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Motivation: understanding large-dimensional machine learning

Big Model
of size d

Big Data
x1, . . . , xn ∈ Rp

▶ Big Data era: exploit large n, p, d
▶ counterintuitive phenomena different from classical

asymptotics statistics
▶ change of understanding of many methods in statistics

and machine learning
▶ Random Matrix Theory (RMT) provides the tools!
▶ In this talk, a review of some recent progress on RMT

analysis of neural networks models, from linear to
nonlinear, and from shallow to deep

Z. Liao (EIC, HUST) RMT4DNN April 22, 2025 2 / 31



Outline

1 Random Matrix Theory for Modern Machine Learning: Key Challenges and Core Ideas

2 Single-hidden-layer NN Model: Deterministic Equivalent and Linearization

3 Results on Non-random Deep Neural Networks
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A deep neural network model

xi ∈ Rp

ϕ
ϕ
ϕ
ϕ
ϕ

hidden-layer of d neurons

W ∈ Rd×pϕ(Wxi) ∈ Rd

▶ linear transformation with first-layer weight matrix W ∈ Rd×p

▶ nonlinear transformation: activation function ϕ : R → R acting entry-wise on Wxi

▶ data representation at the output of first-layer xi 7→ ϕ(Wxi)

▶ do the same thing in a layer-by-layer fashion:

f (xi) =
1√
dL

wTϕL

(
1√

dL−1
WLϕL−1

(
. . .

1√
d2

ϕ2

(
1√
d1

W2ϕ1(W1xi)

)))
, (1)

for a large number n of input data points x1, . . . , xn
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Technical challenges and key ideas

Analyze and Optimize Large-scale ML model ϕ(X, Θ)

Objective: Evaluation of ϕ(X, Θ) via Performance Metric f (·)

Technical Challenge 1
High-dimensionality in X, Θ

Technical Challenge 2
Analysis of Eigen-functional

Technical Challenge 3
Non-linearity in ML model

Key Idea 1
Concentration of f (ϕ(X, Θ)) ≃ E[f (ϕ(X, Θ))]

Key Idea 2
Deterministic Equivalent for Resolvent

Key Idea 3
High-dimensional linearization of ϕ(X, Θ)
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High-dimensional Equivalent

Definition (High-dimensional Equivalent)

Let ϕ(X) be a nonlinear model of a random matrix X ∈ Rp×n, and let f (ϕ(X)) be a scalar functional with
entrywise ϕ : Rp×n → Rp×n and observation map f : Rp×n → R. We say X̄ϕ (which can be deterministic or
random) is a High-dimensional Equivalent of ϕ(X) with respect to f (·) if

f (ϕ(X))− f (X̄ϕ) → 0, (2)

in probability or almost surely as n, p → ∞. We denote ϕ(X)
f↔ X̄ϕ or simply ϕ(X) ↔ X̄ϕ.

▶ without (entrywise) nonlinearities, f (X) concentrates around expectation f (X) ≃ E[f (X)], and can be
assessed through Deterministic Equivalent f (X̄);

▶ for scalar eigenspectral functionals, Deterministic Equivalent for Resolvent framework provides a unified
approach to eigenspectral functionals of random matrices;

▶ for nonlinear models in two different scaling regimes (LLN versus CLT), ϕ(X) can be linearized to yield a
Linear Equivalent.
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Concentration versus non-concentration behavior

“Concentration” versus “non-concentration” around the mean

Consider two independent random vectors x = [x1, . . . , xn]⊤ and y = [y1, . . . , yn]⊤ ∈ Rn, with i.i.d. entries of
zero mean and unit variance. We have the following contrasting observations.

1 In the one-dimensional case with n = 1, random variables “concentrate” around their means, with
Pr(|x − 0| > t) ≤ t−2 and Pr(|y − 0| > t) ≤ t−2 by Markov’s inequality.

2 In the multi-dimensional case with n ≫ 1, random vectors do not “concentrate” around their means,
with E[∥x − 0∥2] = E[x⊤x] = tr(E[xx⊤]) = n and E[∥x − y∥2] = E[x⊤x + y⊤y] = 2n.

