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Schedule of the mini-course

@ Monday, July 1st (today): Motivation and Mathematical Background (concentration, resolvent-based
approach to eigenspectral analysis, etc.)

@ Tuesday, July 2nd (afternoon): Four Ways to Characterize Sample Covariance Matrices and Some More
Random Matrix Models (Wigner semicircle law, generalized sample covariance model, and separable
covariance model)

© Wednesday, July 3rd: Linear Master Theorem (information-plus-noise and additive spiked models) and
RMT for Linear Machine Learning (Low-rank approximation, classification, and linear least squares)

@ Thursday, July 4th: Linearization of Nonlinear Models (Taylor expansion and Orthogonal Polynomial)
and Nonlinear ML models via linearization: Kernel Methods in the Proportional Regime
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Outline

@ Introduction and Motivation
@ Sample covariance matrix
@ RMT for machine learning: kernel spectral clustering

© Mathematical Background
@ From random scalars to random vectors, LLN, and CLT
@ A quick recap on linear algebra
@ A unified spectral analysis approach via the resolvent
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Motivation: understanding large-dimensional machine learning

Big Data
X1,--.,X; € RP

Big Model
of size N

Z.Liao (EIC, HUST)

> Big Data era: exploit large n,p, N
» counterintuitive phenomena different from classical
asymptotics statistics

» complete change of understanding of many methods
in statistics, machine learning, signal processing, and
wireless communications

» Random Matrix Theory (RMT) provides the tools!
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Sample covariance matrix in the large 1, p regime

> Problem: estimate covariance C € RP*? from n data samples x, . .., X, with x; ~ N(0,C),

» Maximum likelihood sample covariance matrix with entry-wise convergence

C=

S
,M:

I
—_

xx; € R, [Cl; — [Cy

1

almost surely as n — oco: optimal for n >> p (or, for p “small”).

> In the regime 1 ~ p, conventional wisdom breaks down: for C = I, withn < p, C has at least p — 1 zero
eigenvalues:

[C—C| A0, np-—oo| = eigenvalue mismatch and not consistent!

> due to loss of matrix norm “equivalence”: ||Al|max < [|A|| < p||A|lmax for A € RP*P and
[A[[max = max;; ‘Aij‘-
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When is one in the random matrix regime? Almost always!

What about n = 100p? For C = I, as n,p — co with p/n — ¢ € (0,00): MP law
V= E) (B —x)*dx

pldx) = (1= ) o) + o

where E_ = (1 —+/c)?, E; = (14 +/c)? and (x)T = max(x,0). Close match!

T
I Empirical eigenvalues of €
s Mar&enko-Pastur law

4
e Population eigenvalue

Density

Figure: Eigenvalue distribution of € versus Mar&enko-Pastur law, p = 500, n = 50 000.

July 1, 2024

> eigenvalues spanon [E_ = (1—+/c)%, E+ = (1++/c)?].
» for n = 100p, on a range of +2./c = +0.2 around the population eigenvalue 1.
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Classical large-n asymptotic analysis mostly fails today

» large-n intuition, and many existing popular methods in biology, finance, signal processing,
telecommunication, and machine learning, must fail even with n = 100p!

» RMT as a flexible and powerful tool to understand and recreate these methods

v

in essence: large-scale system with increasing complexity in need of low complexity analysis

> as an motivating example, how RMT can be applied to assess kernel spectral clustering in machine
learning
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“Curse of dimensionality”: loss of relevance of Euclidean distance

> Binary Gaussian mixture classification x € R”:
Cy :x ~ N(py, Cp), versus Cy : x ~ N (py, C2);

» Neyman-Pearson test: classification is possible only when

Ity — poll > Cp, 01 [|C — G| > Cc - p~ /2

for some constants C;,, Cc > 0 [CLM18].
» In this non-trivial setting, for x; € Ca,xj € Cy:

1 2
max {‘7||x,-—xj|\2— —trC°
1<i#j<n ([P p

}&0

asn,p — oo (i.e, n ~ p), for C° = %(Cl + Cy), regardless of the classes Cy, Cp!

!Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. “Classification asymptotics in the random matrix regime”. In: 2018 26th European Signal
Processing Conference (EUSIPCO). IEEE. 2018, pp. 1875-1879
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Loss of relevance of Euclidean distance: visual representation

x ’&x ",o,’$°\m«
*x % /"6 O(l) Q
* x //o \3
g :
b= F
d, O(y/p) g
Q0 ¥ *
° ®, 9
00 %%t%oy”.

Figure: Visual representation of classification in (left) small and (right) large dimensions.

