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Motivation: understanding large-dimensional machine learning

Big Model
of size N

Big Data
x1, . . . , xn ∈ Rp

▶ Big Data era: exploit large n, p, N
▶ counterintuitive phenomena different from classical

asymptotics statistics
▶ complete change of understanding of many methods

in statistics, machine learning, signal processing, and
wireless communications

▶ Random Matrix Theory (RMT) provides the tools!
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Sample covariance matrix in the large n, p regime

▶ Problem: estimate covariance C ∈ Rp×p from n data samples x1, . . . , xn with xi ∼ N (0, C),

▶ Maximum likelihood sample covariance matrix with entry-wise convergence

Ĉ =
1
n

n

∑
i=1

xix
T
i ∈ Rp×p, [Ĉ]ij → [C]ij

almost surely as n → ∞: optimal for n ≫ p (or, for p “small”).

▶ In the regime n ∼ p, conventional wisdom breaks down: for C = Ip with n < p, Ĉ has at least p − n zero
eigenvalues:

∥Ĉ − C∥ ̸→ 0, n, p → ∞ ⇒ eigenvalue mismatch and not consistent!

▶ due to ∥A∥∞ ≤ ∥A∥ ≤ p∥A∥∞ for A ∈ Rp×p and ∥A∥∞ ≡ maxij |Aij|.
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When is one in the random matrix regime? Almost always!

What about n = 100p? For C = Ip, as n, p → ∞ with p/n → c ∈ (0, ∞): MP law

µ(dx) = (1 − c−1)+δ(x) +
1

2πcx

√
(x − E−)+(E+ − x)+dx

where E− = (1 −
√

c)2, E+ = (1 +
√

c)2 and (x)+ ≡ max(x, 0). Close match!
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Figure: Eigenvalue distribution of Ĉ versus Marc̆enko-Pastur law, p = 500, n = 50 000.

▶ eigenvalues span on [E− = (1−
√

c)2, E+ = (1+
√

c)2].
▶ for n = 100p, on a range of ±2

√
c = ±0.2 around the population eigenvalue 1.
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Classical large-n asymptotic analysis mostly fails today

▶ large-n intuition, and many existing popular methods in biology, finance, signal processing,
telecommunication, and machine learning, must fail even with n = 100p!

▶ RMT as a flexible and powerful tool to understand and recreate these methods
▶ in essence, “increasing complexity of the system models employed in above fields demand low

complexity analysis”
▶ as motivating examples, how RMT can be applied to assess:
▶ telecommunication: code division multiple access (CDMA) technology
▶ signal processing: generalized likelihood ratio test (GLRT)
▶ machine learning: principle component analysis (PCA), and kernel spectral clustering
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Application to telecom: performance analysis of CDMA via RMT

▶ CDMA: code division multiple access, key technology in 3G
▶ Idea: to increase max number of users, and dynamically balancing the quality of service to each terminal
▶ each user is allocated a (long) spreading code orthogonal to the other users’ codes
▶ all users can simultaneously receive data while experiencing a limited amount of interference from

concurrent communications, due to code orthogonality
▶ codes not fully orthogonal, more users, more interference and less quality of service
▶ Question: how to evaluate the capacity (max achievable transmission data rate) of CDMA network?

(which clearly depends on pre-coding strategy)
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Orthogonal CDMA versus TDMA

▶ for orthogonal CDMA, under some commonly used technical assumptions, capacity given by

Corth(σ
2) =

1
n

log det
(

In +
1

σ2 WGGHWH
)

, (1)

with noise power σ2, W ∈ Cn×n the orthogonal CDMA codes (W unitary), and G ≡ diag{gi}n
i=1

represents channel gains of the users.
▶ Note

Corth(σ
2) =

1
n

log det
(

In +
1

σ2 GGH
)
=

1
n

n

∑
i=1

log
(

1 +
|gi|2
σ2

)
= CTDMA(σ

2), (2)

justifies the equivalence between TDMA (for 2G) and orthogonal CDMA rate performance.
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Random versus orthogonal CDMA

▶ however, orthogonality can be computationally demanding: random CDMA with random i.i.d. codes,

Crand(σ
2) =

1
n

log det
(

In +
1

σ2 XGGHXH
)

, (3)

for X ∈ Cn×n the users’ random codes.
▶ from RMT perspective, denote µ the empirical spectral measure of XGGHXH, then

Crand(σ
2) =

∫
log(1 + t/σ2)µ(dt): known as linear spectral statistics (LSS) of XGGHXH

▶ Question: Crand as a function of gains G and (distribution of) codes X?
▶ (first?) answered by Shami, Tse, and Verdú in [TV00; VS99];
▶ however capacity expressions not achievable in practice, due to complicated and nonlinear processing
▶ if only linear pre-coders and/or decoders are used, optimal solution:

