A Random Matrix Viewpoint of Learning with Gradient Descent DIMACS Workshop on Randomized Numerical Linear Algebra, Stats, and Optim

Zhenyu Liao, Romain Couillet

CentraleSupélec, Université Paris-Saclay, France G-STATS IDEX DataScience Chair, GIPSA-lab, Université Grenoble-Alpes, France.

Outline

3 Main Results

Motivation: the pitfalls of large dimensional statistics

• Big data era:

large dimensional and massive amount of data, with huge learning systems;

- # of data instances *n*, their dimension *p* and # of system parameters *N* all large;
 - ▶ high resolution images $n \le 10p$: MNIST with $n = 6\,000, p = 784$ and ImageNet with $n = 500\,000, p = 65\,536$ per class;
 - ▶ highly over-parameterized deep neural networks $N \gg 10n$: "shallow" LeNet-5 with $N = 60\,000$ and "deep" ResNet-152 with $N = 60\,200\,000$;

•
$$N \gg n \sim p$$

Figure: Samples from the MNIST database.

Figure: Samples from the ImageNet database.

Sample covariance matrix in the large *n*, *p* regime

- For $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$, estimate the covariance matrix from *n* data samples $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$.
- Classical maximum likelihood sample covariance matrix:

$$\hat{\mathbf{C}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}} \in \mathbb{R}^{p \times p}$$

of rank at most *n*, "optimal" if $n \gg p$.

• In the regime where $n \sim p$, conventional wisdom breaks down, for $C = I_p$ with n < p, SCM will never be consistent:

$$\|\hat{\mathbf{C}} - \mathbf{C}\| \not\rightarrow 0, \quad n, p \rightarrow \infty$$

with at least p - n zero eigenvalues (eigenvalue mismatch)!

• Typically what happens in deep learning: try to fit an enormous statistical model (60.2 M of ResNet-152) with insufficient, but still numerous data (total 14.2 M images of ImageNet dataset).

When is one under the random matrix regime?

What about n = 100p? Recall $n \sim 10p$ for MINST and ImageNet. For $\mathbf{C} = \mathbf{I}_p$, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$: the Marčenko–Pastur law

Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marčenko-Pastur law, p = 500, n = 50000.

- eigenvalues span on $[(1-\sqrt{c})^2, (1+\sqrt{c})^2]$.
- for n = 100p, spread on a range of $4\sqrt{c} = 0.4$ around the *population* eigenvalue 1.

Motivation: about deep learning

Some known facts:

- trained with backpropagation (gradient decent);
- achieved superhuman performance in many applications;
- "generalization mystery": highly *over-parameterized* (*N* ≫ *n* ~ *p*), some still generalize remarkably well;

In this work:

- Why over-parameterization does not harm generalization?
- What is the role played by gradient descent?
- \Rightarrow A general RMT framework for gradient descent dynamics of simple nets!
- Conclusion:

both over-parameterization and gradient descent are important for generalization!

Objective: predict the performance of simple neural nets

Figure: Example of MNIST images

Figure: Training and test performance for MNIST data with a learning rate $\alpha = 0.01$. Results averaged over 100 runs.

A toy model of binary classification

Gaussian mixture data

Consider data \mathbf{x}_i drawn from a two-class Gaussian mixture model: for a = 1, 2

$$\mathbf{x}_i \in \mathcal{C}_a \Leftrightarrow \mathbf{x}_i = \boldsymbol{\mu}_a + \mathbf{C}_a^{\frac{1}{2}} \mathbf{z}_i$$

with $\mathbf{z}_i \sim \mathcal{N}(\mathbf{0}_p, \mathbf{I}_p)$, label $y_i = -1$ for \mathcal{C}_1 and +1 for \mathcal{C}_2 .

