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Motivation: the pitfalls of large dimensional statistics

@ Big data era:
large dimensional and massive amount of data, with huge learning systems;
@ # of data instances 7, their dimension p and # of system parameters N all large;

> high resolution images n < 10p: MNIST with n = 6000, p = 784 and ImageNet with
n = 500000, p = 65536 per class;

> highly over-parameterized deep neural networks N >> 10n: “shallow” LeNet-5 with
N = 60000 and “deep” ResNet-152 with N = 60200 000;
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Figure: Samples from the MNIST database. Figure: Samples from the ImageNet database.
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Sample covariance matrix in the large 1, p regime
@ For x; ~ N (0, C), estimate the covariance matrix from n data samples
X =[x1,...,%y] € RP*,
@ Classical maximum likelihood sample covariance matrix:

1
xx; = =XXT € RP*P
(] n

1=

e-1
n:
I

Il
—_

of rank at most 1, “optimal” if n > p.

@ In the regime where n ~ p, conventional wisdom breaks down, for C = I,, with
n < p, SCM will never be consistent:

[€C—-C| A0, n,p — oo

with at least p — n zero eigenvalues (eigenvalue mismatch)!

@ Typically what happens in deep learning: try to fit an enormous statistical model
(60.2 M of ResNet-152) with insufficient, but still numerous data (total 14.2 M
images of ImageNet dataset).
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When is one under the random matrix regime?

What about n = 100p? Recall n ~ 10p for MINST and ImageNet.
For C =1,,as n,p — co with p/n — ¢ € (0, 00): the Marcenko-Pastur law

) = (14 7000) + 5oy (= A ) (0 — )i
= (14 +/c)? and (x)T = max(x,0).

where A = (1 —/c)%, Ay
B Empirical eigenvalues of ¢
Maréenko-Pastur law

= Population eigenvalue
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Figure: Eigenvalue distribution of € versus Marcenko-Pastur law, p =500, n = 50000.

e eigenvalues span on [(1—+/c)?, (1++/c)?].
@ for n = 100p, spread on a range of 4,/c = 0.4 around the population eigenvalue 1.
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Motivation: about deep learning

Some known facts:
@ trained with backpropagation (gradient decent);
@ achieved superhuman performance in many applications;

@ “generalization mystery”: highly over-parameterized (N > n ~ p), some still
generalize remarkably well;

In this work:
@ Why over-parameterization does not harm generalization?
@ What is the role played by gradient descent?
@ = A general RMT framework for gradient descent dynamics of simple nets!
@ Conclusion:

both over-parameterization and gradient descent are important for generalization!
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Objective: predict the performance of simple neural nets
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Figure: Example of
MNIST images Figure: Training and test performance for MNIST data with a learning
rate ¢ = 0.01. Results averaged over 100 runs.

Z. Liao, R. Couillet (Central oc & ) RMT for Gradient Descent in NNs DIMACS, September 18, 2019 8/29



A toy model of binary classification

Gaussian mixture data

Consider data x; drawn from a two-class Gaussian mixture model: fora = 1,2
1
x; € Cp & x; :ya+Cﬂzzi

with z; ~ N'(0,,1;), label y; = —1 for C; and +1 for C,.

Gradient descent dynamics

Gradient descent to minimize £(w) = - ||y — wTX||? with X = [xq, ..., X,] € RP*".

For small learning rate «, gradient flow given by

dw(t)

—5 = —aVwL(w) = %X (y = XTW(t))

of explicit solution
w(t) = e X wy + (I, — e’%XXT) (xxT)"Ixy } = wis

if XXT invertible and wy the initialization.

v
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RMT for gradient descent dynamics

Key object:

w(t) =e X wy + (I, — e X Ywyg

For symmetric A € RP*7 with spectral decomposition A = UAAUT = Zf:l Ai(A)uul

17
4
A =UMUT = ) My
i=1
@ projection of eigenvector weighted by exp(—afA) of eigenvalue A;

o functional of the sample covariance-type matrix 1XXT;
@ Random Matrix Theory (RMT) provides an answer!
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RMT for gradient descent dynamics

Objective: Test performance

Test performance for a new X ~ N (,, C;):
Pw(t)Tx>0[%€C;), P(w(t)Tx<0|%x€C).
Since X Gaussian and independent of w(t):

w(t)Tx | w(t) ~ N (w(t) p,, w(t)T Caw(t))

withw(t) = eJWtXXTwo 4 (Ip = e,%XXT) Wis.

With RMT:

@ Cauchy’s integral formula to express the functional e(") via contour integration;

e for random X, both w(t) T, and w(t) TC,w(t) have tractable asymptotically
deterministic! behavior: deterministic equivalent technique;

@ = Performance at any time is asymptotically deterministic and predictable!

!that only depends on data statistics and the problem dimension.
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Proposed RMT analysis framework: Cauchy’s integral formula
Consider u] w(t) = y;re’a?txx-rwo +ul (Ip - e’%XXT> Wis.

