A Random Matrix Approach to Explicit and Implicit Deep Neural Networks

 @ Institut de Mathématiques de Toulouse, France
Zhenyu Liao

School of Electronic Information and Communications Huazhong University of Science and Technology

July 2nd, 2024

Outline

(1) An Introduction Deep Learning for Statisticians/Mathematicians

2 Results on Random Shallow Neural Networks
(3) Results on Non-random Deep Neural Networks
(4) From Explicit to Implicit NNs

Motivation: understanding large-dimensional machine learning

- Big Data era: exploit large n, p, N
- counterintuitive phenomena different from classical asymptotics statistics
- complete change of understanding of many methods in statistics and machine learning
- Random Matrix Theory (RMT) provides the tools!
- In this talk, a RMT approach to explicit and implicit deep neural networks (DNNs), with applications to DNN model compression.

Question: what are deep neural networks?

Deep Learning $(\mathrm{DL}) \approx$ multilayered neural network (NN) is becoming the most popular machine learning (ML) model, but

- what is machine learning?
- what is a deep neural network (DNN)?
- how is such as network trained?
- is there any theory for DL, and if yes, how far is the theory from practice?

Credit: most materials in this part are borrowed from [HH19].

[^0]
Example: binary classification of points in \mathbb{R}^{2}

Figure: Labeled data points $\mathbf{x} \in \mathbb{R}^{2}$. Circles denote points in class \mathcal{C}_{1}. Crosses denote points in class \mathcal{C}_{2}.

- build a model/function f (from above historical data) that takes any points $\mathbf{x} \in \mathbb{R}^{2}$ and returns \mathcal{C}_{1} or \mathcal{C}_{2}
- logistic regression: $f(\mathbf{x})=\sigma\left(\mathbf{w}^{\top} \mathbf{x}+b\right)$ for $\mathbf{w} \in \mathbb{R}^{2}$ and $b \in \mathbb{R}$ to be determined, and sigmoid function $\sigma(t)=\frac{1}{1+e^{-t}}$

Figure: Sigmoid function.

- "learn" or estimate parameters \mathbf{w}, b from data/samples, by minimizing some cost function (e.g., negative likelihood, MSE)
- predict $\mathbf{x} \in \mathcal{C}_{1}$ if $f(\mathbf{x})<1 / 2$ and $\mathbf{x} \in \mathcal{C}_{2}$ otherwise.

Neural networks are nothing but "cascaded" logistic regressors

- logistic regression $f(\mathbf{x})=\sigma\left(\mathbf{w}^{\top} \mathbf{x}+b\right) \in \mathbb{R}$ for $\mathbf{w} \in \mathbb{R}^{2}$, $b \in \mathbb{R}$ extends to

$$
\begin{equation*}
f(\mathbf{x})=\sigma(\mathbf{W} \mathbf{x}+\mathbf{b}) \in \mathbb{R}^{N} \quad \mathbf{W} \in \mathbb{R}^{N \times 2}, \mathbf{b} \in \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

and $\sigma(\cdot)$ applied entry-wise: this is one layer of a DNN

- repeat this to make the network deep, with possibly different width in each layer

Figure: A network with four layers.

- $\sigma\left(\mathbf{W}_{2} x+\mathbf{b}_{2}\right) \in \mathbb{R}^{2}, \sigma\left(\mathbf{W}_{3} \sigma\left(\mathbf{W}_{2} \mathbf{x}+\mathbf{b}_{2}\right)+\mathbf{b}_{3}\right) \in \mathbb{R}^{3}$
- $f_{4 L-N N}(\mathbf{x})=\sigma\left(\mathbf{W}_{4} \sigma\left(\mathbf{W}_{3} \sigma\left(\mathbf{W}_{2} \mathbf{x}+\mathbf{b}_{2}\right)+\mathbf{b}_{3}\right)+\mathbf{b}_{4}\right) \in \mathbb{R}^{2}$

Define the label/target output as

$$
\mathbf{y}\left(\mathbf{x}_{i}\right)= \begin{cases}{\left[\begin{array}{l}
1 \\
0
\end{array}\right]} & \mathbf{x}_{i} \in \mathcal{C}_{1} \tag{2}\\
{\left[\begin{array}{l}
0 \\
1
\end{array}\right]} & \mathbf{x}_{i} \in \mathcal{C}_{2}\end{cases}
$$

the MSE cost function writes $\operatorname{Cost}\left(\mathbf{W}_{2}, \mathbf{W}_{3}, \mathbf{W}_{4}, \mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right)=\frac{1}{10} \sum_{i=1}^{10}\left\|\mathbf{y}\left(\mathbf{x}_{i}\right)-f_{4 L-N N}\left(\mathbf{x}_{i}\right)\right\|^{2}$

Figure: Visualization of output from a multilayered neural network applied to the data.

