Examples and Counterexamples of Gaussian Universality in Large-dimensional Machine Learning @ RMTA 2025

Zhenyu Liao

joint work Xiaoyi Mai (IMT, Toulouse, France).

School of Electronic Information and Communications Huazhong University of Science and Technology

January 13, 2025

RMT4ERM

Outline

2 Large-dimensional Analysis of ERM for LFMM

Implications of Theoretical Results

Conclusion and Take-away

Motivation: Gaussian Universality

- ▶ RMT often assumes \mathbf{x} are affine maps $\mathbf{A}\mathbf{z} + \mathbf{b}$ of $\mathbf{z} \in \mathbb{R}^p$ with i.i.d. entries
- a lot of results on large-dimensional universality: the limiting behavior of statistics remain the same, regardless of the distribution of (the entries of z), so long as the first few-order moments are matched
- ▶ for both eigenvalues and eigenvector distributions, in both global and local regimes, etc.

Concentrated random vectors [Led05]

For Lipschitz function $f : \mathbb{R}^p \to \mathbb{R}$, there exists deterministic $m_f \in \mathbb{R}$

 $\Pr\left(\left|f(\mathbf{x}) - m_f\right| > t\right) \le \exp(-g(t)), \text{ for some strictly increasing function } g(\cdot).$

- example of concentrated random vectors: multivariate Gaussian, random vector having independent sub-gaussian (e.g., bounded) entries, and **their Lipschitz transformations** through $\phi \colon \mathbb{R}^p \to \mathbb{R}^d$
- for concentrated random vectors:
 - expected resolvent [Sed+20], and nonlinear kernel matrices [STC19] remains asymptotically the same (in spectral norm) as for GMM, connection to M-estimator of scatter [LC22] for elliptical distribution, etc.
 - and many more empirical observations in this vein

An example of Gaussian universal class in DNN

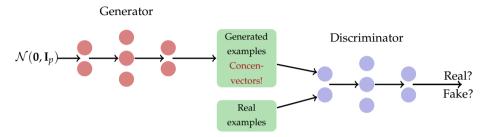


Figure: Illustration of a generative adversarial network (GAN) [Goo+14].

Figure: Images samples generated by BigGAN [BDS19]

Z. Liao (EIC, HUST)

RMT4ERM

Gaussian Universality in large-scale ML

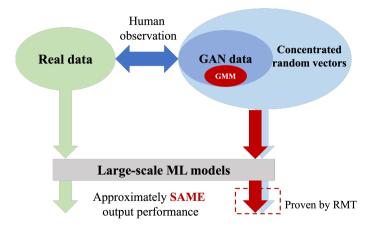


Figure: Concentrated random vectors and Gaussian Universality in large-scale ML

Empirical results on kernel eigenspectra: real data, GAN-generate data, and GMM

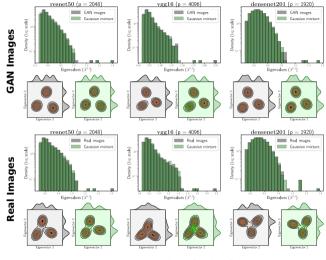


Figure: Figure from [Sed+20]

- eigenvalues and dominant
 eigenvectors of kernel matrix
 K = {exp(-||x_i x_j||²/p)}ⁿ_{i,j=1}
 for CNN features of real and
 GAN-generated images
- left to right: ResNet-50 [He+16], VGG-16 [SZ14], and DenseNet-201 [Hua+17]
- comparison between GAN-generated data (top) and real data (bottom), empirically on the dataset (gray) and on independent GMM with same means and covariances (green).

Gaussian Universality and Non-universality in ML

- these universal results are nice, but at the same time discouraging: large-scale ML models, despite being nonlinear, cannot "learn" from input data distribution beyond first few-order moments
- many conjectures: due to (conditional) CLT? due to a specific choice of (tractable) ML and/or data model? due to the setting of "linear regime" n ~ p?

Empirical risk minimization (ERM)

For a set of *n* training samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with feature vectors $\mathbf{x}_i \in \mathbb{R}^p$ and binary labels $y_i \in \{\pm 1\}$, a classifier is trained by minimizing the following ridge-regularized generic empirical risk:

$$\hat{\boldsymbol{\beta}}_{\ell,\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}, y_i) + \frac{\lambda}{2} \|\boldsymbol{\beta}\|_2^2, \tag{1}$$

for some non-negative loss function $\ell \colon \mathbb{R} \times \{\pm 1\} \to \mathbb{R}_+$.