= Direct consequence to various distance-based machine learning methods
(e.g., kernel spectral clustering)!
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Reminder on kernel spectral clustering

Two-step classification of n data points with distance kernel K = {f(||x; — ]-||2 /p)} i1

= T T

0 isolated eigenvalues

| Top eigenvectors |
T T )
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Reminder on kernel spectral clustering

|} K-dimensional representation |}

e I
,;,g; |

Eig. 2

Eig. 1

4

EM or k-means clustering
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Cluster Gaussian data xy, ..., x,; € R into C; or Cp, with second top eigenvectors v, of heat kernel
K;; = exp(—||x; — xj[[*/2p), small and large dimensional data.

(@) p = 5,1 = 500 (b) p = 250,17 = 500
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Kernel matrices for large dimensional real-world data

(a) MNIST (b) Fashion-MNIST

SO/

Sandal Dress Pullover Ankle boot
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A RMT viewpoint of large kernel matrices

> “local” linearization of nonlinear kernel matrices in large dimensions, e.g., Gaussian kernel matrix
Kj; = exp(—|x; — ]»HZ/Zp) withC; = C =1, (e.g,, C1 : x; = py +2; versus Cp @ X; = pp +2;) so that

5. 2 1 1.,
I —xjl[*/p =2, and K = exp ( =5 ) (1uly +=Z7Z ) +&(llpy — pall) =i + * + 0 (1)
2 p p

with Gaussian Z = [zy, ..., z;] € RP*" and class-information j = [1,,/5; —1,, /2],
» accumulated effect of small “hidden” statistical information (||z#; — p1,|| in this case)
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A RMT viewpoint of large kernel matrices

Therefore
> entry-wise:

1 1 1 1
Kjj = exp(—l)(l + ’;z,«sz ) + ’;8(H.”1 — tall) +x, so that ?g(HVl -ml) < Eziszf

—— ~—_———
O(p='7?) o)

> spectrum-wise:
K —exp(~)1,1T | 0
~ IXZ7Z| = O(1) and [|g([lny — po 1) 31l = O(1)!
> Same phenomenon as the sample covariance example: [C — Clj =04 [C—cC| — o0

= With RMT, we understand kernel spectral clustering for large dimensional data!
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Some more numerical results

Sandal Dress Pullover Ankle boot

—0.05 0 0.05 -0.1 0 0.1

(a) MNIST (b) Fashion-MNIST

Figure: Empirical histogram of LS-SVM soft output versus RMT prediction, n = 2048, p = 784, v = 1 with Gaussian kernel,
for MINST (left, 7 versus 9) and Fashion-MNIST (right, 8 versus 9) data. Results averaged over 30 runs.

2Zhenyu Liao and Romain Couillet. “A Large Dimensional Analysis of Least Squares Support Vector Machines”. In: [EEE Transactions on
Signal Processing 67.4 (2019), pp. 1065-1074
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Take-away of this section

» sample covariance matrix C have different behavior in the large 7, p regime

> loss of matrix norm “equivalence” for large matrices ||A|lmax < ||A]| < p||A]|max for A € RP*F and
| Allmax = max;; |Aj]

> in the non-trivial classification regime: loss of relevance of Euclidean distance

> direct consequence in all distance-based ML methods, e.g., kernel spectral clustering

» RMT provides an answer
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Characterization of scalar random variables: from moments to tails

Definition (Moments and moment generating function, MGF)
For a scalar random variable x defined on some probability space (Q), F,P), we denote
> E[x] the expectation of x;
» Var[x] = E[(x — E[x])?] the variance of x;
> forp > 0, E[x"] the p'" moment of x, and E[|x|?] the p'" absolute moment;
> for A € R, My(A) = E[e}] = T 0 E[xP] the moment generating function (MGF) of x.

> the (absolute) moment of x writes as an integral of the tail of x

» characterization of the probability that x differs from a deterministic value by more than t > 0.

Lemma (Moments versus tails)
For a scalar random variable x and fixed p > 0, we have
Q E[|xP] = [ ptr 1P (|x]| > t) dt
@ P (|x| >t) <exp(—At)My(A), for t > 0 and MGF My (M)
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Sub-gaussian distribution

Definition (Sub-gaussian and sub-exponential distributions)

For a standard Gaussian random variable x ~ N (0, 1), its law given by p(dt) = \/%71 exp(—1%/2), so that
P(x > X) = u([X,00)) = \/% [x exp(—t2/2)dt < exp(—X?/2).

> We say y is a sub-gaussian random variable if it has a tail that decays as fast as standard Gaussian random
variables, that is

P (ly| > t) < exp(—£*/0%), Q)

for some o > 0 (known as the sub-gaussian norm of y) for all t > 0.

> We can define a sub-exponential random variable z similarly via P(|z| > t) < exp(—t/0ps).

> for a sub-gaussian random variable x of mean y = [E[x] and sub-gaussian norm o) that
P (|x = pl = toy) < exp(=£), @)

for all t > 0, in which the sub-gaussian norm o/ of x acts as a scale parameter (that is similar, in spirit, to
the variance parameter of Gaussian distribution).
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A collection of scalar random variables: from LLN to CLT

For a collection of independent and identically distributed (i.i.d.) random variables xy, ..., x,; of mean y and

variance 02, we have, by independence, that
1¢ 1 1 & o2
E|=Y x| =p Var|=) x| ==) Var[x] = —. 3)
= = s n

> for u, 0% do not scale with 1, the (random) sample mean strongly concentrates around its expectation .

