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Motivation

» ML (foundation) models are giant, and needs be trained in a distributed /decentralized manner
» data on each client can be non-i.i.d., leading to domain shift and poor generalization

> federated domain adaptation (FDA) is great, but is generally computational/communicational
inefficient in minimizing, e.g., the Maximum Mean Discrepancy (MMD) distance:

2
1 T
MMD (Xs, X1) = Z¢ - — Y o(x)| =£"Ke, (1)
T j=1 2
between source Xg and target dataset X7, with “label” vector ¢; = —1,(16)(5 an 1x.ex,, on some RKHS H

via the kernel trick (¢ (x;), ¢(x;))y = K(x;,x;) [SS18]

> with K € R"*", computational /communicational cost of MMD-based FDA inevitably grows, at least
quadratically, with n = ng 4+ nt

Main take-away

With randomness, performance MMD-based FDA within | N ~ log(n) | communication cost!
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Our approach: random features-based MMD

Random Fourier features (RFFs), [RR08]

cos(0X)

For data X = [xq, ..., X,] € RP*" of size n, RFF matrix &L = ——
sin(QX)

f

of random features, Gaussian random matrix Q) € RN*?,

} € R2N*" of X, with N the number

RFFs approximation of Gaussian kernels, [Tro15, Section 6.5]

For random Fourier features ¥ € RZVX" of data X € RP*", there exists C > 0 independent of N and # that
E|ZTEZ — K|, < C(y/ "10g HK|| + nlOg( >) with K Gaussian kernel matrix of X.

RFFs approximation of MMD distance

Let‘ RF-MMD(Xs, X7) = £TZTZL = ||££|)3 |, then, for MMD distance defined in (1) with ns, ny = ©(n),

E[|RF-MMD(Xs, X7) — MMD(Xs, X7)|] < ¢,

holds for ‘ N > Clog(n)/(dim(K)e?)

, with dim(K) = tr K/||K]||, the intrinsic dimension of K.

@
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Consequence of RE-MDD in FDA: FedRF-Adapt

RFFs approximation of MMD distance

Let‘ RF-MMD(Xs, X7) = £TZTZL = || Z¢|)3

, then, for MMD distance defined in (1) with ns, ny = ©(n),

E[|RF-MMD(Xs, X1) — MMD(Xs, X7)|] < ¢, ®3)

holds for ‘ N > Clog(n)/(dim(K)e?) |, with dim(K) = tr K/||K||, the intrinsic dimension of K.

> ©¢ € R?N is small with N ~ log(n);
> in multi-source FDA, exchange only highly compressed and randomized messages Z£R2N!
»> = FedRF-Adapt: communication-efficient and robust (to network condition) FDA with added privacy
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Design of FedRF-Adapt
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Figure: Illustration of the proposed FedRF-Adapt protocol

@ local domain alignment with RE-MMD by exchanging £ € R2N
@ global classifier aggregation via FedAvg [McM+17]
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Numerical results

Table: Classification accuracy (%) on Office-Caltech10 and
Digit-Five. Best performance shown in boldface.

Methods CDW—A ADW—C ACW—D ACD—-W Avg
ResNet101 [He+16] 81.9 87.9 85.7 86.9 85.6
AdaBN [Li+16] 822 88.2 85.9 874 857
AutoDIAL [Mar+17] 83.3 87.7 85.6 87.1 85.9
f-DAN [Lon+15] 827 88.1 86.5 865 859
f-DANN [GL15] 83.5 88.5 85.9 871 863
FADA [Pen+19] 84.2 88.7 87.1 881 871
FedRF-Adapt (I) 92.6 85.3 97.6 97.0 931
FedRF-Adapt (II) 93.4 84.8 97.7 96.9 93.2
FedRF-Adapt (III) 927 82.8 96.5 962 921
FedRF-TCA [Fen+23] (I)  94.5 98.6 98.8 9200 955
Methods —mt —mm —up —sv —sy Avg
f-DAN [Lon+15] 86.4 57.5 908 453 584 677
f-DANN [GL15] 86.1 59.5 89.7 443 534 666
FADA [Pen+19] 914 62.5 917 505 718 73.6
FedRF-Adapt (IIT) 98.5 755 957 460 504 732

FedRF-TCA [Fen+23] (1)  97.4 64.3 89.5 419 444 675
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(a) Digit-Five (b) Office-Caltech10

> (I): all clients aggregate the classifier in each
communication round;

» (II): only a random subset &; of source clients
are involved;

» (III): as for (II) with classifier aggregation
interval T = 100

» check our paper for more numerical results!
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Randomness for ML and data science
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a pre-production version of the book and exercise
solutions at https://zhenyu-1liao.github.io/book/

v

MATLAB and Python codes to reproduce all figures at
https://github.com/Zhenyu-LIAO/RMT4ML
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https://zhenyu-liao.github.io/book/
https://github.com/Zhenyu-LIAO/RMT4ML

Thank you!
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