- I logistic loss ℓ(ŷ, y) = − ln(1/(1 + e^{-yŷ})) in logistic regression, square loss ℓ(ŷ, y) = (y − ŷ)²/2 for least-squares classifier, and square hinge loss ℓ(ŷ, y) = max{0, 1 − yŷ}²; but NOT non-smooth in SVM
- **• prediction**: fresh **x**' with negative scores $\beta^{\mathsf{T}}\mathbf{x}'$ assigned to class of label y = -1, and positive to y = 1.

Technical challenges and our results

- **Technical challenge**: NO explicit solution, characterization only possible via a system of (few) equations
- Some technical approaches:
- convex Gaussian min-max theorem (CGMT) and approximate message passing (AMP): generally assumes Gaussianity
- Lindeberg method as in [HL22]: to establish universal results
- Limitations: either only holds in the Gaussian (mixture) setting, or can be extrapolated, but to prove only universal result
- QUESTION: under which condition the ERM solution β̂ establishes universal or non-universal behavior?
 OUR ANSWER:
 - focus on not necessarily Gaussian linear factor mixture model (LFMM)
 - develop "**leave-one-out**" approach to **implicit ERM** solution $\hat{\beta}$, flexible enough to characterize non-Gaussian behavior (in LFMM)
 - implication to ML: two types of Gaussian universality, when they hold and when they collapse

Linear Factor Mixture Model

Linear Factor Mixture Model (LFMM)

We say a data-label pair $(\mathbf{x}, y) \sim \mathcal{D}_{(\mathbf{x}, y)}$ with class label $y \in \{\pm 1\}$ and class priors $\Pr(y = -1) = \rho$, $\Pr(y = 1) = 1 - \rho$, follows a linear factor mixture model, if $\mathbf{x} \in \mathbb{R}^p$ is the linear combination of p factors z_1, \ldots, z_p

$$\mathbf{x} = \sum_{k=1}^{p} z_k \mathbf{v}_k = \sum_{k=1}^{p} (ys_k + e_k) \mathbf{v}_k, \quad \mathbf{x} = \mathbf{V}\mathbf{z}, \quad \mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_p] \in \mathbb{R}^{p \times p}, \quad \mathbf{z} = [z_1, \dots, z_p]^\mathsf{T} \in \mathbb{R}^{p}, \tag{2}$$

for linearly independent deterministic $\mathbf{v}_1, \ldots, \mathbf{v}_p \in \mathbb{R}^p$ and zero-mean unit variance noises $e_1, \ldots, e_p \in \mathbb{R}$ of symmetric distribution and independent of *y*. We consider

- the factors z_1, \ldots, z_p have bounded fourth moments; and
- ▶ the signal subspace $\text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_q\}$ is orthogonal to the noise subspace $\text{Span}\{\mathbf{v}_{q+1}, \dots, \mathbf{v}_p\}$.
- ▶ *q* informative factors $z_1, ..., z_q$ with deterministic signals $s_k > 0, k \in \{1, ..., q\}$;
- ▶ p q noise factors z_{q+1}, \ldots, z_p with $s_k = 0, k \in \{q + 1, \ldots, p\}$.
- class-conditional means and covariances of x:

$$\boldsymbol{\mu} \equiv \mathbb{E}[\mathbf{x}|\boldsymbol{y}=1] = \sum_{k=1}^{q} s_k \mathbf{v}_k \in \mathbb{R}^p, \quad \mathbb{E}[\mathbf{x}|\boldsymbol{y}=-1] = -\boldsymbol{\mu}, \quad \boldsymbol{\Sigma} \equiv \operatorname{Cov}[\mathbf{x}|\boldsymbol{y}=\pm 1] = \mathbf{V}\mathbf{V}^\mathsf{T} \in \mathbb{R}^{p \times p}.$$
(3)

Z. Liao (EIC, HUST)

Connection to Gaussian Mixture Model

Equivalent Gaussian mixture model (Equivalent GMM)

For an LFMM $\mathcal{D}_{(\mathbf{x},y)}$, we define its equivalent Gaussian mixture model $\mathcal{D}_{(\mathbf{g},y)}$ as the GMM with the same class-conditional means $\boldsymbol{\mu}$ and covariances $\boldsymbol{\Sigma}$ as the LFMM in (3).:

$$\mathbf{g} \sim \mathcal{N}(y \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

• we denote $\hat{\beta}^{\mathbf{g}}$ the ERM solution obtained on *n* i.i.d. GMM samples $(\mathbf{g}_1, y_1), \ldots, (\mathbf{g}_n, y_n) \sim \mathcal{D}_{(\mathbf{g}, y)}$.