Theorem (Weak and strong law of large numbers, LLN)

For a sequence of i.i.d. random variables x4, . . ., x, with finite expectation E[x;] = p < oo, we have
» the sample mean % YL 1 x; — p in probability as n — oo, known as the weak law of large numbers (WLLN);

> the sample mean % Yo' 4 xj — palmost surely as n — oo, known as the strong law of large numbers (SLLN).
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A collection of scalar random variables: from LLN to CLT

Theorem (Central limit theorem, CLT)

For a sequence of i.i.d. random variables x1, . . ., x, with E[x;] = u and Var[x;] = ¢, we have, for every t € R that

LI oV L [%pen
P((f\/ﬁizi(xl y)2t>_>\/27r/t e dx 4)

asn — oo. That is, as n — oo, the random variable %\/ﬁ Y (2 — p) = N(0,1) in distribution.

Remark: the results of LLN and CLT can be compactly written as

1 n
EZX,-': u +N(0O,1)-0/vn, (5)
- ~— —
' o(1) O(n~1/2)

as n — oo, for y, o both of order O(1).
(i) In the first order (of magnitude O(1)), it has an asymptotically deterministic behavior around the
expectation y; and

(i) in the second order (of magnitude O(1~1/2)), it strongly concentrates around this deterministic quantity
with a universal Gaussian fluctuation, regardless of the distribution of the component of x;.
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Concentration of random vectors in high dimensions?

» “concentration” for a random vector x € R"?

Observation (Random vectors do not “concentrate” around their means)

For two independent random vectors x,y € R”, having i.i.d. entries with zero mean and unit variance (that is,
u = 0and o = 1), we have that

E(|lx — 0]j3] = E[x"x] = tr(E[xx"]) = n, (6)
and further by independence that

E[|x—yll3] = Ex'x+y'y] = 2n. @)

> the origin 0 (and mean of x) is always, in expectation, at the midpoint of two independent draws of
random vectors in R"

> any random vector x € R” with n large is not close to its mean

> x does not itself “concentrate” around any n-dimensional deterministic vector in any traditional sense.
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Concentration of random vectors and their linear scalar observations

» In spite of this, from the LLN and CLT one expects that some types of “observations” of x € R” (e.g.,
averages over all the entries of x, to retrieve the sample mean), must concentrate in some sense for n large

> we “interpret” the sample mean as a linear scalar observation of a vector x € R".

Remark (Sample mean as a linear scalar observation)

Let x € R" be a random vector having i.i.d. entries, then the sample mean of the entries of x can be rewritten as the
following linear scalar observation f : R" — R of x defined as

f) :1IX/":%ixzv orf(-) =17 ()/n. ®)
i=1

» LLN and CLT are nothing but asymptotic characterization of the concentration behavior of the linear
scalar observation f(x) of the random vector x € R"

> we can say things non-asymptotically as well, under two different assumptions on the tail of x.

(i) are only assumed to have finite variance ¢ (but nothing on its tail behavior or higher-order moments); and
(ii) have sub-gaussian tails with sub-gaussian norm .
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Asymptotic and non-asymptotic concentration of random vectors

Table: Different types of characterizations of the linear scalar observation f(x) = x" 1, /n for x € R", having i.i.d. entries
with mean E[x;] = y and variance 0 or sub-gaussian norm oy

First-order behavior Second-order behavior
- fO) —p M (F(x) — ) = N(0,1) in law
Asymptotic via Law of Large Numbers ? "Central Limit Theorem
_ -2
Non-asymptotic under finite variance E[f(x)] =pn P([f(x) —pl > ta/yn) <t

via variance computation and Chebyshev’s inequality

E[f(x)] = P (|f(x) — p| > tow//n) < exp(—Ct?)

Non-asymptotic under sub-gaussianity via sub-gaussian tail bound

Remark (Concentration of scalar observation of large random vectors: asymptotic and non-asymptotics): A
random vector x € IR”, when “observed” via the linear scalar observation f(x) = 1} x/n:

f) = p +X/vn, )
~— =
o) O 2
for n large, with some random X of order O(1) that:
(i-1) has a tail that decays (at least) as t=2, for finite n and x having entries of bounded variance;
(i-ii) has a sub-gaussian tail (at least) as exp(—#?), for finite n and x having sub-gaussian entries;
(ii) has a precise Gaussian tail independent of the law of (the entries of) x, but in the limit of n — oo via CLT.
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Lipschitz, quadratic concentration, and beyond

The concentration properties extend beyond the specific linear observation, f(x) = 1,) x/n, to many types of

(possibly) nonlinear observations.

