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Motivation: “learn” to automatically classify images

Machine Learning:
given m = 2M images of cats xcat1 , xcat2 , . . . , xdog

m/2 and dogs xdog1 , xdog2 , . . . , xdog
m/2 of labels

ycat and ydog (ycat 6= ydog), respectively.
(Labels are chosen by user!!!)

Images of cats

Images of dogs

Cat

Dog

Goal: for a new image x?
new with ? ∈ {cat, dog}, predict ?=cat or ?=dog.
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How to “learn” to classify?

Learning phase: find W that minimizes
∑

i,j
‖ycat −W · xcati ‖

2 + ‖ydog −W · xdogj ‖2, where
xcati , xdogj ∈ Rdx and ycat, ydog ∈ Rdy chosen by user.

Input: training set (X,Y ), images X = [xcat1 , . . . , xdog1 , . . .] ∈ Rdx×m with associated labels
Y = [ycat, . . . , ydog , . . .] ∈ Rdy×m.
Output: W that minimizes the difference ‖Y −W ·X‖2

Here W ·X is a PROCEDURE, e.g., W ·X = WX, with W ∈ Rdy×dx .

Prediction phase: for a new image x?
new (of unknown true label y?

new), predicts:

x?
new to be a cat (y?

new = ycat) if ‖ycat −W · x?
new‖ < ‖ydog −W · x?

new‖
x?
new to be a dog (y?

new = ydog) otherwise
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From Linear Regression to Deep Neural Networks

Objective: given (X,Y ), find W that minimizes the difference ‖Y −W ·X‖2.

⇒“Best” solution: if W ·X = WX, linear regression WLR = Y XT(XXT)−1 if XXT invertible.
However,

linear regression may easily overfit: “learned” W too “adapted” to the given pair (X,Y )
and ‖y?

new −WLRx
?
new‖ large if x?

new 6∈ X, i.e.,

‖y?
new −WLRx

?
new‖2 �

1
m

m∑
i=1

‖yi −WLRxi‖2 =
1
m
‖Y −WLRX‖2

does not work well for difficult problems (e.g., cat & dogs classification, face recognition,
etc): describe solely a linear transformation between X and Y
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From Linear Regression to Deep Neural Networks

⇒(Brain-inspired) LINEAR neural network models (back to [Rosenblatt, 1958])

=⇒

X ∈ Rdx×mW1XWH+1 . . .W1X

W1 ∈ Rd1×dx. . .WH+1 ∈ Rdy×dH

Figure: Illustration of H-hidden-layer linear neural network

Linear deep learning (LDL) : WLDL = WH+1WH · · ·W1

Numerical tests show that linear deep learning also overfits.
Reason: algorithms based on linear deep learning essentially provide WLDL = WLR.
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From Linear Regression to Deep Neural Networks

NONLINEAR neural networks:

X ∈ Rdx×m

σ
σ
σ
σ
σ

h1 = W1X

σ
σ
σ
σ
σ

hH := WHσ(hH−1)

WH+1σ(hH)

W1 ∈ Rd1×dx. . .WH+1 ∈ Rdy×dH

Figure: Illustration of H-hidden-layer nonlinear neural network

with (nonlinear) activation function σ(z): ReLU(z) = max(z, 0), Leaky ReLU max(z, az)
(a > 0) or sigmoid σ(z) = 1

1+e−z , arctan, tanh, ....

W ·X = WH+1σ(WHσ(WH−1σ(· · ·W1X))).

=⇒
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Why we need to be “deep”?

Practitioners find “deeper” structures brings better performance, e.g., for (simple) handwritten
digits classification:

Figure: Samples from the MNIST dataset [LeCun et al. 1998].

Network Classification error rate
H = 0 (linear regression) 12.0%
H = 2 [LeCun et al. 1998] 2.5%
H = 4 [LeCun et al. 1998] 0.8%

Table: Evolution of state of the art on MNIST dataset.

However, deep networks are computationally more challenging!
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So, what is the difficulty?

1 huge demand of computational resources: [LeCun et al. 1998] 5-layer of 60K parameters to
[He et al. 2015] 152-layer of 60M parameters

2 ONLY possible to use first-order optimization methods due to complexity constraints,
typically with (stochastic) gradient decent

3 unfortunately non-convex optimization problem: for example in a single-layer linear network,
use gradient descent to find (W1,W2) that minimizes

F (W1,W2) = ‖Y −W2W1X‖2
F

clearly, F (W ∗1 ,W ∗2 ) = F (αW ∗1 ,
1
α
W ∗2 ) so (αW ∗1 ,

1
α
W ∗2 ) is as “good” as (W ∗1 ,W ∗2 )!

4 even worse, there may be local minima, saddle points and even maxima! All depend on
(X,Y ) and the design of network.
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Non-convexity in Deep Neural Networks

Figure: Convex landscape
Figure: Non-convex landscape

In non-convex case, the performance of gradient descent can be very sensitive to initialization!