Cauchy’s integral formula

For T € C a positively (i.e., counterclockwise) oriented simple closed curve and a
complex function f(z) analytic in a region containing I and its interior, then

2m fr e ) dz = f(zg) if zp € C is enclosed by I and 0 otherwise.

p
f(A)=a'eAb = ) a’ (e)“'(A)uiu;r> b (spectral decomposition of A)

P 1 exp(z)dz
—YaT (- — § &P T s :
= E a ( 2 fo (A - S Wi, ) b (Cauchy’s integral formula for exp(-))

1 wu’
= Tom ?{rexp(z)aTQA(Z)b dz (Qalz)=(A—zl,) ' =17, T(A) =)

with Qa (z) the resolvent of A for z € C not eigenvalue of A and T positively enclosed
all eigenvalues of A.

2Technical remark: no worries about branch cut with the exponential function ("), attention with other
functions such as the complex log(-).
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Proposed RMT analysis framework: deterministic equivalent technique

f(A) =aTeAb = —ﬁ ﬁexp(z)aTQA(z)b dz.

Resolvent and deterministic equivalents

For symmetric random matrix A € RP*?, define its resolvent Q4 (z), for z € C not
eigenvalue of A, as

Qaz) = (A— zI,,)f1 :

For a large family of random A, we note Q5 > Q, and say the deterministic matrix
Q4 is a deterministic equivalent of Q4 if

° %tr (BQy) — %tr (BQuy) — 0
) aT(QA—QA)b—>O
almost surely as n,p — oo, with B, a, b of bounded norm (operator and Euclidean).

= To treat Q4 instead of the random Qj for 1, p large!

In particular, f(A) = — 5= f.exp(z)a’ Qa(z)bdz ~ — 5L f.exp(z)a’ Qa(z)bdz.
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Intuition behind deterministic equivalent: concentration phenomena

Example: Gaussian concentration inequality

For Gaussian random vector x ~ A (0, Ip) and a-Lipschitz function f : R” — R, then

P(If(x) = E[f(x)]| > t) < 2¢~/(4%)

@ dimension free in the case of single Gaussian random vector
@ add a factor n ~ p for (the joint behavior of cols of) random matrix X = [xq, ..., Xy]

o for a random matrix A = %XX and its resolvent Q4, the Lipschitz function a'Qub
concentrate around its expectation a" IE[Q |b with high probability

o often E[Q4] not easily accessible (high dimensional integral), but admits an
asymptotic equivalent [|[E[Qa] — Qall = Oasn,p —

@ = a' (Qa —Qa)b — 0almost surely as n,p — oo
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A Central Limit Theorem

To evaluate test performance: | w(t) "% | w(t) ~ N (w(t) Tp,, w(t) T Cow(t)) |, with
w(t) = e i XXTwg + (I, — e XX Y wis. For w(t) T,
@ With Cauchy’s integral formula

-1
= f{ﬂa ( xxT —zlp) (exp(—txtz)wo—i— 1Lhktz)le) dz

l‘;rw(t) z n

1- exz(factz) %Xy) i

3 17 Qr () (woexp(-ata) +

@ “replace” the random resolvent Q 1XXT (z) with its deterministic equivalent Q(z).

To reach a CLT for w(t) % of type

Generic result: asymptotic Gaussianity for w(t) "%

For an independent test datum % ~ N (p,, C,), the soft output w(t) T — h,(t) — 0in
distribution as n,p — oo with p/n — ¢ € (0, ),

ha(t) ~ N (Ea(t), Va(t))

where E,(t) and V,(t) are given by contour integrals and depend on data statistics
(71, 15, C1, Cp), gradient descent initialization wg and the problem dimension 1, p.

v
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A more interpretable case: C; = I,

For generic covariance Cg, the deterministic equivalent Q(z) has no-closed form and is
characterized via a system of fixed point equations?, e.g., for centered X,

(EXXT—ZI )1—Q(z)<—>Q(z) iLCu—zI B (z)*ltrCQz)
n ') A\ Gl 7 Sl =
with 7, the prior probability of class C; and g,(z) the unique solution of the equation.

Marcéenko—Pastur equation

In the special case of C; = I;, closed-form solution:

Q(z) = m(2)I,

with m(z) (also known as the Stieltjes transform of jixx /,,, the spectral measure of

1XXT) given by the Maréenko-Pastur equation such that 3[z] - S[m(z)] > 0,
= E=

S e . (1—c—2)2—4cz
zem~(z) —(1—c—2z)m(z) +1=0=m(z) = e EE e

with ¢ denotes (the limit of) the ratio p/n.