Definition (Observation maps)

For random vector x € IR", we say f(x) € R is a scalar observation of x with observation map f: R" — R.

Table: Different types of scalar observations f(x) of random vector x € R", having independent entries.

Scalar observation Characterization
. sample mean f(x) = 1.7 x/n, . .
Linear and f(x) — aTx fora € R Table in last slide
Lipschitz f(x) for a Lipschitz map f: R" — R Lipschitz concentration
Quadratic form f(x) = xT Ax for some A € R"*" Hanson-Wright inequality

f(x) =o(xTY)Ar(YTx)

Nonlinear quadratic form for entry-wise c: R — R, A € R"”*" and Y € RP*"

Nonlinear quadratic concentration,
of direct use in NN

Z. Liao , HUST) RMT4ML
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Lipschitz concentration

Theorem (Concentration of Lipschitz map of Gaussian random vectors, [Ver18, Theorem 5.2.2])

For a standard Gaussian random vector x ~ N'(0,1,) and a Lipschitz function f : R" — R that satisfies
If(y1) —f(y2)| < K¢lly1 — y2ll2 for any y1,y2 € R", we have, for all t > 0 that

P (If () — E[f ()] > 1) < exp(~C£/KF),

‘or some universal constant C > 0, with K- > 0 known as the Lipschitz constant of f.
f P

(10)

Remark (Concentration of Lipschitz observation of large random vectors): The Lipschitz scalar observations
f(x) of the random vector x € R” behave as

f(x) = E[f(x)] + K, 1)
for n large, where Ky is the Lipschitz constant of f (that is, in general, of order O(n=1/2), for example for
f(x) = x"1,/n). This leads to first- and second-order behaviors:
(i) In the first order, f(x) fluctuate around the deterministic quantity E[f(x)]; and

(ii) in the second order, it concentrates around this deterministic quantity with a fluctuation/deviation that is
proportional to K¢ (and or order O(n~/ 2)) and has a sub-gaussian tail
3Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 2018
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Concentration of quadratic forms

> intuitively expect that non-Lipschitz observation f(x) still concentrates in some way, but “less so”
> important special case of quadratic forms, x" Ax for some given A € R"*"

Theorem (Hanson-Wright inequality for quadratic forms, [Ver18, Theorem 6.2.1])

For a random vector x € R" having independent, zero-mean, unit-variance, sub-gaussian entries with sub-gaussian
norm bounded by o s, and deterministic matrix A € R™ ", we have, for every t > 0, that

C 12 t
P(|Ix"Ax—trA|>t)<exp|—-—min| ———, —— | |, (12)
( 24) p( % (oiann% |A||2>)

for some universal constant C > 0.

» depending on the interplay between the “range” t and the deterministic matrix A, the random quadratic
form xT Ax swings between a sub-gaussian (exp(—#?)) and a sub-exponential (exp(—t)) tail
> Remark: squared norm ||x||3 as quadratic observation of x € R": 1{x||3 ~ 1+ O(n~1/2) for n large,
(i) In the first order, ||x||3/n fluctuate around the deterministic quantity one; and
(ii) in the second order, it concentrates around this deterministic quantity with a fluctuation/deviation that grows

with 0% and of order O(n n~1/2) with a sub-gaussian tail when close to the deterministic quantity, and with a

sub-exponential tail (so with a fluctuation with heavier tail and concentrates “less” than the Lipschitz case) when
far away.
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Concentration of nonlinear quadratic forms
> nonlinear quadratic forms % F(x"Y)Af(YTx) for Gaussian x € R” and deterministic A € R"*",Y € RP*"
Theorem (Concentration of nonlinear quadratic forms, [LtC18, Lemma 1])

For a standard Gaussian random vector x ~ N (0, Ip) and deterministic A € R™",Y € RP*" such that
[All2 <1, [Y|l2 = 1, we have, for Lipschitz function f: R — R with Lipschitz constant K and any t > 0 that
1

Zf(xT Tx —1 T L X —Smin £ n
P (| Ay anKf(Y)'Zﬁ)Sep< e <<v<o>+1<fm>2’ﬂ>>’ (13)

with K¢ (Y) = Ex [FOYTX)f (xTY)] € R™™, for some universal constant C > 0.

» anonlinear extension of the Hanson—-Wright inequality (consider, e.g., Y = I,, with p = n)
Remark (Concentration of nonlinear quadratic form observation of large random vectors):

LFTY)AF(YTX) = e ARy (Y) + O(n12), (14)

for n large, with max{f(0), Kep/ n} = O(1), and similar first and second order behavior as above.