−3 0 3

0

0.2

0.4

H
is

to
gr

am

(a) “Concentration” around the mean

x
y

E[x] = E[y] = 0n

≈ ∥x∥ ≈
√

n

∥y∥ ≈
√

n

(b) “Non-concentration” around the mean
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High-dimensional concentration of scalar observation

▶ while large random vectors do not “concentrate” round their means, their scalar functionals (often) do
▶ for a scalar observation map f : Rn → R and random vector x ∈ Rn, we typically have

f (x)− E[f (x)] → 0, (3)

with high probability for n large.
▶ a basic example is the linear function f (x) = 1⊤n x/n = 1

n ∑n
i=1 xi: By the Large of Large Numbers (LLN)

and the Central Limit Theorem (CLT), we have f (x) = E[f (x)] + O(n−1/2) with high probability
▶ For a random matrix X ∈ Rp×n in the proportional regime with n, p both large, similar holds:

1 just as for vectors, X does not concentrate, e.g., in a spectral norm sense; for instance, ∥X − E[X]∥ ̸→ 0 as
n, p → ∞ together.

2 at the same time, scalar (e.g., eigenspectral) functionals f : Rp×n → R of the random matrix X do
concentrate; i.e., f (X)− E[f (X)] → 0 as n, p → ∞.

▶ This is the key idea of Deterministic Equivalent.
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Nonlinear objects in two different scaling regimes

Definition (Two scaling regimes)

Consider a scalar functional f (x) of x ∈ Rn, via an observation map f : Rn → R:
1 LLN regime: this holds when f (x) exhibits a LLN-type concentration, strongly concentrating around its

mean E[f (x)], and its distribution function becomes degenerate; that is, it holds when f (x)− E[f (x)] → 0
in probability or almost surely, as n → ∞.

2 CLT regime: this holds when f (x) exhibits a CLT-type concentration, remaining random and maintaining
a non-degenerate distribution function; that is, it holds when

√
n (f (x)− E[f (x)]) → N (0, 1) in

distribution, as n → ∞.

Nonlinear objects in two scaling regimes

Let x ∈ Rn be a random vector such that
√

nx has i.i.d. Gaussian entries N (0, 1) (the
√

n scaling ensures
E[∥x∥2] = 1). Let y ∈ Rn be a deterministic vector of unit norm ∥y∥ = 1. Consider two nonlinear objects:

1 LLN regime: random variables fLLN(x) = ∥x∥2
2 or fLLN(x) = x⊤y that both exhibit LLN-type

concentration (i.e., nearly deterministic for n large), and we are interested in ϕ(fLLN(x)); and
2 CLT regime: random variables fCLT(x) =

√
n(∥x∥2

2 − 1) or fCLT(x) =
√

n · x⊤y that both exhibit CLT-type
concentration (they remain inherently random and have non-degenerate distributions for n large), and
we are interested in ϕ(fCLT(x)).
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Linearization in the two scaling regimes

Theorem (Taylor’s theorem)

Let ϕ : R → R be a function that is at least k times continuously differentiable in a neighborhood of some point τ ∈ R.
Then, there exists hk : R → R such that

ϕ(x) = ϕ(τ) + ϕ′(τ)(x − τ) +
ϕ′′(τ)

2 (x − τ)2 + . . . + ϕ(k)(τ)
k! (x − τ)k + hk(x)(x − τ)k, with limx→τ hk(x) = 0.

Consequently, hk(x)(x − τ)k = o(|x − τ|k) as x → τ.

Theorem (Hermite polynomial expansion)

The ith normalized Hermite polynomial, Hei(t), is given by He0(t) = 1, Hei(t) =
(−1)i
√

i!
e

t2
2 di

dti

(
e−

t2
2

)
, i ≥ 1. The

normalized Hermite polynomials

1 are orthogonal with respect to Gaussian measure, i.e.,
∫

Hem(t)Hen(t)µ(dt) = δmn for µ(dt) = 1√
2π

e−
t2
2 dt; and

2 can be used to formally expand any square-integrable function ϕ ∈ L2(µ) as
ϕ(ξ) ∼ ∑∞

i=0 aϕ;iHei(ξ), aϕ;i =
∫

ϕ(t)Hei(t)µ(dt) = E[ϕ(ξ)Hei(ξ)], for ξ ∼ N (0, 1). The coefficients aϕ;is
are the Hermite coefficients of ϕ:

aϕ;0 = E[ϕ(ξ)], aϕ;1 = E[ξϕ(ξ)],
√

2aϕ;2 = E[ξ2ϕ(ξ)]− aϕ;0, νϕ = E[ϕ2(ξ)] = ∑
i=0

a2
ϕ;i. (4)
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Linearization in the two scaling regimes: an example

