
Examples and Counterexamples of Gaussian Universality
in Large-dimensional Machine Learning

@ RMTA 2025

Zhenyu Liao

joint work Xiaoyi Mai (IMT, Toulouse, France).

School of Electronic Information and Communications
Huazhong University of Science and Technology

January 13, 2025

Z. Liao (EIC, HUST) RMT4ERM January 13, 2025 1 / 25



Outline

1 Introduction

2 Large-dimensional Analysis of ERM for LFMM

3 Implications of Theoretical Results

4 Conclusion and Take-away

Z. Liao (EIC, HUST) RMT4ERM January 13, 2025 2 / 25



Motivation: Gaussian Universality

▶ RMT often assumes x are affine maps Az + b of z ∈ Rp with i.i.d. entries
▶ a lot of results on large-dimensional universality: the limiting behavior of statistics remain the same,

regardless of the distribution of (the entries of z), so long as the first few-order moments are matched
▶ for both eigenvalues and eigenvector distributions, in both global and local regimes, etc.

Concentrated random vectors [Led05]
For Lipschitz function f : Rp 7→ R, there exists deterministic mf ∈ R

Pr
(∣∣∣f (x)− mf

∣∣∣ > t
)
≤ exp(−g(t)), for some strictly increasing function g(·).

▶ example of concentrated random vectors: multivariate Gaussian, random vector having independent
sub-gaussian (e.g., bounded) entries, and their Lipschitz transformations through ϕ : Rp → Rd

▶ for concentrated random vectors:
− expected resolvent [Sed+20], and nonlinear kernel matrices [STC19] remains asymptotically the same (in spectral

norm) as for GMM, connection to M-estimator of scatter [LC22] for elliptical distribution, etc.
− and many more empirical observations in this vein
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An example of Gaussian universal class in DNN
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Figure: Illustration of a generative adversarial network (GAN) [Goo+14].

Figure: Images samples generated by BigGAN [BDS19]
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Gaussian Universality in large-scale ML

Figure: Concentrated random vectors and Gaussian Universality in large-scale ML
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Empirical results on kernel eigenspectra: real data, GAN-generate data, and GMM
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Figure: Figure from [Sed+20]

▶ eigenvalues and dominant
eigenvectors of kernel matrix
K = {exp(−∥xi − xj∥2/p)}n

i,j=1
for CNN features of real and
GAN-generated images

▶ left to right: ResNet-50
[He+16], VGG-16 [SZ14], and
DenseNet-201 [Hua+17]

▶ comparison between
GAN-generated data (top) and
real data (bottom), empirically
on the dataset (gray) and on
independent GMM with same
means and covariances (green).
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Gaussian Universality and Non-universality in ML

▶ these universal results are nice, but at the same time discouraging: large-scale ML models, despite being
nonlinear, cannot “learn” from input data distribution beyond first few-order moments

▶ many conjectures: due to (conditional) CLT? due to a specific choice of (tractable) ML and/or data
model? due to the setting of “linear regime” n ∼ p?

Empirical risk minimization (ERM)

For a set of n training samples {(xi, yi)}n
i=1 with feature vectors xi ∈ Rp and binary labels yi ∈ {±1}, a

classifier is trained by minimizing the following ridge-regularized generic empirical risk:

β̂ℓ,λ = arg min
β∈Rp

1
n

n

∑
i=1

ℓ(xT
i β, yi) +

λ

2
∥β∥2

2, (1)

for some non-negative loss function ℓ : R × {±1} → R+.

