Random Matrix Theory and Its Applications in ML: Part 1 Random Matrix Theory
 Short Course @ Jiangsu Normal University

Zhenyu Liao

School of Electronic Information and Communications
Huazhong University of Science and Technology

January 11, 2024

Outline

(1) Introduction and Motivation

- Sample covariance matrix
- RMT for telecommunication
- RMT for signal processing
- RMT for machine learning
(2) Basic Ideas in RMT: From Random Scalars to Random Matrices
- LLN, CLT, from random scalars to random matrices
- Modern RMT using deterministic equivalents
(3) Fundamental Results in Random Matrix Theory
- Sample covariance matrix (again) and the Marčenko-Pastur law
- Some more random matrix models and results

Motivation: understanding large-dimensional machine learning

- Big Data era: exploit large n, p, N
- counterintuitive phenomena different from classical asymptotics statistics
- complete change of understanding of many methods in statistics, machine learning, signal processing, and wireless communications
- Random Matrix Theory (RMT) provides the tools!

Sample covariance matrix in the large n, p regime

- Problem: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ with $\mathbf{x}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
- Maximum likelihood sample covariance matrix with entry-wise convergence

$$
\hat{\mathbf{C}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \in \mathbb{R}^{p \times p}, \quad[\hat{\mathbf{C}}]_{i j} \rightarrow[\mathbf{C}]_{i j}
$$

almost surely as $n \rightarrow \infty$: optimal for $n \gg p$ (or, for p "small").

- In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C}=\mathbf{I}_{p}$ with $n<p$, $\hat{\mathbf{C}}$ has at least $p-n$ zero eigenvalues:

$$
\|\hat{\mathbf{C}}-\mathbf{C}\| \nrightarrow 0, \quad n, p \rightarrow \infty \Rightarrow \text { eigenvalue mismatch and not consistent! }
$$

- due to $\|\mathbf{A}\|_{\infty} \leq\|\mathbf{A}\| \leq p\|\mathbf{A}\|_{\infty}$ for $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\|\mathbf{A}\|_{\infty} \equiv \max _{i j}\left|\mathbf{A}_{i j}\right|$.

When is one in the random matrix regime? Almost always!
What about $n=100 p$? For $\mathbf{C}=\mathbf{I}_{p}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$: MP law

$$
\mu(d x)=\left(1-c^{-1}\right)^{+} \delta(x)+\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x
$$

where $E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}$ and $(x)^{+} \equiv \max (x, 0)$. Close match!

Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marc̆enko-Pastur law, $p=500, n=50000$.

- eigenvalues span on $\left[E_{-}=(1-\sqrt{\mathbf{c}})^{2}, E_{+}=(1+\sqrt{\mathbf{c}})^{2}\right]$.
- for $\mathbf{n}=\mathbf{1 0 0} \mathbf{p}$, on a range of $\pm \mathbf{2} \sqrt{\mathrm{c}}= \pm \mathbf{0 . 2}$ around the population eigenvalue $\mathbf{1}$.

Classical large- n asymptotic analysis mostly fails today

- large- n intuition, and many existing popular methods in biology, finance, signal processing, telecommunication, and machine learning, must fail even with $n=100 p$!
- RMT as a flexible and powerful tool to understand and recreate these methods
- in essence, "increasing complexity of the system models employed in above fields demand low complexity analysis"
- as motivating examples, how RMT can be applied to assess:
- telecommunication: code division multiple access (CDMA) technology
- signal processing: generalized likelihood ratio test (GLRT)
- machine learning: principle component analysis (PCA), and kernel spectral clustering

Application to telecom: performance analysis of CDMA via RMT

- CDMA: code division multiple access, key technology in 3G
- Idea: to increase max number of users, and dynamically balancing the quality of service to each terminal
- each user is allocated a (long) spreading code orthogonal to the other users' codes
- all users can simultaneously receive data while experiencing a limited amount of interference from concurrent communications, due to code orthogonality
- codes not fully orthogonal, more users, more interference and less quality of service
- Question: how to evaluate the capacity (max achievable transmission data rate) of CDMA network? (which clearly depends on pre-coding strategy)

Orthogonal CDMA versus TDMA

- for orthogonal CDMA, under some commonly used technical assumptions, capacity given by

$$
\begin{equation*}
C_{\text {orth }}\left(\sigma^{2}\right)=\frac{1}{n} \log \operatorname{det}\left(\mathbf{I}_{n}+\frac{1}{\sigma^{2}} \mathbf{W} \mathbf{G G}^{\mathrm{H}} \mathbf{W}^{\mathbf{H}}\right) \tag{1}
\end{equation*}
$$

with noise power $\sigma^{2}, \mathbf{W} \in \mathbb{C}^{n \times n}$ the orthogonal CDMA codes (\mathbf{W} unitary), and $\mathbf{G} \equiv \operatorname{diag}\left\{g_{i}\right\}_{i=1}^{n}$ represents channel gains of the users.

- Note

$$
\begin{equation*}
C_{\mathrm{orth}}\left(\sigma^{2}\right)=\frac{1}{n} \log \operatorname{det}\left(\mathbf{I}_{n}+\frac{1}{\sigma^{2}} \mathbf{G} \mathbf{G}^{\mathrm{H}}\right)=\frac{1}{n} \sum_{i=1}^{n} \log \left(1+\frac{\left|g_{i}\right|^{2}}{\sigma^{2}}\right)=C_{\mathrm{TDMA}}\left(\sigma^{2}\right) \tag{2}
\end{equation*}
$$

justifies the equivalence between TDMA (for 2G) and orthogonal CDMA rate performance.

Random versus orthogonal CDMA

- however, orthogonality can be computationally demanding: random CDMA with random i.i.d. codes,

$$
\begin{equation*}
C_{\text {rand }}\left(\sigma^{2}\right)=\frac{1}{n} \log \operatorname{det}\left(\mathbf{I}_{n}+\frac{1}{\sigma^{2}} \mathbf{X G G}{ }^{H} \mathbf{X}^{\mathbf{H}}\right), \tag{3}
\end{equation*}
$$

for $\mathbf{X} \in \mathbb{C}^{n \times n}$ the users' random codes.

