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Motivation: understanding large-dimensional machine learning

Big Model
of size N

Big Data
x1, . . . , xn ∈ Rp

▶ Big Data era: exploit large n, p, N
▶ counterintuitive phenomena different from classical

asymptotics statistics
▶ complete change of understanding of many methods

in statistics and machine learning
▶ Random Matrix Theory (RMT) provides the tools!
▶ In this talk, a RMT approach to equivalence in shall

versus deep, explicit versus implicit neural networks
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Two-layer network with random first layer

xi ∈ Rp

σ
σ
σ
σ
σ

hidden-layer of N neurons

W ∈ RN×pσ(Wxi) ∈ RN

▶ for random first-layer weights W ∈ RN×p having say i.i.d. entries

▶ study of data representation at the output of random first-layer xi 7→ σ(Wxi)

▶ forms the so-call random features kernel κ(xi, xj) =
1
N σ(xT

i WT)σ(Wxj) =
1
N ∑N

k=1 σ(xT
i wk)σ(wT

k xj)

▶ Key object: in the infinite-neuron limit (N → ∞), convergence to the limiting Conjugate Kernel (CK)

κ(xi, xj) → κ̄CK(xi, xj) ≡ Ew∼µ[σ(xT
i w)σ(wTxj)] (1)

▶ theoretical understanding of random NN model: generalization? optimization? dependence on
(distribution of) weights W and/or activation? σ?
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Problem settings

Data: K-class Gaussian mixture model (GMM)

Let x1, . . . , xn ∈ Rp be independently drawn (non-necessarily uniformly) from one of the K classes:

Ca :
√

pxi ∼ N (µa, Ca), a ∈ {1, . . . , K} (2)

Large dimensional asymptotics, and non-trivial classification

As n, p → ∞ with p/n → c ∈ (0, ∞) and some additional growth-rate assumptions on the difference ∥µa − µb∥
and ∥Ca − Cb∥, a, b ∈ {1, . . . , K}, as n, p → ∞.

Theorem (Asymptotic approximation for conjugate kernels, [AZC22])

For CK matrix KCK = {E[σ(xT
i w)σ(wTxj)]}n

i,j=1 defined above, one has, as n, p → ∞ that ∥KCK − K̃CK∥ → 0, for
some random matrix K̃CK dependent of data X, of activation σ but only via the following scalars

d0 = E[σ2(
√

τz)]− E[σ(
√

τz)]2 − τE[σ′(
√

τz)]2, d1 = E[σ′(
√

τz)]2, d2 =
1
4

E[σ′′(
√

τz)]2

and independent of the distribution of W, as long as normalized to have zero mean and unit variance.
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Main result and the proof

Theorem (Asymptotic approximation for conjugate kernels, [AZC22])

For CK matrix KCK = {E[σ(xT
i w)σ(wTxj)]}n

i,j=1 defined above, one has, as n, p → ∞ that ∥KCK − K̃CK∥ → 0, for
some random matrix K̃CK dependent of data X, of activation σ but only via the following scalars

d0 = E[σ2(
√

τz)]− E[σ(
√

τz)]2 − τE[σ′(
√

τz)]2, d1 = E[σ′(
√

τz)]2, d2 =
1
4

E[σ′′(
√

τz)]2

and independent of the distribution of W, as long as normalized to have zero mean and unit variance.

Proof sketch:
▶ We are interested in the kernel matrix K, the (i, j) entry of which Kij = Ew[σ(xT

i w)σ(wTxj)].
▶ Conditioned on xi, xj, wTxi ≡ ∥xi∥ · ξi and wTxj are asymptotically Gaussian, but correlated!

▶ Gram-Schmidt to de-correlate wTxj =
xT

i xj

∥xi∥ ξi +

√
∥xj∥2 − (xT

i xj)2

∥xi∥2 ξj, for Gaussian ξj now independent of ξj

▶ Use the fact xT
i xj = O(p−1/2) and ∥xi∥2 ≈ τ/2 = O(1), Taylor-expand to “linearize” σ(·) to order o(n−1)

▶ Since ∥A∥2 ≤ n∥A∥max, with ∥A∥max = maxij |Aij|, obtain spectral approximation K̃.
1Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. “Random matrices in service of ML footprint: ternary random features with no performance loss”. In:

International Conference on Learning Representations (ICLR 2022). 2022
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Practical consequence of the theory

According to theorem, allowed to choose arbitrary weights W and activation σ, without affecting K
asymptotically, under the following conditions:
▶ weights W have independent entries with zero mean and unit variance
▶ activation σ has the same few parameters as the original net

d0 = E[σ2(
√

τz)]− E[σ(
√

τz)]2 − τE[σ′(
√

τz)]2, d1 = E[σ′(
√

τz)]2, d2 =
1
4

E[σ′′(
√

τz)]2, (3)