Gradient descent dynamics

Gradient descent to minimize $\ell(\mathbf{w}) = \frac{1}{2n} \|\mathbf{y}^{\mathsf{T}} - \mathbf{w}^{\mathsf{T}} \mathbf{X}\|^2$ with $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$. For small learning rate α , gradient flow given by

$$\frac{d\mathbf{w}(t)}{dt} = -\alpha \nabla_{\mathbf{w}} L(\mathbf{w}) = \frac{\alpha}{n} \mathbf{X} \left(\mathbf{y} - \mathbf{X}^{\mathsf{T}} \mathbf{w}(t) \right)$$

of explicit solution

$$\mathbf{w}(t) = e^{-\frac{at}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}}\mathbf{w}_{0} + \left(\mathbf{I}_{p} - e^{-\frac{at}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}}\right)\left[(\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}\mathbf{X}\mathbf{y}\right] \ge \mathbf{w}_{LS}$$

if $\mathbf{X}\mathbf{X}^{\mathsf{T}}$ invertible and \mathbf{w}_0 the initialization.

RMT for gradient descent dynamics

Key object:

$$\mathbf{w}(t) = e^{-\frac{\alpha t}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}} \mathbf{w}_0 + (\mathbf{I}_p - e^{-\frac{\alpha t}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}}) \mathbf{w}_{LS}$$

For symmetric $\mathbf{A} \in \mathbb{R}^{p \times p}$ with spectral decomposition $\mathbf{A} = \mathbf{U} \Lambda_{\mathbf{A}} \mathbf{U}^{\mathsf{T}} = \sum_{i=1}^{p} \lambda_{i}(\mathbf{A}) \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}}$,

$$e^{\mathbf{A}} = \mathbf{U}e^{\mathbf{A}_{\mathbf{A}}}\mathbf{U}^{\mathsf{T}} = \sum_{i=1}^{p} e^{\lambda_{i}(\mathbf{A})}\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}}.$$

- projection of eigenvector weighted by $exp(-\alpha t\lambda)$ of eigenvalue λ ;
- functional of the sample covariance-type matrix $\frac{1}{n}XX^{\mathsf{T}}$;
- Random Matrix Theory (RMT) provides an answer!

RMT for gradient descent dynamics

Objective: Test performance

Test performance for a new $\hat{\mathbf{x}} \sim \mathcal{N}(\boldsymbol{\mu}_a, \mathbf{C}_a)$:

$$P(\mathbf{w}(t)^{\mathsf{T}} \hat{\mathbf{x}} > 0 \mid \hat{\mathbf{x}} \in \mathcal{C}_1), \quad P(\mathbf{w}(t)^{\mathsf{T}} \hat{\mathbf{x}} < 0 \mid \hat{\mathbf{x}} \in \mathcal{C}_2).$$

Since $\hat{\mathbf{x}}$ Gaussian and independent of $\mathbf{w}(t)$:

$$\mathbf{w}(t)^{\mathsf{T}}\hat{\mathbf{x}} \mid \mathbf{w}(t) \sim \mathcal{N}(\mathbf{w}(t)^{\mathsf{T}}\boldsymbol{\mu}_{a}, \mathbf{w}(t)^{\mathsf{T}}\mathbf{C}_{a}\mathbf{w}(t))$$

with
$$\mathbf{w}(t) = e^{-\frac{\alpha t}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}} \mathbf{w}_0 + \left(\mathbf{I}_p - e^{-\frac{\alpha t}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}}\right) \mathbf{w}_{LS}.$$

With RMT:

- **Cauchy's integral formula** to express the functional $e^{(\cdot)}$ via contour integration;
- for random X, both w(t)^Tμ_a and w(t)^TC_aw(t) have tractable asymptotically deterministic¹ behavior: deterministic equivalent technique;
- *⇒* Performance at any time is asymptotically deterministic and predictable!

¹that only depends on data statistics and the problem dimension.