Gaussian universality under LFMM

For an ERM solution $\hat{\beta}$ on LFMM $\mathcal{D}_{(x,y)}$ and $\hat{\beta}^{g}$ on the equivalent GMM, we say Gaussian universality holds

- on classifier if $\hat{\beta}$ has asymptotically the same predictive scores as $\hat{\beta}^{g}$ on any given test set, i.e., the two classifiers $\hat{\beta}$ and $\hat{\beta}^{g}$ asymptotically "follows the same distribution distribution;"
- on **in-distribution performance** if the respective training and testing performances under $\mathcal{D}_{(\mathbf{x},y)}$ are asymptotically the same as under $\mathcal{D}_{(\mathbf{g},y)}$, that is $\Pr(y_i \mathbf{x}_i^{\mathsf{T}} \hat{\boldsymbol{\beta}} > 0) \simeq \Pr(y_i \mathbf{g}_i^{\mathsf{T}} \hat{\boldsymbol{\beta}}^{\mathbf{g}} > 0)$ and $\Pr(y' \mathbf{x}'^{\mathsf{T}} \hat{\boldsymbol{\beta}} > 0) \simeq \Pr(y' \mathbf{g}'^{\mathsf{T}} \hat{\boldsymbol{\beta}}^{\mathbf{g}} > 0)$, for $(\mathbf{x}', y') \sim \mathcal{D}_{(\mathbf{x},y)}$ a test sample independent of $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, and $(\mathbf{g}', y') \sim \mathcal{D}_{(\mathbf{g},y)}$ independent of $\{(\mathbf{g}_i, y_i)\}_{i=1}^n$.

Loss function

The loss function $\ell(\cdot, y) \colon \mathbb{R} \to \mathbb{R}_+$ in (1) is convex and continuously differentiable with $\ell(0, y) \neq 0$. Its second and third derivatives exist and are bounded, except on a finite set of points.

Large-dimensional asymptotics

As $n, p \to \infty$ with $n/p \to \bar{c} \in (0, \infty)$, $\|\mu\|, \|\Sigma\|, \|\Sigma^{-1}\| = \Theta(1)$ and signals $s_1, \ldots, s_q = \Theta(1)$ with fixed q.

Main results: system of self-consistent equations

► for proximal operator $\operatorname{prox}_{\tau,f}(t) = \arg\min_{a \in \mathbb{R}} \left[f(a) + \frac{1}{2\tau} (a-t)^2 \right]$ for $\tau > 0$ and $\operatorname{convex} f$, define $h_{\kappa}(t, y) = (\operatorname{prox}_{\kappa, \ell(\cdot, y)}(t) - t) / \kappa$, for some $\kappa > 0$. (5)

random variable $r = ym + \sigma \tilde{e} + \sum_{k=1}^{q} \psi_k e_k$, for deterministic parameters $m, \sigma, \psi_1, \dots, \psi_q$, with label y and

 e_1, \ldots, e_q the corresponding noise variables in the **informative factors** z_1, \ldots, z_q of the LFMM, as well as $\tilde{e} \sim \mathcal{N}(0, 1)$ independent of y, z_1, \ldots, z_q .

- ▶ distribution of *r* parameterized by $(m, \sigma^2, \psi_1, \ldots, \psi_q)$ and the distribution of e_1, \ldots, e_q
- **system of equations** on q + 3 deterministic constants θ , η , γ , ω_1 , ..., ω_q that fully characterize the asymptotic performance of ERM for LFMM:

$$\theta = -\mathbb{E}\left[\frac{\partial h_{\kappa}(r,y)}{\partial r}\right], \quad \eta = \mathbb{E}[yh_{\kappa}(r,y)], \quad \gamma = \sqrt{\mathbb{E}[h_{\kappa}^{2}(r,y)]}, \quad (6)$$

$$\omega_k = \mathbb{E}[h_{\kappa}(r, y)\boldsymbol{e}_k] + \boldsymbol{\theta} \cdot \mathbf{v}_k^{\mathsf{T}} \mathbf{Q} \boldsymbol{\xi}, \quad \boldsymbol{\psi}_k = \mathbf{v}_k^{\mathsf{T}} \mathbf{Q} \boldsymbol{\xi}, \quad k \in \{1, \dots, q\},$$
(7)

