Random Matrix Theory and Its Applications in ML: Part 1 Random Matrix Theory Short Course @ Jiangsu Normal University

Zhenyu Liao

School of Electronic Information and Communications Huazhong University of Science and Technology

January 11, 2024

Outline

Introduction and Motivation

- Sample covariance matrix
- RMT for telecommunication
- RMT for signal processing
- RMT for machine learning

Basic Ideas in RMT: From Random Scalars to Random Matrices

- LLN, CLT, from random scalars to random matrices
- Modern RMT using deterministic equivalents
- Fundamental Results in Random Matrix Theory
 - Sample covariance matrix (again) and the Marčenko-Pastur law
 - Some more random matrix models and results

Motivation: understanding large-dimensional machine learning

- **Big Data era**: exploit large *n*, *p*, *N*
- counterintuitive phenomena different from classical asymptotics statistics
- complete change of understanding of many methods in statistics, machine learning, signal processing, and wireless communications
- **Random Matrix Theory (RMT)** provides the tools!

Sample covariance matrix in the large *n*, *p* regime

▶ **Problem**: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from *n* data samples $\mathbf{x}_1, \ldots, \mathbf{x}_n$ with $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,

Maximum likelihood sample covariance matrix with entry-wise convergence

$$\hat{\mathbf{C}} = rac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}} \in \mathbb{R}^{p imes p}, \quad [\hat{\mathbf{C}}]_{ij} o [\mathbf{C}]_{ij}$$

almost surely as $n \to \infty$: optimal for $n \gg p$ (or, for p "small").

▶ In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C} = \mathbf{I}_p$ with n < p, $\hat{\mathbf{C}}$ has at least p - n zero eigenvalues:

 $\|\hat{\mathbf{C}} - \mathbf{C}\| \not\rightarrow 0, \quad n, p \rightarrow \infty \Rightarrow \text{ eigenvalue mismatch and not consistent!}$

• due to $\|\mathbf{A}\|_{\infty} \leq \|\mathbf{A}\| \leq p \|\mathbf{A}\|_{\infty}$ for $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\|\mathbf{A}\|_{\infty} \equiv \max_{ij} |\mathbf{A}_{ij}|$.

When is one in the random matrix regime? Almost always!

What about n = 100p? For $\mathbf{C} = \mathbf{I}_p$, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$: MP law

$$\mu(dx) = (1 - c^{-1})^+ \delta(x) + \frac{1}{2\pi cx} \sqrt{(x - E_-)^+ (E_+ - x)^+} dx$$

where $E_{-} = (1 - \sqrt{c})^2$, $E_{+} = (1 + \sqrt{c})^2$ and $(x)^+ \equiv \max(x, 0)$. Close match!

Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marčenko-Pastur law, p = 500, n = 50000.

- eigenvalues span on $[E_- = (1 \sqrt{c})^2, E_+ = (1 + \sqrt{c})^2]$.
- for n = 100p, on a range of $\pm 2\sqrt{c} = \pm 0.2$ around the population eigenvalue 1.

Z. Liao (EIC, HUST)

- large-*n* intuition, and many existing popular methods in biology, finance, signal processing, telecommunication, and machine learning, must fail even with n = 100p!
- **RMT** as a flexible and powerful tool to **understand** and **recreate** these methods
- in essence, "increasing complexity of the system models employed in above fields demand low complexity analysis"
- as motivating examples, how RMT can be applied to assess:
- **telecommunication**: code division multiple access (CDMA) technology
- **signal processing**: generalized likelihood ratio test (GLRT)
- **machine learning**: principle component analysis (PCA), and kernel spectral clustering

- **CDMA**: code division multiple access, key technology in 3G
- ▶ Idea: to increase max number of users, and dynamically balancing the quality of service to each terminal
- each user is allocated a (long) spreading code orthogonal to the other users' codes
- all users can simultaneously receive data while experiencing a limited amount of interference from concurrent communications, due to code orthogonality
- codes not fully orthogonal, more users, more interference and less quality of service
- Question: how to evaluate the capacity (max achievable transmission data rate) of CDMA network? (which clearly depends on pre-coding strategy)

▶ for orthogonal CDMA, under some commonly used technical assumptions, capacity given by

$$C_{\rm orth}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{W} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{W}^{\mathsf{H}} \right), \tag{1}$$

with noise power σ^2 , $\mathbf{W} \in \mathbb{C}^{n \times n}$ the **orthogonal** CDMA codes (**W** unitary), and $\mathbf{G} \equiv \text{diag}\{g_i\}_{i=1}^n$ represents channel **gains** of the users.

Note

$$C_{\text{orth}}(\sigma^2) = \frac{1}{n}\log\det\left(\mathbf{I}_n + \frac{1}{\sigma^2}\mathbf{G}\mathbf{G}^{\mathsf{H}}\right) = \frac{1}{n}\sum_{i=1}^n\log\left(1 + \frac{|g_i|^2}{\sigma^2}\right) = C_{\text{TDMA}}(\sigma^2),\tag{2}$$

justifies the equivalence between TDMA (for 2G) and orthogonal CDMA rate performance.

Random versus orthogonal CDMA

however, orthogonality can be computationally demanding: random CDMA with random i.i.d. codes,

$$C_{\text{rand}}(\sigma^2) = \frac{1}{n} \log \det \left(\mathbf{I}_n + \frac{1}{\sigma^2} \mathbf{X} \mathbf{G} \mathbf{G}^{\mathsf{H}} \mathbf{X}^{\mathsf{H}} \right),$$
(3)

for $\mathbf{X} \in \mathbb{C}^{n \times n}$ the users' random codes.

- ▶ from RMT perspective, denote μ the **empirical spectral measure** of **XGG^HX^H**, then $C_{\text{rand}}(\sigma^2) = \int \log(1 + t/\sigma^2)\mu(dt)$: known as **linear spectral statistics** (LSS) of **XGG^HX^H**
- Question: C_{rand} as a function of gains G and (distribution of) codes X?
- (first?) answered by Shami, Tse, and Verdú in [TV00; VS99];
- however capacity expressions not achievable in practice, due to complicated and nonlinear processing
- ▶ if only linear pre-coders and/or decoders are used, optimal solution:
 - frequency flat channels [TH99]: D.N.C. Tse and S.V. Hanly. "Linear multiuser receivers: effective interference, effective bandwidth and user capacity". In: *IEEE Transactions on Information Theory* 45.2 (1999), pp. 641–657
 - frequency selective channels [ET00]: J. Evans and D.N.C. Tse. "Large system performance of linear multiuser receivers in multipath fading channels". In: IEEE Transactions on Information Theory 46.6 (2000), pp. 2059–2078
 - reduced-rank LMMSE decoders [LTV04]: Linbo Li, Antonia M. Tulino, and Sergio Verdú. "Design of Reduced-Rank MMSE Multiuser Detectors Using Random Matrix Methods". In: *IEEE Transactions on Information Theory* 50.6 (2004), pp. 986–1008
 - etc.