2Florent Benaych-Georges and Romain Couillet. “Spectral analysis of the Gram matrix of mixture models”.
In: ESAIM: Probability and Statistics 20 (2016), pp. 217-237, p. 3.
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Special case: C; = I,

Ts

Theorem: asymptotic Gaussianity for w(t) ' X

Letp/n — ¢ € (0,00) and the initialization w( be a random vector with i.i.d. entries of
zero mean, variance o2 /p. Then, for an independent test datum % ~ N (£p, I,), the soft

output w(t) "% — +h(t) — 0 in distribution as n,p — oo, with

h(t) ~ N(E(1), V(1)

where

1 pil=g l|p||2m(2) dz
E() = —5— ¢ ‘

2mJr z (|pll*+co)m(z) +1

1 —azt

1 7(1_3 ) _
V(t :7?{ z _ 2,2zt
O=3m b | romm+1 7¢O %

for T a positively oriented contour that encloses US> ; supp (pxxT /,,), the spectral
measure of %XXT (know to be almost surely compact).
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Practical consequence

Corollary: asymptotic test performance

For a decision threshold ¢ = 0, we have

P(w(t)T%>0|%x€C) =P(w(t)'x<0|%x€C)~Q ( E‘(/t()t)>

with standard Gaussian tail function Q(x) r f exp(—u?/2)du and

11— [P
B~ ~m b (b +m@ 71

—)
V(t) = L?{r ( z (1= azez”‘”m(z)] dz

2m [l + ) m(z) +1

Not really understandable, nor interpretable. ..

Z. Liao, R. Couillet (CentraleSupélec & UG-A) RMT for Gradient Descent in NNs DIMACS, September 18, 2019

20/29



“Break” the contour integration

@ we know (almost surely) the “location” of the eigenvalues of %XXT ;

@ and we are “free” to choose the contour I'!

&
B Eigenvalues of 1XXT 3(z)
Maréenko-Pastur law
= H ; 1xxT
X As=c+1+ |l +clp) 2 *  Eigenvalues of ;;XX
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Figure: Eigenvalue distribution of XXT for y = [1; 0,_1],p =500, 7 = 5000 and 71y = 71, = 3.

@ Marcenko-Pastur “bulk” ([A—, A ]): sum of “real” line integrals;

@ isolated eigenvalue (As): residue calculus.
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Asymptotic test performance in more compact form

Corollary: (simplified) asymptotic test performance

For a decision threshold ¢ = 0, we have

P(w(t)Tx>0|%€C) =P(w(t)Tx<0|%€C)~Q ( E(t) )

where
B = | Mv(dx)

P re (= exp(—axt)2u(dy)
v =Y/ 2

with j(dx) the Mar¢enko-Pastur law yu(dx) = —‘W
A= (1= Va2, As = (1+ y&)2 and

l/(dx) = \/(xf/\*)+()\+ 7x)+dx+

(zll* — o)

70)

+(72/exp(—2mxt)y(dx)

dx+ (1—cHto(x),

27t(As —x) [l11?

for As = ¢+ 1+ [|l|? + cllpl| =2

o (x)

v
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Simulations on MNIST
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Figure: Example of
MNIST images Figure: Training and test performance on MNIST data (number 1 and 7)
withn =p=784,¢c1 =c =1/2, 2 = 0.01 and 0% = 1. Results averaged
over 100 runs.
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Discussions on overfitting

E(t) :/Mv(dx)

X

2 " (1 —exp(— 2 i
V(t) = H””H”Hjc/ a p( xl;ﬁ)) v(dz) +02/exp(72axt);4(dx)

Optimal performance

With [ v(dx) = [|u|* and Cauchy-Schwarz inequality:

E) _ J [ UGy ) u(an) _u?
VVI(E) v(t) ~ VIwl? +e

Overfitting and generalization

As t — oo, we obtain the least squares solution (wrg) and

2
E(OO) _ H"H 1— min(C,C_l)

VV(o)  VIul*+c

with p/n — ¢ € (0,), i.e., the performance drop by a factor of 1/1 — min(c,c~1).
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The benefit of over-parametrization

0.5 r :
*q-',; 0.4 funder-param over-parameterization —|
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7 02l For least squares solution wrg:
[
E E(o) _ P .
S 01 — ———— = —— | /1—min(c,c!)
> Vi) Ve

0 l
0 2 3

c=limp/n
Figure: Classification error rate as a function of ¢, ||u||> = 5.

@ performance contains a singularity at p = n!
@ in this case the number of system parameters N = p

o for a given training set of size n, performance increase when the model gets
over-parameterized (N 1)

@ similar phenomena are proved/observed for model involved models

@ an argument to explain why highly over-parametrized neural nets generalize well
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Take-away message: the benefit of learning with gradient descent

E(0) _ _|pl?

. _ ) 71 . . —
o forwig: o — VI 1 —min(c,c~1) |, singularity atc = 1

@ in this work, we show for any t < co, _E)_ is a smooth function of ¢

V()
@ = no performance drop at ¢ = 1 with “early” stopping!
@ an argument to explain why gradient-based deep neural nets generalize well

v holds for the misclassification rate in classification of Gaussian mixtures
holds for prediction risk in a (ridge) regression context

v
v extends to nonlinear systems, e.g., nonlinear random feature-based models

? convex optimization problems with no closed-form solution, e.g., logistic regression
?

non-convex models are mode involved, but of more practical interest
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Thank you

Thank you!
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