- from training to test!

General formulation and gradient decent training of DNN

We can define the network in a layer-by-layer fashion:

$$
\mathbf{a}_{0}=\mathbf{x} \in \mathbb{R}^{N_{0}}, \quad \mathbf{a}_{\ell}=\sigma\left(\mathbf{W}_{\ell} \mathbf{a}_{\ell-1}+\mathbf{b}_{\ell}\right) \in \mathbb{R}^{N_{\ell}}, \quad \ell=1, \ldots, L,
$$

with weights $\mathbf{W}_{\ell} \in \mathbb{R}^{N_{\ell} \times N_{\ell-1}}$ and bias $\mathbf{b} \in \mathbb{R}^{N_{\ell}}$ at layer ℓ.

- $\mathbf{W}_{\ell} \mathbf{s}$ and \mathbf{b}_{ℓ} s obtained by minimizing cost function on a given training set $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\}_{i=1}^{n}$ of size n :

$$
\begin{equation*}
\text { Cost }=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}\left\|\mathbf{y}_{i}-\mathbf{a}_{L}\left(\mathbf{x}_{i}\right)\right\|^{2} . \tag{3}
\end{equation*}
$$

- update using (stochastic) gradient descent, for parameter P,

$$
\begin{equation*}
P(t+1)=P(t)-\eta \nabla_{P} \operatorname{Cost}(P(t)) . \tag{4}
\end{equation*}
$$

Two-layer network with random first layer

- for random (first-layer) weights $\mathbf{W} \in \mathbb{R}^{N \times p}$ having say i.i.d. standard Gaussian entries
- get second-layer $\boldsymbol{\beta}$ by minimizing Cost $=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\beta}^{\top} \sigma\left(\mathbf{W} \mathbf{x}_{i}\right)\right)^{2}+\gamma\|\boldsymbol{\beta}\|^{2}$ for some regularization parameter $\gamma>0$, then

$$
\begin{equation*}
\boldsymbol{\beta} \equiv \frac{1}{n} \boldsymbol{\Sigma}\left(\frac{1}{n} \boldsymbol{\Sigma}^{\top} \boldsymbol{\Sigma}+\gamma \mathbf{I}_{n}\right)^{-1} \mathbf{y}, \tag{5}
\end{equation*}
$$

- training MSE (on the given training set (\mathbf{X}, \mathbf{y})) reads

$$
\begin{equation*}
E_{\text {train }}=\frac{1}{n}\left\|\mathbf{y}-\boldsymbol{\Sigma}^{\top} \boldsymbol{\beta}\right\|_{F}^{2}=\frac{\gamma^{2}}{n} \mathbf{y} \mathbf{Q}^{2}(\gamma) \mathbf{y}, \quad \mathbf{Q}(\gamma) \equiv\left(\frac{1}{n} \boldsymbol{\Sigma}^{\top} \boldsymbol{\Sigma}+\gamma \mathbf{I}_{n}\right)^{-1} \tag{6}
\end{equation*}
$$

- Similarly, the test MSE on a test set $(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \mathbb{R}^{p \times \hat{n}} \times \mathbb{R}^{d \times \hat{n}}$ of size $\hat{n}: E_{\text {test }}=\frac{1}{\hat{n}}\left\|\hat{\mathbf{y}}-\hat{\boldsymbol{\Sigma}}^{\top} \boldsymbol{\beta}\right\|_{F}^{2}, \quad \hat{\boldsymbol{\Sigma}}=\sigma(\mathbf{W} \hat{\mathbf{X}})$.