- from RMT perspective, denote μ the empirical spectral measure of XGG $^{H} \mathbf{X}^{H}$, then $C_{\text {rand }}\left(\sigma^{2}\right)=\int \log \left(1+t / \sigma^{2}\right) \mu(d t)$: known as linear spectral statistics (LSS) of $\mathbf{X G G}{ }^{\mathbf{H}} \mathbf{X}^{\mathbf{H}}$
- Question: $C_{\text {rand }}$ as a function of gains \mathbf{G} and (distribution of) codes \mathbf{X} ?
- (first?) answered by Shami, Tse, and Verdú in [TV00; VS99];
- however capacity expressions not achievable in practice, due to complicated and nonlinear processing
- if only linear pre-coders and/or decoders are used, optimal solution:
- frequency flat channels [TH99]: D.N.C. Tse and S.V. Hanly. "Linear multiuser receivers: effective interference, effective bandwidth and user capacity". In: IEEE Transactions on Information Theory 45.2 (1999), pp. 641-657
- frequency selective channels [ET00]: J. Evans and D.N.C. Tse. "Large system performance of linear multiuser receivers in multipath fading channels". In: IEEE Transactions on Information Theory 46.6 (2000), pp. 2059-2078
- reduced-rank LMMSE decoders [LTV04]: Linbo Li, Antonia M. Tulino, and Sergio Verdú. "Design of Reduced-Rank MMSE Multiuser Detectors Using Random Matrix Methods". In: IEEE Transactions on Information Theory 50.6 (2004), pp. 986-1008
- etc.

Signal sensing using multi-dimensional sensor arrays

Motivation:

- Shannon: to achieve high rate of information transfer, increasing the transmission bandwidth is largely preferred over increasing the power
- high rate communications with finite power budget, need frequency multiplexing
- cognitive radio: to communicate not by exploiting the over-used frequency domain, or by exploiting the over-used space domain, but by exploiting so-called spectrum holes, jointly in time, space, and frequency As such, a cognitive radio network (also called a secondary network)
- can help reuse the resources in a licensed (first) network
- but require constant awareness of the operations taking place in the licensed networks
- for example, via signal sensing/detection

Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$ with i.i.d. columns $\mathbf{x}_{i} \in \mathbb{R}^{p}$ received by array of p sensors, signal decision as the following binary hypothesis test:

$$
\mathbf{X}= \begin{cases}\sigma \mathbf{Z}, & \mathcal{H}_{0} \\ \mathbf{a s}^{\top}+\sigma \mathbf{Z}, & \mathcal{H}_{1}\end{cases}
$$

where $\mathbf{Z}=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right] \in \mathbb{R}^{p \times n}, \mathbf{z}_{i} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{p}\right), \mathbf{a} \in \mathbb{R}^{p}$ deterministic of unit norm $\|\mathbf{a}\|=1$, signal $\mathbf{s}=\left[s_{1}, \ldots, s_{n}\right]^{\top} \in \mathbb{R}^{n}$ with s_{i} i.i.d. random, and $\sigma>0$. Denote $c=p / n>0$.

- observation of either zero-mean Gaussian noise $\sigma \mathbf{z}_{i}$ of power σ^{2}, or deterministic information vector a modulated by an added scalar (random) signal s_{i} (e.g., ± 1).
- If a, σ, and statistics of s_{i} are known, the decision-optimal Neyman-Pearson () test:

$$
\begin{equation*}
\frac{\mathbb{P}\left(\mathbf{X} \mid \mathcal{H}_{1}\right)}{\mathbb{P}\left(\mathbf{X} \mid \mathcal{H}_{0}\right)} \underset{\mathcal{H}_{0}}{\mathcal{H}_{1}} \alpha \tag{4}
\end{equation*}
$$

for some $\alpha>0$ controlling the Type I and II error rates.

Hypothesis testing via GLRT

However,

- in practice, we do not know σ, nor the information vector $\mathbf{a} \in \mathbb{R}^{p}$ (to be recovered)
- in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

$$
\frac{\sup _{\sigma, \mathbf{a}} \mathbb{P}\left(\mathbf{X} \mid \sigma, \mathbf{a}, \mathcal{H}_{1}\right)}{\sup _{\sigma, \mathbf{a}} \mathbb{P}\left(\mathbf{X} \mid \sigma, \mathcal{H}_{0}\right)} \underset{\mathcal{H}_{0}}{\stackrel{\mathcal{H}_{1}}{\gtrless}} \alpha
$$

- Gaussian noise and signal s_{i}, GLRT has an explicit expression as a monotonous increasing function of $\left\|\mathbf{X} \mathbf{X}^{\top}\right\| / \operatorname{tr}\left(\mathbf{X} \mathbf{X}^{\top}\right)$, test equivalent to, for some known f,

$$
T_{p} \equiv \frac{\left\|\mathbf{X} \mathbf{X}^{\top}\right\|}{\operatorname{tr}\left(\mathbf{X X}^{\top}\right)} \underset{\mathcal{H}_{0}}{\stackrel{\mathcal{H}_{1}}{\gtrless}} f(\alpha) .
$$

- to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM $\frac{1}{n} \mathbf{X X}^{\top}$

Hypothesis testing in a signal-plus-noise model via GLRT

To set a maximum false alarm rate (or Type I error) of $r>0$ for large n, p, according to RMT, one must choose a threshold $f(\alpha)$ for T_{p} :

$$
\begin{equation*}
\mathbb{P}\left(T_{p} \geq f(\alpha)\right)=r \Leftrightarrow \mu_{\mathrm{TW}_{1}}\left(\left(-\infty, A_{p}\right]\right)=r, \quad A_{p}=\left(f(\alpha)-(1+\sqrt{c})^{2}\right)(1+\sqrt{c})^{-\frac{4}{3}} c^{\frac{1}{6}} n^{\frac{2}{3}} \tag{5}
\end{equation*}
$$

with $\mu_{\mathrm{TW}_{1}}$ the Tracy-Widom distribution in RMT.

Figure: Comparison between empirical false alarm rates and $1-\mathrm{TW}_{1}\left(A_{p}\right)$ for A_{p} of the form in (5), as a function of the threshold $f(\alpha) \in\left[(1+\sqrt{c})^{2}-5 n^{-2 / 3},(1+\sqrt{c})^{2}+5 n^{-2 / 3}\right]$, for $p=256, n=1024$ and $\sigma=1$.

"Curse of dimensionality": loss of relevance of Euclidean distance

- Binary Gaussian mixture classification $\mathbf{x} \in \mathbb{R}^{p}$:

$$
\mathcal{C}_{1}: \mathbf{x} \sim \mathcal{N}\left(\mu_{1}, \mathbf{C}_{1}\right), \text { versus } \mathcal{C}_{2}: \mathbf{x} \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}, \mathbf{C}_{2}\right)
$$

- Neyman-Pearson test: classification is possible only when

$$
\left\|\mu_{1}-\mu_{2}\right\| \geq C_{\mu}, \text { or }\left\|\mathbf{C}_{1}-\mathbf{C}_{2}\right\| \geq C_{\mathbf{C}} \cdot p^{-1 / 2}
$$

for some constants $C_{\mu}, C_{\mathbf{C}}>0$ [CLM18].