− frequency flat channels [TH99]: D.N.C. Tse and S.V. Hanly. “Linear multiuser receivers: effective interference,
effective bandwidth and user capacity”. In: IEEE Transactions on Information Theory 45.2 (1999), pp. 641–657

− frequency selective channels [ET00]: J. Evans and D.N.C. Tse. “Large system performance of linear multiuser
receivers in multipath fading channels”. In: IEEE Transactions on Information Theory 46.6 (2000), pp. 2059–2078

− reduced-rank LMMSE decoders [LTV04]: Linbo Li, Antonia M. Tulino, and Sergio Verdú. “Design of
Reduced-Rank MMSE Multiuser Detectors Using Random Matrix Methods”. In: IEEE Transactions on Information
Theory 50.6 (2004), pp. 986–1008

− etc.
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Signal sensing using multi-dimensional sensor arrays

Motivation:
▶ Shannon: to achieve high rate of information transfer, increasing the transmission bandwidth is largely

preferred over increasing the power
▶ high rate communications with finite power budget, need frequency multiplexing
▶ cognitive radio: to communicate not by exploiting the over-used frequency domain, or by exploiting the

over-used space domain, but by exploiting so-called spectrum holes, jointly in time, space, and frequency

As such, a cognitive radio network (also called a secondary network)
▶ can help reuse the resources in a licensed (first) network
▶ but require constant awareness of the operations taking place in the licensed networks
▶ for example, via signal sensing/detection
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Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let X = [x1, . . . , xn] ∈ Rp×n with i.i.d. columns xi ∈ Rp received by array of p sensors, signal
decision as the following binary hypothesis test:

X =

{
σZ, H0
asT + σZ, H1

where Z = [z1, . . . , zn] ∈ Rp×n, zi ∼ N (0, Ip), a ∈ Rp deterministic of unit norm ∥a∥ = 1, signal
s = [s1, . . . , sn]T ∈ Rn with si i.i.d. random, and σ > 0. Denote c = p/n > 0.
▶ observation of either zero-mean Gaussian noise σzi of power σ2, or deterministic information vector a

modulated by an added scalar (random) signal si (e.g., ±1).
▶ If a, σ, and statistics of si are known, the decision-optimal Neyman-Pearson () test:

P(X | H1)

P(X | H0)

H1
≷
H0

α (4)

for some α > 0 controlling the Type I and II error rates.
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Hypothesis testing via GLRT

However,
▶ in practice, we do not know σ, nor the information vector a ∈ Rp (to be recovered)
▶ in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

supσ,a P(X | σ, a,H1)

supσ,a P(X | σ,H0)

H1
≷
H0

α.

▶ Gaussian noise and signal si, GLRT has an explicit expression as a monotonous increasing function of
∥XXT∥/ tr(XXT), test equivalent to, for some known f ,

Tp ≡
∥∥XXT

∥∥
tr (XXT)

H1
≷
H0

f (α).

▶ to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM 1
n XXT
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Hypothesis testing in a signal-plus-noise model via GLRT

To set a maximum false alarm rate (or Type I error) of r > 0 for large n, p, according to RMT, one must choose
a threshold f (α) for Tp:

P(Tp ≥ f (α)) = r ⇔ µTW1 ((−∞, Ap]) = r, Ap = (f (α)− (1 +
√

c)2)(1 +
√

c)−
4
3 c

1
6 n

2
3 (5)

with µTW1 the Tracy-Widom distribution in RMT.
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Figure: Comparison between empirical false alarm rates and 1 − TW1(Ap) for Ap of the form in (5), as a function of the
threshold f (α) ∈ [(1 +

√
c)2 − 5n−2/3, (1 +

√
c)2 + 5n−2/3], for p = 256, n = 1 024 and σ = 1.
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“Curse of dimensionality”: loss of relevance of Euclidean distance

▶ Binary Gaussian mixture classification x ∈ Rp:

C1 : x ∼ N (µ1, C1), versus C2 : x ∼ N (µ2, C2);

▶ Neyman-Pearson test: classification is possible only when

∥µ1 − µ2∥ ≥ Cµ, or ∥C1 − C2∥ ≥ CC · p−1/2

for some constants Cµ, CC > 0 [CLM18].
▶ In this non-trivial setting, for xi ∈ Ca, xj ∈ Cb:

max
1≤i ̸=j≤n

{
1
p
∥xi − xj∥2 − 2

p
tr C◦

}
a.s.−→ 0

as n, p → ∞ (i.e., n ∼ p), for C◦ ≡ 1
2 (C1 + C2), regardless of the classes Ca, Cb!

0Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. “Classification asymptotics in the random matrix regime”. In: 2018 26th European Signal
Processing Conference (EUSIPCO). IEEE. 2018, pp. 1875–1879
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Loss of relevance of Euclidean distance: visual representation

O(
√

p)

O(1)

Figure: Visual representation of classification in (left) small and (right) large dimensions.

⇒ Direct consequence to various distance-based machine learning methods
(e.g., kernel spectral clustering)!
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Reminder on kernel spectral clustering

Two-step classification of n data points with distance kernel K ≡ {f (∥xi − xj∥2/p)}n
i,j=1:

0 isolated eigenvalues

⇓ Top eigenvectors ⇓
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Reminder on kernel spectral clustering

⇓ K-dimensional representation ⇓

Eig. 1
Ei

g.
2

⇓
EM or k-means clustering
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Cluster Gaussian data x1, . . . , xn ∈ Rp into C1 or C2, with second top eigenvectors v2 of heat kernel
Kij = exp(−∥xi − xj∥2/2p), small and large dimensional data.

(a) p = 5, n = 500

K =




v2 =

[ ]

(b) p = 250, n = 500

K =




v2 =

[ ]
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Kernel matrices for large dimensional real-world data

(a) MNIST

K =




v2 =

[ ]

(b) Fashion-MNIST

K =




v2 =

[ ]
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A RMT viewpoint of large kernel matrices

▶ “local” linearization of nonlinear kernel matrices in large dimensions, e.g., Gaussian kernel matrix
Kij = exp(−∥xi − xj∥2/2p) with C1 = C2 = Ip (e.g., C1 : xi = µ1 + zi versus C2 : xj = µ2 + zj) so that

∥xi − xj∥2/p a.s.−→ 2, and K = exp
(
−2

2

)(
1n1T

n +
1
p

ZTZ
)
+ g(∥µ1 − µ2∥)

1
p

jjT + ∗+ o∥·∥(1)

with Gaussian Z = [z1, . . . , zn] ∈ Rp×n and class-information j = [1n/2;−1n/2],
▶ accumulated effect of small “hidden” statistical information (∥µ1 − µ2∥ in this case)
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A RMT viewpoint of large kernel matrices

Therefore
▶ entry-wise:

Kij = exp(−1)
(

1 +
1
p

zT
i zj︸ ︷︷ ︸

O(p−1/2)

)
± 1

p
g(∥µ1 − µ2∥)︸ ︷︷ ︸

O(p−1)

+∗, so that
1
p

g(∥µ1 − µ2∥) ≪
1
p

zT
i zj,

▶ spectrum-wise:

− ∥K − exp(−1)1n1T
n ∥ ̸→ 0;

− ∥ 1
p ZTZ∥ = O(1) and ∥g(∥µ1 − µ2∥) 1

p jjT∥ = O(1)!

▶ Same phenomenon as the sample covariance example: [Ĉ − C]ij → 0 ̸⇒ ∥Ĉ − C∥ → 0!

⇒ With RMT, we understand kernel spectral clustering for large dimensional data!
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Some more numerical results

−0.05 0 0.05

(a) MNIST

−0.1 0 0.1

(b) Fashion-MNIST
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LLN and CLT: recap

▶ (Strong) law of large numbers (LLN): for a sequence of i.i.d. random variables x1, . . . , xp with the same
expectation E[xi] = µ, we have

1
p

p

∑
i=1

xi → µ, (6)

almost surely as p → ∞.
▶ Central limit theorem (CLT, Lindeberg–Lévy tyep): for a sequence of i.i.d. random variables x1, . . . , xp

with the same expectation E[xi] = µ and variance Var[xi] = σ2 < ∞, we have

√
p

(
1
p

p

∑
i=1

(xi − µ)

)
→ N (0, σ2), (7)

in distribution as p → ∞.
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OK with LLN and CLT, so what?

Different view of LLN and CLT: large-dimensional deterministic behavior and fluctuation.
Single scalar random variables
▶ Scalar random variable x ∈ R, characterize its behavior distribution/law, characteristic function and/or

successive moments, etc.
▶ x in general not expected to establish some kind of “close-to-deterministic” behavior.
▶ True for a single observation, although certainly the sum of many such random variables may concentrate

and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables
Consider a set of size p i.i.d. realizations/copies of such random variable. As a random vector
x = [x1, . . . , xp]T ∈ Rp, with E[xi] = µ, Var[xi] = 1, i ∈ {1, . . . , p}.
▶ as p independent scalar random variables x ∈ R; or
▶ as a single realization of a random vector x ∈ Rp, having independent entries.
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OK with LLN and CLT, so what?