Study of CK in the infinite-neuron regime

- Key object: empirical CK $\frac{1}{N} \Sigma^{\top} \boldsymbol{\Sigma}$, correlation in the feature space, for random initialization: $\mathbf{W}_{i j} \stackrel{i . i . d .}{\sim} \mathcal{N}(0,1)$, relates to linearized model $f_{\text {lin }}$
- ${ }_{N}^{1} \boldsymbol{\Sigma}^{\top} \boldsymbol{\Sigma}=\frac{1}{N} \sum_{i=1}^{N} \sigma\left(\mathbf{X}^{\top} \mathbf{w}_{i}\right) \sigma\left(\mathbf{w}_{i}^{\top} \mathbf{X}\right)$ for independent $\mathbf{w}_{i} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{p}\right)$.
- In the infinite-neuron limit $(N \rightarrow \infty)$, convergence to the limiting CK matrix

$$
\frac{1}{N} \boldsymbol{\Sigma}^{\boldsymbol{\top}} \boldsymbol{\Sigma} \rightarrow \mathbf{K}_{\mathrm{CK}}(\mathbf{X}) \equiv \mathbb{E}_{\mathbf{w} \sim \mathcal{N}\left(0, \mathbf{I}_{p}\right)}\left[\sigma\left(\mathbf{X}^{\top} \mathbf{w}\right) \sigma\left(\mathbf{w}^{\top} \mathbf{X}\right)\right] \in \mathbb{R}^{n \times n}
$$

- theoretical understanding of NN model: generalization? optimization?
- Application: compress NN by carefully choosing weights \mathbf{W} and/or activation? σ, e.g., without changing K_{CK} ?

Problem settings

Data: K-class Gaussian mixture model (GMM)

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$ be independently drawn (non-necessarily uniformly) from one of the K classes:

$$
\begin{equation*}
\mathcal{C}_{a}: \sqrt{p} \mathbf{x}_{i} \sim \mathcal{N}\left(\boldsymbol{\mu}_{a}, \mathbf{C}_{a}\right), \quad a \in\{1, \ldots, K\} \tag{7}
\end{equation*}
$$

Large dimensional asymptotics
As $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$ and some additional growth-rate assumptions on the difference $\left\|\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right\|$ and $\left\|\mathbf{C}_{a}-\mathbf{C}_{b}\right\|, a, b \in\{1, \ldots, K\}$, as $n, p \rightarrow \infty$.

Theorem (Asymptotic approximation for conjugate kernels, [AZC22])

For CK matrix $\mathbf{K}_{\mathrm{CK}}=\left\{\mathbb{E}\left[\sigma\left(\mathbf{x}_{i}^{\top} \mathbf{w}\right) \sigma\left(\mathbf{w}^{\top} \mathbf{x}_{j}\right)\right]\right\}_{i, j=1}^{n}$ defined above, one has, as n, $p \rightarrow \infty$ that $\left\|\mathbf{K}_{\mathrm{CK}}-\tilde{\mathbf{K}}_{\mathrm{CK}}\right\| \rightarrow 0$, for some random matrix $\tilde{\mathbf{K}}_{\mathrm{CK}}$ dependent of data \mathbf{X}, of activation σ but only via the following scalars

$$
d_{0}=\mathbb{E}\left[\sigma^{2}(\sqrt{\tau} z)\right]-\mathbb{E}[\sigma(\sqrt{\tau} z)]^{2}-\tau \mathbb{E}\left[\sigma^{\prime}(\sqrt{\tau} z)\right]^{2}, \quad d_{1}=\mathbb{E}\left[\sigma^{\prime}(\sqrt{\tau} z)\right]^{2}, \quad d_{2}=\frac{1}{4} \mathbb{E}\left[\sigma^{\prime \prime}(\sqrt{\tau} z)\right]^{2}
$$

and independent of the distribution of \mathbf{W}, as long as of normalized to have zero mean and unit variance.