- In this non-trivial setting, for $\mathbf{x}_{i} \in \mathcal{C}_{a}, \mathbf{x}_{j} \in \mathcal{C}_{b}$:

$$
\max _{1 \leq i \neq j \leq n}\left\{\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}-\frac{2}{p} \operatorname{tr} \mathbf{C}^{\circ}\right\} \xrightarrow{\text { a.s. }} 0
$$

as $n, p \rightarrow \infty$ (i.e., $n \sim p$), for $\mathbf{C}^{\circ} \equiv \frac{1}{2}\left(\mathbf{C}_{1}+\mathbf{C}_{2}\right)$, regardless of the classes $\mathcal{C}_{a}, \mathcal{C}_{b}$!

[^0]Loss of relevance of Euclidean distance: visual representation

Figure: Visual representation of classification in (left) small and (right) large dimensions.
\Rightarrow Direct consequence to various distance-based machine learning methods (e.g., kernel spectral clustering)!

Reminder on kernel spectral clustering

Two-step classification of n data points with distance kernel $\mathbf{K} \equiv\left\{f\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / p\right)\right\}_{i, j=1}^{n}$:

Reminder on kernel spectral clustering

$\Downarrow K$-dimensional representation \Downarrow

Eig. 1
\Downarrow
EM or k-means clustering

Cluster Gaussian data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbf{R}^{p}$ into \mathcal{C}_{1} or \mathcal{C}_{2}, with second top eigenvectors \mathbf{v}_{2} of heat kernel $\mathbf{K}_{i j}=\exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 p\right)$, small and large dimensional data.
(a) $p=5, n=500$
(b) $p=250, n=500$

Kernel matrices for large dimensional real-world data
(a) MNIST

(b) Fashion-MNIST

A RMT viewpoint of large kernel matrices

- "local" linearization of nonlinear kernel matrices in large dimensions, e.g., Gaussian kernel matrix $\mathbf{K}_{i j}=\exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 p\right)$ with $\mathbf{C}_{1}=\mathbf{C}_{2}=\mathbf{I}_{p}$ (e.g., $\mathcal{C}_{1}: \mathbf{x}_{i}=\mu_{1}+\mathbf{z}_{i}$ versus $\left.\mathcal{C}_{2}: \mathbf{x}_{j}=\mu_{2}+\mathbf{z}_{j}\right)$ so that

$$
\begin{equation*}
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / p \xrightarrow{\text { a.s. }} 2 \text {, and } \mathbf{K}=\exp \left(-\frac{2}{2}\right)\left(\mathbf{1}_{n} \mathbf{1}_{n}^{\top}+\frac{1}{p} \mathbf{Z}^{\top} \mathbf{Z}\right)+g\left(\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right\|\right) \frac{1}{p} \mathbf{j j}^{\top}+*+o_{\|\cdot\|} \tag{1}
\end{equation*}
$$

with Gaussian $\mathbf{Z}=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right] \in \mathbb{R}^{p \times n}$ and class-information $\mathbf{j}=\left[\mathbf{1}_{n / 2} ;-\mathbf{1}_{n / 2}\right]$,

- accumulated effect of small "hidden" statistical information ($\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right\|$ in this case)

A RMT viewpoint of large kernel matrices

Therefore

- entry-wise:

$$
\mathbf{K}_{i j}=\exp (-1)(1+\underbrace{\frac{1}{p} \mathbf{z}_{i}^{\top} \mathbf{z}_{j}}_{O\left(p^{-1 / 2}\right)}) \pm \underbrace{\frac{1}{p^{2}} g\left(\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right\|\right)}_{O\left(p^{-1}\right)}+* \text {, so that } \frac{1}{p^{\prime}} g\left(\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right\|\right) \ll \frac{1}{p} \mathbf{z}_{i}^{\top} \mathbf{z}_{j}
$$

- spectrum-wise:
$-\left\|\mathbf{K}-\exp (-1) \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right\| \nrightarrow 0 ;$
$-\left\|\frac{1}{p} \mathbf{Z}^{\top} \mathbf{Z}\right\|=O(1)$ and $\left\|g\left(\left\|\boldsymbol{\mu}_{1}-\mu_{2}\right\|\right) \frac{1}{p} \mathbf{j j}^{\mathbf{\top}}\right\|=O(1)$!
- Same phenomenon as the sample covariance example: $[\hat{\mathbf{C}}-\mathbf{C}]_{i j} \rightarrow 0 \nRightarrow\|\hat{\mathbf{C}}-\mathbf{C}\| \rightarrow 0$!
\Rightarrow With RMT, we understand kernel spectral clustering for large dimensional data!

Some more numerical results

5041

(a) MNIST

(b) Fashion-MNIST

LLN and CLT: recap

- (Strong) law of large numbers (LLN): for a sequence of i.i.d. random variables x_{1}, \ldots, x_{p} with the same expectation $\mathbb{E}\left[x_{i}\right]=\mu$, we have

$$
\begin{equation*}
\frac{1}{p} \sum_{i=1}^{p} x_{i} \rightarrow \mu \tag{6}
\end{equation*}
$$

almost surely as $p \rightarrow \infty$.

- Central limit theorem (CLT, Lindeberg-Lévy tyep): for a sequence of i.i.d. random variables x_{1}, \ldots, x_{p} with the same expectation $\mathbb{E}\left[x_{i}\right]=\mu$ and variance $\operatorname{Var}\left[x_{i}\right]=\sigma^{2}<\infty$, we have

$$
\begin{equation*}
\sqrt{\bar{p}}\left(\frac{1}{p} \sum_{i=1}^{p}\left(x_{i}-\mu\right)\right) \rightarrow \mathcal{N}\left(0, \sigma^{2}\right) \tag{7}
\end{equation*}
$$

in distribution as $p \rightarrow \infty$.

OK with LLN and CLT, so what?

Different view of LLN and CLT: large-dimensional deterministic behavior and fluctuation.

Single scalar random variables

- Scalar random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
- x in general not expected to establish some kind of "close-to-deterministic" behavior.
- True for a single observation, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables

Consider a set of size p i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top} \in \mathbb{R}^{p}$, with $\mathbb{E}\left[x_{i}\right]=\mu, \operatorname{Var}\left[x_{i}\right]=1, i \in\{1, \ldots, p\}$.

- as p independent scalar random variables $x \in \mathbb{R}$; or
- as a single realization of a random vector $\mathbf{x} \in \mathbb{R}^{p}$, having independent entries.

OK with LLN and CLT, so what?