(i) Scalar: nothing more can be said about each individual random variable:
▶ inappropriate to predict the behavior of xi with any deterministic value
▶ in general incorrect to say “the random xi is close to µ = E[xi]”, since, for xi with E[x] = µ and Var[x] = 1,

by Chebyshev’s inequality.
P(|x − µ| ≥ t) ≤ t−2, ∀t > 0. (8)

▶ random fluctuation xi − E[xi] can be as large as µ = E[xi].

(ii) Vector: a different picture: single realization of random vector x/
√

p ∈ Rp.
▶ cannot say anything in general about each individual vector x.
▶ however, if we are interested in only the (scalar and linear) observations of the random vector x/

√
p ∈ Rp

(with E[x] = µ1p/
√

p), we known much more:

1
p

xT1p
a.s.−→ E[xi] = µ,

1
√

p
(x − µ1p)

T1p
d−→ N (0, 1), p → ∞. (9)
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OK with LLN and CLT, so what?

This is
1
p

xT1p ≃ µ︸︷︷︸
O(1)

+
1
√

p
N (0, 1)︸ ︷︷ ︸

O(p−1/2)

.

▶ a large dimensional random vector x/
√

p ∈ Rp, when “observed” via the linear map 1T
p (·)/

√
p of unit

Euclidean norm (i.e., of “scale” independent of p);
▶ leads to x (when “observed” in this way) exhibiting the joint behavior of:

(i) approximately, in its first order, a deterministic quantity µ; and
(ii) in its second-order, a universal Gaussian fluctuation that is strongly concentrated and independent of the

specific law of xi.

O(
√

n)

x ∼ N (µ1n, In)

f (x)

f (x) ∈ R

O(n−1/2)

Figure: (Left) A “visualization” of independent realizations of x ∼ N (µ1n, In) with n = 100. (Right) Concentration behavior
of scalar observations f (x) = xT1n/n.
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What about random matrices?

▶ As in the case of (high-dimensional) random vectors, we should NOT expect random matrices
themselves converge in any useful sense;

▶ e.g., there does NOT exist deterministic matrix X̄ so that the random matrix X ∈ Rp×p

∥X − X̄∥ → 0, (10)

in spectral norm as p → ∞ (in probability or almost surely);
▶ nonetheless, “properly scaled” scalar observations f : Rp×p → R of X DO converge, and there exists

deterministic X̄ such that
f (X)− f (X̄) → 0, (11)

as p → ∞. We say such X̄ is a deterministic equivalent of the random matrix X.
▶ observation f of interest in RMT include (empirical) eigenvalue measure, linear spectral statistics (LSS),

specific eigenvalue location, projection of eigenvectors, etc.
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Deterministic equivalent for RMT: intuition and a few words on the proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent
(DE)?
▶ while the random matrix X ∈ Rp×p remains random as the dimension p grows (in fact even “more”

random due to the growing degrees of freedom);
▶ scalar observation f (X) of X becomes “more concentrated” as p → ∞;

− the random f (X), if concentrates, must concentrated around its expectation E[f (X)];
− in fact, as p → ∞, more randomness in X ⇒ Var[f (X)] → 0, e.g., Var[f (X)] = p−4;
− if the functional f : Rp×p → R is linear, then E[f (X)] = f (E[X]).

▶ So, to propose a DE, it suffices to evaluate E[X]:
− however, E[X] may be hardly accessible (due to integration)
− find a simple and more accessible deterministic X̄ with X̄ ≃ E[X] in some sense for p large, e.g., ∥X̄ − E[X]∥ → 0

as p → ∞; and
− show variance of f (X) decay sufficiently fast as p → ∞.

▶ We say X̄ is a DE for X when f (X) is evaluated, and denote X ↔ X̄.
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Fundamental Objects

Core interest of RMT: evaluation of eigenvalues and eigenvectors of a random matrix.

Definition (Resolvent)

For a symmetric/Hermitian matrix X ∈ Rp×p, the resolvent QX(z) of X is defined, for z ∈ C not an eigenvalue
of X, as QX(z) ≡

(
X − zIp

)−1.

