A Random Matrix Approach to Explicit and Implicit Deep Neural Networks

@ Institut de Mathématiques de Toulouse, France

Zhenyu Liao

School of Electronic Information and Communications
Huazhong University of Science and Technology

July 2nd, 2024

Z.Liao (EIC, HUST) RMT4DNN July 2nd, 2024 1/27



Outline

@ An Introduction Deep Learning for Statisticians/Mathematicians

© Results on Random Shallow Neural Networks

© Results on Non-random Deep Neural Networks

© From Explicit to Implicit NNs

Z.Liao (EIC, HUST) RMT4DNN July 2nd, 2024 2/27
y



Motivation: understanding large-dimensional machine learning

Big Data
X1,--.,X; € RP

Big Model
of size N

Z.Liao (EIC, HUST)

> Big Data era: exploit large n,p, N
» counterintuitive phenomena different from classical
asymptotics statistics

» complete change of understanding of many methods
in statistics and machine learning

» Random Matrix Theory (RMT) provides the tools!

» In this talk, a RMT approach to explicit and implicit
deep neural networks (DNNs), with applications to
DNN model compression.
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Question: what are deep neural networks?

Vo619 3ttayer plan

)

Deep Learning (DL) ~ multilayered neural network (NN) is becoming the
most popular machine learning (ML) model, but

» what is machine learning?
> what is a deep neural network (DNN)?
» how is such as network trained?

» is there any theory for DL, and if yes, how far is the theory from
practice?

= ]
Cem

Credit: most materials in this part are borrowed from [HH19].

!Catherine F. Higham and Desmond J. Higham. “Deep Learning: An Introduction for Applied Mathematicians”. In: SIAM Review 61.4 (Jan. 2019), pp. 860-891
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Example: binary classification of points in R?

1

0o 1

Figure: Labeled data points x € R2. Circles denote
points in class C;. Crosses denote points in class Cy.

» build a model/function f (from above
historical data) that takes any points x € R?
and returns Cq or Cp

> logistic regression: | f(x) = o(w'x + b) |for

w € R? and b € R to be determined, and

sigmoid function o (t) = #

Z.Liao (EIC, HUST)
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Figure: Sigmoid function.

> “learn” or estimate parameters w, b from
data/samples, by minimizing some cost
function (e.g., negative likelihood, MSE)

» predictx € C1if f(x) <1/2and x € C;
otherwise.
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Neural networks are nothing but “cascaded” logistic regressors

L
> logistic regression f(x) = o(w'x +b) € R for w € R?, O ‘/ \.
b € R extends to

o
f(x) =c(Wx+b) e RN| WeRNZbeRN (1) ><

O——
and o(-) applied entry-wise: this is one layer of a DNN Layerz\*. /:ayer 4

Layer 1 (Output layer)
> repeat this to make the network deep, with possibly (Input layer) Layer 3
different width in each layer Figure: A network with four layers.
> 0(Wyx +by) € R?, 0 (W30(Wox + by) +b3) € R
> far-nN(X) = 0 (W0 (W30 (Wax + by) +b3) + by) € R?
Define the label/target output as
1
0 x; € Cq,
y(xi) =
[ ;) } x; € Cy.

the MSE cost function writes Cost (W, W3, Wy, by, b3, by) = 10 ):l 1 1y (xi) = far—nn (i) ke
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Figure: Visualization of output from a multilayered neural network applied to the data.

> from training to test!
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General formulation and gradient decent training of DNN

We can define the network in a layer-by-layer fashion:

ag =x e RN, ‘ag =0 (Wyay_1 +by) ‘E]RN‘, {=1,...,L,

with weights W, € RN*Ni-1 and bias b € R’ at layer /.
> W;s and bys obtained by minimizing cost function on a given training set {(x;, y;) }!" ; of size n:
11 )
Cost=—3 ~lly; —ar(x:)|* ®)
ni=2
» update using (stochastic) gradient descent, for parameter P,