(i) Scalar: nothing more can be said about each individual random variable:

- inappropriate to predict the behavior of x_{i} with any deterministic value
- in general incorrect to say "the random x_{i} is close to $\mu=\mathbb{E}\left[x_{i}\right]$ ", since, for x_{i} with $\mathbb{E}[x]=\mu$ and $\operatorname{Var}[x]=1$, by Chebyshev's inequality.

$$
\begin{equation*}
\mathbb{P}(|x-\mu| \geq t) \leq t^{-2}, \quad \forall t>0 . \tag{8}
\end{equation*}
$$

- random fluctuation $x_{i}-\mathbb{E}\left[x_{i}\right]$ can be as large as $\mu=\mathbb{E}\left[x_{i}\right]$.
(ii) Vector: a different picture: single realization of random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$.
- cannot say anything in general about each individual vector \mathbf{x}.
- however, if we are interested in only the (scalar and linear) observations of the random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$ (with $\mathbb{E}[\mathbf{x}]=\mu \mathbf{1}_{p} / \sqrt{p}$), we known much more:

$$
\begin{equation*}
\frac{1}{p} \mathbf{x}^{\top} \mathbf{1}_{p} \xrightarrow{\text { a.s. }} \mathbb{E}\left[x_{i}\right]=\mu, \quad \frac{1}{\sqrt{p}}\left(\mathbf{x}-\mu \mathbf{1}_{p}\right)^{\top} \mathbf{1}_{p} \xrightarrow{d} \mathcal{N}(0,1), \quad p \rightarrow \infty . \tag{9}
\end{equation*}
$$

OK with LLN and CLT, so what?

This is

$$
\frac{1}{p} \mathbf{x}^{\top} \mathbf{1}_{p} \simeq \underbrace{\mu}_{O(1)}+\underbrace{\frac{1}{\sqrt{p}} \mathcal{N}(0,1)}_{O\left(p^{-1 / 2}\right)}
$$

- a large dimensional random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$, when "observed" via the linear map $\mathbf{1}_{p}^{\top}(\cdot) / \sqrt{p}$ of unit Euclidean norm (i.e., of "scale" independent of p);
- leads to \mathbf{x} (when "observed" in this way) exhibiting the joint behavior of:
(i) approximately, in its first order, a deterministic quantity μ; and
(ii) in its second-order, a universal Gaussian fluctuation that is strongly concentrated and independent of the specific law of x_{i}.

Figure: (Left) A "visualization" of independent realizations of $\mathbf{x} \sim \mathcal{N}\left(\mu \mathbf{1}_{n}, \mathbf{I}_{n}\right)$ with $n=100$. (Right) Concentration behavior of scalar observations $f(\mathbf{x})=\mathbf{x}^{\boldsymbol{\top}} \mathbf{1}_{n} / n$.

What about random matrices?

- As in the case of (high-dimensional) random vectors, we should NOT expect random matrices themselves converge in any useful sense;
- e.g., there does NOT exist deterministic matrix $\overline{\mathbf{X}}$ so that the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$

$$
\begin{equation*}
\|\mathbf{X}-\overline{\mathbf{X}}\| \rightarrow 0 \tag{10}
\end{equation*}
$$

in spectral norm as $p \rightarrow \infty$ (in probability or almost surely);

- nonetheless, "properly scaled" scalar observations $f: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$ of \mathbf{X} DO converge, and there exists deterministic $\overline{\mathbf{X}}$ such that

$$
\begin{equation*}
f(\mathbf{X})-f(\overline{\mathbf{X}}) \rightarrow 0 \tag{11}
\end{equation*}
$$

as $p \rightarrow \infty$. We say such $\overline{\mathbf{X}}$ is a deterministic equivalent of the random matrix \mathbf{X}.

- observation f of interest in RMT include (empirical) eigenvalue measure, linear spectral statistics (LSS), specific eigenvalue location, projection of eigenvectors, etc.

Deterministic equivalent for RMT: intuition and a few words on the proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?

- while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \rightarrow \infty$;
- the random $f(\mathbf{X})$, if concentrates, must concentrated around its expectation $\mathbb{E}[f(\mathbf{X})]$;
- in fact, as $p \rightarrow \infty$, more randomness in $\mathbf{X} \Rightarrow \operatorname{Var}[f(\mathbf{X})] \rightarrow 0$, e.g., $\operatorname{Var}[f(\mathbf{X})]=p^{-4}$;
- if the functional $f: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$ is linear, then $\mathbb{E}[f(\mathbf{X})]=f(\mathbb{E}[\mathbf{X}])$.
- So, to propose a DE, it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:
- however, $\mathbb{E}[\mathbf{X}]$ may be hardly accessible (due to integration)
- find a simple and more accessible deterministic $\overline{\mathbf{X}}$ with $\overline{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\overline{\mathbf{X}}-\mathbb{E}[\mathbf{X}]\| \rightarrow 0$ as $p \rightarrow \infty$; and
- show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \rightarrow \infty$.
- We say $\overline{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \overline{\mathbf{X}}$.

Fundamental Objects

Core interest of RMT: evaluation of eigenvalues and eigenvectors of a random matrix.

Definition (Resolvent)

For a symmetric/Hermitian matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, the resolvent $\mathbf{Q}_{\mathbf{x}}(z)$ of \mathbf{X} is defined, for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{X}, as $\mathbf{Q} \mathbf{X}(z) \equiv\left(\mathbf{X}-z \mathbf{I}_{p}\right)^{-1}$.

Definition (Empirical spectral measure)

For symmetric $\mathbf{X} \in \mathbb{R}^{p \times p}$, the empirical spectral measure/distribution (ESD) $\mu_{\mathbf{X}}$ of \mathbf{X} is defined as the normalized counting measure of the eigenvalues $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ of \mathbf{X}, i.e., $\mu_{\mathbf{X}} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(\mathbf{X})}$, where δ_{x} represents the Dirac measure at x.