Example (Distinct linearizations of tanh in two scaling regimes)

Consider ϕ(t) = tanh(t). By Taylor and Hermite polynomial expansion, this nonlinear function is “close” to
different quadratic functions, depending on the scaling regime.
Consider x ∈ Rn be a random vector such that

√
nx has i.i.d. standard Gaussian entries, and let y ∈ Rn be a

deterministic vector of unit norm (∥y∥ = 1). Then:
1 In the LLN regime, we have for fLLN(x) = x⊤y that

tanh(fLLN(x))− ψLLN(fLLN(x)) → 0, (5)

as n → ∞, with ψLLN(t) = t2/4. This is as a consequence of tanh(t = 0) = ψLLN(t = 0) = 0. In particular,
we also have E[tanh(fLLN(x))] ≃ E[ψ(fLLN(x))] as a result.

2 In the CLT regime, we have for fCLT(x) =
√

n · x⊤y that

E[tanh(fCLT(x))] = E[ψCLT(fCLT(x))], (6)

in expectation, where the corresponding quadratic function is ψCLT(t) = t2 − 1. This follows from the fact
that both functions have the same zeroth-order Hermite coefficient, atanh;0 = aψ;0 = 0.
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3
fLLN(x) ≡ x⊤y

ϕ(t) = tanh(t)

ψLLN(t) = t2/4

ψLLN(t) = α · t2

(a) LLN regime

−3 0 3
−1

0

1

2

3
fCLT(x) ≡

√
n · x⊤y

ϕ(t) = tanh(t)

ψCLT(t) = t2 − 1

ψCLT(t) = α(x2 − 1)

(b) CLT regime

Figure: Different behavior of nonlinear ϕ(fLLN(x)) and ϕ(fCLT(x)) for ϕ(t) = tanh(t) (in blue) in the LLN and CLT regime,
with n = 500. We have ϕ(fLLN(x)) ≃ ψLLN(fLLN(x)) in the LLN regime (as a consequence of ϕ(0) = ψLLN(0) = 0) and
E[ϕ(fCLT(x))] = E[ψCLT(fCLT(x))] in the CLT regime (as a consequence of aϕ;0 = aψCLT ;0 = 0), with different quadratic
functions ψLLN(t) = t2/4 and ψCLT(t) = t2 − 1 =

√
2He2(t) in red. Note that the these linearizations (in the two different

regimes respectively) are not unique and all functions in dashed green are also valid linearizations.
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Two-layer network with random first layer

xi ∈ Rp

ϕ
ϕ
ϕ
ϕ
ϕ

hidden-layer of d neurons

W ∈ Rd×pϕ(Wxi) ∈ Rd

Definition (Single-hidden-layer NN model)

Consider a single-hidden-layer NN model with first-layer weights W ∈ Rd×p and second-layer weights
β ∈ Rd. For an input vector x ∈ Rp, the network output is given by ŷ(x) = β⊤ϕ(Wx), where ϕ(·) is an
entrywise activation function. We are interested in the NN performance measured by

1 its training MSE Etrain = 1
n ∑n

i=1(yi − ŷ(xi))
2 = 1

n∥y − Φ⊤β∥2 with Φ ≡ ϕ(WX) for a training set (X, y)
of size n, X = [x1, . . . , xn] ∈ Rp×n, y = [y1, . . . , yn]⊤ ∈ Rn; and

2 its test MSE Etest =
1
n ∑n′

i=1(y
′
i − ŷ(x′i))

2 = 1
n′ ∥y′ − ϕ(WX′)⊤β∥2 on a test set (X′, y′) of size n′, with

X′ = [x′1, . . . , x′n′ ] ∈ Rp×n′
and y′ = [y′1, . . . , y′n′ ]⊤ ∈ Rn′

.
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Single-hidden-layer NN model and a Deterministic Equivalent for nonlinear resolvent