4Cosme Louart, Zhenyu Liao, and Romain Couillet. “A random matrix approach to neural networks”. In: Annals of Applied Probability 28.2
(2018), pp. 1190-1248
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A quick recap on linear algebra: vectors

Lemma (Polarization identity)

Forx,y € R", we have x"y = % (||x[13 + llyll3 — [x — y[3)-

Observation (Different scaling for inner products and Euclidean norms of large random vectors)

Consider a random vector x € R", so that \/nx has i.i.d. entries with zero mean, unit variance, and finite fourth order

moment my < oo (the scaling by \/n is so that E[||x||3] = 1), and a deterministic vector y € R™ of unit norm
|ylla = 1. Then, by LLN and CLT

x'y ~0+N(0,1)/vn, (15)
for n large, so inner product xy = O(n=1/2). On the other hand, E[(x"x)?] = "*"=1 gnq
XI5 = xTx = 1+ N(0,my = 1)/v/n, |x=yl5 = IIx|5 + llyllF +O(~"%) =2+0m"12),  (16)

so that the Euclidean distance between x and any fixed y (or their norms) is much larger (in fact by a factor of v/n) than
their inner product.

Z.Liao (EIC, HUST) RMT4ML July 1, 2024 35/57



Numerical illustration

X
X
x—y xTy ~
y
[e——
y xTy
(a) Deterministic (b) Large-dimensional random

Figure: Visualization of the polarization identity or (a) deterministic x,y € R" and (b) large-dimensional random vector
x € R" and deterministic y € IR".
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A quick recap on linear algebra: matrices

Definition (Matrix inner product and Frobenius norm)
Given matrices X, Y € R"*",
> a(XTY) =", (XTY]; =Y, Z]m:l X;iYj; is the matrix inner product between X and Y, where tr(A) is
the trace of A; and
> IX[2 =t(XTX) =2 [XTX]; =2, Zjﬁl ijl denotes the (squared) Frobenius norm of X, which is also
the sum of the squared entries of X.

Definition (Matrix norm)
For X € RP*", the following “entry-wise” extension of the p-norms of vectors.

@ matrix Frobenius norm ||X|[r = , /¥;; X?} = ||vec(X)||, that extends the vector ¢, Euclidean norm; and

© matrix maximum norm [ X||max = max;;

Xii| = |[vec(X)||oo that extends the vector e norm.
and also matrix norm induced by vectors: || X||, = SUP)|y|,=1 [1Xv |

> taking p = 2 is the spectral norm: || X|2 = v/Amax(XXT) = 0max(X), with Amax(XXT) and oinax (X) the
maximum eigenvalue and singular of XX and X, respectively.
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A quick recap on linear algebra: matrices

» Frobenius norm and spectral norm are matrix Schatten norms (that applies the vector p-norms on the
vector of singular values of the matrix)

> are known to be unitarily invariant, that is || X|| = |[UXV|| for all matrices X and unitary matrices U, V of
appropriate dimensions

Remark (Matrix norm “equivalence”)

For a matrix A € R™*", one has the following
Q A2 < ||Allr < /rank(A) - [|A|2 < /max(m, n) - ||Al|2, so that the control of the spectral norm via the

Frobenius norm can be particularly loose for matrices of large rank; and

norm can be significantly different for matrices of large size.

O [[Allmax < [|All2 < V/mn - [|Allmax, with ||Allmax = max;;|Aj;| the max norm of A, so that the max and spectral

» The fact that matrix norm “equivalence” holds only up to dimensional factors (e.g., rank and size) is
crucial in large-dimensional data analysis and ML, as we have seen in the examples of SCM and kernel
spectral clustering above.
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A quick recap on linear algebra: eigenspectral decomposition

Definition (Eigen-decomposition of symmetric matrices)

A symmetric real matrix X € R"*" admits the following eigen-decomposition

i/

n
X = UxAxUY = ¥ A(X)uu] (17)

i=1

for diagonal Ax = diag{A;(X)}?_; containing A1 (X), ..., A4 (X) the real eigenvalues of X, and orthonormal
Ux = [uy, ..., u,] € R"*" containing the corresponding eigenvectors. In particular,

Xul- = Ai(X)ui. (18)

> interested in a single eigenvalue of a symmetric real matrix, X € R"*", one may either resort to the
eigenvalue-eigenvector equation in (18) or the determinant equation det(X — AL,) = 0

> classical RMT is interested in the joint behavior of all eigenvalues A1 (X), ..., A, (X), e.g., the (empirical)
eigenvalue distribution of X
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Empirical spectral distribution of matrices

Definition (Empirical Spectral Distribution, ESD)

For a real symmetric matrix X € R"*", the empirical spectral distribution (ESD) or empirical spectral measure yx of
X is defined as the normalized counting measure of the eigenvalues A1(X), ..., A,(X) of X,

1 n
- ; (19)

where 8, represents the Dirac measure at x. Since [ ix(dx) = 1, the spectral measure jix of a matrix X € R"*"
(which may be random or not) is a probability measure.