Proposed RMT analysis framework: Cauchy's integral formula

Consider
$$\boldsymbol{\mu}_{a}^{\mathsf{T}}\mathbf{w}(t) = \boldsymbol{\mu}_{a}^{\mathsf{T}}e^{-\frac{at}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}}\mathbf{w}_{0} + \boldsymbol{\mu}_{a}^{\mathsf{T}}\left(\mathbf{I}_{p} - e^{-\frac{at}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}}\right)\mathbf{w}_{LS}.$$

Cauchy's integral formula

For $\Gamma \in \mathbb{C}$ a positively (i.e., counterclockwise) oriented simple closed curve and a complex function f(z) analytic in a region containing Γ and its interior, then $-\frac{1}{2\pi \iota} \oint_{\Gamma} \frac{f(z)}{z_0 - z} dz = f(z_0)$ if $z_0 \in \mathbb{C}$ is enclosed by Γ and 0 otherwise.

$$f(\mathbf{A}) = \mathbf{a}^{\mathsf{T}} e^{\mathbf{A}} \mathbf{b} = \sum_{i=1}^{p} \mathbf{a}^{\mathsf{T}} \left(e^{\lambda_{i}(\mathbf{A})} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}} \right) \mathbf{b} \qquad \text{(spectral decomposition of } \mathbf{A}\text{)}$$
$$= \sum_{i=1}^{p} \mathbf{a}^{\mathsf{T}} \left(-\frac{1}{2\pi i} \oint_{\Gamma} \frac{\exp(z) \, dz}{\lambda_{i}(\mathbf{A}) - z} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}} \right) \mathbf{b} \qquad \text{(Cauchy's integral formula for } \exp(\cdot)\text{)}$$
$$= -\frac{1}{2\pi i} \oint_{\Gamma} \exp(z) \mathbf{a}^{\mathsf{T}} \mathbf{Q}_{\mathbf{A}}(z) \mathbf{b} \, dz \qquad (\mathbf{Q}_{\mathbf{A}}(z) \equiv (\mathbf{A} - z\mathbf{I}_{p})^{-1} = \sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}}}{\lambda_{i}(\mathbf{A}) - z}$$

with $\mathbf{Q}_{\mathbf{A}}(z)$ the resolvent of \mathbf{A} for $z \in \mathbb{C}$ not eigenvalue of \mathbf{A} and Γ positively enclosed all eigenvalues of \mathbf{A} .

Z. Liao, R. Couillet (CentraleSupélec & UG-A)

²Technical remark: no worries about *branch cut* with the exponential function $e^{(\cdot)}$, attention with other functions such as the complex $\log(\cdot)$.

Proposed RMT analysis framework: deterministic equivalent technique

$$f(\mathbf{A}) = \mathbf{a}^{\mathsf{T}} e^{\mathbf{A}} \mathbf{b} = -\frac{1}{2\pi \imath} \oint_{\Gamma} \exp(z) \mathbf{a}^{\mathsf{T}} \mathbf{Q}_{\mathbf{A}}(z) \mathbf{b} \, dz.$$

Resolvent and deterministic equivalents

For symmetric random matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$, define its resolvent $\mathbf{Q}_{\mathbf{A}}(z)$, for $z \in \mathbb{C}$ not eigenvalue of \mathbf{A} , as

$$\mathbf{Q}_{\mathbf{A}}(z) = \left(\mathbf{A} - z\mathbf{I}_p\right)^{-1}.$$

For a large family of random A, we note $\bar{Q}_A \leftrightarrow Q_A$ and say the deterministic matrix \bar{Q}_A is a deterministic equivalent of Q_A if

•
$$\frac{1}{n}$$
 tr $(\mathbf{B}\mathbf{Q}_{\mathbf{A}}) - \frac{1}{n}$ tr $(\mathbf{B}\bar{\mathbf{Q}}_{\mathbf{A}}) \to 0$

•
$$\mathbf{a}^{\mathsf{T}} \left(\mathbf{Q}_{\mathbf{A}} - \bar{\mathbf{Q}}_{\mathbf{A}} \right) \mathbf{b} \to 0$$

almost surely as $n, p \rightarrow \infty$, with **B**, **a**, **b** of bounded norm (operator and Euclidean).

 \Rightarrow To treat $\bar{\mathbf{Q}}_{\mathbf{A}}$ instead of the random $\mathbf{Q}_{\mathbf{A}}$ for *n*, *p* large!