▶ logistic loss ℓ(ŷ, y) = − ln(1/(1 + e−yŷ)) in logistic regression, square loss ℓ(ŷ, y) = (y − ŷ)2/2 for
least-squares classifier, and square hinge loss ℓ(ŷ, y) = max{0, 1 − yŷ}2; but NOT non-smooth in SVM

▶ prediction: fresh x′ with negative scores βTx′ assigned to class of label y = −1, and positive to y = 1.
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Technical challenges and our results

▶ Technical challenge: NO explicit solution, characterization only possible via a system of (few) equations
▶ Some technical approaches:
▶ convex Gaussian min-max theorem (CGMT) and approximate message passing (AMP): generally

assumes Gaussianity
▶ Lindeberg method as in [HL22]: to establish universal results
▶ Limitations: either only holds in the Gaussian (mixture) setting, or can be extrapolated, but to prove

only universal result
▶ QUESTION: under which condition the ERM solution β̂ establishes universal or non-universal behavior?
▶ OUR ANSWER:

− focus on not necessarily Gaussian linear factor mixture model (LFMM)
− develop “leave-one-out” approach to implicit ERM solution β̂, flexible enough to characterize non-Gaussian

behavior (in LFMM)
− implication to ML: two types of Gaussian universality, when they hold and when they collapse
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Linear Factor Mixture Model

Linear Factor Mixture Model (LFMM)

We say a data-label pair (x, y) ∼ D(x,y) with class label y ∈ {±1} and class priors Pr(y = −1) = ρ,
Pr(y = 1) = 1 − ρ, follows a linear factor mixture model, if x ∈ Rp is the linear combination of p factors
z1, . . . , zp

x =
p

∑
k=1

zkvk =
p

∑
k=1

(ysk + ek)vk, x = Vz, V = [v1, . . . , vp] ∈ Rp×p, z = [z1, . . . , zp]
T ∈ Rp, (2)

for linearly independent deterministic v1, . . . , vp ∈ Rp and zero-mean unit variance noises e1, . . . , ep ∈ R of
symmetric distribution and independent of y. We consider
▶ the factors z1, . . . , zp have bounded fourth moments; and
▶ the signal subspace Span{v1, . . . , vq} is orthogonal to the noise subspace Span{vq+1, . . . , vp}.

▶ q informative factors z1, . . . , zq with deterministic signals sk > 0, k ∈ {1, . . . , q};
▶ p − q noise factors zq+1, . . . , zp with sk = 0, k ∈ {q + 1, . . . , p}.
▶ class-conditional means and covariances of x:

µ ≡ E[x|y = 1] =
q

∑
k=1

skvk ∈ Rp, E[x|y = −1] = −µ, Σ ≡ Cov[x|y = ±1] = VVT ∈ Rp×p. (3)
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Connection to Gaussian Mixture Model

Equivalent Gaussian mixture model (Equivalent GMM)

For an LFMM D(x,y), we define its equivalent Gaussian mixture model D(g,y) as the GMM with the same
class-conditional means µ and covariances Σ as the LFMM in (3).:

g ∼ N (yµ, Σ). (4)

▶ we denote β̂
g

the ERM solution obtained on n i.i.d. GMM samples (g1, y1), . . . , (gn, yn) ∼ D(g,y).

Gaussian universality under LFMM

For an ERM solution β̂ on LFMM D(x,y) and β̂
g

on the equivalent GMM, we say Gaussian universality holds

▶ on classifier if β̂ has asymptotically the same predictive scores as β̂
g

on any given test set, i.e., the two
classifiers β̂ and β̂

g
asymptotically “follows the same distribution distribution;”

▶ on in-distribution performance if the respective training and testing performances under D(x,y) are

asymptotically the same as under D(g,y), that is Pr(yixT
i β̂ > 0) ≃ Pr(yigT

i β̂
g
> 0) and

Pr(y′x′T β̂ > 0) ≃ Pr(y′g′T β̂
g
> 0), for (x′, y′) ∼ D(x,y) a test sample independent of {(xi, yi)}n

i=1, and
(g′, y′) ∼ D(g,y) independent of {(gi, yi)}n

i=1.
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Problem settings

Loss function
The loss function ℓ(·, y) : R → R+ in (1) is convex and continuously differentiable with ℓ(0, y) ̸= 0. Its second
and third derivatives exist and are bounded, except on a finite set of points.