Resolvent as the core object

Objects of interest	Functionals of resolvent $\mathbf{Q}_{\mathbf{X}}(z)$
Empirical spectral measure $\mu_{\mathbf{X}}$ of \mathbf{X}	Stieltjes transform $m_{\mu_{\mathbf{X}}}(z)=\frac{1}{p} \operatorname{tr} \mathbf{Q} \mathbf{X}(z)$
Linear spectral statistics (LSS): $f(\mathbf{X}) \equiv \frac{1}{p} \sum_{i} f\left(\lambda_{i}(\mathbf{X})\right)$	Integration of trace of $\mathbf{Q}_{\mathbf{X}}(z):-\frac{1}{2 \pi i} \oint_{\Gamma} f(z) \frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z) d z$ (via Cauchy's integral)
Projections of eigenvectors $\mathbf{v}^{\top} \mathbf{u}(\mathbf{X})$ and $\mathbf{v}^{\boldsymbol{\top}} \mathbf{U}(\mathbf{X})$ onto some given vector $\mathbf{v} \in \mathbb{R}^{p}$	Bilinear form $\mathbf{v}^{\top} \mathbf{Q} \mathbf{X}(z) \mathbf{v}$ of $\mathbf{Q}_{\mathbf{x}}$
General matrix functional $F(\mathbf{X})=\sum_{i} f\left(\lambda_{i}(\mathbf{X})\right) \mathbf{v}_{1}^{\top} \mathbf{u}_{i}(\mathbf{X}) \mathbf{u}_{i}(\mathbf{X})^{\top} \mathbf{v}_{2}$ involving both eigenvalues and eigenvectors	Integration of bilinear form of $\mathbf{Q}_{\mathbf{X}}(z)$: $-\frac{1}{2 \pi i} \oint_{\Gamma} f(z) \mathbf{v}_{1}^{\top} \mathbf{Q}_{\mathbf{x}}(z) \mathbf{v}_{2} d z$

Use resolvent for eigenvalue distribution

Definition (Resolvent)

For a symmetric/Hermitian matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, the resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ of \mathbf{X} is defined, for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{X}, as $\mathbf{Q}_{\mathbf{X}}(z) \equiv\left(\mathbf{X}-z \mathbf{I}_{p}\right)^{-1}$.

Let $\mathbf{X}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\boldsymbol{\top}}$ be the spectral decomposition of \mathbf{X}, with $\boldsymbol{\Lambda}=\left\{\lambda_{i}(\mathbf{X})\right\}_{i=1}^{p}$ eigenvalues and $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right] \in \mathbb{R}^{p \times p}$ the associated eigenvectors. Then,

$$
\begin{equation*}
\mathbf{Q}(z)=\mathbf{U}\left(\Lambda-z \mathbf{I}_{p}\right)^{-1} \mathbf{U}^{\top}=\sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\top}}{\lambda_{i}(\mathbf{X})-z} \tag{12}
\end{equation*}
$$

Thus, for $\mu_{\mathbf{X}} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(\mathbf{X})}$ the ESD of \mathbf{X},

$$
\begin{equation*}
\frac{1}{p} \operatorname{tr} \mathbf{Q}(z)=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}(\mathbf{X})-z}=\int \frac{\mu_{\mathbf{X}}(d t)}{t-z} \tag{13}
\end{equation*}
$$

The Stieltjes transform

Definition (Stieltjes transform)

For a real probability measure μ with support $\operatorname{supp}(\mu)$, the Stieltjes transform $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
\begin{equation*}
m_{\mu}(z) \equiv \int \frac{\mu(d t)}{t-z} \tag{14}
\end{equation*}
$$

For m_{μ} the Stieltjes transform of a probability measure μ, then

- m_{μ} is complex analytic on its domain of definition $C \backslash \operatorname{supp}(\mu)$;
- it is bounded $\left|m_{\mu}(z)\right| \leq 1 / \operatorname{dist}(z, \operatorname{supp}(\mu))$;
- it satisfies $m_{\mu}(z)>0$ for $z<\inf \operatorname{supp}(\mu), m_{\mu}(z)<0$ for $z>\sup \operatorname{supp}(\mu)$ and $\Im[z] \cdot \Im\left[m_{\mu}(z)\right]>0$ if $z \in \mathbb{C} \backslash \mathbb{R}$; and
- it is an increasing function on all connected components of its restriction to $\mathbb{R} \backslash \operatorname{supp}(\mu)$ (since $\left.m_{\mu}^{\prime}(x)=\int(t-x)^{-2} \mu(d t)>0\right)$ with $\lim _{x \rightarrow \pm \infty} m_{\mu}(x)=0$ if $\operatorname{supp}(\mu)$ is bounded.

The inverse Stieltjes transform

Definition (Inverse Stieltjes transform)

For a, b continuity points of the probability measure μ, we have

$$
\begin{equation*}
\mu([a, b])=\frac{1}{\pi} \lim _{y \downarrow 0} \int_{a}^{b} \Im\left[m_{\mu}(x+\imath y)\right] d x \tag{15}
\end{equation*}
$$

Besides, if μ admits a density f at x (i.e., $\mu(x)$ is differentiable in a neighborhood of x and $\left.\lim _{\epsilon \rightarrow 0}(2 \epsilon)^{-1} \mu([x-\epsilon, x+\epsilon])=f(x)\right)$,

$$
\begin{equation*}
f(x)=\frac{1}{\pi} \lim _{y \downarrow 0} \Im\left[m_{\mu}(x+\imath y)\right] \tag{16}
\end{equation*}
$$

Workflow: random matrix \mathbf{X} of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and ST $\frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)=m_{\mathbf{X}}(z)$
\Rightarrow study the limiting ST $m_{\mathbf{X}}(z) \rightarrow m(z) \Rightarrow$ inverse ST to get limiting $\mu_{\mathbf{X}} \rightarrow \mu$.

Use the resolvent for eigenvalue functionals

Definition (Linear Spectral Statistic, LSS)

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, the linear spectral statistics (LSS) $f_{\mathbf{X}}$ of \mathbf{X} is defined as the averaged statistics of the eigenvalues $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ of \mathbf{X} via some function $f: \mathbb{R} \rightarrow \mathbb{R}$, that is

$$
\begin{equation*}
f(\mathbf{X})=\frac{1}{p} \sum_{i=1}^{p} f\left(\lambda_{i}(\mathbf{X})\right)=\int f(t) \mu_{\mathbf{X}}(d t), \tag{17}
\end{equation*}
$$

for $\mu_{\mathbf{X}}$ the ESD of \mathbf{X}.

Cauchy's integral formula

Theorem (Cauchy's integral formula)

For $\Gamma \subset \mathbb{C}$ a positively (i.e., counterclockwise) oriented simple closed curve and a complex function $f(z)$ analytic in a region containing Γ and its inside, then
(i) if $z_{0} \in \mathbb{C}$ is enclosed by $\Gamma, f\left(z_{0}\right)=-\frac{1}{2 \pi \imath} \oint_{\Gamma} \frac{f(z)}{z_{0}-z} d z$;
(ii) if not, $\frac{1}{2 \pi l} \oint_{\Gamma} \frac{f(z)}{z_{0}-z} d z=0$.