$$\boldsymbol{\xi} = \eta \boldsymbol{\mu} + \sum_{k=1}^{q} \omega_k \mathbf{v}_k, \quad \mathbf{Q} = \left(\lambda \mathbf{I}_p + \theta \boldsymbol{\Sigma}\right)^{-1}, \quad \kappa = \frac{1}{n} \operatorname{tr} \boldsymbol{\Sigma} \mathbf{Q}, \quad m = \boldsymbol{\mu}^{\mathsf{T}} \mathbf{Q} \boldsymbol{\xi}, \quad \sigma^2 = \frac{\gamma^2}{n} \operatorname{tr} \left(\mathbf{Q} \boldsymbol{\Sigma}\right)^2. \tag{8}$$

Main result: asymptotic distribution of predicted scores

Theorem (Asymptotic distribution of predicted scores)

For $\hat{\boldsymbol{\beta}}$ solution to the ERM problem in (1) on a training set $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ of size *n* drawn *i.i.d.* from the LFMM, we have that, for any bounded Lipschitz function $f : \mathbb{R} \to \mathbb{R}$,

Testing score:
$$\mathbb{E}[f(\hat{\boldsymbol{\beta}}^{\mathsf{T}}\boldsymbol{\nu})] - \mathbb{E}[f(\hat{\boldsymbol{\beta}}^{\mathsf{T}}\boldsymbol{\nu})] \to 0$$
(9)

Training score:

$$: \mathbb{E}[f(\hat{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{x}_{i})] - \mathbb{E}[f(\operatorname{prox}_{\kappa,\ell(\cdot,y_{i})}(\tilde{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{x}_{i}))] \to 0 \quad i \in \{1,\ldots,n\},$$
(10)

for any deterministic feature vector $\boldsymbol{\nu} \in \mathbb{R}^p$ and

$$\tilde{\boldsymbol{\beta}} = \left(\lambda \mathbf{I}_p + \theta \boldsymbol{\Sigma}\right)^{-1} \left(\eta \boldsymbol{\mu} + \sum_{k=1}^{q} \omega_k \mathbf{v}_k + \gamma \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{u}\right), \tag{11}$$

for Gaussian vector $\mathbf{u} \sim \mathcal{N}(\mathbf{0}_p, \mathbf{I}_p/n)$ independent of $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ and constants $\theta, \eta, \gamma, \omega_1, \dots, \omega_q$ determined by the self-consistent system of equations.

Corollary (Asymptotic testing and training performances)

For any bounded Lipschitz function $f : \mathbb{R} \to \mathbb{R}$ *,*

$$\mathbb{E}[f(\tilde{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{x})|y] - \mathbb{E}[f(r)|y] \to 0,$$
(12)

as $n, p \to \infty$, for $(\mathbf{x}, y) \sim \mathcal{D}_{(\mathbf{x}, y)}$ independent of $\tilde{\boldsymbol{\beta}}$, r the "mixed" random variable, with $m, \sigma^2, \psi_1, \ldots, \psi_q$ determined by the system of equations. Consequently,

$$\Pr(y'\hat{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{x}'>0) - \Pr(yr>0) \to 0, \tag{13}$$

for some fresh testing sample $(\mathbf{x}', y') \sim \mathcal{D}_{(\mathbf{x},y)}$ independent of $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, and

$$\Pr(y_i \hat{\boldsymbol{\beta}}^{\mathsf{T}} \mathbf{x}_i > 0) - \Pr(y \operatorname{prox}_{\kappa, \ell(\cdot, y)}(r) > 0) \to 0, \quad i \in \{1, \dots, n\}.$$
(14)

Discussions

$$\tilde{\boldsymbol{\beta}} = \left(\lambda \mathbf{I}_p + \theta \boldsymbol{\Sigma}\right)^{-1} \left(\eta \boldsymbol{\mu} + \sum_{k=1}^q \omega_k \mathbf{v}_k + \gamma \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{u}\right), \quad \mathbf{u} \sim \mathcal{N}(\mathbf{0}_p, \mathbf{I}_p/n).$$