In particular, $f(\mathbf{A}) = -\frac{1}{2\pi i} \oint_{\Gamma} \exp(z) \mathbf{a}^{\mathsf{T}} \mathbf{Q}_{\mathbf{A}}(z) \mathbf{b} \, dz \simeq -\frac{1}{2\pi i} \oint_{\Gamma} \exp(z) \mathbf{a}^{\mathsf{T}} \bar{\mathbf{Q}}_{\mathbf{A}}(z) \mathbf{b} \, dz.$

Intuition behind deterministic equivalent: concentration phenomena

Example: Gaussian concentration inequality

For Gaussian random vector $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$ and α -Lipschitz function $f : \mathbb{R}^p \mapsto \mathbb{R}$, then

$$P\left(|f(\mathbf{x}) - \mathbb{E}[f(\mathbf{x})]| \ge t\right) \le 2e^{-t^2/(2\alpha^2)}$$

- dimension free in the case of single Gaussian random vector
- add a factor $n \sim p$ for (the joint behavior of cols of) random matrix $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$
- for a random matrix $\mathbf{A} = \frac{1}{n} \mathbf{X} \mathbf{X}$ and its resolvent $\mathbf{Q}_{\mathbf{A}}$, the Lipschitz function $\mathbf{a}^{\mathsf{T}} \mathbf{Q}_{\mathbf{A}} \mathbf{b}$ concentrate around its expectation $\mathbf{a}^{\mathsf{T}} \mathbb{E}[\mathbf{Q}_{\mathbf{A}}]\mathbf{b}$ with high probability
- $\Rightarrow \mathbf{a}^{\mathsf{T}} (\mathbf{Q}_{\mathbf{A}} \bar{\mathbf{Q}}_{\mathbf{A}}) \mathbf{b} \rightarrow 0$ almost surely as $n, p \rightarrow \infty$

A Central Limit Theorem

To evaluate test performance: $|\mathbf{w}(t)^{\mathsf{T}} \hat{\mathbf{x}} | \mathbf{w}(t) \sim \mathcal{N}(\mathbf{w}(t)^{\mathsf{T}} \boldsymbol{\mu}_{a}, \mathbf{w}(t)^{\mathsf{T}} \mathbf{C}_{a} \mathbf{w}(t))|$, with $\mathbf{w}(t) = e^{-\frac{\alpha t}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}} \mathbf{w}_{0} + (\mathbf{I}_{p} - e^{-\frac{\alpha t}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}}) \mathbf{w}_{LS}$. For $\mathbf{w}(t)^{\mathsf{T}} \boldsymbol{\mu}_{a}$: • With <u>Cauchy's integral formula</u> $\boldsymbol{\mu}_{a}^{\mathsf{T}} \mathbf{w}(t) = -\frac{1}{2\pi i} \oint_{\Gamma} \boldsymbol{\mu}_{a}^{\mathsf{T}} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}} - z \mathbf{I}_{p}\right)^{-1} \left(\exp(-\alpha tz) \mathbf{w}_{0} + \frac{1 - \exp(-\alpha tz)}{z} \frac{1}{n} \mathbf{X} \mathbf{y}\right) dz$ $= -\frac{1}{2\pi i} \oint_{\Gamma} \boldsymbol{\mu}_{a}^{\mathsf{T}} \mathbf{Q}_{\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}}(z) \left(\mathbf{w}_{0} \exp(-\alpha tz) + \frac{1 - \exp(-\alpha tz)}{z} \frac{1}{n} \mathbf{X} \mathbf{y}\right) dz$

• "replace" the random resolvent $\mathbf{Q}_{\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}}(z)$ with its <u>deterministic equivalent</u> $\overline{\mathbf{Q}}(z)$. To reach a CLT for $\mathbf{w}(t)^{\mathsf{T}}\hat{\mathbf{x}}$ of type

Generic result: asymptotic Gaussianity for $\mathbf{w}(t)^{\mathsf{T}} \hat{\mathbf{x}}$

For an independent test datum $\hat{\mathbf{x}} \sim \mathcal{N}(\boldsymbol{\mu}_a, \mathbf{C}_a)$, the soft output $\mathbf{w}(t)^{\mathsf{T}}\hat{\mathbf{x}} - h_a(t) \to 0$ in distribution as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$,

$$h_a(t) \sim \mathcal{N}(E_a(t), V_a(t))$$

where $E_a(t)$ and $V_a(t)$ are given by contour integrals and depend on data statistics (μ_1 , μ_2 , C_1 , C_2), gradient descent initialization \mathbf{w}_0 and the problem dimension n, p.