LSS via contour integration: For $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ eigenvalues of a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, some function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is complex analytic in a compact neighborhood of the support $\operatorname{supp}\left(\mu_{\mathbf{X}}\right)$ (of the ESD $\mu_{\mathbf{X}}$ of $\left.\mathbf{X}\right)$, then

$$
\begin{equation*}
f(\mathbf{X})=\int f(t) \mu_{\mathbf{X}}(d t)=-\int \frac{1}{2 \pi \imath} \oint_{\Gamma} \frac{f(z) d z}{t-z} \mu_{\mathbf{X}}(d t)=-\frac{1}{2 \pi \imath} \oint_{\Gamma} f(z) m_{\mu_{\mathbf{X}}}(z) d z \tag{18}
\end{equation*}
$$

for any contour Γ that encloses $\operatorname{supp}\left(\mu_{\mathbf{X}}\right)$, i.e., all the eigenvalues $\lambda_{i}(\mathbf{X})$.

LSS to retrieve the inverse Stieltjes transform formula

$$
\begin{aligned}
& \frac{1}{p_{\lambda_{i}}(\mathbf{X}) \in[a, b]} \delta_{\lambda_{i}(\mathbf{X})}=-\frac{1}{2 \pi l} \oint_{\Gamma} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{x}}}(z) d z \\
& =-\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}-1 \varepsilon_{y}}^{b+\varepsilon_{x}-1 \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{x}}}(z) d z-\frac{1}{2 \pi l} \int_{b+\varepsilon_{x}+1 \varepsilon_{y}}^{a-\varepsilon_{x}+1 \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu \mathbf{x}}(z) d z \\
& -\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}+1 \varepsilon_{y}}^{a--\varepsilon_{y}-1 \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{x}}}(z) d z-\frac{1}{2 \pi \imath} \int_{b+\varepsilon_{x}-1 \varepsilon_{y}}^{b+\varepsilon_{x}+\varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{x}}}(z) d z .
\end{aligned}
$$

- Since $\Re[m(x+\imath y)]=\Re[m(x-\imath y)], \Im[m(x+\imath y)]=-\Im[m(x-\imath y)]$;
- we have $\int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}} m_{\mu_{\mathbf{x}}}\left(x-\imath \varepsilon_{y}\right) d x+\int_{b+\varepsilon_{x}}^{a-\varepsilon_{x}} m_{\mu_{\mathbf{x}}}\left(x+\imath \varepsilon_{y}\right) d x=-2 \lambda \int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}} \Im\left[m_{\mu_{\mathbf{x}}}\left(x+\imath \varepsilon_{y}\right)\right] d x$;
- and consequently $\mu([a, b])=\frac{1}{p} \sum_{\lambda_{i}(\mathbf{X}) \in[a, b]} \lambda_{i}(\mathbf{X})=\frac{1}{\pi} \lim _{\varepsilon_{y} \downarrow 0} \int_{a}^{b} \Im\left[m_{\mu \mathbf{x}}\left(x+\imath \varepsilon_{y}\right)\right] d x$.

Figure: Illustration of a rectangular contour Γ and support of μ_{X} on the complex plane.

Use resolvent for eigenvectors and eigenspace

Resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ contains eigenvector information about \mathbf{X}, recall

$$
\mathbf{Q}_{\mathbf{X}}(z)=\sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\top}}{\lambda_{i}(\mathbf{X})-z}
$$

and that we have direct access to the i-th eigenvector \mathbf{u}_{i} of \mathbf{X} through

$$
\begin{equation*}
\mathbf{u}_{i} \mathbf{u}_{i}^{\top}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}(\mathbf{x})}} \mathbf{Q}_{\mathbf{X}}(z) d z \tag{19}
\end{equation*}
$$

for $\Gamma_{\lambda_{i}(\mathbf{X})}$ a contour circling around $\lambda_{i}(\mathbf{X})$ only.

- seen as a matrix-version of LSS formula
- with the Stieltjes transform $m_{\mu_{\mathbf{X}}}(z)$ replaced by the associated resolvent $\mathbf{Q}_{\mathbf{X}}(z)$

Spectral functionals via resolvent

Definition (Matrix spectral functionals)

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, we say $F: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}^{p \times p}$ is a (matrix) spectral functional of \mathbf{X},

$$
\begin{equation*}
F(\mathbf{X})=\sum_{i \in \mathcal{I} \subseteq\{1, \ldots, p\}} f\left(\lambda_{i}(\mathbf{X})\right) \mathbf{u}_{i} \mathbf{u}_{i}^{\top}, \quad \mathbf{X}=\sum_{i=1}^{p} \lambda_{i}(\mathbf{X}) \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \tag{20}
\end{equation*}
$$

Spectral functional via contour integration: For $\mathbf{X} \in \mathbb{R}^{p \times p}$, resolvent $\mathbf{Q}_{\mathbf{X}}(z)=\left(\mathbf{X}-z \mathbf{I}_{p}\right)^{-1}, z \in \mathbb{C}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ analytic in a neighborhood of the contour $\Gamma_{\mathcal{I}}$ that circles around the eigenvalues $\lambda_{i}(\mathbf{X})$ of \mathbf{X} with their indices in the set $\mathcal{I} \subseteq\{1, \ldots, p\}$,

$$
\begin{equation*}
F(\mathbf{X})=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\mathcal{I}}} f(z) \mathbf{Q}_{\mathbf{X}}(z) d z \tag{21}
\end{equation*}
$$

Example: eigenvector projection $\left(\mathbf{v}^{\top} \mathbf{u}_{i}\right)^{2}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}(\mathbf{X})}} \mathbf{v}^{\top} \mathbf{Q}_{\mathbf{X}}(z) \mathbf{v} d z$.

Sample covariance matrix in the large n, p regime

- Problem: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ with $\mathbf{x}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
- Maximum likelihood sample covariance matrix with entry-wise convergence

$$
\hat{\mathbf{C}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \in \mathbb{R}^{p \times p}, \quad[\hat{\mathbf{C}}]_{i j} \rightarrow[\mathbf{C}]_{i j}
$$

almost surely as $n \rightarrow \infty$: optimal for $n \gg p$ (or, for p "small").

- In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C}=\mathbf{I}_{p}$ with $n<p$, $\hat{\mathbf{C}}$ has at least $p-n$ zero eigenvalues:

$$
\|\hat{\mathbf{C}}-\mathbf{C}\| \nrightarrow 0, \quad n, p \rightarrow \infty \Rightarrow \text { eigenvalue mismatch and not consistent! }
$$

- due to $\|\mathbf{A}\|_{\infty} \leq\|\mathbf{A}\| \leq p\|\mathbf{A}\|_{\infty}$ for $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\|\mathbf{A}\|_{\infty} \equiv \max _{i j}\left|\mathbf{A}_{i j}\right|$.

When is one in the random matrix regime? Almost always!

