
A Random Matrix Viewpoint of Learning with Gradient Descent
DIMACS Workshop on Randomized Numerical Linear Algebra, Stats, and Optim

Zhenyu Liao, Romain Couillet

CentraleSupélec, Université Paris-Saclay, France
G-STATS IDEX DataScience Chair, GIPSA-lab, Université Grenoble-Alpes, France.

Z. Liao, R. Couillet (CentraleSupélec & UG-A) RMT for Gradient Descent in NNs DIMACS, September 18, 2019 1 / 29



Outline

1 Motivation

2 Problem Statement

3 Main Results

4 Discussions and Conclusion

Z. Liao, R. Couillet (CentraleSupélec & UG-A) RMT for Gradient Descent in NNs DIMACS, September 18, 2019 2 / 29



Motivation: the pitfalls of large dimensional statistics

Big data era:
large dimensional and massive amount of data, with huge learning systems;
# of data instances n, their dimension p and # of system parameters N all large;

I high resolution images n ≤ 10p: MNIST with n = 6 000, p = 784 and ImageNet with
n = 500 000, p = 65 536 per class;

I highly over-parameterized deep neural networks N � 10n: “shallow” LeNet-5 with
N = 60 000 and “deep” ResNet-152 with N = 60 200 000;

N � n ∼ p .

Figure: Samples from the MNIST database. Figure: Samples from the ImageNet database.
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Sample covariance matrix in the large n, p regime

For xi ∼ N (0, C), estimate the covariance matrix from n data samples
X = [x1, . . . , xn] ∈ Rp×n.

Classical maximum likelihood sample covariance matrix:

Ĉ =
1
n

n

∑
i=1

xix
T
i =

1
n

XXT ∈ Rp×p

of rank at most n, “optimal” if n� p.

In the regime where n ∼ p, conventional wisdom breaks down, for C = Ip with
n < p, SCM will never be consistent:

‖Ĉ−C‖ 6→ 0, n, p→ ∞

with at least p− n zero eigenvalues (eigenvalue mismatch)!

Typically what happens in deep learning: try to fit an enormous statistical model
(60.2 M of ResNet-152) with insufficient, but still numerous data (total 14.2 M
images of ImageNet dataset).
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When is one under the random matrix regime?

What about n = 100p? Recall n ∼ 10p for MINST and ImageNet.
For C = Ip, as n, p→ ∞ with p/n→ c ∈ (0, ∞): the Marc̆enko–Pastur law

µ(dx) = (1 + c−1)+δ(x) +
1

2πcx

√
(x− λ−)+(λ+ − x)+dx

where λ− = (1−
√

c)2, λ+ = (1 +
√

c)2 and (x)+ ≡ max(x, 0).
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Figure: Eigenvalue distribution of Ĉ versus Marc̆enko-Pastur law, p = 500, n = 50 000.

eigenvalues span on [(1−
√

c)2, (1+
√

c)2].
for n = 100p, spread on a range of 4

√
c = 0.4 around the population eigenvalue 1.
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Motivation: about deep learning

Some known facts:

trained with backpropagation (gradient decent);
achieved superhuman performance in many applications;

“generalization mystery”: highly over-parameterized (N � n ∼ p), some still
generalize remarkably well;

In this work:

Why over-parameterization does not harm generalization?

What is the role played by gradient descent?

⇒ A general RMT framework for gradient descent dynamics of simple nets!

Conclusion:

both over-parameterization and gradient descent are important for generalization!
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Objective: predict the performance of simple neural nets

Figure: Example of
MNIST images
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Figure: Training and test performance for MNIST data with a learning
rate α = 0.01. Results averaged over 100 runs.
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A toy model of binary classification

Gaussian mixture data
Consider data xi drawn from a two-class Gaussian mixture model: for a = 1, 2

xi ∈ Ca ⇔ xi = µa + Ca
1
2 zi

with zi ∼ N (0p, Ip), label yi = −1 for C1 and +1 for C2.