Main result and the proof

Theorem (Asymptotic approximation for conjugate kernels, [AZC22])

For CK matrix $\mathbf{K}_{\mathrm{CK}}=\left\{\mathbb{E}\left[\sigma\left(\mathbf{x}_{i}^{\top} \mathbf{w}\right) \sigma\left(\mathbf{w}^{\top} \mathbf{x}_{j}\right)\right]\right\}_{i, j=1}^{n}$ defined above, one has, as n, $p \rightarrow \infty$ that $\left\|\mathbf{K}_{\mathrm{CK}}-\tilde{\mathbf{K}}_{\mathrm{CK}}\right\| \rightarrow 0$, for some random matrix $\tilde{\mathbf{K}}_{\mathrm{CK}}$ dependent of data \mathbf{X}, of activation σ but only via the following scalars

$$
d_{0}=\mathbb{E}\left[\sigma^{2}(\sqrt{\tau} z)\right]-\mathbb{E}[\sigma(\sqrt{\tau} z)]^{2}-\tau \mathbb{E}\left[\sigma^{\prime}(\sqrt{\tau} z)\right]^{2}, \quad d_{1}=\mathbb{E}\left[\sigma^{\prime}(\sqrt{\tau} z)\right]^{2}, \quad d_{2}=\frac{1}{4} \mathbb{E}\left[\sigma^{\prime \prime}(\sqrt{\tau} z)\right]^{2}
$$

and independent of the distribution of \mathbf{W}, as long as of normalized to have zero mean and unit variance.

Proof sketch:

- We are interested in the kernel matrix \mathbf{K}, the (i, j) entry of which $\mathbf{K}_{i j}=\mathbb{E}_{\mathbf{w}}\left[\sigma\left(\mathbf{x}_{i}^{\top} \mathbf{w}\right) \sigma\left(\mathbf{w}^{\top} \mathbf{x}_{j}\right)\right]$.
- Conditioned on $\mathbf{x}_{i}, \mathbf{x}_{j}, \mathbf{w}^{\top} \mathbf{x}_{i} \equiv\left\|\mathbf{x}_{i}\right\| \cdot \xi_{i}$ and $\mathbf{w}^{\top} \mathbf{x}_{j}$ are asymptotically Gaussian, but correlated!
- Gram-Schmidt to de-correlate $\mathbf{w}^{\top} \mathbf{x}_{j}=\frac{\mathbf{x}_{i}^{\top} \mathbf{x}_{j}}{\left\|\mathbf{x}_{i}\right\|} \xi_{i}+\sqrt{\left\|\mathbf{x}_{j}\right\|^{2}-\frac{\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right)^{2}}{\left\|\mathbf{x}_{i}\right\|^{2}}} \xi_{j}$, for Gaussian ξ_{j} now independent of ξ_{j}
- Use the fact $\mathbf{x}_{i}^{\top} \mathbf{x}_{j}=O\left(p^{-1 / 2}\right)$ and $\left\|\mathbf{x}_{i}\right\|^{2} \approx \tau / 2=O(1)$, Taylor-expand to "linearize" $\sigma(\cdot)$ to order $o\left(n^{-1}\right)$
- Since $\|\mathbf{A}\|_{2} \leq n\|\mathbf{A}\|_{\infty}$, with $\|\mathbf{A}\|_{\infty}=\max _{i j}\left|\mathbf{A}_{i j}\right|$, obtain spectral approximation $\tilde{\mathbf{K}}$.

[^1]Practical consequence of the theory

According to theorem, allowed to choose arbitrary weights \mathbf{W} and activation σ, without affecting \mathbf{K} asymptotically, under the following conditions:

- weights \mathbf{W} have independent entries with zero mean and unit variance
- activation σ has the same few parameters as the original net

$$
\begin{equation*}
d_{0}=\mathbb{E}\left[\sigma^{2}(\sqrt{\tau} z)\right]-\mathbb{E}[\sigma(\sqrt{\tau} z)]^{2}-\tau \mathbb{E}\left[\sigma^{\prime}(\sqrt{\tau} z)\right]^{2}, \quad d_{1}=\mathbb{E}\left[\sigma^{\prime}(\sqrt{\tau} z)\right]^{2}, \quad d_{2}=\frac{1}{4} \mathbb{E}\left[\sigma^{\prime \prime}(\sqrt{\tau} z)\right]^{2}, \tag{8}
\end{equation*}
$$