Motivation:

- Shannon: to achieve high rate of information transfer, increasing the transmission bandwidth is largely preferred over increasing the power
- ▶ high rate communications with finite power budget, need frequency multiplexing
- cognitive radio: to communicate not by exploiting the over-used frequency domain, or by exploiting the over-used space domain, but by exploiting so-called spectrum holes, jointly in time, space, and frequency

As such, a cognitive radio network (also called a *secondary network*)

- can help reuse the resources in a licensed (*first*) network
- but require constant **awareness** of the operations taking place in the licensed networks
- for example, via signal sensing/detection

Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_n] \in \mathbb{R}^{p \times n}$ with i.i.d. columns $\mathbf{x}_i \in \mathbb{R}^p$ received by array of *p* sensors, signal decision as the following binary hypothesis test:

$$\mathbf{X} = \begin{cases} \sigma \mathbf{Z}, & \mathcal{H}_0\\ \mathbf{a} \mathbf{s}^\mathsf{T} + \sigma \mathbf{Z}, & \mathcal{H}_1 \end{cases}$$

where $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_n] \in \mathbb{R}^{p \times n}$, $\mathbf{z}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, $\mathbf{a} \in \mathbb{R}^p$ deterministic of unit norm $\|\mathbf{a}\| = 1$, signal $\mathbf{s} = [s_1, \dots, s_n]^\mathsf{T} \in \mathbb{R}^n$ with s_i i.i.d. random, and $\sigma > 0$. Denote c = p/n > 0.

- observation of either zero-mean Gaussian noise *σ*z_i of power *σ*², or deterministic information vector a modulated by an added scalar (random) signal s_i (e.g., ±1).
- If **a**, σ , and statistics of s_i are known, the decision-optimal Neyman-Pearson () test:

$$\frac{\mathbb{P}(\mathbf{X} \mid \mathcal{H}_1)}{\mathbb{P}(\mathbf{X} \mid \mathcal{H}_0)} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrsim}} \alpha \tag{4}$$

for some $\alpha > 0$ controlling the Type I and II error rates.

However,

- ▶ in practice, we do not know σ , nor the information vector $\mathbf{a} \in \mathbb{R}^p$ (to be recovered)
- ▶ in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

$$\frac{\sup_{\sigma,\mathbf{a}}\mathbb{P}(\mathbf{X}\mid\sigma,\mathbf{a},\mathcal{H}_1)}{\sup_{\sigma,\mathbf{a}}\mathbb{P}(\mathbf{X}\mid\sigma,\mathcal{H}_0)} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrless}} \alpha.$$

Gaussian noise and signal s_i, GLRT has an explicit expression as a monotonous increasing function of ||XX^T|| / tr(XX^T), test equivalent to, for some known f,

$$T_p \equiv \frac{\|\mathbf{X}\mathbf{X}^{\mathsf{T}}\|}{\operatorname{tr}(\mathbf{X}\mathbf{X}^{\mathsf{T}})} \underset{\mathcal{H}_0}{\overset{\mathcal{H}_1}{\gtrless}} f(\alpha).$$

b to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM $\frac{1}{n}XX^{T}$

Hypothesis testing in a signal-plus-noise model via GLRT

To set a maximum false alarm rate (or Type I error) of r > 0 for large n, p, according to RMT, one must choose a threshold $f(\alpha)$ for T_p :

$$P(T_p \ge f(\alpha)) = r \Leftrightarrow \mu_{\mathrm{TW}_1}((-\infty, A_p]) = r, \quad A_p = (f(\alpha) - (1 + \sqrt{c})^2)(1 + \sqrt{c})^{-\frac{4}{3}}c^{\frac{1}{6}}n^{\frac{2}{3}}$$
(5)

with μ_{TW_1} the Tracy-Widom distribution in RMT.

Figure: Comparison between empirical false alarm rates and $1 - \text{TW}_1(A_p)$ for A_p of the form in (5), as a function of the threshold $f(\alpha) \in [(1 + \sqrt{c})^2 - 5n^{-2/3}, (1 + \sqrt{c})^2 + 5n^{-2/3}]$, for p = 256, n = 1.024 and $\sigma = 1$.

"Curse of dimensionality": loss of relevance of Euclidean distance

▶ Binary Gaussian mixture classification $\mathbf{x} \in \mathbb{R}^p$:

$$C_1$$
 : $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_1, \mathbf{C}_1)$, versus C_2 : $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_2, \mathbf{C}_2)$;

Neyman-Pearson test: classification is possible only when

$$\|\mu_1 - \mu_2\| \ge C_{\mu}$$
, or $\|\mathbf{C}_1 - \mathbf{C}_2\| \ge C_{\mathbf{C}} \cdot p^{-1/2}$

for some constants C_{μ} , $C_{\mathbf{C}} > 0$ [CLM18].

▶ In this non-trivial setting, for $\mathbf{x}_i \in C_a$, $\mathbf{x}_j \in C_b$:

$$\max_{1 \le i \ne j \le n} \left\{ \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \frac{2}{p} \operatorname{tr} \mathbf{C}^{\circ} \right\} \xrightarrow{a.s.} 0$$

as $n, p \to \infty$ (i.e., $n \sim p$), for $\mathbf{C}^{\circ} \equiv \frac{1}{2}(\mathbf{C}_1 + \mathbf{C}_2)$, regardless of the classes $\mathcal{C}_a, \mathcal{C}_b$!

⁰Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. "Classification asymptotics in the random matrix regime". In: 2018 26th European Signal Processing Conference (EUSIPCO). IEEE. 2018, pp. 1875–1879

Loss of relevance of Euclidean distance: visual representation

Figure: Visual representation of classification in (left) small and (right) large dimensions.

