and b̃ = UTb, λi the diagonal elements of Λ and zi the
elements of zx.

Conditioning on Ω, we thus result in the sum of in-
dependent but not identically distributed random variables
ri = z2i λi + zib̃i + c

n . We then resort to the Lyapunov CLT
[33, Theorem 27.3].

We begin by estimating the expectation and the variance

E[ri|Ω] = λi +
c

n
Var[ri|Ω] = σ2

i = 2λ2i + b̃2i

of ri, so that
n∑
i=1

E[ri|Ω] = c2 − c1 + γcxD = Ea

s2n =

n∑
i=1

σ2
i = 2 tr(A2) + bTb

= 8γ2c21c
2
2 (f ′′(τ))

2 (tr (C2 −C1))
2

p2
tr C2

a

p2

+ 4γ2
(
f ′(τ)

n

)2

yTPΩT Ca

p
ΩPy

+
16γ2c21c

2
2(f ′(τ))2

p
(µ2 − µ1)T

Ca

p
(µ2 − µ1)

+O(n−
5
2 ).

We shall rewrite Ω into two blocks as:

Ω =
[
(C1)

1
2√
p Z1,

(C2)
1
2√
p Z2

]
where Z1 ∈ Rp×n1 and Z2 ∈ Rp×n2 with i.i.d. Gaussian
entries with zero mean and unit variance. Then

ΩT Ca

p
Ω =

1

p2

[
ZT

1 (C1)
1
2 Ca(C1)

1
2 Z1 ZT

1 (C1)
1
2 Ca(C2)

1
2 Z2

ZT
2 (C2)

1
2 Ca(C1)

1
2 Z1 ZT

2 (C2)
1
2 Ca(C2)

1
2 Z2

]
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and with Py = y − (c2 − c1)1n, we deduce

yTPΩT Ca

p
ΩPy =

4

p2

(
c221

T
n1

ZT
1 (C1)

1
2 Ca(C1)

1
2 Z11n1

−2c1c21
T
n1

ZT
1 (C1)

1
2 Ca(C2)

1
2 Z21n2

+c211
T
n2

ZT
2 (C2)

1
2 Ca(C2)

1
2 Z21n2

)
.

Since Zi1ni
∼ N (0, niIni

), by applying the trace lemma
[39, Lemma B.26] we get

yTPΩT Ca

p
ΩPy − 4nc21c

2
2

p2

(
tr C1Ca

c1
+

tr C2Ca

c2

)
a.s.→ 0.

(25)
Consider now the events

E =

{∣∣∣∣yTPΩT Ca

p
ΩPy − ρ

∣∣∣∣ < ε

}
Ē =

{∣∣∣∣yTPΩT Ca

p
ΩPy − ρ

∣∣∣∣ > ε

}
for any fixed ε with ρ =

4nc21c
2
2

p2

(
trC1Ca

c1
+ trC2Ca

c2

)
and

write

E
[
exp

(
iun

g̃(x)− Ea
sn

)]
= E

[
exp

(
iun

g̃(x)− Ea
sn

) ∣∣∣∣E]
P(E) + E

[
exp

(
iun

g̃(x)− Ea
sn

) ∣∣∣∣Ē]P(Ē) (26)

We start with the variable g̃(x)|E and check that Lyapunov’s
condition for r̄i = ri − E[ri], conditioning on E,

lim
n→∞

1

s4n

n∑
i=1

E[|r̄i|4] = 0

holds by rewriting

lim
n→∞

1

s4n

n∑
i=1

E[|r̄i|4] = lim
n→∞

n∑
i=1

60λ4i + 12λ2i b̃i
2

+ 3b̃i
4

s4n
= 0

since both λi and b̃i are of order O(n−3/2).

As a consequence of the above, we have the CLT for the
random variable g̃(x)|E, thus

E
[
exp

(
iun

g̃(x)− Ea
sn

) ∣∣∣∣E]→ exp(−u
2

2
).

Next, we see that the second term in (26) goes to zero
because

∣∣E[ exp
(
iun g̃(x)−Ea

sn

) ∣∣Ē]∣∣ ≤ 1 and P(Ē)→ 0 from
(25) and we eventually deduce

E
[
exp

(
iun

g̃(x)− Ea
sn

)]
→ exp(−u

2

2
).

With the help of Lévy’s continuity theorem, we thus prove
the CLT of the variable n g̃(x)−Ea

sn
. Since s2n → Vara, with

Slutsky’s theorem, we have the CLT for n g̃(x)−Ea√
Vara

(thus for

n ĝ(x)−Ea√
Vara

), and eventually for n g(x)−Ea√
Vara

by Theorem 1 which
completes the proof.
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