> [tux(dt) =1 =3 1 Ai(X) is the first moment of jy, and gives the average of all eigenvalues of X; and

> [Pux(dt) = Ly, A2(X) is the second moment of jix, so that [ ux(dt) — ([ tux(dt) ) gives the
variance of the elgenvalues of X.
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Connection between linear equation and spectral decomposition
Consider the linear equation

Ax =D, (20)
with A € RP*" and b € R?, we aim to solve for x € IR” solution to Equation (20).

» for square A with p = n, then Equation (20) admits a unique solution if and only if A is invertible, that is,
0 is not an eigenvalue of A, and the solution is given by

x = A"'p. (21)

> in the general case with p # n, A can be a fat (p < n) or tail (p > n) matrix, and is not invertible in either
case, we use the Moore-Penrose pseudoinverse.

Definition (Moore-Penrose pseudoinverse)

For a real matrix X € RP*", we say X+ € R"*? is a (Moore-Penrose) pseudoinverse of X if it satisfies
XXX = X, X*XX" = X", and both XX* and X* X are symmetric. In particular, for X = UxExVy the SVD of
X, with orthonormal Uy € RP*? and Vx € R"*", the pseudoinverse of X can be written as

X = VxIy Uy, (22)

with Xy !inverting all positive values in Zx and leaving zeros unchanged.
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Regularized inverse

The pseudoinverse “solves” the linear equation Ax = b in the following sense:
> The solutions to Equation (20) exist if and only if AA™b = b, and all its solutions are given by

x=A"b+ (I, —ATA)y, (23)
for arbitrary y € R". The solution is unique if and only if I, — AT A = 0 and that A has full column rank.
> As a consequence, the solution X = A*b provides the least squares solution to Equation (20), as
argmin ||Ax — bl = ATb. (24)
x€R"

> however, can be numerically unstable as it inverts all singular values o (X) of X to 1/0(X), see later (e.g.,
Part 3) for a manifestation of this under the (modern) name of double descent
» in the case of square X, an alternative is the regularized inverse of X,

Qx(7) = (X+19D)7}, (25)
for some regularization parameter y > 0, with A;(Qx(7v)) = W, and [|Qx|| < 1/7.
> solves the regularized linear equation (i.e., ridge regression) as
argmin [|Ax — bz + 7|[x]2 = AT(AAT +91,) 'b = (ATA ++1,) 'ATb. (26)

x€R"
> two solutions equivalent for any y > 0, taking v — 0 is the “ridgeless” least squares solution A™b.
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A unified spectral analysis approach via the resolvent
> Note: here everything hold deterministically, not necessarily random yet
» combined with deterministic equivalent technique to be discussed in Part 2, gives the whole picture

Definition (Resolvent)

For a symmetric matrix X € RP*?, the resolvent Qx(z) of X is defined, for z € C not an eigenvalue of X, as

Ox(z) = (X —21,) ", 27) |

Proposition (Properties of resolvent)

For Qx(z) the resolvent of a symmetric matrix X € RP*? with ESD pix with supported on supp(x), then
(i) Qx(z) is complex analytic on its domain of definition C \ supp(pux);
(ii) itis bounded in the sense that ||Qx(z)||» < 1/ dist(z, supp(px));

(iii) x — Qx(x) for x € R\ supp(px) is an increasing matrix-valued function with respect to symmetric
matrix partial ordering (i.e., A = B whenever zT(A —B)z > 0 for all z).
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A unified spectral analysis approach via the resolvent

> for real z, the resolvent Qx(z) is nothing but a regularized inverse of X
> when interested in the eigenvalues and eigenvectors of X € IRP*?, consider the eigenvalue and
eigenvector equation
Xv=Av& (X-AL)v=0, AcR,veR, (28)
for an eigenvalue-eigenvector pair (A, v) of X withv # 0

> again a linear system, but solving for a pair of eigenvalue and eigenvector (A, v) for which the
inverse/resolvent (X — AI,) ~! does not exist

> while seemingly less convenient at first sight, turns out to be very efficient in providing a unified assess
to general spectral functionals of X, by taking z to be complex and exploiting tools from complex analysis

Theorem (Cauchy’s integral formula)

ForT C C a positively (i.e., counterclockwise) oriented simple closed curve and a complex function f(z) analytic in a
region containing I' and its inside, then

() ifzg € Cis enclosed by T, f(zp)
(ii) if not, 5= fr o L dz = 0.
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A resolvent approach to spectral analysis

(X—AL)v=0= Qx(z) = (X —zI,) " (29)

> let X = UAUT be the spectral decomposition of X, with A = {A;(X )} _, eigenvalues and
U = [uy,...,up] € RP*? the associated eigenvectors, then

Q(z) =U(A —zI,)~ Z A (30)

> thus, same eigenspace as X, but maps the eigenvalues A;(X) of X to 1/ ( i(X) = z2).
Applying Cauchy’s integral formula to the resolvent matrix Qx(z) allows one to (somewhat magically!)
assess the eigenvalue and eigenvector behavior of X:
> characterize the eigenvalues of X, one needs to determine a z € R such that Qx(z) does not exist.
» can be done by directly calling the Cauchy’s integral formula, which allows to determine the value of a
(sufficiently nice) function f at a point of interest zg € RR, by integrating its “inverse”
8r(z) =f(z)/(zo — z) on the complex plane.
> this “inverse” g¢(z) is akin to the resolvent and does not, by design, exist at the point of interest z.
» in the following example, we compare the two approaches of
(i) directly solving the determinantal equation; and
(ii) use resolvent + Cauchy’s integral formula.