⇒ Direct consequence to various distance-based machine learning methods (e.g., kernel spectral clustering)!

Reminder on kernel spectral clustering

Two-step classification of *n* data points with distance kernel $\mathbf{K} \equiv \{f(||\mathbf{x}_i - \mathbf{x}_j||^2/p)\}_{i,i=1}^n$:

Reminder on kernel spectral clustering

\Downarrow *K*-dimensional representation \Downarrow

Z. Liao	EIC.	HUST
2. L140	LIC,	1001,

Cluster Gaussian data $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbf{R}^p$ into C_1 or C_2 , with second top eigenvectors \mathbf{v}_2 of heat kernel $\mathbf{K}_{ij} = \exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2p)$, small and large dimensional data.

(a)
$$p = 5, n = 500$$
 (b) $p = 250, n = 500$

Kernel matrices for large dimensional real-world data

• "local" linearization of *nonlinear* kernel matrices in large dimensions, e.g., Gaussian kernel matrix $\mathbf{K}_{ij} = \exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2p)$ with $\mathbf{C}_1 = \mathbf{C}_2 = \mathbf{I}_p$ (e.g., $C_1 : \mathbf{x}_i = \mu_1 + \mathbf{z}_i$ versus $C_2 : \mathbf{x}_j = \mu_2 + \mathbf{z}_j$) so that

$$\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} / p \xrightarrow{a.s.}{2}, \text{ and } \mathbf{K} = \exp\left(-\frac{2}{2}\right) \left(\mathbf{1}_{n}\mathbf{1}_{n}^{\mathsf{T}} + \frac{1}{p}\mathbf{Z}^{\mathsf{T}}\mathbf{Z}\right) + g(\|\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}\|)\frac{1}{p}\mathbf{j}\mathbf{j}^{\mathsf{T}} + * + o_{\|\cdot\|}(1)$$

with Gaussian $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_n] \in \mathbb{R}^{p \times n}$ and class-information $\mathbf{j} = [\mathbf{1}_{n/2}; -\mathbf{1}_{n/2}]$,

▶ accumulated effect of small "hidden" statistical information ($\|\mu_1 - \mu_2\|$ in this case)

A RMT viewpoint of large kernel matrices

Therefore

entry-wise:

$$\mathbf{K}_{ij} = \exp(-1) \left(1 + \underbrace{\frac{1}{p} \mathbf{z}_i^{\mathsf{T}} \mathbf{z}_j}_{O(p^{-1/2})} \right) \pm \underbrace{\frac{1}{p} g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|)}_{O(p^{-1})} + *, \text{ so that } \frac{1}{p} g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|) \ll \frac{1}{p} \mathbf{z}_i^{\mathsf{T}} \mathbf{z}_j,$$

spectrum-wise:

$$- \|\mathbf{K} - \exp(-1)\mathbf{1}_n\mathbf{1}_n^{\mathsf{T}}\| \neq 0; - \|\frac{1}{p}\mathbf{Z}^{\mathsf{T}}\mathbf{Z}\| = O(1) \text{ and } \|g(\|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\|)\frac{1}{p}\mathbf{j}\mathbf{j}^{\mathsf{T}}\| = O(1)!$$

Same phenomenon as the sample covariance example: $[\hat{\mathbf{C}} - \mathbf{C}]_{ij} \rightarrow 0 \Rightarrow ||\hat{\mathbf{C}} - \mathbf{C}|| \rightarrow 0!$

 \Rightarrow With **RMT**, we understand kernel spectral clustering for large dimensional data!

Some more numerical results

LLN and CLT: recap

Strong) law of large numbers (LLN): for a sequence of i.i.d. random variables x_1, \ldots, x_p with the same expectation $\mathbb{E}[x_i] = \mu$, we have

$$\frac{1}{p}\sum_{i=1}^{p}x_{i} \to \mu, \tag{6}$$

almost surely as $p \to \infty$.

Central limit theorem (CLT, Lindeberg–Lévy tyep): for a sequence of i.i.d. random variables x_1, \ldots, x_p with the same expectation $\mathbb{E}[x_i] = \mu$ and variance $\operatorname{Var}[x_i] = \sigma^2 < \infty$, we have

$$\sqrt{p}\left(\frac{1}{p}\sum_{i=1}^{p}(x_{i}-\mu)\right) \to \mathcal{N}(0,\sigma^{2}),\tag{7}$$

in distribution as $p \to \infty$.

OK with LLN and CLT, so what?

Different view of LLN and CLT: large-dimensional *deterministic* behavior and fluctuation. **Single scalar random variables**

- Scalar random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
- ▶ *x* in general *not* expected to establish some kind of "close-to-deterministic" behavior.
- True for a *single observation*, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables

Consider a set of size *p* i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x} = [x_1, \dots, x_p]^{\mathsf{T}} \in \mathbb{R}^p$, with $\mathbb{E}[x_i] = \mu$, $\operatorname{Var}[x_i] = 1$, $i \in \{1, \dots, p\}$.

- ▶ as *p* independent *scalar* random variables $x \in \mathbb{R}$; or
- ▶ as a single realization of a *random vector* $\mathbf{x} \in \mathbb{R}^p$, having independent entries.

OK with LLN and CLT, so what?

- (i) Scalar: nothing more can be said about each *individual* random variable:
- inappropriate to predict the behavior of x_i with any deterministic value
- ▶ in general *incorrect* to say "the random x_i is close to $\mu = \mathbb{E}[x_i]$ ", since, for x_i with $\mathbb{E}[x] = \mu$ and Var[x] = 1, by Chebyshev's inequality.

$$\mathbb{P}(|x-\mu| \ge t) \le t^{-2}, \quad \forall t > 0.$$
(8)

- ▶ random fluctuation $x_i \mathbb{E}[x_i]$ can be as large as $\mu = \mathbb{E}[x_i]$.
- (ii) **Vector**: a different picture: single realization of random vector $\mathbf{x}/\sqrt{p} \in \mathbb{R}^p$.
- cannot say anything in general about each individual vector x.
- ▶ however, if we are interested in only the (scalar and linear) observations of the random vector $\mathbf{x}/\sqrt{p} \in \mathbb{R}^p$ (with $\mathbb{E}[\mathbf{x}] = \mu \mathbf{1}_p / \sqrt{p}$), we known much more:

$$\frac{1}{p} \mathbf{x}^{\mathsf{T}} \mathbf{1}_{p} \xrightarrow{a.s.} \mathbb{E}[x_{i}] = \mu, \quad \frac{1}{\sqrt{p}} (\mathbf{x} - \mu \mathbf{1}_{p})^{\mathsf{T}} \mathbf{1}_{p} \xrightarrow{d} \mathcal{N}(0, 1), \quad p \to \infty.$$
(9)

OK with LLN and CLT, so what?