So, can we still obtain some general results in this difficult case?
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On LINEAR Deep Neural Networks

Set dH+1 := dy , d0 := dx and consider

X ∈ Rd0×m Y ∈ RdH+1×m.

Goal: find W = (WH+1, · · · ,W1) that minimizes the function (depending on (X,Y ) !!)

F (W) := ‖Y −WX‖2, W = WH+1WH · · ·W1,

where
Wj ∈ Rdj×dj−1 , 1 ≤ j ≤ H + 1.

Define state space W (recall dy = dH+1 and d0 = dx)

W = RdH+1×dH × · · ·Rd1×d0 .

and Gradient Descent associated with F

(GD)(X,Y )
dW
dt

= −∇F (W), W ∈ W.

Conjecture (⇐⇒ Overfitting Problem = OVF)
(OV F ): For a.e. (X,Y ) and W0 ∈ W, traj. of (GD)(X,Y ) starting at W0 CV to a
GLOBAL minimum of F .
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Gradient Descent for Linear Neural Networks - First reductions

(Usual) working assumptions

X,Y full rank ,m ≥ max(di) ≥ min(di) = dy .

Up to SVD and computations, can assume

X = Iddx ( i.e. m = dx), Y =
(
DY 0

)
, DY ∈ Rdy×dy diagonal > 0.

Notation

(ΠW )ji = Wj · · ·Wi, 1 ≤ i ≤ j ≤ H + 1, M = Y − (ΠW )H+1
1 .

Gradient dynamics, 1 ≤ j ≤ H + 1

(GD)Y
dWj

dt
= (ΠW )H+1

j+1 M(ΠW )j−1
1 .

Definition Critical points ∇F (W) = 0

Crit(F ) = {W = (WH+1, · · · ,W1) ∈ W, (ΠW )H+1
j+1 M(ΠW )j−1

1 = 0}.

Candidates for limit points of trajectories.
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Gradient Descent for Linear Neural Networks - Convergence

Theorem (C., Liao, Couillet ’18)
Every traj. of (GD)Y converges to an element of Crit(F ).

PROOF
(Obvious but) Key remark: (GD)Y analytic =⇒ Lojasiewicz’s theorem can be used

Proposition (Lojasiewicz 50s’)
Every BOUNDED traj. of ANALYTIC gradient system converges to critical point.

Proof reduces to show that trajectories are bounded.

Proposition (Invariants)
For 1 ≤ j ≤ H, following quantities are conserved along traj. of (GD)Y

WT
j+1Wj+1 −WjW

T
j = (WT

j+1Wj+1 −WjW
T
j )
∣∣
t=0

.

=⇒ ‖Wj(t)‖2
F = ‖WH+1‖2

F + Cj t ≥ 0, 1 ≤ j ≤ H.

Set g(t) = ‖WH+1‖2
F . Given a traj. of (GD)Y , one proves that there exists C0, C1 > 0

dg

dt
≤ −C0g

H+1(t) + C1
(
1 + gH(t)

)
, ∀t ≥ 0.
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Gradient Descent for Linear Neural Networks - Study of Crit(F )

Definition
For W ∈ Crit(F ) define

R(W) = (ΠW )H+1
2 , r(W) = rankR(W) ∈ [0, dy ],

Z(W) = (ΠW )H2 rZ(W) = rankZ(W) ≥ R(W).

Then
Crit(F ) = ∪dy

r=0 Critr(F ), Critr(F ) = {W ∈ Crit(F ), r(W) = r}.

CrV (F ) = Set of critical values of F = {F (W),W ∈ Crit(F )}.

Proposition (Landscape of Deep Linear Networks)
Assume Y has two by two distinct singular values SY = {s1, · · · , sdY

}.

i) CrV (F ) = { 1
2
∑

s∈I s
2 | I ⊂ SY }, finite.

ii) Critdy (L) = set of local (and global) minima with F = 0 and M = 0.
iii) For 0 ≤ r ≤ dy − 1, Critr(F ) algebraic variety of dim. > 0 made of saddle points.

If rZ > r ≥ 0, Hessian(F )(W) has at least one negative eigenvalue.
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Gradient Descent for Linear Neural Networks - Case H = 1

Reformulation of Conjecture (OV F )

Conjecture (New formulation of (OV F ))
For a.e. (X,Y ), the union of the basins of attraction of saddles points is of measure zero.

Proposition (C., Liao, Couillet ’18)
Conjecture (OV F ) true if H = 1.

Argument relies on concept of Normal Hyperbolicity (due to Fenichel 1972).
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Figure
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Figure: Illustration of Hyperbolic Equilibrium Point
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Figure 3D
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Figure: Illustration of a single-hidden-layer linear neural network
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