Z.Liao (EIC, HUST) RMT4ML July 1, 2024 46 /57



A resolvent approach to spectral analysis: an example

Consider the following two-by-two real symmetric random matrix

X= {"1 "2} € R?*2, (31)
Xy X3

for (say independent) random variables x1, x, x3. For A1(X) and A, (X) the two (random) eigenvalues of X
with associated (random) eigenvectors u; (X), uy(X) € R?, we are interested in

A=EFMOO) (X)), gix =a Ew(X)w((X) b, i € {1,2}, (32)

for some function f: R — R and deterministic a,b € R2,

(i) Directly solve for the eigenvalues from the determinantal equation as

0 =det(X—AL) & A(X) = % (xl +x3+ \/(xl +x3)2 — 4(x1x3 — x%)) , (33)

and the associated eigenvectors from Xu;(X) = A;(X)u;(X), i € {1,2}. Then compute
Ho=EFAX) +f(A20X)], gix = a E[w;(X)u;(X)T]b

> needs to re-compute of the expectation for a different choice of function f and the eigen-pair
(A (X), u1 (X)) or (A2(X), uz(X)) of interest.
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(ii) The resolvent approach:
K =E[f(MX)) +f(A(X))]
Y () G
&[5 f (o= mix )= )%
= o FEG) rQx(az) = — 5 f£(2) r (BlQx(2)) 2

for I a positively-oriented contour that circles around both (random) eigenvalues of X.

a much more unified approach to the quantity fx for different choices of f
compute the expected resolvent once (which is much simpler in the case of large random matrices)

then perform contour integration with the function f of interest.

vvyyy

similarly, for g; x, it follows that

ix = a Ew(X)u()Tb =~ f aTE[Qx(2)lbdz 69

2m Jt;

for some contour I'; that circles around only A;(X),i € {1,2}

> given the expected resolvent E[Q(z)], it suffices to choose the specific contour I’; to get the different
expressions of g1 x and g, x
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Resolvent as the core object

Objects of interest

Functionals of resolvent Qx(z)

ESD pux of X

Stieltjes transform 1, (z) =

1 ter(Z)

Linear spectral statistics (LSS):

00 = LEF((X))

Integration of trace of Qx

2m fl"f

(via Cauchy s integral)

erx z)dz

Projections of eigenvectors
vTu(X) and v U(X) onto

some given vector v € R?

Bilinear form v' Qx(z)v of Qx

General matrix functional
F(X) = Lif (Ai(X)v{ ;(X)u; (X) Tvy
involving both eigenvalues and eigenvectors

Integration of bﬂinear form of Qx(z):

Zm f‘l"f

V2 dz
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Using the resolvent to access eigenvalue distribution

Definition (Resolvent)
For a symmetric matrix X € RP*?, the resolvent Qx(z) of X is defined, for z € C not an eigenvalue of X, as

-1

Qx(z) = (X — 1) (35)
> let X = UAUT be the spectral decomposition of X, with A = {A;(X )} _, eigenvalues and
U = [uy,...,up] € RP*P the associated eigenvectors, then
T
Q(z) = U(A —21,)'UT = Z % (36)

thus, same eigenspace as X, but maps the eigenvalues A;(X) of X to 1/(A;(X) — z).
eigenvalue of Qx(z), and the resolvent matrix itself, must explode as z approaches any eigenvalue of X.
take the trace tr Qx(z) of Qx(z) as the quantity to “locate” the eigenvalues of the matrix X of interest

for ux = ’1—] Z’::l dp,(x) the ESD of X,

vvyyvyy

f ixdh) = myuy(2) | 37)

1
7trQ -
plz t—z
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The Stieltjes transform

Definition (Stieltjes transform)

For a real probability measure y with support supp (), the Stieltjes transform my,(z) is defined, for all
z € C\ supp(p), as

my(z) = ];(ftz)

(38)

Proposition (Properties of Stieltjes transform, [HLNO7])

For m,, the Stieltjes transform of a probability measure y, it holds that
(i) my is complex analytic on its domain of definition C \ supp(u);
(ii) itis bounded |my(z)| < 1/ dist(z, supp(u));