This is

$$\frac{1}{p} \mathbf{x}^{\mathsf{T}} \mathbf{1}_{p} \simeq \underbrace{\mu}_{O(1)} + \underbrace{\frac{1}{\sqrt{p}} \mathcal{N}(0, 1)}_{O(p^{-1/2})}.$$

- ▶ a large dimensional random vector $\mathbf{x}/\sqrt{p} \in \mathbb{R}^p$, when "observed" via the linear map $\mathbf{1}_p^{\mathsf{T}}(\cdot)/\sqrt{p}$ of unit Euclidean norm (i.e., of "scale" independent of p);
- leads to x (when "observed" in this way) exhibiting the joint behavior of:
 - (i) approximately, in its first order, a *deterministic* quantity μ ; and
 - (ii) in its second-order, a universal Gaussian fluctuation that is strongly concentrated and independent of the specific law of x_i.

Figure: (Left) A "visualization" of independent realizations of $\mathbf{x} \sim \mathcal{N}(\mu \mathbf{1}_n, \mathbf{I}_n)$ with n = 100. (Right) Concentration behavior of scalar observations $f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{1}_n / n$.

Z. Liao (EIC, HUST)

What about random matrices?

- As in the case of (high-dimensional) random vectors, we should NOT expect random matrices themselves converge in any useful sense;
- e.g., there does **NOT** exist deterministic matrix $\bar{\mathbf{X}}$ so that the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$

$$\|\mathbf{X} - \bar{\mathbf{X}}\| \to 0, \tag{10}$$

in spectral norm as $p \rightarrow \infty$ (in probability or almost surely);

▶ nonetheless, "properly scaled" scalar observations *f* : ℝ^{p×p} → ℝ of **X DO** converge, and there exists deterministic X
 such that

$$f(\mathbf{X}) - f(\bar{\mathbf{X}}) \to 0, \tag{11}$$

as $p \to \infty$. We say such $\bar{\mathbf{X}}$ is a **deterministic equivalent** of the random matrix \mathbf{X} .

• observation *f* of interest in RMT include (empirical) eigenvalue measure, linear spectral statistics (LSS), specific eigenvalue location, projection of eigenvectors, etc.

Deterministic equivalent for RMT: intuition and a few words on the proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?

- ▶ while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension *p* grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \to \infty$;
 - the random $f(\mathbf{X})$, if concentrates, must concentrated around its expectation $\mathbb{E}[f(\mathbf{X})]$;
 - − in fact, as $p \to \infty$, more randomness in **X** \Rightarrow Var[f(**X**)] \rightarrow 0, e.g., Var[f(**X**)] = p^{-4} ;
 - if the functional $f: \mathbb{R}^{p \times p} \to \mathbb{R}$ is linear, then $\mathbb{E}[f(\mathbf{X})] = f(\mathbb{E}[\mathbf{X}])$.
- ► So, to propose a DE, it suffices to evaluate **E**[**X**]:
 - however, $\mathbb{E}[\mathbf{X}]$ may be hardly accessible (due to integration)
 - find a simple and more accessible deterministic $\tilde{\mathbf{X}}$ with $\tilde{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\tilde{\mathbf{X}} \mathbb{E}[\mathbf{X}]\| \to 0$ as $p \to \infty$; and
 - − show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \to \infty$.
- We say $\bar{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \bar{\mathbf{X}}$.

Core interest of RMT: evaluation of eigenvalues and eigenvectors of a random matrix.

Definition (Resolvent)

For a symmetric/Hermitian matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, the resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ of \mathbf{X} is defined, for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{X} , as $\mathbf{Q}_{\mathbf{X}}(z) \equiv (\mathbf{X} - z\mathbf{I}_p)^{-1}$.

Definition (Empirical spectral measure)

For symmetric $\mathbf{X} \in \mathbb{R}^{p \times p}$, the *empirical spectral measure/distribution (ESD)* $\mu_{\mathbf{X}}$ of \mathbf{X} is defined as the normalized counting measure of the eigenvalues $\lambda_1(\mathbf{X}), \ldots, \lambda_p(\mathbf{X})$ of \mathbf{X} , i.e., $\mu_{\mathbf{X}} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_i(\mathbf{X})}$, where δ_x represents the Dirac measure at x.

Objects of interest	Functionals of resolvent $\mathbf{Q}_{\mathbf{X}}(z)$	
Empirical spectral measure $\mu_{\mathbf{X}}$ of \mathbf{X}	Stieltjes transform $m_{\mu_{\mathbf{X}}}(z) = \frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)$	
Linear spectral statistics (LSS): $f(\mathbf{X}) \equiv \frac{1}{p} \sum_{i} f(\lambda_{i}(\mathbf{X}))$	Integration of trace of $\mathbf{Q}_{\mathbf{X}}(z)$: $-\frac{1}{2\pi i} \oint_{\Gamma} f(z) \frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z) dz$ (via Cauchy's integral)	
Projections of eigenvectors $\mathbf{v}^{T}\mathbf{u}(\mathbf{X})$ and $\mathbf{v}^{T}\mathbf{U}(\mathbf{X})$ onto some given vector $\mathbf{v} \in \mathbb{R}^{p}$	Bilinear form $\mathbf{v}^{T}\mathbf{Q}_{\mathbf{X}}(z)\mathbf{v}$ of $\mathbf{Q}_{\mathbf{X}}$	
General matrix functional $F(\mathbf{X}) = \sum_{i} f(\lambda_{i}(\mathbf{X})) \mathbf{v}_{1}^{T} \mathbf{u}_{i}(\mathbf{X}) \mathbf{u}_{i}(\mathbf{X})^{T} \mathbf{v}_{2}$ involving both eigenvalues and eigenvectors	Integration of bilinear form of $\mathbf{Q}_{\mathbf{X}}(z)$: $-\frac{1}{2\pi i} \oint_{\Gamma} f(z) \mathbf{v}_{1}^{T} \mathbf{Q}_{\mathbf{X}}(z) \mathbf{v}_{2} dz$	

Definition (Resolvent)

For a symmetric/Hermitian matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, the resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ of \mathbf{X} is defined, for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{X} , as $\mathbf{Q}_{\mathbf{X}}(z) \equiv (\mathbf{X} - z\mathbf{I}_p)^{-1}$.