What about $n=100 p$? For $\mathbf{C}=\mathbf{I}_{p}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$: MP law

$$
\mu(d x)=\left(1-c^{-1}\right)^{+} \delta(x)+\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x
$$

where $E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}$ and $(x)^{+} \equiv \max (x, 0)$. Close match!

Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marc̆enko-Pastur law, $p=500, n=50000$.

- eigenvalues span on $\left[E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}\right]$.
- for $n=100$ p, on a range of $\pm 2 \sqrt{c}= \pm 0.2$ around the population eigenvalue 1 .

Marčenko-Pastur law

Theorem (Marčenko-Pastur law)

Let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be a random matrix with i.i.d. entries of zero mean and unit variance. Denote $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ the resolvent of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$. Then, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$,

$$
\begin{equation*}
\mathbf{Q}(z) \leftrightarrow \overline{\mathbf{Q}}(z), \quad \overline{\mathbf{Q}}(z)=m(z) \mathbf{I}_{p}, \tag{22}
\end{equation*}
$$

with $m(z)$ the unique Stieltjes transform solution to

$$
\begin{equation*}
z c m^{2}(z)-(1-c-z) m(z)+1=0 . \tag{23}
\end{equation*}
$$

Moreover, the empirical spectral measure $\mu_{\frac{1}{n}} \mathbf{X X}$ 利 ${ }^{\frac{1}{n}} \mathbf{X X}^{\top}$ converges weakly to the probability measure μ

$$
\begin{equation*}
\mu(d x)=\left(1-c^{-1}\right)^{+} \delta_{0}(x)+\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x, \tag{24}
\end{equation*}
$$

where $E_{ \pm}=(1 \pm \sqrt{c})^{2}$ and $(x)^{+}=\max (0, x)$, known as the Marčenko-Pastur law.

Figure: Marčenko-Pastur distribution for different values of c.

Proof of Marc̆enko-Pastur law

Workflow: random matrix \mathbf{X} of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and $\mathrm{ST} \frac{1}{\bar{p}} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)=m_{\mathbf{X}}(z)$
\Rightarrow study the limiting ST $m_{\mathbf{X}}(z) \rightarrow m(z) \Rightarrow$ inverse ST to get limiting $\mu_{\mathbf{X}} \rightarrow \mu$.

Definition (Empirical Spectral Distribution, ESD)

For symmetric $\mathbf{X} \in \mathbb{R}^{p \times p}$, the empirical spectral distribution (ESD) $\mu_{\mathbf{X}}$ of \mathbf{X} is defined as the normalized counting measure of the eigenvalues $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ of \mathbf{X}, i.e., $\mu_{\mathbf{X}} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(\mathbf{X})}$, where δ_{x} represents the Dirac measure at x.

Definition (Stieltjes transform)

For a real probability measure μ with support $\operatorname{supp}(\mu)$, the Stieltjes transform $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
\begin{equation*}
m_{\mu}(z) \equiv \int \frac{\mu(d t)}{t-z} \tag{25}
\end{equation*}
$$

Heuristic proof of MP law via "leave-one-out" approach

- "guess" $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ such that $\mathbb{E}[\mathbf{Q}] \simeq \overline{\mathbf{Q}}$ and $\frac{1}{\bar{p}} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.
- for $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]$,

$$
\begin{aligned}
\mathbf{Q}(z)-\overline{\mathbf{Q}}(z) & =\mathbf{Q}(z)\left(\mathbf{F}(z)+z \mathbf{I}_{p}-\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}\right) \overline{\mathbf{Q}}(z) \\
& =\mathbf{Q}(z)\left(\mathbf{F}(z)+z \mathbf{I}_{p}-\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right) \overline{\mathbf{Q}}(z) .
\end{aligned}
$$

- for $\overline{\mathbf{Q}}(z) \leftrightarrow \mathbf{Q}(z)$ a DE for $\mathbf{Q}(z)$, look for $\frac{1}{p} \operatorname{tr}(\mathbf{Q}(z)-\overline{\mathbf{Q}}(z)) \rightarrow 0$,

$$
\begin{equation*}
\frac{1}{p} \operatorname{tr}\left(\mathbf{F}(z)+z \mathbf{I}_{p}\right) \overline{\mathbf{Q}}(z) \mathbf{Q}(z)-\frac{1}{n} \sum_{i=1}^{n} \frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i} \rightarrow 0 . \tag{26}
\end{equation*}
$$

- $\mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i} / p$ as a quadratic form close to a trace form independent of \mathbf{x}_{i}.
- cannot be applied directly as $\mathbf{Q}(z)$ depends on \mathbf{x}_{i}.

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ so that $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.

- use Sherman-Morrison to write $\mathbf{Q}(z) \mathbf{x}_{i}=\frac{\mathbf{Q}_{-i}(z) \mathbf{x}_{i}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}(z) \mathbf{x}_{i}}$,
- now $\mathbf{Q}_{-i}(z)=\left(\frac{1}{n} \sum_{j \neq i} \mathbf{x}_{j} \mathbf{x}_{j}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ is independent of \mathbf{x}_{i},
- quadratic form close to the trace:

$$
\begin{equation*}
\frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i}=\frac{\frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}_{-i}(z) \mathbf{x}_{i}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}(z) \mathbf{x}_{i}} \simeq \frac{\frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z) \mathbf{Q}_{-i}(z)}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}_{-i}(z)} \tag{27}
\end{equation*}
$$

- So $\frac{1}{p} \operatorname{tr}\left(\mathbf{F}(z)+z \mathbf{I}_{p}\right) \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \simeq \frac{\frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z) \mathbf{Q}(z)}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}(z)}$, and "guess" $\mathbf{F}(z) \simeq\left(-z+\frac{1}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}(z)}\right) \mathbf{I}_{p}$.
- self-consistent equation of limiting ST $m(z)$ as

$$
\begin{equation*}
\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq m(z)=\frac{1}{-z+\frac{1}{1+\frac{p}{n} \frac{1}{p} \operatorname{tr} \mathbf{Q}(z)}} \simeq \frac{1}{-z+\frac{1}{1+\frac{p}{n} m(z)}} \tag{28}
\end{equation*}
$$

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z) \frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.