- $\tilde{\beta}$ is a "large-dimensional equivalent" to the (less accessible) ERM solution $\hat{\beta}$, when training and testing performances are considered
- $\tilde{\boldsymbol{\beta}}$ is Gaussian, but having statistics (e.g., mean) **dependent on the deterministic parameters** $\omega_k = \mathbb{E}[h_{\kappa}(r, y)e_k] + \theta \cdot \mathbf{v}_k^{\mathsf{T}} \mathbf{Q}\boldsymbol{\xi}$ and "signals directions" $\mathbf{v}_k, k \in \{1, \dots, q\}$, and thus of the distribution of the "mixed" random variable $r = ym + \sigma \tilde{e} + \sum_{k=1}^{q} \psi_k e_k$, through the fixed point proximal operator $h_{\kappa}(t, y) = (\operatorname{prox}_{\kappa \neq (\cdot, y)}(t) - t) / \kappa$.
- if we understand the **interaction** between *r* and $h_{\kappa}(t, y) = (\text{prox}_{\kappa, \ell(\cdot, y)}(t) t) / \kappa$, we understand the universal versus non-universal behavior of the ERM $\hat{\beta}$

Gaussian universality on in-distribution performance

The Gaussian universality of **in-distribution performance** (i.e., on the respective training/testing data) holds if and only if noises e_1, \ldots, e_q of LFMM **informative factors are Gaussian**.

Gaussian universality on classifier

The Gaussian universality of **classifier** holds if and only if one of the following two conditions is met:

- the informative factors e_1, \ldots, e_q are Gaussian;
- **2** $\partial \ell(\hat{y}, y) / \partial \hat{y}$ is a linear function of \hat{y} , e.g., $\ell(\hat{y}, y) = (\hat{y} y)^2/2$.
- An important consequence: any classifier $\hat{\beta}$ trained using the square loss on generic LFMM $\{(\mathbf{x}_i, y_i)\}_{i=1}^n \sim \mathcal{D}_{(\mathbf{x}, y)}$ and $\hat{\beta}^{\mathbf{g}}$ trained on equivalent GMM samples $\{(\mathbf{g}_i, y_i)\}_{i=1}^n \sim \mathcal{D}_{(\mathbf{g}, y)}$ have asymptotically the same probability of correctly classifying a fresh LFMM test sample $(\mathbf{x}', y') \sim \mathcal{D}_{(\mathbf{x}, y)}$.
- That is, ERM classifiers trained with square loss are unable to adapt to non-Gaussian informative factors of LFMM, contrarily to other (non-square) losses.
- **Remark**: proof of the classifier based on the fact that $h_{\kappa}(t, y)$ is linear if and only if $\partial \ell(\hat{y}, y) / \partial \hat{y}$ is linear.

Practical consequence of the theory: breakdown of Gaussian universality

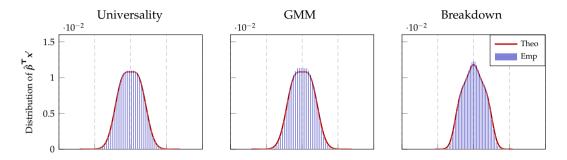


Figure: Theoretical and empirical distribution of predicted scores $\hat{\boldsymbol{\beta}}^{\mathsf{T}} \mathbf{x}'$ for some fresh test data $(\mathbf{x}', \mathbf{y}') \sim \mathcal{D}_{(\mathbf{x}, \mathbf{y})}$ independent of $\hat{\boldsymbol{\beta}}$. The theoretical probability densities (**red**), and the empirical histograms (**blue**) are the values of $\hat{\boldsymbol{\beta}}^{\mathsf{T}} \mathbf{x}'$ over 10⁶ independent copies of \mathbf{x}' , for three different LFMMs with n = 600, p = 200, $\rho = 0.5$, $s = [\sqrt{2}; \mathbf{0}_{p-1}]$ (so that q = 1), and Haar distributed **V**. Left: normal e_1 and uniformly distributed e_2, \ldots, e_p ; normal Middle: e_1, \ldots, e_p ; Right: uniformly distributed e_1 , and normal e_2, \ldots, e_p .