Gradient descent dynamics

Gradient descent to minimize `(w) = 1
2n‖y

T −wTX‖2 with X = [x1, . . . , xn] ∈ Rp×n.
For small learning rate α, gradient flow given by

dw(t)
dt

= −α∇wL(w) =
α

n
X
(

y− XTw(t)
)

of explicit solution

w(t) = e−
αt
n XXT

w0 +
(
Ip − e−

αt
n XXT)

(XXT)−1Xy
}
≡ wLS

if XXT invertible and w0 the initialization.
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RMT for gradient descent dynamics

Key object:

w(t) = e−
αt
n XXT

w0 +
(
Ip − e−

αt
n XXT)

wLS

For symmetric A ∈ Rp×p with spectral decomposition A = UΛAUT = ∑
p
i=1 λi(A)uiuT

i ,

eA = UeΛA UT =
p

∑
i=1

eλi(A)uiu
T
i .

projection of eigenvector weighted by exp(−αtλ) of eigenvalue λ;

functional of the sample covariance-type matrix 1
n XXT;

Random Matrix Theory (RMT) provides an answer!
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RMT for gradient descent dynamics

Objective: Test performance

Test performance for a new x̂ ∼ N (µa, Ca):

P(w(t)Tx̂ > 0 | x̂ ∈ C1), P(w(t)Tx̂ < 0 | x̂ ∈ C2).

Since x̂ Gaussian and independent of w(t):

w(t)Tx̂ | w(t) ∼ N (w(t)Tµa, w(t)TCaw(t))

with w(t) = e−
αt
n XXT

w0 +
(

Ip − e−
αt
n XXT

)
wLS.

With RMT:

Cauchy’s integral formula to express the functional e(·) via contour integration;

for random X, both w(t)Tµa and w(t)TCaw(t) have tractable asymptotically
deterministic1 behavior: deterministic equivalent technique;

⇒ Performance at any time is asymptotically deterministic and predictable!

1that only depends on data statistics and the problem dimension.
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Proposed RMT analysis framework: Cauchy’s integral formula

Consider µT
a w(t) = µT

a e−
αt
n XXT

w0 + µT
a

(
Ip − e−

αt
n XXT

)
wLS.

Cauchy’s integral formula

For Γ ∈ C a positively (i.e., counterclockwise) oriented simple closed curve and a
complex function f (z) analytic in a region containing Γ and its interior, then
− 1

2πı
∮

Γ
f (z)
z0−z dz = f (z0) if z0 ∈ C is enclosed by Γ and 0 otherwise.

f (A) = aTeAb =
p

∑
i=1

aT
(

eλi(A)uiu
T
i

)
b (spectral decomposition of A)

=
p

∑
i=1

aT
(
− 1

2πı

∮
Γ

exp(z) dz
λi(A)− z

uiu
T
i

)
b (Cauchy’s integral formula for exp(·))

= − 1
2πı

∮
Γ

exp(z)aTQA(z)b dz ( QA(z) ≡ (A− zIp)−1 = ∑
p
i=1

uiuT
i

λi(A)−z )

with QA(z) the resolvent of A for z ∈ C not eigenvalue of A and Γ positively enclosed
all eigenvalues of A.

2Technical remark: no worries about branch cut with the exponential function e(·) , attention with other
functions such as the complex log(·).
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Proposed RMT analysis framework: deterministic equivalent technique

f (A) = aTeAb = − 1
2πı

∮
Γ

exp(z)aTQA(z)b dz.

Resolvent and deterministic equivalents

For symmetric random matrix A ∈ Rp×p, define its resolvent QA(z), for z ∈ C not
eigenvalue of A, as

QA(z) =
(
A− zIp

)−1 .

For a large family of random A, we note Q̄A ↔ QA and say the deterministic matrix
Q̄A is a deterministic equivalent of QA if

1
n tr (BQA)− 1

n tr (BQ̄A)→ 0

aT (QA − Q̄A)b→ 0

almost surely as n, p→ ∞, with B, a, b of bounded norm (operator and Euclidean).

⇒ To treat Q̄A instead of the random QA for n, p large!

In particular, f (A) = − 1
2πı
∮

Γ exp(z)aTQA(z)b dz ' − 1
2πı
∮

Γ exp(z)aTQ̄A(z)b dz.
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Intuition behind deterministic equivalent: concentration phenomena

Example: Gaussian concentration inequality

For Gaussian random vector x ∼ N (0, Ip) and α-Lipschitz function f : Rp 7→ R, then

P (|f (x)−E[f (x)]| ≥ t) ≤ 2e−t2/(2α2)

dimension free in the case of single Gaussian random vector

add a factor n ∼ p for (the joint behavior of cols of) random matrix X = [x1, . . . , xn]

for a random matrix A = 1
n XX and its resolvent QA, the Lipschitz function aTQAb

concentrate around its expectation aTE[QA]b with high probability

often E[QA] not easily accessible (high dimensional integral), but admits an
asymptotic equivalent ‖E[QA]− Q̄A‖ → 0 as n, p→ ∞

