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Machine Learning: from Linear Regression to Deep Neural Networks

Objective: given (X,Y ), find function fW(·) parameterized by W to minimize ‖Y − fW(X)‖2.
First solution: if fW(X) = WX, linear regression WLR = Y XT(XXT)−1 if XXT

invertible. However, may not work well for difficult problems (e.g., cat & dogs classif, face
recognition, etc): describe solely a linear transformation between X and Y .
(Brain-inspired) linear neural network models (back to [Rosenblatt, 1958])

=⇒

X ∈ Rdx×mW1XWH+1 . . .W1X

W1 ∈ Rd1×dx. . .WH+1 ∈ Rdy×dH

Figure: Illustration of H-hidden-layer linear neural network

Linear neural networks : fW(X) = WH+1WHW1X.

with W = (WH+1,WH , · · · ,W1), equivalent to linear regression if WH+1WHW1 = WLR.
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From Linear Regression to Deep Neural Networks

Nonlinear neural networks:

X ∈ Rdx×m

σ
σ
σ
σ
σ

h1 = W1X

σ
σ
σ
σ
σ

hH := WHσ(hH−1)

WH+1σ(hH)

W1 ∈ Rd1×dx. . .WH+1 ∈ Rdy×dH

Figure: Illustration of H-hidden-layer nonlinear neural network

with nonlinear activation function σ(z): ReLU max(z, 0), Leaky ReLU max(z, az) or
sigmoid σ(z) = (1 + e−z)−1, arctan(z), tanh(z), etc.

fW(X) = WH+1σ(WHσ(WH−1σ(· · ·W1X))).
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Why “Deep” Neural Networks?

Practitioners find “deeper” structures bring better performance, e.g., for (simple) handwritten
digits classification:

Figure: Samples from the MNIST dataset [LeCun et al. 1998].

Network Classification error rate
H = 0 (linear regression) 12.0%
H = 2 [LeCun et al. 1998] 2.5%
H = 4 [LeCun et al. 1998] 0.8%

Table: Evolution of state of the art on MNIST dataset.

However, deep networks are computationally more challenging!
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Challenges in Training Deep Neural Networks

1 huge demand of computational resources: LeNet in [LeCun et al. 1998] 5-layer with 60K
parameters to ResNet in [He et al. 2015] 152-layer with 60M parameters.

2 Commonly trained with first-order optimization methods due to complexity constraints, e.g.,
(stochastic) gradient decent.

3 unfortunately non-convex optimization problem: e.g., in a single-hidden-layer linear network,
use gradient descent to find (W1,W2) that minimizes

L(W1,W2) = ‖Y −W2W1X‖2
F .

Since L(W ∗1 ,W ∗2 ) = L(αW ∗1 ,
1
α
W ∗2 )⇒ (αW ∗1 ,

1
α
W ∗2 ) is as “good” as (W ∗1 ,W ∗2 )!

4 can be local minima/maxima and saddle points! All depends on (X,Y ) and network design.

(a) Local minimum (b) Local maximum (c) Saddle point

Figure: Illustration of three types of critical points in one dimension.
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Non-convexity in Deep Neural Networks

Global min

“Bad” local min

“Good” local min

W

L
(W

)

Figure: Examples of different local minima.

In non-convex case, performance of gradient descent can be sensitive to initialization!

Can we still obtain some general results in this difficult case?
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On Linear Deep Neural Networks

Set dH+1 := dy , d0 := dx and consider

X ∈ Rd0×m Y ∈ RdH+1×m.

Goal: find W = (WH+1, · · · ,W1) that minimizes (depending on (X,Y ))

L(W) := ‖Y −WH+1WH · · ·W1X‖2,

where
Wj ∈ Rdj×dj−1 , 1 ≤ j ≤ H + 1.

Define state space W (recall dy = dH+1 and d0 = dx)

W = RdH+1×dH × · · ·Rd1×d0 .

and Gradient Descent Dynamic (GDD) associated with L

(GDD)(X,Y )
dW
dt

= −∇L(W), W ∈ W.

Conjecture (Global Convergence to Global Minimum)
For almost every (X,Y ) and almost every W0 ∈ W, trajectory of (GDD)(X,Y ) starting at W0
converges to a Global minimum of L.
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Gradient Descent for Linear Neural Networks - First reductions

(Usual) working assumptions

X,Y full rank ,m ≥ max(di) ≥ min(di) = dy .

Up to SVD and computations, can assume

X = Idx ( i.e. m = dx), Y =
(
DY 0

)
, DY ∈ Rdy×dy diagonal > 0.

Notation

(ΠW )ji = Wj · · ·Wi, 1 ≤ i ≤ j ≤ H + 1, M = Y − (ΠW )H+1
1 .

Gradient Descent Dynamic, 1 ≤ j ≤ H + 1

(GDD)
dWj

dt
= (ΠW )H+1

j+1 M(ΠW )j−1
1 .

Definition Critical points ∇L(W) = 0

Crit(L) = {W = (WH+1, · · · ,W1) ∈ W, (ΠW )H+1
j+1 M(ΠW )j−1

1 = 0}.