▶ Given first-layer W and training data X ∈ Rp×n, consider the random feature matrix Φ ≡ ϕ(WX) ∈ Rd×n

and regress against the target y by minimizing the following ridge-regularized MSE

L(β) =
1

2n

n

∑
i=1

(yi − ŷ(xi))
2 +

γ

2
∥β∥2

2 =
1

2n
∥y − Φ⊤β∥2

2 +
γ

2
∥β∥2

2, γ ≥ 0, (7)

▶ solution is uniquely given by βγ = 1
n Φ

(
1
n Φ⊤Φ + γIn

)−1
y =

(
1
n ΦΦ⊤ + γId

)−1 1
n Φy, for γ > 0.

▶ Training MSE is Etrain = 1
n∥y − Φ⊤βγ∥2

2 = γ2

n
∂y⊤Q2(−γ)y

∂γ , with resolvent of nonlinear Gram Φ⊤Φ.

Q(−γ) ≡
(

1
n

Φ⊤Φ + γIn

)−1
, Φ⊤Φ = ϕ(X⊤W⊤)ϕ(WX). (8)

Theorem (Deterministic Equivalent for nonlinear resolvent, [LLC18, Theorem 1])

Let W ∈ Rd×p be a random matrix with i.i.d. sub-gaussian entries of zero mean and unit variance, and let X ∈ Rp×n be
independent of W with ∥X∥2 ≤ 1. Then, as n, p, d → ∞ together and for Lipschitz ϕ : R → R,

Q(z) ↔ Q̄(z), Q̄(z) =
(

d
n

K
1 + δ(z)

− zIn

)−1
, δ(z) =

1
n

tr KQ̄(z), K ≡ Ew[ϕ(X⊤w)ϕ(w⊤X)], (9)

where δ(z) is the unique Stieltjes transform solution, and K the kernel matrix.
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Implications of the Deterministic Equivalent

Scaling law of training MSE

Consider the ridgeless setting with γ = 0 and the under-parameterized regime with n, p, d all large but d < n

▶ δ diverges as γ → 0, however, γδ = 1
n tr K

(
d
n

K
γ+γδ + In

)−1 γ→0−−→ θ = 1
n tr K

(
d
n

K
θ + In

)−1

▶ explicit scaling laws for the training MSEs that depend on the eigenspectrum of K

1 exponential eigendecay (e.g., RBF kernel related to cosine activation [RW05]) yields an error decay rate
of log(n)/n (which is slightly slower than the n−1 rate of linear models);

2 polynomial decay (e.g., Matérn kernel associated with to ReLU activation [Gei+20]) yields an error decay
rate of n−1−β (with β > 0), which is faster than the linear case.

Double descent behavior for test MSE
▶ it can be checked that both θ and δ diverge as γ → 0 at n/d = 1.
▶ thus, the test risk likewise exhibits a singularity at d/n = 1.
▶ mirrors the double descent phenomenon for linear models, but applies here to nonlinear NN model,

regardless of the activation function or the training/test data.
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Numerical results
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Ētest, γ = 10−1

(b) Test MSE

Figure: Empirical and theoretical training and test MSEs of single-hidden-layer NN model, as a function of d/n, for
γ = 10−1 and γ = 10−5, with Gaussian W and ReLU activation ϕ(t) = max(t, 0), n = 1 024 training samples and n′ = 1 024
test samples from the MNIST dataset (number 1 and 2).Figure 3a: log-log plot of training MSEs averaged over 30 runs.
Figure 3b: test MSEs averaged over 30 runs on independent test sets of size n̂ = 2 048.
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High-dimensional linearization of single-hidden-layer NN

Theorem (High-dimensional linearization of kernel matrix)

Let w ∼ Rp be standard Gaussian w ∼ N (0, Ip) and let x1, . . . , xn ∈ Rp be independently drawn from the unit sphere
Sp−1 ⊂ Rp. Then, as n, p → ∞ with p/n ∈ (0, ∞), the kernel matrix K = Ew[ϕ(X⊤w)ϕ(w⊤X)] admits the following
Linear Equivalent

K ↔ K̃ϕ, K̃ϕ = a2
ϕ;01n1⊤n + a2

ϕ;1X⊤X + a2
ϕ;2 ·

1
p

1n1⊤n +
(

νϕ − a2
ϕ;0 − a2

ϕ;1

)
In, (10)

with high probability, up to a spectral norm error ∥K − K̃∥2 = O(n−1/2), where aϕ;0, aϕ;1, aϕ;2, νϕ are the Hermite
coefficients of ϕ.