A more interpretable case: $C_a = I_p$

For *generic* covariance C_a , the deterministic equivalent $\bar{Q}(z)$ has no-closed form and is characterized via a system of fixed point equations², e.g., for centered X,

$$\left(\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}} - z\mathbf{I}_{p}\right)^{-1} \equiv \mathbf{Q}(z) \leftrightarrow \bar{\mathbf{Q}}(z) = \left(\sum_{a=1}^{2} \frac{\pi_{a}\mathbf{C}_{a}}{1 + g_{a}(z)} - z\mathbf{I}_{p}\right)^{-1}, g_{a}(z) = \frac{1}{n}\operatorname{tr}\mathbf{C}_{a}\bar{\mathbf{Q}}(z)$$

with π_a the prior probability of class C_a and $g_a(z)$ the unique solution of the equation.

Marčenko-Pastur equation

In the special case of $C_a = I_p$, closed-form solution:

$$\bar{\mathbf{Q}}(z) = m(z)\mathbf{I}_p$$

with m(z) (also known as the Stieltjes transform of $\mu_{XX^T/n}$, the spectral measure of $\frac{1}{n}XX^T$) given by the Marčenko–Pastur equation such that $\Im[z] \cdot \Im[m(z)] > 0$,

$$acm^{2}(z) - (1 - c - z)m(z) + 1 = 0 \Rightarrow m(z) = \frac{1 - c - z}{2cz} \pm \frac{\sqrt{(1 - c - z)^{2} - 4cz}}{2cz}$$

with *c* denotes (the limit of) the ratio p/n.

²Florent Benaych-Georges and Romain Couillet. "Spectral analysis of the Gram matrix of mixture models". In: *ESAIM: Probability and Statistics* 20 (2016), pp. 217–237, p. 3.

Z. Liao, R. Couillet (CentraleSupélec & UG-A)

RMT for Gradient Descent in NNs

Special case: $C_a = I_p$

Theorem: asymptotic Gaussianity for $\mathbf{w}(t)^{\mathsf{T}} \hat{\mathbf{x}}$

Let $p/n \to c \in (0, \infty)$ and the initialization \mathbf{w}_0 be a random vector with i.i.d. entries of zero mean, variance σ^2/p . Then, for an independent test datum $\hat{\mathbf{x}} \sim \mathcal{N}(\pm \mu, \mathbf{I}_p)$, the soft output $\mathbf{w}(t)^\mathsf{T} \hat{\mathbf{x}} - \pm h(t) \to 0$ in distribution as $n, p \to \infty$, with

 $h(t) \sim \mathcal{N}(E(t), V(t))$

where

$$E(t) = -\frac{1}{2\pi \iota} \oint_{\Gamma} \frac{1 - e^{-\alpha zt}}{z} \frac{\|\boldsymbol{\mu}\|^2 m(z) \, dz}{(\|\boldsymbol{\mu}\|^2 + c) \, m(z) + 1}$$
$$V(t) = \frac{1}{2\pi \iota} \oint_{\Gamma} \left[\frac{\frac{1}{z^2} \left(1 - e^{-\alpha zt}\right)^2}{(\|\boldsymbol{\mu}\|^2 + c) \, m(z) + 1} - \sigma^2 e^{-2\alpha zt} m(z) \right] \, dz$$

for Γ a positively oriented contour that encloses $\bigcup_{n=1}^{\infty} \operatorname{supp}(\mu_{XX^{T}/n})$, the spectral measure of $\frac{1}{n}XX^{T}$ (know to be almost surely compact).