Large-dimensional asymptotics

As n, p → ∞ with n/p → c̄ ∈ (0, ∞), ∥µ∥, ∥Σ∥, ∥Σ−1∥ = Θ(1) and signals s1, . . . , sq = Θ(1) with fixed q.
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Main results: system of self-consistent equations

▶ for proximal operator proxτ,f (t) = arg mina∈R

[
f (a) + 1

2τ (a − t)2
]

for τ > 0 and convex f , define

hκ(t, y) = (proxκ,ℓ(·,y)(t)− t)/κ, for some κ > 0. (5)

▶ random variable r = ym + σẽ +
q

∑
k=1

ψkek , for deterministic parameters m, σ, ψ1, . . . , ψq, with label y and

e1, . . . , eq the corresponding noise variables in the informative factors z1, . . . , zq of the LFMM, as well as
ẽ ∼ N (0, 1) independent of y, z1, . . . , zq.

▶ distribution of r parameterized by (m, σ2, ψ1, . . . , ψq) and the distribution of e1, . . . , eq
▶ system of equations on q + 3 deterministic constants θ, η, γ, ω1, . . . , ωq that fully characterize the

asymptotic performance of ERM for LFMM:

θ = −E

[
∂hκ(r, y)

∂r

]
, η = E[yhκ(r, y)], γ =

√
E[h2

κ(r, y)], (6)

ωk = E[hκ(r, y)ek] + θ · vT
k Qξ, ψk = vT

k Qξ, k ∈ {1, . . . , q}, (7)

ξ = ηµ +
q

∑
k=1

ωkvk, Q =
(
λIp + θΣ

)−1 , κ =
1
n

tr ΣQ, m = µTQξ, σ2 =
γ2

n
tr (QΣ)2 . (8)
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Main result: asymptotic distribution of predicted scores

Theorem (Asymptotic distribution of predicted scores)

For β̂ solution to the ERM problem in (1) on a training set {(xi, yi)}n
i=1 of size n drawn i.i.d. from the LFMM, we have

that, for any bounded Lipschitz function f : R → R,

Testing score: E
[
f (β̂

T
ν)
]
− E

[
f (β̃

T
ν)
]
→ 0 (9)

Training score: E[f (β̂
T

xi)]− E[f (proxκ,ℓ(·,yi)
(β̃

Txi))] → 0 i ∈ {1, . . . , n}, (10)

for any deterministic feature vector ν ∈ Rp and

β̃ =
(
λIp + θΣ

)−1
(

ηµ +
q

∑
k=1

ωkvk + γΣ
1
2 u

)
, (11)

for Gaussian vector u ∼ N (0p, Ip/n) independent of {(xi, yi)}n
i=1 and constants θ, η, γ, ω1, . . . , ωq determined by the

self-consistent system of equations.
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Asymptotic testing and training performances

Corollary (Asymptotic testing and training performances)

For any bounded Lipschitz function f : R → R,

E
[
f (β̃

Tx)|y
]
− E

[
f (r)|y

]
→ 0, (12)

as n, p → ∞, for (x, y) ∼ D(x,y) independent of β̃, r the “mixed” random variable, with m, σ2, ψ1, . . . , ψq determined by
the system of equations. Consequently,

Pr(y′ β̂
T

x′ > 0)− Pr(yr > 0) → 0, (13)

for some fresh testing sample (x′, y′) ∼ D(x,y) independent of {(xi, yi)}n
i=1, and

Pr(yi β̂
T

xi > 0)− Pr(y proxκ,ℓ(·,y)(r) > 0) → 0, i ∈ {1, . . . , n}. (14)
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Discussions

β̃ =
(
λIp + θΣ

)−1
(

ηµ +
q

∑
k=1

ωkvk + γΣ
1
2 u

)
, u ∼ N (0p, Ip/n).

▶ β̃ is a “large-dimensional equivalent” to the (less accessible) ERM solution β̂, when training and testing
performances are considered

▶ β̃ is Gaussian, but having statistics (e.g., mean) dependent on the deterministic parameters
ωk = E[hκ(r, y)ek] + θ · vT

k Qξ and “signals directions” vk, k ∈ {1, . . . , q}, and thus of the distribution of

the “mixed” random variable r = ym + σẽ +
q

∑
k=1

ψkek , through the fixed point proximal operator

hκ(t, y) = (proxκ,ℓ(·,y)(t)− t)/κ.