Candidates for limit points of GDD trajectories.
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Gradient Descent for Linear Neural Networks - Convergence

Theorem (Chitour, Liao, Couillet ’18)
Every trajectory of (GDD) converges to an element of Crit(L).

PROOF: (Obvious but) Key remark: (GDD) analytic =⇒ Lojasiewicz’s theorem can be used.

Proposition (Lojasiewicz 50s’)
Every bounded trajectory of analytic gradient system converges to a critical point.

Proof reduces to show that trajectories are bounded.

Proposition (Invariants)
For 1 ≤ j ≤ H, following quantities are conserved along trajectory of (GDD)

Wj+1(t)TWj+1(t)−Wj(t)Wj(t)T = (WT
j+1Wj+1 −WjW

T
j )
∣∣
t=0

.

=⇒ ‖Wj(t)‖2
F = ‖WH+1(t)‖2

F + Cj t ≥ 0, 1 ≤ j ≤ H.

Set g(t) = ‖WH+1‖2
F . Given a trajectory of (GDD), one proves that there exists C0, C1 > 0

dg

dt
≤ −C0g

H+1(t) + C1
(
1 + gH(t)

)
, ∀t ≥ 0.
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Consequence of Key Invariant

Proposition (Exponential Convergence to Global Minimum)
Assume that d1 ≥ d2 ≥ . . . ≥ dH and

Cj :=
[
WT
j+1Wj+1 −WjW

T
j

]
t=0
∈ Rdj×dj

has at least dj+1 positive eigenvalues, then every trajectory of (GDD) converges to a global
minimum at least at the rate of exp(−2αt) with α > 0 the dj+1-smallest eigenvalue of Cj .

Establish that
dL

dt
≤ −2

H+1∑
j=1

j−1∏
k=1

λmin(WT
kWk)

H+1∏
l=j+1

λmin(WlW
T
l ) · L

find any 1 ≤ j ≤ H + 1 such that
∏j−1
k=1 λmin(WT

kWk)
∏H+1
l=j+1 λmin(WlW

T
l ) ≥ α > 0,

for j = 1, becomes
∏H+1
l=2 λmin(WlW

T
l ), closely connected to λ(WT

l Wl) when
d1 ≥ d2 ≥ . . . ≥ dH and can be controlled if Cl−1 has ↑ positive eigenvalues.

Z. Liao (Dept Statistics, UCB) Dynamical aspects of Deep Learning 13 / 19



Gradient Descent for Linear Neural Networks - Study of Crit(L)

Definition
For W ∈ Crit(L) define

R(W) = (ΠW )H+1
2 , rR(W) = rankR(W) ∈ [0, dy ],

Z(W) = (ΠW )H2 rZ(W) = rankZ(W) ≥ R(W).

Then
Crit(L) = ∪dy

r=0 Critr(L), Critr(L) = {W ∈ Crit(L), rR(W) = r}.

CrV (L) = Set of critical values of L = {L(W),W ∈ Crit(L)}.

Proposition (Landscape of Deep Linear Networks)
Assume Y has distinct singular values SY = {s1, · · · , sdY

}.

i) CrV (L) = { 1
2
∑

s∈I s
2 | I ⊂ SY }, finite.

ii) Critdy (L) = set of local (and global) minima with L = 0.
iii) For 0 ≤ r ≤ dy − 1, Critr(L) algebraic variety of dimension > 0 made of saddle

points. If rZ > r ≥ 0, Hessian(L)(W) has at least one negative eigenvalue.

Item i) and ii) as in previous efforts, e.g., [Kawaguchi ’16],
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Gradient Descent for Linear Neural Networks - Case H = 1

Reformulation of Conjecture (Global Convergence to Global Minimum):

Conjecture (New formulation of Conjecture)
For almost every (X,Y ), the union of the basins of attraction of saddles points is of measure zero.

Proposition (Chitour, Liao, Couillet ’18)
Conjecture is true for H = 1, i.e., in the case of single-hidden-layer linear network.

Argument relies on concept of Normal Hyperbolicity (due to Fenichel 1972).
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Illustration of Hyperbolic Equilibrium Point in 3D

EX

x∗

Eu

Es

Wu(x∗)

W s(x∗)

X

W s(x1)

x1 W s(x2)
x2

Figure: Illustration of Hyperbolic Equilibrium Point in 3D
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Conclusion

Take-away message:
invariant structure in Gradient Descent Dynamics of linear and nonlinear neural networks:

I establish convergence, with up to exponential rate with properly chosen initialization
I characterize specific geometric property of Gradient Descent Dynamics in neural networks

linear networks: reduce to global analysis of union of basins of attraction for all saddle points
continuous-time analysis without specific assumption on the gradient or the Hessian

Reference:
Y. Chitour, Z. Liao, and R. Couillet, A geometric approach of gradient descent algorithms in
neural networks. arXiv preprint arXiv:1811.03568.
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Thank you!

Thank you!
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