Practical consequence

Corollary: asymptotic test performance

For a decision threshold $\xi = 0$, we have

$$P(\mathbf{w}(t)^{\mathsf{T}} \hat{\mathbf{x}} > 0 \mid \hat{\mathbf{x}} \in \mathcal{C}_1) = P(\mathbf{w}(t)^{\mathsf{T}} \hat{\mathbf{x}} < 0 \mid \hat{\mathbf{x}} \in \mathcal{C}_2) \simeq Q\left(\frac{E(t)}{\sqrt{V(t)}}\right)$$

with standard Gaussian tail function $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^{\infty} \exp(-u^2/2) du$ and

$$E(t) = -\frac{1}{2\pi \iota} \oint_{\Gamma} \frac{1 - e^{-\alpha zt}}{z} \frac{\|\boldsymbol{\mu}\|^2 m(z) \, dz}{(\|\boldsymbol{\mu}\|^2 + c) \, m(z) + 1}$$
$$V(t) = \frac{1}{2\pi \iota} \oint_{\Gamma} \left[\frac{\frac{1}{z^2} \left(1 - e^{-\alpha zt}\right)^2}{(\|\boldsymbol{\mu}\|^2 + c) \, m(z) + 1} - \sigma^2 e^{-2\alpha zt} m(z) \right] \, dz$$

Not really understandable, nor interpretable...

"Break" the contour integration

- we know (almost surely) the "location" of the eigenvalues of $\frac{1}{n}XX^{T}$;
- and we are "free" to choose the contour Γ!

Figure: Eigenvalue distribution of $\frac{1}{n}XX^{\mathsf{T}}$ for $\mu = [1; \mathbf{0}_{p-1}], p = 500, n = 5000$ and $\pi_1 = \pi_2 = \frac{1}{2}$.

- Marčenko–Pastur "bulk" ($[\lambda_-, \lambda_+]$): sum of "real" line integrals;
- isolated eigenvalue (λ_s): residue calculus.

Asymptotic test performance in more compact form

Corollary: (simplified) asymptotic test performance

For a decision threshold $\xi = 0$, we have

$$P(\mathbf{w}(t)^{\mathsf{T}} \hat{\mathbf{x}} > 0 \mid \hat{\mathbf{x}} \in \mathcal{C}_1) = P(\mathbf{w}(t)^{\mathsf{T}} \hat{\mathbf{x}} < 0 \mid \hat{\mathbf{x}} \in \mathcal{C}_2) \simeq Q\left(\frac{E(t)}{\sqrt{V(t)}}\right)$$

where

$$E(t) = \int \frac{1 - \exp(-\alpha xt)}{x} \nu(dx)$$
$$V(t) = \frac{\|\mu\|^2 + c}{\|\mu\|^2} \int \frac{(1 - \exp(-\alpha xt))^2 \nu(dx)}{x^2} + \sigma^2 \int \exp(-2\alpha xt) \mu(dx)$$

with $\mu(dx)$ the Marčenko–Pastur law $\mu(dx) \equiv \frac{\sqrt{(x-\lambda_-)^+(\lambda_+-x)^+}}{2\pi cx} dx + (1-c^{-1})^+\delta(x)$, $\lambda_- = (1-\sqrt{c})^2$, $\lambda_+ = (1+\sqrt{c})^2$ and

$$\nu(dx) \equiv \frac{\sqrt{(x-\lambda_-)^+(\lambda_+-x)^+}}{2\pi(\lambda_s-x)}dx + \frac{(\|\boldsymbol{\mu}\|^4-c)^+}{\|\boldsymbol{\mu}\|^2}\delta_{\lambda_s}(x)$$

for $\lambda_s = c + 1 + \|\mu\|^2 + c\|\mu\|^{-2}$.

Simulations on MNIST

Figure: Example of MNIST images

Figure: Training and test performance on MNIST data (number 1 and 7) with n = p = 784, $c_1 = c_2 = 1/2$, $\alpha = 0.01$ and $\sigma^2 = 1$. Results averaged over 100 runs.