Definition (Empirical spectral measure)

For symmetric X ∈ Rp×p, the empirical spectral measure/distribution (ESD) µX of X is defined as the normalized
counting measure of the eigenvalues λ1(X), . . . , λp(X) of X, i.e., µX ≡ 1

p ∑
p
i=1 δλi(X), where δx represents the

Dirac measure at x.
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Resolvent as the core object

Objects of interest Functionals of resolvent QX(z)

Empirical spectral measure µX of X Stieltjes transform mµX (z) =
1
p tr QX(z)

Linear spectral statistics (LSS):
f (X) ≡ 1

p ∑i f (λi(X))
Integration of trace of QX(z): − 1

2πı
∮

Γ f (z) 1
p tr QX(z) dz

(via Cauchy’s integral)

Projections of eigenvectors
vTu(X) and vTU(X) onto
some given vector v ∈ Rp

Bilinear form vTQX(z)v of QX

General matrix functional
F(X) = ∑i f (λi(X))vT

1 ui(X)ui(X)Tv2
involving both eigenvalues and eigenvectors

Integration of bilinear form of QX(z):
− 1

2πı
∮

Γ f (z)vT
1 QX(z)v2 dz
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Use resolvent for eigenvalue distribution

Definition (Resolvent)

For a symmetric/Hermitian matrix X ∈ Rp×p, the resolvent QX(z) of X is defined, for z ∈ C not an eigenvalue
of X, as QX(z) ≡

(
X − zIp

)−1.

Let X = UΛUT be the spectral decomposition of X, with Λ = {λi(X)}
p
i=1 eigenvalues and

U = [u1, . . . , up] ∈ Rp×p the associated eigenvectors. Then,

Q(z) = U(Λ − zIp)
−1UT =

p

∑
i=1

uiuT
i

λi(X)− z
. (12)

Thus, for µX ≡ 1
p ∑

p
i=1 δλi(X) the ESD of X,

1
p

tr Q(z) =
1
p

p

∑
i=1

1
λi(X)− z

=
∫

µX(dt)
t − z

. (13)
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The Stieltjes transform

Definition (Stieltjes transform)

For a real probability measure µ with support supp(µ), the Stieltjes transform mµ(z) is defined, for all
z ∈ C \ supp(µ), as

mµ(z) ≡
∫

µ(dt)
t − z

. (14)

For mµ the Stieltjes transform of a probability measure µ, then
▶ mµ is complex analytic on its domain of definition C \ supp(µ);
▶ it is bounded |mµ(z)| ≤ 1/ dist(z, supp(µ));
▶ it satisfies mµ(z) > 0 for z < inf supp(µ), mµ(z) < 0 for z > sup supp(µ) and ℑ[z] · ℑ[mµ(z)] > 0 if

z ∈ C \ R; and
▶ it is an increasing function on all connected components of its restriction to R \ supp(µ) (since

m′
µ(x) =

∫
(t − x)−2µ(dt) > 0) with limx→±∞ mµ(x) = 0 if supp(µ) is bounded.
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The inverse Stieltjes transform

Definition (Inverse Stieltjes transform)

For a, b continuity points of the probability measure µ, we have

µ([a, b]) =
1
π

lim
y↓0

∫ b

a
ℑ
[
mµ(x + ıy)

]
dx. (15)

Besides, if µ admits a density f at x (i.e., µ(x) is differentiable in a neighborhood of x and
limϵ→0(2ϵ)−1µ([x − ϵ, x + ϵ]) = f (x)),

f (x) =
1
π

lim
y↓0

ℑ
[
mµ(x + ıy)

]
. (16)

Workflow: random matrix X of interest ⇒ resolvent QX(z) and ST 1
p tr QX(z) = mX(z)

⇒ study the limiting ST mX(z) → m(z) ⇒ inverse ST to get limiting µX → µ.
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Use the resolvent for eigenvalue functionals

Definition (Linear Spectral Statistic, LSS)

For a symmetric matrix X ∈ Rp×p, the linear spectral statistics (LSS) fX of X is defined as the averaged statistics
of the eigenvalues λ1(X), . . . , λp(X) of X via some function f : R → R, that is

f (X) =
1
p

p

∑
i=1

f (λi(X)) =
∫

f (t)µX(dt), (17)

for µX the ESD of X.
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Cauchy’s integral formula

Theorem (Cauchy’s integral formula)

For Γ ⊂ C a positively (i.e., counterclockwise) oriented simple closed curve and a complex function f (z) analytic in a
region containing Γ and its inside, then

(i) if z0 ∈ C is enclosed by Γ, f (z0) = − 1
2πı
∮

Γ
f (z)
z0−z dz;

(ii) if not, 1
2πı
∮

Γ
f (z)
z0−z dz = 0.