Let $\mathbf{X} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$ be the spectral decomposition of \mathbf{X} , with $\mathbf{\Lambda} = \{\lambda_i(\mathbf{X})\}_{i=1}^p$ eigenvalues and $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_p] \in \mathbb{R}^{p \times p}$ the associated eigenvectors. Then,

$$\mathbf{Q}(z) = \mathbf{U}(\mathbf{\Lambda} - z\mathbf{I}_p)^{-1}\mathbf{U}^{\mathsf{T}} = \sum_{i=1}^p \frac{\mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}}{\lambda_i(\mathbf{X}) - z}.$$
(12)

Thus, for $\mu_{\mathbf{X}} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(\mathbf{X})}$ the ESD of **X**,

$$\frac{1}{p}\operatorname{tr}\mathbf{Q}(z) = \frac{1}{p}\sum_{i=1}^{p}\frac{1}{\lambda_{i}(\mathbf{X}) - z} = \int \frac{\mu_{\mathbf{X}}(dt)}{t - z}.$$
(13)

Definition (Stieltjes transform)

For a real probability measure μ with support supp(μ), the *Stieltjes transform* $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \setminus \text{supp}(\mu)$, as

$$n_{\mu}(z) \equiv \int \frac{\mu(dt)}{t-z}.$$
(14)

For m_{μ} the Stieltjes transform of a probability measure μ , then

- m_{μ} is complex analytic on its domain of definition $\mathbb{C} \setminus \text{supp}(\mu)$;
- it is bounded $|m_{\mu}(z)| \leq 1/\operatorname{dist}(z, \operatorname{supp}(\mu));$
- it satisfies $m_{\mu}(z) > 0$ for $z < \inf \operatorname{supp}(\mu)$, $m_{\mu}(z) < 0$ for $z > \sup \operatorname{supp}(\mu)$ and $\Im[z] \cdot \Im[m_{\mu}(z)] > 0$ if $z \in \mathbb{C} \setminus \mathbb{R}$; and
- ▶ it is an increasing function on all connected components of its restriction to $\mathbb{R} \setminus \text{supp}(\mu)$ (since $m'_{\mu}(x) = \int (t-x)^{-2} \mu(dt) > 0$) with $\lim_{x \to \pm \infty} m_{\mu}(x) = 0$ if $\text{supp}(\mu)$ is bounded.

Definition (Inverse Stieltjes transform)

For *a*, *b* continuity points of the probability measure μ , we have

$$\mu([a,b]) = \frac{1}{\pi} \lim_{y \downarrow 0} \int_{a}^{b} \Im \left[m_{\mu}(x+iy) \right] dx.$$
(15)

Besides, if μ admits a density f at x (i.e., $\mu(x)$ is differentiable in a neighborhood of x and $\lim_{\epsilon \to 0} (2\epsilon)^{-1} \mu([x - \epsilon, x + \epsilon]) = f(x))$,

$$f(x) = \frac{1}{\pi} \lim_{y \downarrow 0} \Im \left[m_{\mu} (x + \imath y) \right].$$
(16)

Workflow: random matrix **X** of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and ST $\frac{1}{p}$ tr $\mathbf{Q}_{\mathbf{X}}(z) = m_{\mathbf{X}}(z)$ \Rightarrow study the limiting ST $m_{\mathbf{X}}(z) \rightarrow m(z) \Rightarrow$ inverse ST to get limiting $\mu_{\mathbf{X}} \rightarrow \mu$.

Definition (Linear Spectral Statistic, LSS)

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, the *linear spectral statistics* (LSS) $f_{\mathbf{X}}$ of \mathbf{X} is defined as the averaged statistics of the eigenvalues $\lambda_1(\mathbf{X}), \ldots, \lambda_p(\mathbf{X})$ of \mathbf{X} via some function $f : \mathbb{R} \to \mathbb{R}$, that is

$$f(\mathbf{X}) = \frac{1}{p} \sum_{i=1}^{p} f(\lambda_i(\mathbf{X})) = \int f(t) \mu_{\mathbf{X}}(dt),$$
(17)

for $\mu_{\mathbf{X}}$ the ESD of **X**.

Theorem (Cauchy's integral formula)

For $\Gamma \subset \mathbb{C}$ a positively (i.e., counterclockwise) oriented simple closed curve and a complex function f(z) analytic in a region containing Γ and its inside, then

(i) if
$$z_0 \in \mathbb{C}$$
 is enclosed by $\Gamma, f(z_0) = -\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{z_0 - z} dz$;
(ii) if not, $\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{z_0 - z} dz = 0$.

LSS via contour integration: For $\lambda_1(\mathbf{X}), \ldots, \lambda_p(\mathbf{X})$ eigenvalues of a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, some function $f : \mathbb{R} \to \mathbb{R}$ that is complex analytic in a compact neighborhood of the support supp $(\mu_{\mathbf{X}})$ (of the ESD $\mu_{\mathbf{X}}$ of \mathbf{X}), then

$$f(\mathbf{X}) = \int f(t)\mu_{\mathbf{X}}(dt) = -\int \frac{1}{2\pi\iota} \oint_{\Gamma} \frac{f(z)\,dz}{t-z}\mu_{\mathbf{X}}(dt) = -\frac{1}{2\pi\iota} \oint_{\Gamma} f(z)m_{\mu_{\mathbf{X}}}(z)\,dz,\tag{18}$$

for *any* contour Γ that encloses supp $(\mu_{\mathbf{X}})$, i.e., all the eigenvalues $\lambda_i(\mathbf{X})$.