⇒ aT (QA − Q̄A)b→ 0 almost surely as n, p→ ∞
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A Central Limit Theorem

To evaluate test performance: w(t)Tx̂ | w(t) ∼ N (w(t)Tµa, w(t)TCaw(t)) , with

w(t) = e−
αt
n XXT

w0 +
(
Ip − e−

αt
n XXT)

wLS. For w(t)Tµa:
1 With Cauchy’s integral formula

µT
a w(t) = − 1

2πı

∮
Γ

µT
a

(
1
n

XXT − zIp

)−1 (
exp(−αtz)w0 +

1− exp(−αtz)
z

1
n

Xy
)

dz

= − 1
2πı

∮
Γ

µT
a Q 1

n XXT (z)
(

w0 exp(−αtz) +
1− exp(−αtz)

z
1
n

Xy
)

dz

2 “replace” the random resolvent Q 1
n XXT (z) with its deterministic equivalent Q̄(z).

To reach a CLT for w(t)Tx̂ of type

Generic result: asymptotic Gaussianity for w(t)Tx̂

For an independent test datum x̂ ∼ N (µa, Ca), the soft output w(t)Tx̂− ha(t)→ 0 in
distribution as n, p→ ∞ with p/n→ c ∈ (0, ∞),

ha(t) ∼ N (Ea(t), Va(t))

where Ea(t) and Va(t) are given by contour integrals and depend on data statistics
(µ1, µ2, C1, C2), gradient descent initialization w0 and the problem dimension n, p.
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A more interpretable case: Ca = Ip

For generic covariance Ca, the deterministic equivalent Q̄(z) has no-closed form and is
characterized via a system of fixed point equations2, e.g., for centered X,(

1
n

XXT − zIp

)−1
≡ Q(z)↔ Q̄(z) =

(
2

∑
a=1

πaCa

1 + ga(z)
− zIp

)−1

, ga(z) =
1
n

tr CaQ̄(z)

with πa the prior probability of class Ca and ga(z) the unique solution of the equation.

Marc̆enko–Pastur equation

In the special case of Ca = Ip, closed-form solution:

Q̄(z) = m(z)Ip

with m(z) (also known as the Stieltjes transform of µXXT/n, the spectral measure of
1
n XXT) given by the Marc̆enko–Pastur equation such that =[z] · =[m(z)] > 0,

zcm2(z)− (1− c− z)m(z) + 1 = 0⇒ m(z) =
1− c− z

2cz
±
√
(1− c− z)2 − 4cz

2cz

with c denotes (the limit of) the ratio p/n.
2Florent Benaych-Georges and Romain Couillet. “Spectral analysis of the Gram matrix of mixture models”.

In: ESAIM: Probability and Statistics 20 (2016), pp. 217–237, p. 3.
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Special case: Ca = Ip

Theorem: asymptotic Gaussianity for w(t)Tx̂

Let p/n→ c ∈ (0, ∞) and the initialization w0 be a random vector with i.i.d. entries of
zero mean, variance σ2/p. Then, for an independent test datum x̂ ∼ N (±µ, Ip), the soft
output w(t)Tx̂−±h(t)→ 0 in distribution as n, p→ ∞, with

h(t) ∼ N (E(t), V(t))

where

E(t) = − 1
2πı

∮
Γ

1− e−αzt

z
‖µ‖2m(z) dz

(‖µ‖2 + c)m(z) + 1

V(t) =
1

2πı

∮
Γ

 1
z2

(
1− e−αzt)2

(‖µ‖2 + c)m(z) + 1
− σ2e−2αztm(z)

 dz

for Γ a positively oriented contour that encloses ∪∞
n=1 supp(µXXT/n), the spectral

measure of 1
n XXT (know to be almost surely compact).
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Practical consequence

Corollary: asymptotic test performance

For a decision threshold ξ = 0, we have

P(w(t)Tx̂ > 0 | x̂ ∈ C1) = P(w(t)Tx̂ < 0 | x̂ ∈ C2) ' Q

(
E(t)√
V(t)

)

with standard Gaussian tail function Q(x) = 1√
2π

∫ ∞
x exp(−u2/2)du and

E(t) = − 1
2πı

∮
Γ

1− e−αzt

z
‖µ‖2m(z) dz

(‖µ‖2 + c)m(z) + 1

V(t) =
1

2πı

∮
Γ

 1
z2

(
1− e−αzt)2

(‖µ‖2 + c)m(z) + 1
− σ2e−2αztm(z)

 dz

Not really understandable, nor interpretable. . .
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“Break” the contour integration

we know (almost surely) the “location” of the eigenvalues of 1
n XXT;

and we are “free” to choose the contour Γ!