In particular,
▶ sparse and binarized (e.g., Bernoulli distributed) weights W instead of dense Gaussian weights

[W]ij = 0 with proba ε ∈ [0, 1), [W]ij = ±(1 − ε)−1/2 each with proba 1/2 − ε/2, (4)

▶ sparse quantized (e.g., binarized) activation σ shares the same d0, d1, and d2
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Numerical results
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Figure: Test mean square errors of ridge regression on quantized single-hidden-layer random nets for different numbers of
features N ∈ {5.102, 103, 5.103, 104, 5.104}, using LP-RFF, Nyström approximation, versus the proposed approach, on the
Census dataset, with n = 16 000 training samples, ntest = 2 000 test samples, and data dimension p = 119.
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CK of fully-connected random deep neural networks

▶ everyone cares more about deep neural networks
▶ with some additional efforts, extension to fully-connected deep neural networks of depth L,

f (x) =
1√
dL

wTσL

(
1√

dL−1
WLσL−1

(
. . .

1√
d2

σ2

(
1√
d1

W2σ1(W1x)
)))

, (5)

again for random W1, . . . , WL and activations σ1(·), . . . , σL(·).

Theorem (Asymptotic approximation for conjugate kernels, informal)

Under the same condition, define output features of layer ℓ ∈ {1, . . . , L}, as

Σℓ =
1√
dℓ

σℓ

(
1√
dℓ−1

Wℓσℓ−1

(
. . .

1√
d2

σ2

(
1√
d1

W2σ1(W1X)
)))

. (6)

we have for the Conjugate Kernel KCK,ℓ at layer ℓ defined as

KCK,ℓ = E[ΣT
ℓ Σℓ] ∈ Rn×n, (7)

that ∥KCK,ℓ − K̃CK,ℓ∥ → 0, some random matrix K̃CK,ℓ dependent of data, of activation σℓ but only via a few
parameters, and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.
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Theorem (Asymptotic approximation for CK matrices, formal, [Gu+22])

Let τ0, τ1, . . . , τL ≥ 0 be a sequence of non-negative numbers satisfying the following recursion:

τℓ =
√

E[σ2
ℓ (τℓ−1ξ)], ξ ∼ N (0, 1), ℓ ∈ {1, . . . , L}. (8)

Further assume that the activation functions σℓ(·)s are “centered,” such that E[σℓ(τℓ−1ξ)] = 0. Then, for the CK
matrix KCK,ℓ of layer ℓ ∈ {1, . . . , L} defined in (7), as n, p → ∞, one has that:

∥KCK,ℓ − K̃CK,ℓ∥ → 0, K̃CK,ℓ ≡ αℓ,1XTX + VAℓV
T + (τ2

ℓ − τ2
0 αℓ,1)In, (9)

almost surely, with V = [J/
√

p, ψ] ∈ Rn×(K+1), Aℓ =

[
αℓ,2ttT + αℓ,3T αℓ,2t

αℓ,2tT αℓ,2

]
∈ R(K+1)×(K+1), for class label

vectors J = [j1, . . . , jK] ∈ Rn×K, “second-order” data fluctuation vector ψ ∈ Rn, second-order data statistics
t = {tr C◦

a /
√

p}K
a=1 ∈ RK and T = {tr CaCb/p}K

a,b=1 ∈ RK×K, as well as non-negative αℓ,1, αℓ,2, αℓ,3 satisfying

αℓ,1 = E[σ′
ℓ(τℓ−1ξ)]2αℓ−1,1, αℓ,2 = E[σ′

ℓ(τℓ−1ξ)]2αℓ−1,2 +
1
4

E[σ′′
ℓ (τℓ−1ξ)]2α2

ℓ−1,4, (10)

αℓ,3 = E[σ′
ℓ(τℓ−1ξ)]2αℓ−1,3 +

1
2

E[σ′′
ℓ (τℓ−1ξ)]2α2

ℓ−1,1. (11)

with αℓ,4 = E
[
(σ′

ℓ(τℓ−1ξ))2 + σℓ(τℓ−1ξ)σ′′
ℓ (τℓ−1ξ)

]
αℓ−1,4 for ξ ∼ N (0, 1).
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Fully-connected deep nets: CK, NTK, and beyond

▶ happy with the study of (limiting) CK for random DNN models
▶ extension to NTK via intrinsic connection between CK and NTK [JGH18]

KNTK,ℓ(X) = KCK,ℓ(X) + KNTK,ℓ−1(X) ◦ K′
CK,ℓ(X), KNTK,0(X) = KCK,0(X) = XTX, (12)

and some additional efforts
▶ convergence and generalization theory via NTK [JGH18]: for

(i) sufficiently wide nets
(ii) trained with gradient descent of sufficiently small step size

▶ NTK is determined at random initialization and remains unchanged during training, and applies to
explicitly characterize DNN convergence and generalization properties

▶ we can use the theory for DNN compression!

2Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Convergence and Generalization in Neural Networks”. In: Advances in Neural
Information Processing Systems. Vol. 31. NIPS’18. Curran Associates, Inc., 2018, pp. 8571–8580
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Figure: Test accuracy of classification on MNIST (top) and CIFAR10 (bottom) datasets. Blue: proposed NTK-LC approach
with different levels of sparsity ε ∈ {0%, 50%, 90%}, purple: heuristic sparsification approach by uniformly zeroing out 80%
of the weights, green: heuristic quantization approach with binary activation σ(t) = 1t<−1 + 1t>1 , red: original network,
orange: NTK-LC without activation quantization, and brown: magnitude-based pruning with same sparsity level as orange.
Memory varies due to the change of layer width of the network.
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Connection between Implicit and Explicit NNs

Deep equilibrium model (DEQ), [BKK19]

Let X = [x1, · · · , xn] ∈ Rp×n denote the input data, consider a vanilla DEQ with output f (xi) given by

f (xi) = βTz∗i , (13)

where β ∈ Rm and z(∗)i ≡ liml→∞ z(l)i ∈ Rm with

z(l)i =
1√
m

ϕ
(

σaAz(l−1)
i + σbBxi

)
∈ Rm, for l ≥ 1, (14)

for some appropriate initialization z(0)i , A ∈ Rm×m and B ∈ Rm×p are DEQ weights, σa, σb ∈ R are constants,
and ϕ is an element-wise activation. Note z∗i can also be determined as the equilibrium point of

z∗i =
1√
m

ϕ (σaAz∗i + σbBxi) . (15)

3Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. “Deep Equilibrium Models”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates,
Inc., 2019
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Connection between Implicit and Explicit NNs

▶ similar analysis can be performed for such Implicit-NN models as well
▶ leads to high-dimensional “equivalence” (in the sense of CK or NTK) between Implicit and Explicit NNs

Theorem (Asymptotic approximation for Implicit-CK matrices)

For the DEQ model under study, under some mild technical assumptions, and let the activation ϕ be centered such that

E[ϕ(τ∗ξ)] = 0 for ξ ∼ N (0, 1) and τ∗ be such that τ∗ =
√

σ2
a E [ϕ2(τ∗ξ)] + σ2

b τ2
0 . Then, the Implicit-CK matrix G∗

satisfies
∥∥G∗ − G

∥∥→ 0 almost surely as n, p → ∞, for a random matrix G explicitly given by

G ≡ α∗,1XTX + VC∗VT + (γ∗
2 − τ2

0 α∗,1)In, C∗ =

[
α∗,2ttT + α∗,3T α∗,2t

α∗,2tT α∗,2

]
∈ R(K+1)×(K+1) (16)

for explicit parameters γ∗, α∗,1, α∗,2, α∗,3 ≥ 0.

0
−ac

-1

0

1
ac

Tanh H-Tanh

0

− τ∗√
2π

0

ReLU L-ReLU
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Numerical results
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Take-away

Take-away messages:
▶ for GMM input data, RMT allows for precise characterization of (the CKs of) random shallow and deep

neural networks
▶ extends to NTKs, providing access to trained DNNs, but only in the “lazy” NTK regime
▶ makes explicit connections between Implicit and Explicit NNs

References:
▶ Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. “Random matrices in service of ML footprint: ternary random features with no

performance loss”. In: International Conference on Learning Representations (ICLR 2022). 2022
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Curran Associates, Inc., 2022, pp. 3774–3787 (Please refer to the ArXiv version on https://arxiv.org/abs/2403.00258 that fixed
typos in Theorems 1 and 2 from the NeurIPS 2022 proceeding version.)

▶ Zenan Ling, Longbo Li, Zhanbo Feng, Yixuan Zhang, Feng Zhou, Robert C. Qiu, and Zhenyu Liao. “Deep Equilibrium Models Are
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RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
▶ change of intuition from small to large dimensional learning paradigm!
▶ better understanding of existing methods: why they work if they do, and what the issue is if they do not
▶ improved novel methods with performance guarantee!

▶ book “Random Matrix Methods for Machine Learning”
▶ by Romain Couillet and Zhenyu Liao
▶ Cambridge University Press, 2022
▶ a pre-production version of the book and exercise

solutions at https://zhenyu-liao.github.io/book/
▶ MATLAB and Python codes to reproduce all figures at

https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?
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