▶ if we understand the interaction between r and hκ(t, y) = (proxκ,ℓ(·,y)(t)− t)/κ, we understand the

universal versus non-universal behavior of the ERM β̂
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Conditions for Gaussian universality under LFMM

Gaussian universality on in-distribution performance

The Gaussian universality of in-distribution performance (i.e., on the respective training/testing data) holds
if and only if noises e1, . . . , eq of LFMM informative factors are Gaussian.

Gaussian universality on classifier

The Gaussian universality of classifier holds if and only if one of the following two conditions is met:
1 the informative factors e1, . . . , eq are Gaussian;

2 ∂ℓ(ŷ, y)/∂ŷ is a linear function of ŷ, e.g., ℓ(ŷ, y) = (ŷ − y)2/2.

▶ An important consequence: any classifier β̂ trained using the square loss on generic LFMM
{(xi, yi)}n

i=1 ∼ D(x,y) and β̂
g

trained on equivalent GMM samples {(gi, yi)}n
i=1 ∼ D(g,y) have

asymptotically the same probability of correctly classifying a fresh LFMM test sample (x′, y′) ∼ D(x,y).
▶ That is, ERM classifiers trained with square loss are unable to adapt to non-Gaussian informative factors

of LFMM, contrarily to other (non-square) losses.
▶ Remark: proof of the classifier based on the fact that hκ(t, y) is linear if and only if ∂ℓ(ŷ, y)/∂ŷ is linear.
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Practical consequence of the theory: breakdown of Gaussian universality

Universality GMM Breakdown
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Figure: Theoretical and empirical distribution of predicted scores β̂
T

x′ for some fresh test data (x′, y′) ∼ D(x,y) independent

of β̂. The theoretical probability densities (red), and the empirical histograms (blue) are the values of β̂
T

x′ over 106

independent copies of x′, for three different LFMMs with n = 600, p = 200, ρ = 0.5, s = [
√

2; 0p−1] (so that q = 1), and Haar
distributed V. Left: normal e1 and uniformly distributed e2, . . . , ep; normal Middle: e1, . . . , ep; Right: uniformly distributed
e1, and normal e2, . . . , ep.
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Universality Breakdown
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Figure: Empirical and theoretical results under an LFMM with p = 200, ρ = 0.5, s = [
√

2; 0p−1], Rademacher e1, normal
e2, . . . , ep, and Haar distributed V. Top: scatter plot of 200 independent

[
r, hκ(r,±1)

]
. Bottom: histograms of predicted

scores on 106 fresh samples (x′, y′) ∼ D(x,y) given by β̂ and β̂
g
, versus theoretical densities. Left: n = 100, square loss

ℓ(ŷ, y) = (ŷ − y)2/2. Right: n = 600, square hinge loss ℓ(ŷ, y) = max{0, (1 − ŷy)}2.
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Take-away

Take-away messages:
▶ a “leave-one-out” approach to assess the large-dimensional behavior of implicit ERM solution
▶ under LFMM, the distribution of noise random variables e1, . . . , eq in correspondence to the signals

(s1, . . . , sq correlated to label y) determines the universal versus non-universal behaviors
▶ ERM solution/performance in general non-universal for structured data, unless for square loss
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RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
▶ change of intuition from small to large dimensional learning paradigm!
▶ better understanding of existing methods: why they work if they do, and what the issue is if they do not
▶ improved novel methods with performance guarantee!

▶ book “Random Matrix Methods for Machine Learning”
▶ by Romain Couillet and Zhenyu Liao
▶ Cambridge University Press, 2022
▶ a pre-production version of the book and exercise

solutions at https://zhenyu-liao.github.io/book/
▶ MATLAB and Python codes to reproduce all figures at

https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?
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