In particular,

- sparse and binarized (e.g., Bernoulli distributed) weights \mathbf{W} instead of dense Gaussian weights

$$
\begin{equation*}
[\mathbf{W}]_{i j}=0 \text { with proba } \varepsilon \in[0,1), \quad[\mathbf{W}]_{i j}= \pm(1-\varepsilon)^{-1 / 2} \text { each with proba } 1 / 2-\varepsilon / 2 \tag{9}
\end{equation*}
$$

- sparse quantized (e.g., binarized) activation σ shares the same d_{0}, d_{1}, and d_{2}

Numerical results

Figure: Test mean square errors of ridge regression on quantized single-hidden-layer random nets for different numbers of features $N \in\left\{5.10^{2}, 10^{3}, 5.10^{3}, 10^{4}, 5.10^{4}\right\}$, using LP-RFF, Nyström approximation, versus the proposed approach, on the Census dataset, with $n=16000$ training samples, $n_{\text {test }}=2000$ test samples, and data dimension $p=119$.

CK of fully-connected deep neural networks

- everyone cares more about deep neural networks
- with some additional efforts, theory extends to fully-connected deep neural networks of depth L,

$$
\begin{equation*}
f(\mathbf{x})=\frac{1}{\sqrt{d_{L}}} \mathbf{w}^{\top} \sigma_{L}\left(\frac{1}{\sqrt{d_{L-1}}} \mathbf{W}_{L} \sigma_{L-1}\left(\ldots \frac{1}{\sqrt{d_{2}}} \sigma_{2}\left(\frac{1}{\sqrt{d_{1}}} \mathbf{W}_{2} \sigma_{1}\left(\mathbf{W}_{1} \mathbf{x}\right)\right)\right)\right) \tag{10}
\end{equation*}
$$

again for random $\mathbf{W}_{1}, \ldots, \mathbf{W}_{L}$ and activations $\sigma_{1}(\cdot), \ldots, \sigma_{L}(\cdot)$.

Theorem (Asymptotic approximation for conjugate kernels, informal)

Under the same condition, define output features of layer $\ell \in\{1, \ldots, L\}$, as

$$
\begin{equation*}
\boldsymbol{\Sigma}_{\ell}=\frac{1}{\sqrt{d_{\ell}}} \sigma_{\ell}\left(\frac{1}{\sqrt{d_{\ell-1}}} \mathbf{W}_{\ell} \sigma_{\ell-1}\left(\ldots \frac{1}{\sqrt{d_{2}}} \sigma_{2}\left(\frac{1}{\sqrt{d_{1}}} \mathbf{W}_{2} \sigma_{1}\left(\mathbf{W}_{1} \mathbf{X}\right)\right)\right)\right) \tag{11}
\end{equation*}
$$

we have for the Conjugate Kernel $\mathbf{K}_{\mathrm{CK}, \ell}$ at layer ℓ defined as

$$
\begin{equation*}
\mathbf{K}_{\mathrm{CK}, \ell}=\mathbb{E}\left[\boldsymbol{\Sigma}_{\ell}^{\top} \boldsymbol{\Sigma}_{\ell}\right] \in \mathbb{R}^{n \times n} \tag{12}
\end{equation*}
$$

that $\left\|\mathbf{K}_{\mathrm{CK}, \ell}-\tilde{\mathbf{K}}_{\mathrm{CK}, \ell}\right\| \rightarrow 0$, some random matrix $\tilde{\mathbf{K}}_{\mathrm{CK}, \ell}$ dependent of data, of activation σ_{ℓ} but only via a few parameters, and independent of the distribution of \mathbf{W}, as long as of normalized to have zero mean and unit variance.

Theorem (Asymptotic approximation for CK matrices, formal, [Gu+22])
Let $\tau_{0}, \tau_{1}, \ldots, \tau_{L} \geq 0$ be a sequence of non-negative numbers satisfying the following recursion:

$$
\begin{equation*}
\tau_{\ell}=\sqrt{\mathbb{E}\left[\sigma_{\ell}^{2}\left(\tau_{\ell-1} \xi\right)\right]}, \quad \xi \sim \mathcal{N}(0,1), \quad \ell \in\{1, \ldots, L\} \tag{13}
\end{equation*}
$$