(iii) itis an increasing function on all connected components of its restriction to R \ supp(p) (since
/

my, (x) = J(t—x)"2pu(dt) > 0) with limy_ 1+ m,(x) = 0 if supp(u) is bounded; and
(@iv) my(z) > 0for z < infsupp(p), my(z) < 0 for z > sup supp(y) and z] - [my(z)] > 0if z € C\ R; and

P i PXP 5o that tr(A) = 1, u" Qx(z)u, tr(AQx(z)) are STs.
SWalid Hachem, Philippe Loubaton, and Jamal Najim. “Deterministic equivalents for certain functionals of large random matrices”. In:
The Annals of Applied Probability 17.3 (2007), pp. 875-930
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The inverse Stieltjes transform

Definition (Inverse Stieltjes transform)

For a, b continuity points of the probability measure y, we have

b
w([a, b)) = %lylﬁ‘)l / S [mu(x +1y)] dx. (39)

Besides, if  admits a density f at x (i.e., ji(x) is differentiable in a neighborhood of x and
lime_,0(26) ' p([x — €, x + €]) = f(x)),

£(x) = 2 lim [my(r+ )] (40)
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Use the resolvent for eigenvalue functionals

Definition (Linear Spectral Statistic, LSS)

For a symmetric matrix X € RP*?, the linear spectral statistics (LSS) fx of X is defined as the averaged statistics
of the eigenvalues A1 (X), ..., A;(X) of X via some functionf: R — R, that is

17
=, LAA00) (41)

In particular, we have = [ f(t)ux(dt), for px the ESD of X.

LSS via contour integration: For A1 (X), ..., Ap(X) eigenvalues of a symmetric matrix X € RP*?, some
function f: R — R that is complex analytic in a compact neighborhood of the support supp(jix) (of the ESD
ux of X), then

/f Hx(dt) /27'(1 T t V o Zﬂly{f Myx (2 (42)

for any contour I' that encloses supp(jix), i.e., all the eigenvalues A;(X).
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LSS to retrieve the inverse Stieltjes transform formula

Remark (LSS to retrieve the inverse Stieltjes transform formula)

1
2m %p IRl ela—ebre (2)Mux(2) dz

I = —
P rx)eab] %

1 b+ex—1ey 1 a—extigy
T T om ~/afsxfls,, lﬁ[z]e[afe,b+£] (Z)m]ix (Z) dz — 211 '/b+sx+1€y lﬁ[z]e[ufs,bwts] (Z)mﬂx (Z) dz
1 a—ey—iey 1 btextigy

T om /a—£x+1€1, 1%[Z]€[a7£,b+s] (Z)mﬂx (z)dz — 2 /b-'r&x—lﬁy 1%[z]€[a7£,b+s] (Z)mﬂx () dz.
> Since R[m(x +1y)] = R[m(x — w)], S[m(x +w)] = =S[m(x —w)];
> we have b+ o Ty (x — 1ey) dx + f+€ My (X + 18y )dx = —21 fh+ * Sy (x + 12y)] dx
> and consequently p([a, b)) =1 b LA (X)elab] A (X) =

hmsyw f Sy (x +18y)] dx.

Z.Liao (EIC, HUST) RMT4ML

July 1, 2024 54 /57



Contour I'

&y
o &
23 <
0
b

mmmmm Support of pix

R[z]

Figure: Illustration of a rectangular contour I' and support of yix on the complex plane.
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Spectral functionals via resolvent

Definition (Matrix spectral functionals)

For a symmetric matrix X € RP*?, we say F: RP*P — IRP*P is a matrix spectral functional of X,

P
FX) = Y faOuwy!, X=) 4(X)uu/ (43)
=il

i€TC{1,...p}

Spectral functional via contour integration: For X € RP*?, resolvent Qx(z) = (X —zI,) !,z € C, and
f: R — R analytic in a neighborhood of the contour I'7 that circles around the eigenvalues A;(X) of X with
their indices in the set Z C {1,...,p},

= Z. 44
S CLC @)
Example: access to the i-th eigenvector u; of X through
1
T
o = iz, 4
wu; 2711 r)\i(x) QX (Z) Z ( 5)
for I'y, () a contour circling around A;(X) only, so eigenvector projection (vTu)? = —5L erx) v Qx(z)vdz.
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Take-away messages of this section

\4

“basic” probability: concentration of scalar observations of large random vectors: simple and involved,
linear and nonlinear objects

boils down to expectation computation/evaluation
same holds for scalar observations of large random matrices
linear algebra: matrix norm “equivalence” but up to dimensional factors

resolvent (i.e., regularized inverse) naturally appears in eigenvalue/eigenvector assessment

vVvyyvyyVvVyy

a unified resolvent-based to eigenspectral analysis of (not necessarily random) matrices: Cauchy’s
integral formula, Stieltjes transform (and its inverse), Linear Spectral Statistic, and generic matrix spectral
functionals, etc.

Thank you! Q & A?
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