▶ a striking (and perhaps counterintuitive) consequence is that, in the proportional regime with n, p both
large and comparable, the eigenvalue distribution of K becomes independent of the activation function ϕ,
up to a scaling and shift

▶ the eigenspectrum of K coincides with that of X⊤X (which approximates the Marc̆enko-Pastur law), and
depends only on the dimension ratio p/n—provided the data are unstructured and uniformly distributed
on the unit sphere.
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Linearization of Conjugate Kernel matrix for structured data

Data: K-class Gaussian mixture model (GMM)

Let x1, . . . , xn ∈ Rp be independently drawn (non-necessarily uniformly) from one of the K classes:

Ca :
√

pxi ∼ N (µa, Ca), a ∈ {1, . . . , K} (11)

Large dimensional asymptotics, and non-trivial classification

As n, p → ∞ with p/n → c ∈ (0, ∞) and some additional growth-rate assumptions on the difference ∥µa − µb∥
and ∥Ca − Cb∥, a, b ∈ {1, . . . , K} and τ ≡

√
tr C◦/p with C◦ ≡ ∑K

a=1
na
n Ca, as n, p → ∞.

Theorem (Asymptotic approximation for conjugate kernels, [AZC22])

For CK matrix KCK = {E[ϕ(xT
i w)ϕ(wTxj)]}n

i,j=1 defined above, one has, as n, p → ∞ that ∥KCK − K̃CK∥ → 0, for
some random matrix K̃CK dependent of data X, of activation ϕ but only via the following scalars

α0 = E[ϕ2(τξ)]− E[ϕ(τξ)]2 − τE[ϕ′(τξ)]2, α1 = E[ϕ′(τξ)]2, α2 =
1
4

E[ϕ′′(τξ)]2

and independent of the distribution of W, as long as normalized to have zero mean and unit variance.
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Main result and the proof

Theorem (Asymptotic approximation for conjugate kernels, [AZC22])

For CK matrix KCK = {E[ϕ(xT
i w)ϕ(wTxj)]}n

i,j=1 defined above, one has, as n, p → ∞ that ∥KCK − K̃CK∥ → 0, for
some random matrix K̃CK dependent of data X, of activation ϕ but only via the following scalars

α0 = E[ϕ2(τξ)]− E[ϕ(τξ)]2 − τE[ϕ′(τξ)]2, α1 = E[ϕ′(τξ)]2, α2 =
1
4

E[ϕ′′(τξ)]2

and independent of the distribution of W, as long as normalized to have zero mean and unit variance.

Proof sketch:
▶ We are interested in the kernel matrix K, the (i, j) entry of which Kij = Ew[ϕ(xT

i w)ϕ(wTxj)].
▶ Conditioned on xi, xj, wTxi ≡ ∥xi∥ · ξi and wTxj are asymptotically Gaussian, but correlated!

▶ Gram-Schmidt to de-correlate wTxj =
xT

i xj

∥xi∥ ξi +

√
∥xj∥2 − (xT

i xj)2

∥xi∥2 ξj, for Gaussian ξj now independent of ξj

▶ Use the fact xT
i xj = O(p−1/2) and ∥xi∥2 ≈ τ/2 = O(1), Taylor-expand to “linearize” ϕ(·) to order o(n−1)

▶ Since ∥A∥2 ≤ n∥A∥max, with ∥A∥max = maxij |Aij|, obtain spectral approximation K̃.
1Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. “Random matrices in service of ML footprint: ternary random features with no performance loss”. In:

International Conference on Learning Representations (ICLR 2022). 2022
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Practical consequence of the theory

According to theorem, allowed to choose arbitrary weights W and activation ϕ, without affecting K
asymptotically, under the following conditions:
▶ weights W have independent entries with zero mean and unit variance
▶ activation ϕ has the same few parameters as the original net