- we have $\mathbf{F}(z)=\left(-z+\frac{1}{1+\frac{1}{n} \operatorname{tr} \overline{\mathbf{Q}}(z)}\right) \mathbf{I}_{p}$,
- and $\overline{\mathbf{Q}}(z)=m(z) \mathbf{I}_{p}$ with $m(z)$ unique Stieltjes transform solution to

$$
m(z)=\left(-z+\frac{1}{1+c m(z)}\right)^{-1}, \text { or } z c m^{2}(z)-(1-c-z) m(z)+1=0 .
$$

- has two solutions defined via the two values of the complex square root function (letting $z=\rho e^{t \theta}$ for $\rho \geq 0$ and $\left.\theta \in[0,2 \pi), \sqrt{z} \in\left\{ \pm \sqrt{\rho} e^{\imath \theta / 2}\right\}\right)$

$$
m(z)=\frac{1-c-z}{2 c z}+\frac{\sqrt{\left((1+\sqrt{c})^{2}-z\right)\left((1-\sqrt{c})^{2}-z\right)}}{2 c z}
$$

only one of which is such that $\Im[z] \Im[m(z)]>0$ by definition of Stieltjes transforms.

- apply inverse Stieltjes transform we conclude the proof.

Some thoughts on the "leave-one-out" proof

- in essence: propose $\overline{\mathbf{Q}}(z) \simeq \mathbb{E}[\mathbf{Q}(z)]$ (in spectral norm sense), but simple to evaluate (via a quadratic equation)
- quadratic form close to the trace: high-dimensional concentration (around the expectation), nothing more than LLN and concentration
- leave-one-out analysis of large-scale system: $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \mathbf{Q}_{-i}(z)$ for n, p large.
- low complexity analysis of large random system: joint behavior of p eigenvalues $\xrightarrow{\text { RMT }}$ a single deterministic (quadratic) equation
- These are the main intuitions and ingredients for almost everything in RMT and high-dimensional statistics!
- Side remark: another more systematic and convenient RMT proof approach: "Gaussian method," as the combination of Stein's lemma (Gaussian integration by parts), Nash-Poincare inequality, and interpolation from Gaussian to non-Gaussian, see [CL22, Section 2.2.2] for details.

Wigner semicircle law

Theorem (Wigner semicircle law)

Let $\mathbf{X} \in \mathbb{R}^{n \times n}$ be symmetric and such that the $\mathbf{X}_{i j} \in \mathbb{R}, j \geq i$, are independent zero mean and unit variance random variables. Then, for $\mathbf{Q}(z)=\left(\mathbf{X} / \sqrt{n}-z \mathbf{I}_{n}\right)^{-1}$, as $n \rightarrow \infty$,

$$
\begin{equation*}
\mathbf{Q}(z) \leftrightarrow \overline{\mathbf{Q}}(z), \quad \overline{\mathbf{Q}}(z)=m(z) \mathbf{I}_{n}, \tag{29}
\end{equation*}
$$

with $m(z)$ the unique ST solution to

$$
\begin{equation*}
m^{2}(z)+z m(z)+1=0 . \tag{30}
\end{equation*}
$$

The function $m(z)$ is the Stieltjes transform of the probability measure

$$
\begin{equation*}
\mu(d x)=\frac{1}{2 \pi} \sqrt{\left(4-x^{2}\right)^{+}} d x \tag{31}
\end{equation*}
$$

known as the Wigner semicircle law.

Figure: Histogram of the eigenvalues of \mathbf{X} / \sqrt{n} versus Wigner semicircle law, for standard Gaussian \mathbf{X} and $n=1000$.

Generalized sample covariance matrix matrix

Theorem (General sample covariance matrix)

Let $\mathbf{X}=\mathbf{C}^{\frac{1}{2}} \mathbf{Z} \in \mathbb{R}^{p \times n}$ with nonnegative definite $\mathbf{C} \in \mathbb{R}^{p \times p}, \mathbf{Z} \in \mathbb{R}^{p \times n}$ having independent zero mean and unit variance entries. Then, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, for $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ and $\tilde{\mathbf{Q}}(z)=\left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}-z \mathbf{I}_{n}\right)^{-1}$,

$$
\mathbf{Q}(z) \leftrightarrow \overline{\mathbf{Q}}(z)=-\frac{1}{z}\left(\mathbf{I}_{p}+\tilde{m}_{p}(z) \mathbf{C}\right)^{-1}, \quad \tilde{\mathbf{Q}}(z) \leftrightarrow \overline{\tilde{\mathbf{Q}}}(z)=\tilde{m}_{p}(z) \mathbf{I}_{n},
$$

with $\tilde{m}_{p}(z)$ unique solution to $\tilde{m}_{p}(z)=\left(-z+\frac{1}{n} \operatorname{tr} \mathbf{C}\left(\mathbf{I}_{p}+\tilde{m}_{p}(z) \mathbf{C}\right)^{-1}\right)^{-1}$. Moreover, if the empirical spectral measure of \mathbf{C} converges $\mu_{\mathbf{C}} \rightarrow v$ as $p \rightarrow \infty$, then $\mu_{\frac{1}{n}} \mathbf{X X} \mathbf{X}^{\boldsymbol{\top}} \rightarrow \mu, \mu_{\frac{1}{n}} \mathbf{X}^{\top} \mathbf{X} \rightarrow \tilde{\mu}$ where $\mu, \tilde{\mu}$ admitting Stieltjes transforms $m(z)$ and $\tilde{m}(z)$ such that

$$
\begin{equation*}
m(z)=\frac{1}{c} \tilde{m}(z)+\frac{1-c}{c z}, \quad \tilde{m}(z)=\left(-z+c \int \frac{t v(d t)}{1+\tilde{m}(z) t}\right)^{-1} . \tag{32}
\end{equation*}
$$

Figure: Histogram of the eigenvalues of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}, \mathbf{X}=\mathbf{C}^{\frac{1}{2}} \mathbf{Z} \in \mathbb{R}^{p \times n},[\mathbf{Z}]_{i j} \sim \mathcal{N}(0,1), n=3000$; for $p=300$ and \mathbf{C} having spectral measure $\mu_{\mathrm{C}}=\frac{1}{3}\left(\delta_{1}+\delta_{3}+\delta_{7}\right)$ (top) and $\mu_{\mathrm{C}}=\frac{1}{3}\left(\delta_{1}+\delta_{3}+\delta_{5}\right)$ (bottle).

RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:

- change of intuition from small to large dimensional learning paradigm!
- better understanding of existing methods: why they work if they do, and what the issue is if they do not
- improved novel methods with performance guarantee!

- book "Random Matrix Methods for Machine Learning"
- by Romain Couillet and Zhenyu Liao
- Cambridge University Press, 2022
- a pre-production version of the book and exercise solutions at https://zhenyu-liao.github.io/book/
- MATLAB and Python codes to reproduce all figures at https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q \& A?

[^0]: ${ }^{0}$ Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. "Classification asymptotics in the random matrix regime". In: 201826 th European Signal Processing Conference (EUSIPCO). IEEE. 2018, pp. 1875-1879