Further assume that the activation functions $\sigma_{\ell}(\cdot)$ s are "centered," such that $\mathbb{E}\left[\sigma_{\ell}\left(\tau_{\ell-1} \xi\right)\right]=0$. Then, for the $C K$ matrix $\mathbf{K}_{\mathrm{CK}, \ell}$ of layer $\ell \in\{1, \ldots, L\}$ defined in (12), as $n, p \rightarrow \infty$, one has that:

$$
\begin{equation*}
\left\|\mathbf{K}_{\mathrm{CK}, \ell}-\tilde{\mathbf{K}}_{\mathrm{CK}, \ell}\right\| \rightarrow 0, \quad \tilde{\mathbf{K}}_{\mathrm{CK}, \ell} \equiv \alpha_{\ell, 1} \mathbf{X}^{\top} \mathbf{X}+\mathbf{V} \mathbf{A}_{\ell} \mathbf{V}^{\top}+\left(\tau_{\ell}^{2}-\tau_{0}^{2} \alpha_{\ell, 1}\right) \mathbf{I}_{n} \tag{14}
\end{equation*}
$$

almost surely, with $\mathbf{V}=[\mathbf{J} / \sqrt{p}, \boldsymbol{\psi}] \in \mathbb{R}^{n \times(K+1)}, \mathbf{A}_{\ell}=\left[\begin{array}{cc}\alpha_{\ell, 2} \mathbf{t t}^{\top}+\alpha_{\ell, 3} \mathbf{T} & \alpha_{\ell, 2} \mathbf{t} \\ \alpha_{\ell, 2} \mathbf{t}^{\top} & \alpha_{\ell, 2}\end{array}\right] \in \mathbb{R}^{(K+1) \times(K+1)}$, for class label vectors $\mathbf{J}=\left[\mathbf{j}_{1}, \ldots, \mathbf{j}_{K}\right] \in \mathbb{R}^{n \times K}$, "second-order" data fluctuation vector $\boldsymbol{\psi} \in \mathbb{R}^{n}$, second-order data statistics $\mathbf{t}=\left\{\operatorname{tr} \mathbf{C}_{a}^{\circ} / \sqrt{p}\right\}_{a=1}^{K} \in \mathbb{R}^{K}$ and $\mathbf{T}=\left\{\operatorname{tr} \mathbf{C}_{a} \mathbf{C}_{b} / p\right\}_{a, b=1}^{K} \in \mathbb{R}^{K \times K}$, as well as non-negative $\alpha_{\ell, 1}, \alpha_{\ell, 2}, \alpha_{\ell, 3}$ satisfying

$$
\begin{align*}
\alpha_{\ell, 1} & =\mathbb{E}\left[\sigma_{\ell}^{\prime}\left(\tau_{\ell-1} \xi\right)\right]^{2} \alpha_{\ell-1,1}, \quad \alpha_{\ell, 2}=\mathbb{E}\left[\sigma_{\ell}^{\prime}\left(\tau_{\ell-1} \xi\right)\right]^{2} \alpha_{\ell-1,2}+\frac{1}{4} \mathbb{E}\left[\sigma_{\ell}^{\prime \prime}\left(\tau_{\ell-1} \xi\right)\right]^{2} \alpha_{\ell-1,4}^{2} \tag{15}\\
\alpha_{\ell, 3} & =\mathbb{E}\left[\sigma_{\ell}^{\prime}\left(\tau_{\ell-1} \xi\right)\right]^{2} \alpha_{\ell-1,3}+\frac{1}{2} \mathbb{E}\left[\sigma_{\ell}^{\prime \prime}\left(\tau_{\ell-1} \xi\right)\right]^{2} \alpha_{\ell-1,1}^{2} \tag{16}
\end{align*}
$$

with $\alpha_{\ell, 4}=\mathbb{E}\left[\left(\sigma_{\ell}^{\prime}\left(\tau_{\ell-1} \xi\right)\right)^{2}+\sigma_{\ell}\left(\tau_{\ell-1} \xi\right) \sigma_{\ell}^{\prime \prime}\left(\tau_{\ell-1} \xi\right)\right] \alpha_{\ell-1,4}$ for $\xi \sim \mathcal{N}(0,1)$.