P(t+1) = P(t) — yVpCost(P(t)). @)
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Two-layer network with random first layer

hidden-layer of N neurons
o
. c(Wx;)) e RN @ W e RN*P
f(xi) = B o(Wx;) v
o
o

X; € RP

> for random (first-layer) weights W € RN*? having say i.i.d. standard Gaussian entries
> get second-layer B by minimizing Cost = 1 Y7, (y; — BT 0(Wx;))? + || B||? for some regularization
parameter 7y > 0, then
1o (17 -
=-X(-X'X I ,
B n ( 7 + n) y
> training MSE (on the given training set (X, y)) reads

1 2 1 -
Ewin = 3y ~Z7BIE = Ty@(n)y, | @) = (;ETE+ 1)

> Similarly, the test MSE on a test set (f(, y) € RY XA RN of gize fi: Erest = %
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Study of CK in the infinite-neuron regime

> Key object: empirical CK %ZTZ, correlation in the feature space, for random initialization:
Wi iid. (0,1), relates to linearized model fj;,

> LrTz=1} YN, o(XTw;)o(w]X) for independent w; ~ N (0,1,).

» In the infinite-neuron limit (N — c0), convergence to the limiting CK matrix

1
N):Tz = Kek(X) = Eyonor) [0(XTw)o(w'X)] € R

» theoretical understanding of NN model: generalization? optimization?

> Application: compress NN by carefully choosing weights W and/or activation? ¢, e.g., without
changing Kck?
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Problem settings

Data: K-class Gaussian mixture model (GMM)

Let xy,...,X; € R? be independently drawn (non-necessarily uniformly) from one of the K classes:

Ca: /pxi ~ N (p,,Ca), a€{l,... K} 7)

Large dimensional asymptotics

Asn,p — cowith p/n — ¢ € (0,00) and some additional growth-rate assumptions on the difference ||z, — 1, ||
and ||C, — Cp||,a,b € {1,...,K},asn,p — co.

v

Theorem (Asymptotic approximation for conjugate kernels, [AZC22])

For CK matrix Kcg = {]E[U(xiTw)U(waj)] ?].:1 defined above, one has, as n,p — oo that ||Kcx — Kck|| — 0, for

some random matrix Kcy dependent of data X, of activation o but only via the following scalars

&y = Elo*(v/72)] - Elo(vE2 B[ (VE2)P, di =Bl (VTR dr = {Elo" (VT

and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.
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Main result and the proof

Theorem (Asymptotic approximation for conjugate kernels, [AZC22])

For CK matrix Kcx = {IE[(T(x;.rw)tr(waj)] };‘].:1 defined above, one has, as n,p — oo that ||Kcx — Kck|| — 0, for
some random matrix Kcg dependent of data X, of activation o but only via the following scalars

dy = E[o*(V72)] - E[c(vT2)* — TE[0'(VT2))?, di =E[0'(VT2)]?, dp= iIE[tT"(\/?Z)]2

and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.

Proof sketch:
> We are interested in the kernel matrix K, the (i, ) entry of which K;; = ]EW[U'(X;-I—W)U'(WTX]')].
> Conditioned on x;, x;, w'x; = ||| - & and WTX]’ are asymptotically Gaussian, but correlated!

XX XX
12+ Igl2 - G2

» Gram-Schmidt to de-correlate wa]- |x H ‘X e Cj, for Gaussian ¢; now independent of §;

> Use the fact x;rxj = O(p~V?) and ||x||> = T/2 = O(1), Taylor-expand to “linearize” ¢(-) to order o(n 1)
> Since ||A|[» < n||Alle, with [|[A]|ec = max;j |Aji, obtain spectral approximation K.

2Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. “Random matrices in service of ML footprint: ternary random features with no performance loss”. In
International Conference on Learning Representations (ICLR 2022). 2022
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Practical consequence of the theory

According to theorem, allowed to choose arbitrary weights W and activation ¢, without affecting K
asymptotically, under the following conditions:

> weights W have independent entries with zero mean and unit variance

> activation ¢ has the same few parameters as the original net

dy = E[*(V2)] - E[o(vT2)]? — TE[r' (VT2) 2, &1 =E[e'(VT2)?, dp = %E[U”(ﬁZ)F, ®)

In particular,

> sparse and binarized (e.g., Bernoulli distributed) weights W instead of dense Gaussian weights