LSS via contour integration: For λ1(X), . . . , λp(X) eigenvalues of a symmetric matrix X ∈ Rp×p, some
function f : R → R that is complex analytic in a compact neighborhood of the support supp(µX) (of the ESD
µX of X), then

f (X) =
∫

f (t)µX(dt) = −
∫ 1

2πı

∮
Γ

f (z) dz
t − z

µX(dt) = − 1
2πı

∮
Γ

f (z)mµX (z) dz, (18)

for any contour Γ that encloses supp(µX), i.e., all the eigenvalues λi(X).
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LSS to retrieve the inverse Stieltjes transform formula

1
p ∑

λi(X)∈[a,b]
δλi(X) = − 1

2πı

∮
Γ

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz

= − 1
2πı

∫ b+εx−ıεy

a−εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz − 1
2πı

∫ a−εx+ıεy

b+εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz

− 1
2πı

∫ a−εx−ıεy

a−εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz − 1
2πı

∫ b+εx+ıεy

b+εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz.

▶ Since ℜ[m(x + ıy)] = ℜ[m(x − ıy)],ℑ[m(x + ıy)] = −ℑ[m(x − ıy)];

▶ we have
∫ b+εx

a−εx
mµX (x − ıεy) dx +

∫ a−εx
b+εx

mµX (x + ıεy)dx = −2ı
∫ b+εx

a−εx
ℑ[mµX (x + ıεy)] dx;

▶ and consequently µ([a, b]) = 1
p ∑λi(X)∈[a,b] λi(X) = 1

π limεy↓0
∫ b

a ℑ[mµX (x + ıεy)] dx.
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Figure: Illustration of a rectangular contour Γ and support of µX on the complex plane.
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Use resolvent for eigenvectors and eigenspace

Resolvent QX(z) contains eigenvector information about X, recall

QX(z) =
p

∑
i=1

uiuT
i

λi(X)− z
,

and that we have direct access to the i-th eigenvector ui of X through

uiu
T
i = − 1

2πı

∮
Γλi(X)

QX(z) dz, (19)

for Γλi(X) a contour circling around λi(X) only.
▶ seen as a matrix-version of LSS formula
▶ with the Stieltjes transform mµX (z) replaced by the associated resolvent QX(z)
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Spectral functionals via resolvent

Definition (Matrix spectral functionals)

For a symmetric matrix X ∈ Rp×p, we say F : Rp×p → Rp×p is a (matrix) spectral functional of X,

F(X) = ∑
i∈I⊆{1,...,p}

f (λi(X))uiu
T
i , X =

p

∑
i=1

λi(X)uiu
T
i . (20)

Spectral functional via contour integration: For X ∈ Rp×p, resolvent QX(z) = (X − zIp)−1, z ∈ C, and
f : R → R analytic in a neighborhood of the contour ΓI that circles around the eigenvalues λi(X) of X with
their indices in the set I ⊆ {1, . . . , p},

F(X) = − 1
2πı

∮
ΓI

f (z)QX(z) dz. (21)

Example: eigenvector projection (vTui)
2 = − 1

2πı
∮

Γλi(X)
vTQX(z)v dz.
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Sample covariance matrix in the large n, p regime

▶ Problem: estimate covariance C ∈ Rp×p from n data samples x1, . . . , xn with xi ∼ N (0, C),

▶ Maximum likelihood sample covariance matrix with entry-wise convergence

Ĉ =
1
n

n

∑
i=1

xix
T
i ∈ Rp×p, [Ĉ]ij → [C]ij

almost surely as n → ∞: optimal for n ≫ p (or, for p “small”).

▶ In the regime n ∼ p, conventional wisdom breaks down: for C = Ip with n < p, Ĉ has at least p − n zero
eigenvalues:

∥Ĉ − C∥ ̸→ 0, n, p → ∞ ⇒ eigenvalue mismatch and not consistent!

▶ due to ∥A∥∞ ≤ ∥A∥ ≤ p∥A∥∞ for A ∈ Rp×p and ∥A∥∞ ≡ maxij |Aij|.
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When is one in the random matrix regime? Almost always!

What about n = 100p? For C = Ip, as n, p → ∞ with p/n → c ∈ (0, ∞): MP law

µ(dx) = (1 − c−1)+δ(x) +
1

2πcx

√
(x − E−)+(E+ − x)+dx

where E− = (1 −
√

c)2, E+ = (1 +
√

c)2 and (x)+ ≡ max(x, 0). Close match!

0.8 1 1.2
0

2

4

E− E+

D
en

si
ty

Empirical eigenvalues of Ĉ

Marc̆enko-Pastur law

Population eigenvalue

Figure: Eigenvalue distribution of Ĉ versus Marc̆enko-Pastur law, p = 500, n = 50 000.