Fully-connected deep nets: CK, NTK, and beyond

- happy with the study of (limiting) CK for DNN models
- extension to NTK via intrinsic connection between CK and NTK [JGH18]

$$
\begin{equation*}
\mathbf{K}_{\mathrm{NTK}, \ell}(\mathbf{X})=\mathbf{K}_{\mathrm{CK}, \ell}(\mathbf{X})+\mathbf{K}_{\mathrm{NTK}, \ell-1}(\mathbf{X}) \circ \mathbf{K}_{\mathrm{CK}, \ell}^{\prime}(\mathbf{X}), \quad \mathbf{K}_{\mathrm{NTK}, 0}(\mathbf{X})=\mathbf{K}_{\mathrm{CK}, 0}(\mathbf{X})=\mathbf{X}^{\top} \mathbf{X}, \tag{17}
\end{equation*}
$$

and some additional efforts

- convergence and generalization theory via NTK [JGH18]: for
(i) sufficiently wide nets
(ii) trained with gradient descent of sufficiently small step size
- NTK is determined at random initialization and remains unchanged during training, and applies to explicitly characterize DNN convergence and generalization properties
- we can use the theory for DNN compression!

[^2]

$\square \longrightarrow$	$\varepsilon=0 \%$
$\longrightarrow-$	$\varepsilon=50 \%$
\longrightarrow	$\varepsilon=90 \%$

$$
\rightarrow \quad \text { original dense }
$$ - naive quantized - naive sparse --- mag-based pruning --*- ternary weights

Figure: Test accuracy of classification on MNIST (top) and CIFAR10 (bottom) datasets. Blue: proposed NTK-LC approach with different levels of sparsity $\varepsilon \in\{0 \%, 50 \%, 90 \%\}$, purple: heuristic sparsification approach by uniformly zeroing out 80% of the weights, green: heuristic quantization approach with binary activation $\sigma(t)=1_{t<-1}+1_{t>1}$, red: original network, orange: NTK-LC without activation quantization, and brown: magnitude-based pruning with same sparsity level as orange. Memory varies due to the change of layer width of the network.

Connection between Implicit and Explicit NNs

Deep equilibrium model (DEQ), [BKK19]

Let $\mathbf{X}=\left[\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$ denote the input data, consider a vanilla DEQ with output $f\left(\mathbf{x}_{i}\right)$ given by

$$
\begin{equation*}
f\left(\mathbf{x}_{i}\right)=\beta^{\top} \mathbf{z}_{i}^{*} \tag{18}
\end{equation*}
$$

where $\beta \in \mathbb{R}^{m}$ and $\mathbf{z}_{i}^{(*)} \equiv \lim _{l \rightarrow \infty} \mathbf{z}_{i}^{(l)} \in \mathbb{R}^{m}$ with

$$
\begin{equation*}
\mathbf{z}_{i}^{(l)}=\frac{1}{\sqrt{m}} \phi\left(\sigma_{a} \mathbf{A} \mathbf{z}_{i}^{(l-1)}+\sigma_{b} \mathbf{B} \mathbf{x}_{i}\right) \in \mathbb{R}^{m}, \text { for } l \geq 1 \tag{19}
\end{equation*}
$$

for some appropriate initialization $\mathbf{z}_{i}^{(0)}, \mathbf{A} \in \mathbb{R}^{m \times m}$ and $\mathbf{B} \in \mathbb{R}^{m \times p}$ are DEQ weights, $\sigma_{a}, \sigma_{b} \in \mathbb{R}$ are constants, and ϕ is an element-wise activation. Note \mathbf{z}_{i}^{*} can also be determined as the equilibrium point of

$$
\begin{equation*}
\mathbf{z}_{i}^{*}=\frac{1}{\sqrt{m}} \phi\left(\sigma_{a} \mathbf{A} \mathbf{z}_{i}^{*}+\sigma_{b} \mathbf{B} \mathbf{x}_{i}\right) \tag{20}
\end{equation*}
$$

[^3]
Connection between Implicit and Explicit NNs

- similar analysis can be performed for such Implicit-NN models as well
- leads to high-dimensional "equivalence" (in the sense of CK or NTK) between Implicit and Explicit NNs

Theorem (Asymptotic approximation for Implicit-CK matrices)