LSS to retrieve the inverse Stieltjes transform formula

$$\begin{split} &\frac{1}{p}\sum_{\lambda_{i}(\mathbf{X})\in[a,b]}\delta_{\lambda_{i}(\mathbf{X})} = -\frac{1}{2\pi\iota}\oint_{\Gamma}1_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz\\ &= -\frac{1}{2\pi\iota}\int_{a-\varepsilon_{x}-\iota\varepsilon_{y}}^{b+\varepsilon_{x}-\iota\varepsilon_{y}}1_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz - \frac{1}{2\pi\iota}\int_{b+\varepsilon_{x}+\iota\varepsilon_{y}}^{a-\varepsilon_{x}+\iota\varepsilon_{y}}1_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz\\ &- \frac{1}{2\pi\iota}\int_{a-\varepsilon_{x}+\iota\varepsilon_{y}}^{a-\varepsilon_{x}-\iota\varepsilon_{y}}1_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz - \frac{1}{2\pi\iota}\int_{b+\varepsilon_{x}-\iota\varepsilon_{y}}^{b+\varepsilon_{x}+\iota\varepsilon_{y}}1_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz. \end{split}$$

Figure: Illustration of a rectangular contour Γ and support of μ_X on the complex plane.

Use resolvent for eigenvectors and eigenspace

Resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ contains eigenvector information about \mathbf{X} , recall

$$\mathbf{Q}_{\mathbf{X}}(z) = \sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}}}{\lambda_{i}(\mathbf{X}) - z},$$

and that we have direct access to the *i*-th eigenvector \mathbf{u}_i of \mathbf{X} through

$$\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}} = -\frac{1}{2\pi\iota} \oint_{\Gamma_{\lambda_{i}(\mathbf{X})}} \mathbf{Q}_{\mathbf{X}}(z) \, dz, \tag{19}$$

for $\Gamma_{\lambda_i(\mathbf{X})}$ a contour circling around $\lambda_i(\mathbf{X})$ only.

- seen as a matrix-version of LSS formula
- with the Stieltjes transform $m_{\mu_{\mathbf{X}}}(z)$ replaced by the associated resolvent $\mathbf{Q}_{\mathbf{X}}(z)$

Definition (Matrix spectral functionals)

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, we say $F \colon \mathbb{R}^{p \times p} \to \mathbb{R}^{p \times p}$ is a (matrix) spectral functional of \mathbf{X} ,

$$F(\mathbf{X}) = \sum_{i \in \mathcal{I} \subseteq \{1, \dots, p\}} f(\lambda_i(\mathbf{X})) \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}, \quad \mathbf{X} = \sum_{i=1}^p \lambda_i(\mathbf{X}) \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}.$$
 (20)

Spectral functional via contour integration: For $\mathbf{X} \in \mathbb{R}^{p \times p}$, resolvent $\mathbf{Q}_{\mathbf{X}}(z) = (\mathbf{X} - z\mathbf{I}_p)^{-1}$, $z \in \mathbb{C}$, and $f : \mathbb{R} \to \mathbb{R}$ analytic in a neighborhood of the contour $\Gamma_{\mathcal{I}}$ that circles around the eigenvalues $\lambda_i(\mathbf{X})$ of \mathbf{X} with their indices in the set $\mathcal{I} \subseteq \{1, \ldots, p\}$,

$$F(\mathbf{X}) = -\frac{1}{2\pi\iota} \oint_{\Gamma_{\mathcal{I}}} f(z) \mathbf{Q}_{\mathbf{X}}(z) \, dz.$$
(21)

Example: eigenvector projection $(\mathbf{v}^{\mathsf{T}}\mathbf{u}_i)^2 = -\frac{1}{2\pi \iota} \oint_{\Gamma_{\lambda_i}(\mathbf{x})} \mathbf{v}^{\mathsf{T}}\mathbf{Q}_{\mathbf{X}}(z)\mathbf{v} dz.$

Sample covariance matrix in the large *n*, *p* regime

▶ **Problem**: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from *n* data samples $\mathbf{x}_1, \ldots, \mathbf{x}_n$ with $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,

Maximum likelihood sample covariance matrix with entry-wise convergence

$$\hat{\mathbf{C}} = rac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}} \in \mathbb{R}^{p imes p}, \quad [\hat{\mathbf{C}}]_{ij} o [\mathbf{C}]_{ij}$$

almost surely as $n \to \infty$: optimal for $n \gg p$ (or, for p "small").

▶ In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C} = \mathbf{I}_p$ with n < p, $\hat{\mathbf{C}}$ has at least p - n zero eigenvalues:

 $\|\hat{\mathbf{C}} - \mathbf{C}\| \not\rightarrow 0, \quad n, p \rightarrow \infty \Rightarrow \text{ eigenvalue mismatch and not consistent!}$

• due to $\|\mathbf{A}\|_{\infty} \leq \|\mathbf{A}\| \leq p \|\mathbf{A}\|_{\infty}$ for $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\|\mathbf{A}\|_{\infty} \equiv \max_{ij} |\mathbf{A}_{ij}|$.

When is one in the random matrix regime? Almost always!

What about n = 100p? For $\mathbf{C} = \mathbf{I}_p$, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$: MP law

$$\mu(dx) = (1 - c^{-1})^+ \delta(x) + \frac{1}{2\pi cx} \sqrt{(x - E_-)^+ (E_+ - x)^+} dx$$

where $E_{-} = (1 - \sqrt{c})^2$, $E_{+} = (1 + \sqrt{c})^2$ and $(x)^+ \equiv \max(x, 0)$. Close match!

Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marčenko-Pastur law, p = 500, n = 50000.

• eigenvalues span on $[E_- = (1 - \sqrt{c})^2, E_+ = (1 + \sqrt{c})^2]$.

• for n = 100p, on a range of $\pm 2\sqrt{c} = \pm 0.2$ around the population eigenvalue 1.

Z. Liao (EIC, HUST)

Marčenko-Pastur law

Theorem (Marčenko–Pastur law)

Let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be a random matrix with i.i.d. entries of zero mean and unit variance. Denote $\mathbf{Q}(z) = (\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}} - z\mathbf{I}_p)^{-1}$ the resolvent of $\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}$. Then, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$,

$$\mathbf{Q}(z) \leftrightarrow \bar{\mathbf{Q}}(z), \quad \bar{\mathbf{Q}}(z) = m(z)\mathbf{I}_p,$$
(22)

with m(z) the unique Stieltjes transform solution to

$$zcm^{2}(z) - (1 - c - z)m(z) + 1 = 0.$$
 (23)

Moreover, the empirical spectral measure $\mu_{\frac{1}{n}XX^{\mathsf{T}}}$ of $\frac{1}{n}XX^{\mathsf{T}}$ converges weakly to the probability measure μ

$$\mu(dx) = (1 - c^{-1})^+ \delta_0(x) + \frac{1}{2\pi cx} \sqrt{(x - E_-)^+ (E_+ - x)^+} \, dx,$$
(24)

where $E_{\pm} = (1 \pm \sqrt{c})^2$ and $(x)^+ = \max(0, x)$, known as the Marčenko-Pastur law.