W];; = 0with probae € [0,1), [W]; ==x(1—c¢ ~1/2 gach with robal/2—¢/2, 9)
j p j p

> sparse quantized (e.g., binarized) activation ¢ shares the same d, 41, and d,
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Numerical results
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Figure: Test mean square errors of ridge regression on quantized single-hidden-layer random nets for different numbers of
features N € {5.10?,10°,5.10%,10%,5.10*}, using LP-RFF, Nystrém approximation, versus the proposed approach, on the
Census dataset, with n = 16 000 training samples, ntest = 2000 test samples, and data dimension p = 119.
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CK of fully-connected deep neural networks

> everyone cares more about deep neural networks
» with some additional efforts, theory extends to fully-connected deep neural networks of depth L,

1 1 1 1
flx) = ﬁWTUL (\/EWLULl ( RV (\/szﬁ(wlx)>)> , (10

again for random Wi, ..., W and activations ¢y (+),...,0p(-).

Theorem (Asymptotic approximation for conjugate kernels, informal)

Under the same condition, define output features of layer £ € {1,...,L}, as
= o (gt (o (pwanwi0)) ). a
v\ Vi Va2 \Var
we have for the Conjugate Kernel K¢y ¢ at layer £ defined as
Kek,o = E[Z]Z¢] € R™", (12)

that || Kck ¢ — Kck || — 0, some random matrix Kcy ¢ dependent of data, of activation oy but only via a few
parameters, and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.
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Theorem (Asymptotic approximation for CK matrices, formal, [Gu+22])

Let 1y, 1, ..., T > 0 be a sequence of non-negative numbers satisfying the following recursion:

7 = \/Elo2(1_18)], ¢~N(0,1), fe{1,...,L}. (13)

Further assume that the activation functions oy(+)s are “centered,” such that E[oy(ty_1¢)] = 0. Then, for the CK
matrix Ky ¢ of layer £ € {1,...,L} defined in (12), as n,p — oo, one has that:

Kcke — Keell = 0, Keip = o1 XX+ VAV + (17 — B0y 1)Ln, (14)

D((r,zttT 4 06(;,3T aélzt
wpot! Xpo

vectors J = [j1,---,jk] € R"™ K “second-order” data fluctuation vector i € R", second-order data statistics

t={trC//p}X | e Rand T = {tr C,C,/p}X,_, € RE¥K as well as non-negative ay1, ay, g 5 satisfying

almost surely, with V = [J//p, ] € R"™*(K+D A, = € RK+DX(K+D) for class label

1
agy = Eloy(t-18)Par—11,  agp = Elop(t_18) P12 + ;l]E[fTé/(TZAC)F“%f]A, (15)
1
ays = E[o)(te_18)Pag_15 + EE[U?(TZ—lg)]z“iLy (16)

with apq = E [(0)(17-18))? + 0p(10_18) 07 (T4-1&)] ap—1,4 for & ~ N(0,1).
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Fully-connected deep nets: CK, NTK, and beyond

» happy with the study of (limiting) CK for DNN models
» extension to NTK via intrinsic connection between CK and NTK [JGH18]

Kk, ¢ (X) = Kek o (X) + Knrie-1(X) 0 K ¢(X), - Knrio(X) = Kexo(X) = XTX, (17)

and some additional efforts
> convergence and generalization theory via NTK [JGH18]: for
(i) sufficiently wide nets
(ii) trained with gradient descent of sufficiently small step size
» NTK is determined at random initialization and remains unchanged during training, and applies to
explicitly characterize DNN convergence and generalization properties

> we can use the theory for DNN compression!