α0 = E[ϕ2(τξ)]− E[ϕ(τξ)]2 − τE[ϕ′(τξ)]2, α1 = E[ϕ′(τξ)]2, α2 =
1
4

E[ϕ′′(τξ)]2, (12)

In particular,
▶ sparse and binarized (e.g., Bernoulli distributed) weights W instead of dense Gaussian weights

[W]ij = 0 with proba ε ∈ [0, 1), [W]ij = ±(1 − ε)−1/2 each with proba 1/2 − ε/2, (13)

▶ sparse quantized (e.g., binarized) activation ϕ shares the same α0, α1, and α2
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Numerical results
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Figure: Test mean square errors of ridge regression on quantized single-hidden-layer random nets for different numbers of
features N ∈ {5.102, 103, 5.103, 104, 5.104}, using LP-RFF, Nyström approximation, versus the proposed approach, on the
Census dataset, with n = 16 000 training samples, ntest = 2 000 test samples, and data dimension p = 119.
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CK of fully-connected random deep neural networks

▶ everyone cares more about deep neural networks
▶ with some additional efforts, extension to fully-connected deep neural networks of depth L,

f (x) =
1√
dL

wTϕL

(
1√

dL−1
WLϕL−1

(
. . .

1√
d2

ϕ2

(
1√
d1

W2ϕ1(W1x)
)))

, (14)

again for random W1, . . . , WL and activations ϕ1(·), . . . , ϕL(·).

Theorem (Asymptotic approximation for conjugate kernels, informal)

Under the same condition, define output features of layer ℓ ∈ {1, . . . , L}, as

Σℓ =
1√
dℓ

ϕℓ

(
1√
dℓ−1

Wℓϕℓ−1

(
. . .

1√
d2

ϕ2

(
1√
d1

W2ϕ1(W1X)
)))

. (15)

we have for the Conjugate Kernel KCK,ℓ at layer ℓ defined as

KCK,ℓ = E[ΣT
ℓ Σℓ] ∈ Rn×n, (16)

that ∥KCK,ℓ − K̃CK,ℓ∥ → 0, some random matrix K̃CK,ℓ dependent of data, of activation ϕℓ but only via a few
parameters, and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.
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Theorem (Asymptotic approximation for CK matrices, formal, [Gu+22])

Let τ0, τ1, . . . , τL ≥ 0 be a sequence of non-negative numbers satisfying the following recursion:

τℓ =
√

E[ϕ2
ℓ (τℓ−1ξ)], ξ ∼ N (0, 1), ℓ ∈ {1, . . . , L}. (17)

Further assume that the activation functions ϕℓ(·)s are “centered,” such that E[ϕℓ(τℓ−1ξ)] = 0. Then, for the CK
matrix KCK,ℓ of layer ℓ ∈ {1, . . . , L} defined in (16), as n, p → ∞, one has that:

∥KCK,ℓ − K̃CK,ℓ∥ → 0, K̃CK,ℓ ≡ αℓ,1XTX + VAℓV
T + (τ2

ℓ − τ2
0 αℓ,1)In, (18)

almost surely, with V = [J/
√

p, ψ] ∈ Rn×(K+1), Aℓ =

[
αℓ,2ttT + αℓ,3T αℓ,2t

αℓ,2tT αℓ,2

]
∈ R(K+1)×(K+1), for class label

vectors J = [j1, . . . , jK] ∈ Rn×K, “second-order” data fluctuation vector ψ ∈ Rn, second-order data statistics
t = {tr C◦

a /
√

p}K
a=1 ∈ RK and T = {tr CaCb/p}K

a,b=1 ∈ RK×K, as well as non-negative αℓ,1, αℓ,2, αℓ,3 satisfying

αℓ,1 = E[ϕ′
ℓ(τℓ−1ξ)]2αℓ−1,1, αℓ,2 = E[ϕ′

ℓ(τℓ−1ξ)]2αℓ−1,2 +
1
4

E[ϕ′′
ℓ (τℓ−1ξ)]2α2

ℓ−1,4, (19)

αℓ,3 = E[ϕ′
ℓ(τℓ−1ξ)]2αℓ−1,3 +

1
2

E[ϕ′′
ℓ (τℓ−1ξ)]2α2

ℓ−1,1. (20)

with αℓ,4 = E
[
(ϕ′

ℓ(τℓ−1ξ))2 + ϕℓ(τℓ−1ξ)ϕ′′
ℓ (τℓ−1ξ)