Figure: Marčenko-Pastur distribution for different values of *c*.

Proof of Marčenko-Pastur law

Workflow: random matrix **X** of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and ST $\frac{1}{p}$ tr $\mathbf{Q}_{\mathbf{X}}(z) = m_{\mathbf{X}}(z)$ \Rightarrow study the limiting ST $m_{\mathbf{X}}(z) \rightarrow m(z) \Rightarrow$ inverse ST to get limiting $\mu_{\mathbf{X}} \rightarrow \mu$.

Definition (Empirical Spectral Distribution, ESD)

For symmetric $\mathbf{X} \in \mathbb{R}^{p \times p}$, the *empirical spectral distribution* (*ESD*) $\mu_{\mathbf{X}}$ of \mathbf{X} is defined as the normalized counting measure of the eigenvalues $\lambda_1(\mathbf{X}), \ldots, \lambda_p(\mathbf{X})$ of \mathbf{X} , i.e., $\mu_{\mathbf{X}} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_i(\mathbf{X})}$, where δ_x represents the Dirac measure at x.

Definition (Stieltjes transform)

For a real probability measure μ with support supp(μ), the *Stieltjes transform* $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \setminus \text{supp}(\mu)$, as

$$m_{\mu}(z) \equiv \int \frac{\mu(dt)}{t-z}.$$
(25)

Heuristic proof of MP law via "leave-one-out" approach

"guess" Q
 (z) = F⁻¹(z) for some F(z) such that E[Q] ≃ Q and ¹/_p tr Q(z) ≃ ¹/_p tr Q(z).

 for X = [x₁,...,x_n],

$$\mathbf{Q}(z) - \bar{\mathbf{Q}}(z) = \mathbf{Q}(z) \left(\mathbf{F}(z) + z\mathbf{I}_p - \frac{1}{n}\mathbf{X}\mathbf{X}^\mathsf{T} \right) \bar{\mathbf{Q}}(z)$$
$$= \mathbf{Q}(z) \left(\mathbf{F}(z) + z\mathbf{I}_p - \frac{1}{n}\sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\mathsf{T} \right) \bar{\mathbf{Q}}(z)$$

• for $\bar{\mathbf{Q}}(z) \leftrightarrow \mathbf{Q}(z)$ a DE for $\mathbf{Q}(z)$, look for $\frac{1}{p} \operatorname{tr}(\mathbf{Q}(z) - \bar{\mathbf{Q}}(z)) \to 0$,

$$\frac{1}{p}\operatorname{tr}(\mathbf{F}(z)+z\mathbf{I}_p)\bar{\mathbf{Q}}(z)\mathbf{Q}(z) - \frac{1}{n}\sum_{i=1}^n \frac{1}{p}\mathbf{x}_i^{\mathsf{T}}\bar{\mathbf{Q}}(z)\mathbf{Q}(z)\mathbf{x}_i \to 0.$$
(26)

x_i^TQ̄(z)Q(z)x_i/p as a quadratic form close to a trace form independent of x_i.
 cannot be applied directly as Q(z) depends on x_i.

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\bar{\mathbf{Q}}(z) = \mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ so that $\frac{1}{v} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{v} \operatorname{tr} \bar{\mathbf{Q}}(z)$.

- use Sherman–Morrison to write $\mathbf{Q}(z)\mathbf{x}_i = \frac{\mathbf{Q}_{-i}(z)\mathbf{x}_i}{1+\frac{1}{\pi}\mathbf{x}_i^{\mathsf{T}}\mathbf{Q}_{-i}(z)\mathbf{x}_i}$,
- ▶ now $\mathbf{Q}_{-i}(z) = (\frac{1}{n} \sum_{j \neq i} \mathbf{x}_j \mathbf{x}_j^{\mathsf{T}} z \mathbf{I}_p)^{-1}$ is independent of \mathbf{x}_i ,

quadratic form close to the trace:

$$\frac{1}{p} \mathbf{x}_i^{\mathsf{T}} \bar{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_i = \frac{\frac{1}{p} \mathbf{x}_i^{\mathsf{T}} \bar{\mathbf{Q}}(z) \mathbf{Q}_{-i}(z) \mathbf{x}_i}{1 + \frac{1}{n} \mathbf{x}_i^{\mathsf{T}} \mathbf{Q}_{-i}(z) \mathbf{x}_i} \simeq \frac{\frac{1}{p} \operatorname{tr} \bar{\mathbf{Q}}(z) \mathbf{Q}_{-i}(z)}{1 + \frac{1}{n} \operatorname{tr} \mathbf{Q}_{-i}(z)}.$$

• So
$$\frac{1}{p}$$
 tr $(\mathbf{F}(z) + z\mathbf{I}_p)\bar{\mathbf{Q}}(z)\mathbf{Q}(z) \simeq \frac{\frac{1}{p}\operatorname{tr}\mathbf{Q}(z)\mathbf{Q}(z)}{1 + \frac{1}{n}\operatorname{tr}\mathbf{Q}(z)}$, and "guess" $\mathbf{F}(z) \simeq \left(-z + \frac{1}{1 + \frac{1}{n}\operatorname{tr}\mathbf{Q}(z)}\right)\mathbf{I}_p$.

• self-consistent equation of limiting ST m(z) as

$$\frac{1}{p}\operatorname{tr} \mathbf{Q}(z) \simeq m(z) = \frac{1}{-z + \frac{1}{1 + \frac{p}{n} \frac{1}{p} \operatorname{tr} \mathbf{Q}(z)}} \simeq \frac{1}{-z + \frac{1}{1 + \frac{p}{n} m(z)}}.$$

(27)

(28)

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\bar{\mathbf{Q}}(z) = \mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z) \frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \bar{\mathbf{Q}}(z)$.