3 Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Convergence and Generalization in Neural Networks”. In: Advances in Neural
Information Processing Systems. Vol. 31. NIPS'18. Curran Associates, Inc., 2018, pp. 8571-8580
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Figure: Test accuracy of classification on MNIST (top) and CIFAR10 (bottom) datasets. Blue: proposed NTK-LC approach
with different levels of sparsity ¢ € {0%,50%, 90%}, purple: heuristic sparsification approach by uniformly zeroing out 80%
of the weights, green: heuristic quantization approach with binary activation o'(t) = 1,1 + 1,51 , red: original network,
orange: NTK-LC without activation quantization, and brown: magnitude-based pruning with same sparsity level as orange.
Memory varies due to the change of layer width of the network.
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Connection between Implicit and Explicit NNs

Deep equilibrium model (DEQ), [BKK19]
Let X = [x1,- -+ ,Xu] € RP*" denote the input data, consider a vanilla DEQ with output f(x;) given by

f(x;) =Bz}, (18)
where € R™ and zl(*) = lim)_, zl(l) € R™ with

0 1

"=

for some appropriate initialization zi(o), A € R™™ and B € R™*? are DEQ weights, 0;, 05 € R are constants,
and ¢ is an element-wise activation. Note z} can also be determined as the equilibrium point of

¢ (aaAzf*” T athi) € R™, forl > 1, 19)

1
* *
z; = —¢ (0zAz] + 0, Bx;) . (20)
\/m
4Sha0]'ie Bai, . Zico Kolter, and Vladlen Koltun. “Deep Equilibrium Models”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates,

Inc., 2019
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Connection between Implicit and Explicit NNs

» similar analysis can be performed for such Implicit-NN models as well

> leads to high-dimensional “equivalence” (in the sense of CK or NTK) between Implicit and Explicit NNs
Theorem (Asymptotic approximation for Implicit-CK matrices)
For the DEQ model under study, under some mild technical assumptions, and let the activation ¢ be centered such that
E[p(t€)] = 0for & ~ N(0,1) and T, be such that T, = \/aglE [¢?(1+€)] + 0274 Then, the Implicit-CK matrix G*
satisfies ||G* — G|| — 0 almost surely as n,p — oo, for a random matrix G explicitly given by

— T \
G= a*JXTX—&-VC*VT + (7*2 _ Tgvc*,1)1n, C, = [ Dc*,z’t‘tx ;Tt}*,g,T 0;*,2; c RE+D % (K+1) (21)
*,. *,.

for explicit parameters 7y, &y 1,042, 0,3 > 0.

==:Tanh=——H-Tanh ==ReLU==L-ReLU
T T
agq
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Numerical results
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Take-away

Take-away messages:

» for GMM input data, RMT allows for precise characterization of (the CKs of) random shallow and deep
neural networks

> extends to NTKSs, providing access to trained DNNSs, but only in the “lazy” NTK regime
> makes explicit connections between Implicit and Explicit NNs

References:
» Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. “Random matrices in service of ML footprint: ternary random features with no
performance loss”. In: International Conference on Learning Representations (ICLR 2022). 2022

» Lingyu Gu, Yongqi Du, Yuan Zhang, Di Xie, Shiliang Pu, Robert Qiu, and Zhenyu Liao. “"Lossless" Compression of Deep Neural
Networks: A High-dimensional Neural Tangent Kernel Approach”. In: Advances in Neural Information Processing Systems. Vol. 35.
Curran Associates, Inc., 2022, pp. 3774-3787 (Please refer to the ArXiv version on https://arxiv.org/abs/2403.00258 that fixed
typos in Theorems 1 and 2 from the NeurIPS 2022 proceeding version.)

> Z.Ling, L. Li, Z. Feng, Y. Zhang, F. Zhou, R. C. Qiu, Z. Liao “Deep Equilibrium Models are Almost Equivalent to Not-so-deep Explicit
Models for High-dimensional Gaussian Mixtures”, The Forty-first International Conference on Machine Learning (ICML 2024), 2024
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RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
» change of intuition from small to large dimensional learning paradigm!

> better understanding of existing methods: why they work if they do, and what the issue is if they do not
» improved novel methods with performance guarantee!

e
ETH » book “Random Matrix Methods for Machine Learning”
QL“E’IAARCII\'III E » by Romain Couillet and Zhenyu Liao
- » Cambridge University Press, 2022
> a pre-production version of the book and exercise
solutions at https://zhenyu-1liao.github.io/book/
>

MATLAB and Python codes to reproduce all figures at
https://github.com/Zhenyu-LIAO/RMT4ML

Romain Couillet
& Zhenyu Liao

Thank you! Q & A?
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