Discussions on overfitting

$$\begin{split} E(t) &= \int \frac{1 - \exp(-\alpha x t)}{x} \nu(dx) \\ V(t) &= \frac{\|\mu\|^2 + c}{\|\mu\|^2} \int \frac{(1 - \exp(-\alpha x t))^2 \nu(dx)}{x^2} + \sigma^2 \int \exp(-2\alpha x t) \mu(dx) \end{split}$$

Optimal performance

With $\int \nu(dx) = \|\mu\|^2$ and Cauchy–Schwarz inequality:

$$\frac{E(t)}{\sqrt{V(t)}} \le \sqrt{\frac{\int \frac{(1 - \exp(-\alpha xt))^2}{x^2} \nu(dx) \cdot \int \nu(dx)}{V(t)}} \le \frac{\|\mu\|^2}{\sqrt{\|\mu\|^2 + c}}$$

Overfitting and generalization

As $t \to \infty$, we obtain the *least squares solution* (**w**_{LS}) and

$$\frac{E(\infty)}{\sqrt{V(\infty)}} = \frac{\|\boldsymbol{\mu}\|^2}{\sqrt{\|\boldsymbol{\mu}\|^2 + c}} \sqrt{1 - \min(c, c^{-1})}$$

with $p/n \to c \in (0, \infty)$, i.e., the performance drop by a factor of $\sqrt{1 - \min(c, c^{-1})}$.

The benefit of over-parametrization

For least squares solution \mathbf{w}_{LS} :

$$\frac{E(\infty)}{\sqrt{V(\infty)}} = \frac{\|\boldsymbol{\mu}\|^2}{\sqrt{\|\boldsymbol{\mu}\|^2 + c}} \boxed{\sqrt{1 - \min(c, c^{-1})}}$$

Figure: Classification error rate as a function of *c*, $\|\mu\|^2 = 5$.

- performance contains a singularity at p = n!
- in this case the number of system parameters N = p
- for a given training set of size *n*, performance increase when the model gets over-parameterized (*N* ↑)
- similar phenomena are proved/observed for model involved models
- an argument to explain why highly over-parametrized neural nets generalize well

Take-away message: the benefit of learning with gradient descent

• for
$$\mathbf{w}_{LS}$$
: $\frac{E(\infty)}{\sqrt{V(\infty)}} = \frac{\|\boldsymbol{\mu}\|^2}{\sqrt{\|\boldsymbol{\mu}\|^2 + c}} \sqrt{1 - \min(c, c^{-1})}$, singularity at $c = 1$

• in this work, we show for any $t < \infty$, $\frac{E(t)}{\sqrt{V(t)}}$ is a smooth function of *c*

- \Rightarrow no performance drop at c = 1 with "early" stopping!
- an argument to explain why gradient-based deep neural nets generalize well
 - ✓ holds for the misclassification rate in classification of Gaussian mixtures
 - ✓ holds for prediction risk in a (ridge) regression context
 - ✓ extends to nonlinear systems, e.g., nonlinear random feature-based models
 - ? convex optimization problems with no closed-form solution, e.g., logistic regression
 - ? non-convex models are mode involved, but of more practical interest

Related works

Some references and related works:

- Zhenyu Liao and Romain Couillet. "The Dynamics of Learning: A Random Matrix Approach". In: Proceedings of the 35th International Conference on Machine Learning. Vol. 80. PMLR, 2018, pp. 3072–3081
- Madhu S Advani and Andrew M Saxe. "High-dimensional dynamics of generalization error in neural networks". In: arXiv preprint arXiv:1710.03667 (2017)
- Stefano Spigler et al. "A jamming transition from under-to over-parametrization affects loss landscape and generalization". In: arXiv preprint arXiv:1810.09665 (2018)
- Tengyuan Liang and Alexander Rakhlin. "Just interpolate: Kernel" ridgeless" regression can generalize". In: *arXiv preprint arXiv:1808.00387* (2018)
- Mikhail Belkin, Daniel J Hsu, and Partha Mitra. "Overfitting or perfect fitting? risk bounds for classification and regression rules that interpolate". In: Advances in Neural Information Processing Systems. 2018, pp. 2300–2311
- Mikhail Belkin et al. "Reconciling modern machine learning and the bias-variance trade-off". In: arXiv preprint arXiv:1812.11118 (2018)
- Trevor Hastie et al. "Surprises in High-Dimensional Ridgeless Least Squares Interpolation". In: arXiv preprint arXiv:1903.08560 (2019)

and many many more ...

Thank you

Thank you!