▶ eigenvalues span on [E− = (1−
√

c)2, E+ = (1+
√

c)2].
▶ for n = 100p, on a range of ±2

√
c = ±0.2 around the population eigenvalue 1.
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Marc̆enko–Pastur law

Theorem (Marc̆enko–Pastur law)

Let X ∈ Rp×n be a random matrix with i.i.d. entries of zero mean and unit variance. Denote Q(z) = ( 1
n XXT − zIp)−1

the resolvent of 1
n XXT. Then, as n, p → ∞ with p/n → c ∈ (0, ∞),

Q(z) ↔ Q̄(z), Q̄(z) = m(z)Ip, (22)

with m(z) the unique Stieltjes transform solution to

zcm2(z)− (1 − c − z)m(z) + 1 = 0. (23)

Moreover, the empirical spectral measure µ 1
n XXT of 1

n XXT converges weakly to the probability measure µ

µ(dx) = (1 − c−1)+δ0(x) +
1

2πcx

√
(x − E−)

+ (E+ − x)+ dx, (24)

where E± = (1 ±
√

c)2 and (x)+ = max(0, x), known as the Marc̆enko-Pastur law.
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Figure: Marc̆enko-Pastur distribution for different values of c.
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Proof of Marc̆enko–Pastur law

Workflow: random matrix X of interest ⇒ resolvent QX(z) and ST 1
p tr QX(z) = mX(z)

⇒ study the limiting ST mX(z) → m(z) ⇒ inverse ST to get limiting µX → µ.

Definition (Empirical Spectral Distribution, ESD)

For symmetric X ∈ Rp×p, the empirical spectral distribution (ESD) µX of X is defined as the normalized counting
measure of the eigenvalues λ1(X), . . . , λp(X) of X, i.e., µX ≡ 1

p ∑
p
i=1 δλi(X), where δx represents the Dirac

measure at x.

Definition (Stieltjes transform)

For a real probability measure µ with support supp(µ), the Stieltjes transform mµ(z) is defined, for all
z ∈ C \ supp(µ), as

mµ(z) ≡
∫

µ(dt)
t − z

. (25)
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Heuristic proof of MP law via “leave-one-out” approach

▶ “guess” Q̄(z) = F−1(z) for some F(z) such that E[Q] ≃ Q̄ and 1
p tr Q(z) ≃ 1

p tr Q̄(z).

▶ for X = [x1, . . . , xn],

Q(z)− Q̄(z) = Q(z)
(

F(z) + zIp −
1
n

XXT
)

Q̄(z)

= Q(z)

(
F(z) + zIp −

1
n

n

∑
i=1

xix
T
i

)
Q̄(z).

▶ for Q̄(z) ↔ Q(z) a DE for Q(z), look for 1
p tr(Q(z)− Q̄(z)) → 0,

1
p

tr(F(z) + zIp)Q̄(z)Q(z)− 1
n

n

∑
i=1

1
p

xT
i Q̄(z)Q(z)xi → 0. (26)

▶ xT
i Q̄(z)Q(z)xi/p as a quadratic form close to a trace form independent of xi.

▶ cannot be applied directly as Q(z) depends on xi.
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Heuristic proof of MP law via “leave-one-out”

Objective: “guess” the form of Q̄(z) = F−1(z) for some F(z) so that 1
p tr Q(z) ≃ 1

p tr Q̄(z).

▶ use Sherman–Morrison to write Q(z)xi =
Q−i(z)xi

1+ 1
n xT

i Q−i(z)xi
,

▶ now Q−i(z) = ( 1
n ∑j ̸=i xjxT

j − zIp)−1 is independent of xi,

▶ quadratic form close to the trace:

1
p

xT
i Q̄(z)Q(z)xi =

1
p xT

i Q̄(z)Q−i(z)xi

1 + 1
n xT

i Q−i(z)xi
≃

1
p tr Q̄(z)Q−i(z)

1 + 1
n tr Q−i(z)

. (27)

▶ So 1
p tr(F(z) + zIp)Q̄(z)Q(z) ≃

1
p tr Q̄(z)Q(z)

1+ 1
n tr Q(z)

, and “guess” F(z) ≃
(
−z + 1

1+ 1
n tr Q(z)

)
Ip.

▶ self-consistent equation of limiting ST m(z) as

1
p

tr Q(z) ≃ m(z) =
1

−z + 1
1+ p

n
1
p tr Q(z)

≃ 1
−z + 1

1+ p
n m(z)

. (28)
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Heuristic proof of MP law via “leave-one-out”

Objective: “guess” the form of Q̄(z) = F−1(z) for some F(z) 1
p tr Q(z) ≃ 1

p tr Q̄(z).