For the DEQ model under study, under some mild technical assumptions, and let the activation ϕ be centered such that $\mathbb{E}\left[\phi\left(\tau_{*} \xi\right)\right]=0$ for $\xi \sim \mathcal{N}(0,1)$ and τ_{*} be such that $\tau_{*}=\sqrt{\sigma_{a}^{2} \mathbb{E}\left[\phi^{2}\left(\tau_{*} \xi\right)\right]+\sigma_{b}^{2} \tau_{0}^{2}}$. Then, the Implicit-CK matrix \mathbf{G}^{*} satisfies $\left\|\mathbf{G}^{*}-\overline{\mathbf{G}}\right\| \rightarrow 0$ almost surely as $n, p \rightarrow \infty$, for a random matrix $\overline{\mathbf{G}}$ explicitly given by

$$
\overline{\mathbf{G}} \equiv \alpha_{*, 1} \mathbf{X}^{\top} \mathbf{X}+\mathbf{V C} \mathbf{C}_{*} \mathbf{V}^{\top}+\left(\gamma_{*}^{2}-\tau_{0}^{2} \alpha_{*, 1}\right) \mathbf{I}_{n}, \quad \mathbf{C}_{*}=\left[\begin{array}{cc}
\alpha_{*, 2} \mathbf{t t}^{\top}+\alpha_{*, 3} \mathbf{T} & \alpha_{*, 2} \mathbf{t} \tag{21}\\
\alpha_{*, 2} \mathbf{t}^{\top} & \alpha_{*, 2}
\end{array}\right] \in \mathbb{R}^{(K+1) \times(K+1)}
$$

for explicit parameters $\gamma_{*}, \alpha_{*, 1}, \alpha_{*, 2}, \alpha_{*, 3} \geq 0$.

Numerical results

Take-away

Take-away messages:

- for GMM input data, RMT allows for precise characterization of (the CKs of) random shallow and deep neural networks
- extends to NTKs, providing access to trained DNNs, but only in the "lazy" NTK regime
- makes explicit connections between Implicit and Explicit NNs

References:

- Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. "Random matrices in service of ML footprint: ternary random features with no performance loss". In: International Conference on Learning Representations (ICLR 2022). 2022
- Lingyu Gu, Yongqi Du, Yuan Zhang, Di Xie, Shiliang Pu, Robert Qiu, and Zhenyu Liao. ""Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach". In: Advances in Neural Information Processing Systems. Vol. 35. Curran Associates, Inc., 2022, pp. 3774-3787 (Please refer to the ArXiv version on https ://arxiv. org/abs/2403.00258 that fixed typos in Theorems 1 and 2 from the NeurIPS 2022 proceeding version.)
- Z. Ling, L. Li, Z. Feng, Y. Zhang, F. Zhou, R. C. Qiu, Z. Liao "Deep Equilibrium Models are Almost Equivalent to Not-so-deep Explicit Models for High-dimensional Gaussian Mixtures", The Forty-first International Conference on Machine Learning (ICML 2024), 2024

RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:

- change of intuition from small to large dimensional learning paradigm!
- better understanding of existing methods: why they work if they do, and what the issue is if they do not
- improved novel methods with performance guarantee!

- book "Random Matrix Methods for Machine Learning"
- by Romain Couillet and Zhenyu Liao
- Cambridge University Press, 2022
- a pre-production version of the book and exercise solutions at https://zhenyu-liao.github.io/book/
- MATLAB and Python codes to reproduce all figures at https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q \& A?

[^0]: ${ }^{1}$ Catherine F. Higham and Desmond J. Higham. "Deep Learning: An Introduction for Applied Mathematicians". In: SIAM Review 61.4 (Jan. 2019), pp. $860-891$

[^1]: ${ }^{2}$ Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. "Random matrices in service of ML footprint: ternary random features with no performance loss". In: International Conference on Learning Representations (ICLR 2022). 2022

[^2]: ${ }^{3}$ Arthur Jacot, Franck Gabriel, and Clément Hongler. "Neural Tangent Kernel: Convergence and Generalization in Neural Networks". In: Advances in Neural Information Processing Systems. Vol. 31. NIPS'18. Curran Associates, Inc., 2018, pp. 8571-8580

[^3]: ${ }^{4}$ Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. "Deep Equilibrium Models". In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019