]
αℓ−1,4 for ξ ∼ N (0, 1).
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Implications

∥KCK,ℓ − K̃CK,ℓ∥ → 0, K̃CK,ℓ ≡ αℓ,1XTX + VAℓV
T + (τ2

ℓ − τ2
0 αℓ,1)In, Aℓ =

[
αℓ,2ttT + αℓ,3T αℓ,2t

αℓ,2tT αℓ,2

]
. (21)

Can (already) say something on the features obtained from random DNNs:
▶ αℓ,1 weighting first-order statistics of input data X, i.e., E[X] = M

▶ αℓ,2, αℓ,3 weighting second-order statistics, i.e., t = {tr C◦
a /

√
p}K

a=1 and T = {tr CaCb/p}K
a,b=1

A few qualitative remarks on the depth:
▶ intrinsic limitation of shallow NN: for ℓ = 1, one has α1,3 = 2α1,2 independently of the choice of the first

layer activation; for DNN of depth L ≥ 2, no much constraint
▶ deeper NNs are stronger nonlinear feature extractors: one has that αℓ,2

αℓ,1
≥ αℓ−1,2

αℓ−1,1
, αℓ,3

αℓ,1
≥ αℓ−1,3

αℓ−1,1
, ℓ ≥ 1

▶ limitation of even or odd activation: αℓ,1 = 1 for all even activation, and αℓ,2
αℓ,1

=
αℓ−1,2
αℓ−1,1

, αℓ,3
αℓ,1

=
αℓ−1,3
αℓ−1,1

for all

odd function so that the CK at any layer ℓ is (asymptotically) the linear kernel XTX
⇒ ReLU-type activations that are neither even nor odd are good!
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Fully-connected deep nets: CK, NTK, and beyond

▶ happy with the study of (limiting) CK for random DNN models
▶ extension to NTK via intrinsic connection between CK and NTK [JGH18]

KNTK,ℓ(X) = KCK,ℓ(X) + KNTK,ℓ−1(X) ◦ K′
CK,ℓ(X), KNTK,0(X) = KCK,0(X) = XTX, (22)

and some additional efforts
▶ convergence and generalization theory via NTK [JGH18]: for

(i) sufficiently wide nets
(ii) trained with gradient descent of sufficiently small step size

▶ NTK is determined at random initialization and remains unchanged during training, and applies to
explicitly characterize DNN convergence and generalization properties

▶ we now have a theory for trained nonrandom DNNs and can be used for DNN compression!

2Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Convergence and Generalization in Neural Networks”. In: Advances in Neural
Information Processing Systems. Vol. 31. NIPS’18. Curran Associates, Inc., 2018, pp. 8571–8580
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Figure: Test accuracy of classification on MNIST (top) and CIFAR10 (bottom) datasets. Blue: proposed NTK-LC approach
with different levels of sparsity ε ∈ {0%, 50%, 90%}, purple: heuristic sparsification approach by uniformly zeroing out 80%
of the weights, green: heuristic quantization approach with binary activation ϕ(t) = 1t<−1 + 1t>1 , red: original network,
orange: NTK-LC without activation quantization, and brown: magnitude-based pruning with same sparsity level as
orange. Memory varies due to the change of layer width of the network.
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Take-away

Take-away messages:
▶ a unified RMT analysis to ML via High-dimensional (Deterministic and Linear) Equivalent
▶ for GMM input data, RMT allows for precise characterization of (the CKs of) random shallow and deep

neural networks
▶ extends to NTKs, providing access to trained DNNs, but only in the “lazy” NTK regime
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RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
▶ change of intuition from small to large dimensional learning paradigm!
▶ better understanding of existing methods: why they work if they do, and what the issue is if they do not
▶ improved novel methods with performance guarantee!

▶ book “Random Matrix Methods for Machine Learning”
▶ by Romain Couillet and Zhenyu Liao
▶ Cambridge University Press, 2022
▶ a pre-production version of the book and exercise

solutions at https://zhenyu-liao.github.io/book/
▶ MATLAB and Python codes to reproduce all figures at

https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?
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