0.5 1 1.5 2
λ− λ+

Eigenvalues of 1
n XXT

Marc̆enko–Pastur law

λs = c + 1 + ‖µ‖2 + c‖µ‖−2

0.5 1 1.5 2
λ− λ+

Eigenvalues of 1
n XXT

Marc̆enko–Pastur law

λs = c + 1 + ‖µ‖2 + c‖µ‖−2

λ− λ+ λs

Γb Γs

<(z)

=(z)

Eigenvalues of 1
n XXT

Integration path Γ

Figure: Eigenvalue distribution of 1
n XXT for µ = [1; 0p−1], p = 500, n = 5 000 and π1 = π2 = 1

2 .

Marc̆enko–Pastur “bulk” ([λ−, λ+]): sum of “real” line integrals;

isolated eigenvalue (λs): residue calculus.
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Asymptotic test performance in more compact form

Corollary: (simplified) asymptotic test performance

For a decision threshold ξ = 0, we have

P(w(t)Tx̂ > 0 | x̂ ∈ C1) = P(w(t)Tx̂ < 0 | x̂ ∈ C2) ' Q

(
E(t)√
V(t)

)

where

E(t) =
∫ 1− exp(−αxt)

x
ν(dx)

V(t) =
‖µ‖2 + c
‖µ‖2

∫
(1− exp(−αxt))2ν(dx)

x2 + σ2
∫

exp(−2αxt)µ(dx)

with µ(dx) the Marčenko–Pastur law µ(dx) ≡
√

(x−λ−)+(λ+−x)+
2πcx dx + (1− c−1)+δ(x),

λ− = (1−
√

c)2, λ+ = (1 +
√

c)2 and

ν(dx) ≡
√
(x− λ−)+(λ+ − x)+

2π(λs − x)
dx +

(‖µ‖4 − c)+

‖µ‖2 δλs (x)

for λs = c + 1 + ‖µ‖2 + c‖µ‖−2.
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Simulations on MNIST

Figure: Example of
MNIST images
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Figure: Training and test performance on MNIST data (number 1 and 7)
with n = p = 784, c1 = c2 = 1/2, α = 0.01 and σ2 = 1. Results averaged
over 100 runs.
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Discussions on overfitting

E(t) =
∫ 1− exp(−αxt)

x
ν(dx)

V(t) =
‖µ‖2 + c
‖µ‖2

∫
(1− exp(−αxt))2ν(dx)

x2 + σ2
∫

exp(−2αxt)µ(dx)

Optimal performance

With
∫

ν(dx) = ‖µ‖2 and Cauchy–Schwarz inequality:

E(t)√
V(t)

≤

√√√√ ∫ (1−exp(−αxt))2

x2 ν(dx) ·
∫

ν(dx)
V(t)

≤ ‖µ‖2√
‖µ‖2 + c

Overfitting and generalization

As t→ ∞, we obtain the least squares solution (wLS) and

E(∞)√
V(∞)

=
‖µ‖2√
‖µ‖2 + c

√
1−min(c, c−1)

with p/n→ c ∈ (0, ∞), i.e., the performance drop by a factor of
√

1−min(c, c−1).
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The benefit of over-parametrization
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Figure: Classification error rate as a function of c, ‖µ‖2 = 5.

For least squares solution wLS:

E(∞)√
V(∞)

=
‖µ‖2√
‖µ‖2 + c

√
1−min(c, c−1)

performance contains a singularity at p = n!

in this case the number of system parameters N = p
for a given training set of size n, performance increase when the model gets
over-parameterized (N ↑)
similar phenomena are proved/observed for model involved models

an argument to explain why highly over-parametrized neural nets generalize well
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Take-away message: the benefit of learning with gradient descent

for wLS: E(∞)√
V(∞)

=
‖µ‖2√
‖µ‖2+c

√
1−min(c, c−1) , singularity at c = 1

in this work, we show for any t < ∞, E(t)√
V(t)

is a smooth function of c

⇒ no performance drop at c = 1 with “early” stopping!
an argument to explain why gradient-based deep neural nets generalize well

4 holds for the misclassification rate in classification of Gaussian mixtures
4 holds for prediction risk in a (ridge) regression context
4 extends to nonlinear systems, e.g., nonlinear random feature-based models
? convex optimization problems with no closed-form solution, e.g., logistic regression
? non-convex models are mode involved, but of more practical interest
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Thank you

Thank you!
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