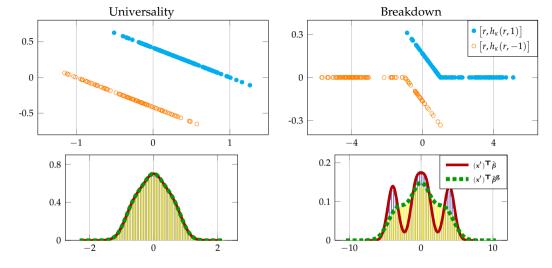


Figure: Empirical and theoretical results under an LFMM with p = 200, $\rho = 0.5$, $s = [\sqrt{2}; \mathbf{0}_{p-1}]$, Rademacher e_1 , normal e_2, \ldots, e_p , and Haar distributed **V**. **Top**: scatter plot of 200 independent $[r, h_\kappa(r, \pm 1)]$. **Bottom**: histograms of predicted scores on 10⁶ fresh samples $(\mathbf{x}', \mathbf{y}') \sim \mathcal{D}_{(\mathbf{x}, \mathbf{y})}$ given by $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\beta}}^{\mathbf{g}}$, versus theoretical densities. **Left**: n = 100, square loss $\ell(\hat{y}, y) = (\hat{y} - y)^2/2$. **Right**: n = 600, square hinge loss $\ell(\hat{y}, y) = \max\{0, (1 - \hat{y}y)\}^2$.

Take-away messages:

- ▶ a "leave-one-out" approach to assess the large-dimensional behavior of implicit ERM solution
- under LFMM, the **distribution** of noise random variables e_1, \ldots, e_q in correspondence to the signals $(s_1, \ldots, s_q \text{ correlated to label } y)$ determines the **universal** versus **non-universal** behaviors
- ERM solution/performance in general **non-universal** for structured data, unless for square loss

References:

- Xiaoyi Mai and Zhenyu Liao. High Dimensional Classification via Regularized and Unregularized Empirical Risk Minimization: Precise Error and Optimal Loss. Nov. 2020. arXiv: 1905.13742 [stat]
- Xiaoyi Mai and Zhenyu Liao. The Breakdown of Gaussian Universality in Classification of High-dimensional Mixtures. Oct. 2024. arXiv: 2410.05609 [stat]

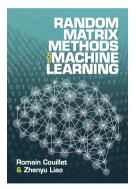
References

[Led05]		ion of Measure Phenomenon. Mathematical Surveys	0	
[Sed+20]	that Deep Learning Representa	osme Louart, Mohamed Tamaazousti, and Romain tions of GAN-data Behave as Gaussian Mixtures' Proceedings of Machine Learning Research. PML	". In: Proceedings of the 37th International	ves
[STC19]	Mohamed El Amine Seddik, Mohamed Tamaazousti, and Romain Couillet. "Kernel Random Matrices of Large Concentrated Data: the Example of GAN-Generated Images". In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019). 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019). IEEE, 2019, pp. 7480–7484.			essing
[LC22]	Cosme Louart and Romain Couillet. "A Concentration of Measure and Random Matrix Approach to Large-Dimensional Robust Statistics". In: <i>The Annals of Applied Probability</i> 32.6 (Dec. 2022), pp. 4737–4762.			
[Goo+14]	Ian Goodfellow et al. "Generative Adversarial Nets". In: Advances in Neural Information Processing Systems. Vol. 27. NIPS'14. Curran Associates, Inc., 2014, pp. 2672–2680.			
[BDS19]	Andrew Brock, Jeff Donahue, and Karen Simonyan. "Large Scale GAN Training for High Fidelity Natural Image Synthesis". In: International Conference on Learning Representations. ICLR'19. 2019.			
[He+16]	Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual Learning for Image Recognition". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016, pp. 770–778.			
[SZ14]	Karen Simonyan and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition". In: International Conference on Learning Representations. ICLR'14. 2014.			
[Hua+17]	Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. "Densely Connected Convolutional Networks". In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017, pp. 2261–2269.			
[HL22]	Hong Hu and Yue M. Lu. "Universality Laws for High-Dimensional Learning with Random Features". In: IEEE Transactions on Information Theory (2022), pp. 1–1.			
	Z. Liao (EIC, HUST)	RMT4ERM	January 13, 2025	24 / 25

RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:

- **change of intuition** from small to large dimensional learning paradigm!
- **better understanding** of existing methods: why they work if they do, and what the issue is if they do not
- improved novel methods with performance guarantee!



- book "Random Matrix Methods for Machine Learning"
- ▶ by Romain Couillet and Zhenyu Liao
- Cambridge University Press, 2022
- a pre-production version of the book and exercise solutions at https://zhenyu-liao.github.io/book/
- MATLAB and Python codes to reproduce all figures at https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?