▶ we have F(z) =
(
−z + 1

1+ 1
n tr Q̄(z)

)
Ip,

▶ and Q̄(z) = m(z)Ip with m(z) unique Stieltjes transform solution to

m(z) =
(
−z +

1
1 + cm(z)

)−1
, or zcm2(z)− (1 − c − z)m(z) + 1 = 0.

▶ has two solutions defined via the two values of the complex square root function (letting z = ρeıθ for
ρ ≥ 0 and θ ∈ [0, 2π),

√
z ∈ {±√

ρeıθ/2})

m(z) =
1 − c − z

2cz
+

√
((1 +

√
c)2 − z)((1 −

√
c)2 − z)

2cz
,

only one of which is such that ℑ[z]ℑ[m(z)] > 0 by definition of Stieltjes transforms.
▶ apply inverse Stieltjes transform we conclude the proof.
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Some thoughts on the “leave-one-out” proof

▶ in essence: propose Q̄(z) ≃ E[Q(z)] (in spectral norm sense), but simple to evaluate (via a quadratic
equation)

▶ quadratic form close to the trace: high-dimensional concentration (around the expectation), nothing more
than LLN and concentration

▶ leave-one-out analysis of large-scale system: 1
p tr Q(z) ≃ 1

p tr Q−i(z) for n, p large.

▶ low complexity analysis of large random system: joint behavior of p eigenvalues RMT→ a single
deterministic (quadratic) equation

▶ These are the main intuitions and ingredients for almost everything in RMT and high-dimensional
statistics!

▶ Side remark: another more systematic and convenient RMT proof approach: “Gaussian method,” as the
combination of Stein’s lemma (Gaussian integration by parts), Nash–Poincare inequality, and
interpolation from Gaussian to non-Gaussian, see [CL22, Section 2.2.2] for details.
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Wigner semicircle law

Theorem (Wigner semicircle law)

Let X ∈ Rn×n be symmetric and such that the Xij ∈ R, j ≥ i, are independent zero mean and unit variance random
variables. Then, for Q(z) = (X/

√
n − zIn)−1, as n → ∞,

Q(z) ↔ Q̄(z), Q̄(z) = m(z)In, (29)

with m(z) the unique ST solution to
m2(z) + zm(z) + 1 = 0. (30)

The function m(z) is the Stieltjes transform of the probability measure

µ(dx) =
1

2π

√
(4 − x2)+ dx, (31)

known as the Wigner semicircle law.
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Figure: Histogram of the eigenvalues of X/
√

n versus Wigner semicircle law, for standard Gaussian X and n = 1 000.

Z. Liao (EIC, HUST) RMT4ML January 11, 2024 61 / 64



Generalized sample covariance matrix matrix

Theorem (General sample covariance matrix)

Let X = C
1
2 Z ∈ Rp×n with nonnegative definite C ∈ Rp×p, Z ∈ Rp×n having independent zero mean and unit

variance entries. Then, as n, p → ∞ with p/n → c ∈ (0, ∞), for Q(z) = ( 1
n XXT − zIp)−1 and

Q̃(z) = ( 1
n XTX − zIn)−1,

Q(z) ↔ Q̄(z) = −1
z
(
Ip + m̃p(z)C

)−1 , Q̃(z) ↔ ¯̃Q(z) = m̃p(z)In,

with m̃p(z) unique solution to m̃p(z) =
(
−z + 1

n tr C
(
Ip + m̃p(z)C

)−1
)−1

. Moreover, if the empirical spectral
measure of C converges µC → ν as p → ∞, then µ 1

n XXT → µ, µ 1
n XTX → µ̃ where µ, µ̃ admitting Stieltjes transforms

m(z) and m̃(z) such that

m(z) =
1
c

m̃(z) +
1 − c

cz
, m̃(z) =

(
−z + c

∫ tν(dt)
1 + m̃(z)t

)−1
. (32)
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Figure: Histogram of the eigenvalues of 1
n XXT, X = C

1
2 Z ∈ Rp×n, [Z]ij ∼ N (0, 1), n = 3 000; for p = 300 and C having

spectral measure µC = 1
3 (δ1 + δ3 + δ7) (top) and µC = 1

3 (δ1 + δ3 + δ5) (bottle).
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RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
▶ change of intuition from small to large dimensional learning paradigm!
▶ better understanding of existing methods: why they work if they do, and what the issue is if they do not
▶ improved novel methods with performance guarantee!

▶ book “Random Matrix Methods for Machine Learning”
▶ by Romain Couillet and Zhenyu Liao
▶ Cambridge University Press, 2022
▶ a pre-production version of the book and exercise

solutions at https://zhenyu-liao.github.io/book/
▶ MATLAB and Python codes to reproduce all figures at

https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?
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