• we have
$$\mathbf{F}(z) = \left(-z + \frac{1}{1 + \frac{1}{n} \operatorname{tr} \bar{\mathbf{Q}}(z)}\right) \mathbf{I}_p$$
,

• and $\bar{\mathbf{Q}}(z) = m(z)\mathbf{I}_p$ with m(z) unique Stieltjes transform solution to

$$m(z) = \left(-z + \frac{1}{1 + cm(z)}\right)^{-1}$$
, or $zcm^2(z) - (1 - c - z)m(z) + 1 = 0$.

▶ has two solutions defined via the two values of the complex square root function (letting $z = \rho e^{i\theta}$ for $\rho \ge 0$ and $\theta \in [0, 2\pi), \sqrt{z} \in \{\pm \sqrt{\rho} e^{i\theta/2}\}$)

$$m(z) = \frac{1-c-z}{2cz} + \frac{\sqrt{((1+\sqrt{c})^2 - z)((1-\sqrt{c})^2 - z)}}{2cz},$$

only one of which is such that $\Im[z]\Im[m(z)] > 0$ by definition of Stieltjes transforms.

apply inverse Stieltjes transform we conclude the proof.

Some thoughts on the "leave-one-out" proof

- ▶ in essence: propose $\bar{\mathbf{Q}}(z) \simeq \mathbb{E}[\mathbf{Q}(z)]$ (in spectral norm sense), but simple to evaluate (via a quadratic equation)
- quadratic form close to the trace: high-dimensional concentration (around the expectation), nothing more than LLN and concentration
- leave-one-out analysis of large-scale system: $\frac{1}{p}$ tr $\mathbf{Q}(z) \simeq \frac{1}{p}$ tr $\mathbf{Q}_{-i}(z)$ for *n*, *p* large.
- ▶ low complexity analysis of large random system: joint behavior of *p* eigenvalues ^{RMT}→ a single deterministic (quadratic) equation
- These are the main intuitions and ingredients for almost everything in RMT and high-dimensional statistics!
- Side remark: another more systematic and convenient RMT proof approach: "Gaussian method," as the combination of Stein's lemma (Gaussian integration by parts), Nash–Poincare inequality, and interpolation from Gaussian to non-Gaussian, see [CL22, Section 2.2.2] for details.

Theorem (Wigner semicircle law)

Let $\mathbf{X} \in \mathbb{R}^{n \times n}$ be symmetric and such that the $\mathbf{X}_{ij} \in \mathbb{R}$, $j \ge i$, are independent zero mean and unit variance random variables. Then, for $\mathbf{Q}(z) = (\mathbf{X}/\sqrt{n} - z\mathbf{I}_n)^{-1}$, as $n \to \infty$,

$$\mathbf{Q}(z) \leftrightarrow \bar{\mathbf{Q}}(z), \quad \bar{\mathbf{Q}}(z) = m(z)\mathbf{I}_n,$$
(29)

with m(z) the unique ST solution to

$$m^{2}(z) + zm(z) + 1 = 0.$$
 (30)

The function m(z) *is the Stieltjes transform of the probability measure*

$$\mu(dx) = \frac{1}{2\pi} \sqrt{(4-x^2)^+} \, dx,\tag{31}$$

known as the Wigner semicircle law.

Figure: Histogram of the eigenvalues of \mathbf{X}/\sqrt{n} versus Wigner semicircle law, for standard Gaussian \mathbf{X} and n = 1000.

Generalized sample covariance matrix matrix

Theorem (General sample covariance matrix)

Let $\mathbf{X} = \mathbf{C}^{\frac{1}{2}} \mathbf{Z} \in \mathbb{R}^{p \times n}$ with nonnegative definite $\mathbf{C} \in \mathbb{R}^{p \times p}$, $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having independent zero mean and unit variance entries. Then, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, for $\mathbf{Q}(z) = (\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}} - z \mathbf{I}_p)^{-1}$ and $\tilde{\mathbf{Q}}(z) = (\frac{1}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} - z \mathbf{I}_n)^{-1}$,

$$\mathbf{Q}(z) \leftrightarrow \bar{\mathbf{Q}}(z) = -\frac{1}{z} \left(\mathbf{I}_p + \tilde{m}_p(z) \mathbf{C} \right)^{-1}, \quad \tilde{\mathbf{Q}}(z) \leftrightarrow \bar{\tilde{\mathbf{Q}}}(z) = \tilde{m}_p(z) \mathbf{I}_n$$

with $\tilde{m}_p(z)$ unique solution to $\tilde{m}_p(z) = \left(-z + \frac{1}{n} \operatorname{tr} \mathbf{C} \left(\mathbf{I}_p + \tilde{m}_p(z)\mathbf{C}\right)^{-1}\right)^{-1}$. Moreover, if the empirical spectral measure of \mathbf{C} converges $\mu_{\mathbf{C}} \to \nu$ as $p \to \infty$, then $\mu_{\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}} \to \mu$, $\mu_{\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{X}} \to \tilde{\mu}$ where μ , $\tilde{\mu}$ admitting Stieltjes transforms m(z) and $\tilde{m}(z)$ such that

$$m(z) = \frac{1}{c}\tilde{m}(z) + \frac{1-c}{cz}, \quad \tilde{m}(z) = \left(-z + c\int \frac{t\nu(dt)}{1+\tilde{m}(z)t}\right)^{-1}.$$
(32)

Figure: Histogram of the eigenvalues of $\frac{1}{n}XX^{\mathsf{T}}$, $\mathbf{X} = \mathbf{C}^{\frac{1}{2}}\mathbf{Z} \in \mathbb{R}^{p \times n}$, $[\mathbf{Z}]_{ij} \sim \mathcal{N}(0, 1)$, $n = 3\,000$; for p = 300 and \mathbf{C} having spectral measure $\mu_{\mathbf{C}} = \frac{1}{3}(\delta_1 + \delta_3 + \delta_7)$ (top) and $\mu_{\mathbf{C}} = \frac{1}{3}(\delta_1 + \delta_3 + \delta_5)$ (bottle).

RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:

- **change of intuition** from small to large dimensional learning paradigm!
- **better understanding** of existing methods: why they work if they do, and what the issue is if they do not
- improved novel methods with performance guarantee!

- book "Random Matrix Methods for Machine Learning"
- ▶ by Romain Couillet and Zhenyu Liao
- Cambridge University Press, 2022
- a pre-production version of the book and exercise solutions at https://zhenyu-liao.github.io/book/
- MATLAB and Python codes to reproduce all figures at https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?