# Random Matrix Theory for Modern Machine Learning: 

 New Intuitions, Improved Methods, and Beyond: Part 1
## Short Course @ Institut de Mathématiques de Toulouse, France

## Zhenyu Liao

School of Electronic Information and Communications Huazhong University of Science and Technology

July 1, 2024

(1) Monday, July 1st (today): Motivation and Mathematical Background (concentration, resolvent-based approach to eigenspectral analysis, etc.)
(2) Tuesday, July 2nd (afternoon): Four Ways to Characterize Sample Covariance Matrices and Some More Random Matrix Models (Wigner semicircle law, generalized sample covariance model, and separable covariance model)
(3) Wednesday, July 3rd: Linear Master Theorem (information-plus-noise and additive spiked models) and $\overline{\text { RMT for Linear Machine Learning (Low-rank approximation, classification, and linear least squares) }}$
(9) Thursday, July 4th: Linearization of Nonlinear Models (Taylor expansion and Orthogonal Polynomial) and Nonlinear ML models via linearization: Kernel Methods in the Proportional Regime

## Outline

(1) Introduction and Motivation

- Sample covariance matrix
- RMT for machine learning: kernel spectral clustering
(2) Mathematical Background
- From random scalars to random vectors, LLN, and CLT
- A quick recap on linear algebra
- A unified spectral analysis approach via the resolvent


## Motivation: understanding large-dimensional machine learning



- Big Data era: exploit large $n, p, N$
- counterintuitive phenomena different from classical asymptotics statistics
- complete change of understanding of many methods in statistics, machine learning, signal processing, and wireless communications
- Random Matrix Theory (RMT) provides the tools!


## Sample covariance matrix in the large $n, p$ regime

- Problem: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from $n$ data samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ with $\mathbf{x}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
- Maximum likelihood sample covariance matrix with entry-wise convergence

$$
\hat{\mathbf{C}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \in \mathbb{R}^{p \times p}, \quad[\hat{\mathbf{C}}]_{i j} \rightarrow[\mathbf{C}]_{i j}
$$

almost surely as $n \rightarrow \infty$ : optimal for $n \gg p$ (or, for $p$ "small").

- In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C}=\mathbf{I}_{p}$ with $n<p$, $\hat{\mathbf{C}}$ has at least $p-n$ zero eigenvalues:

$$
\|\hat{\mathbf{C}}-\mathbf{C}\| \nrightarrow 0, \quad n, p \rightarrow \infty \Rightarrow \text { eigenvalue mismatch and not consistent! }
$$

- due to loss of matrix norm "equivalence": $\|\mathbf{A}\|_{\max } \leq\|\mathbf{A}\| \leq p\|\mathbf{A}\|_{\max }$ for $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\|\mathbf{A}\|_{\max } \equiv \max _{i j}\left|\mathbf{A}_{i j}\right|$.

When is one in the random matrix regime? Almost always!
What about $n=100 p$ ? For $\mathbf{C}=\mathbf{I}_{p}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$ : MP law

$$
\mu(d x)=\left(1-c^{-1}\right)^{+} \delta(x)+\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x
$$

where $E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}$ and $(x)^{+} \equiv \max (x, 0)$. Close match!


Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marc̆enko-Pastur law, $p=500, n=50000$.

- eigenvalues span on $\left[E_{-}=(1-\sqrt{\mathbf{c}})^{2}, E_{+}=(1+\sqrt{\mathbf{c}})^{2}\right]$.
- for $\mathbf{n}=\mathbf{1 0 0} \mathbf{p}$, on a range of $\pm \mathbf{2} \sqrt{\mathrm{c}}= \pm \mathbf{0 . 2}$ around the population eigenvalue $\mathbf{1}$.

Classical large- $n$ asymptotic analysis mostly fails today

- large- $n$ intuition, and many existing popular methods in biology, finance, signal processing, telecommunication, and machine learning, must fail even with $n=100 p$ !
- RMT as a flexible and powerful tool to understand and recreate these methods
- in essence: large-scale system with increasing complexity in need of low complexity analysis
- as an motivating example, how RMT can be applied to assess kernel spectral clustering in machine learning


## "Curse of dimensionality": loss of relevance of Euclidean distance

- Binary Gaussian mixture classification $\mathbf{x} \in \mathbb{R}^{p}$ :

$$
\mathcal{C}_{1}: \mathbf{x} \sim \mathcal{N}\left(\mu_{1}, \mathbf{C}_{1}\right), \text { versus } \mathcal{C}_{2}: \mathbf{x} \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}, \mathbf{C}_{2}\right)
$$

- Neyman-Pearson test: classification is possible only when

$$
\left\|\mu_{1}-\mu_{2}\right\| \geq C_{\mu}, \text { or }\left\|\mathbf{C}_{1}-\mathbf{C}_{2}\right\| \geq C_{\mathbf{C}} \cdot p^{-1 / 2}
$$

for some constants $C_{\mu}, C_{\mathbf{C}}>0$ [CLM18].

- In this non-trivial setting, for $\mathbf{x}_{i} \in \mathcal{C}_{a}, \mathbf{x}_{j} \in \mathcal{C}_{b}$ :

$$
\max _{1 \leq i \neq j \leq n}\left\{\left|\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}-\frac{2}{p} \operatorname{tr} \mathbf{C}^{\circ}\right|\right\} \xrightarrow{\text { a.s. }} 0
$$

as $n, p \rightarrow \infty$ (i.e., $n \sim p$ ), for $\mathbf{C}^{\circ} \equiv \frac{1}{2}\left(\mathbf{C}_{1}+\mathbf{C}_{2}\right)$, regardless of the classes $\mathcal{C}_{a}, \mathcal{C}_{b}$ !

[^0]Loss of relevance of Euclidean distance: visual representation


Figure: Visual representation of classification in (left) small and (right) large dimensions.
$\Rightarrow$ Direct consequence to various distance-based machine learning methods (e.g., kernel spectral clustering)!

## Reminder on kernel spectral clustering

Two-step classification of $n$ data points with distance kernel $\mathbf{K} \equiv\left\{f\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / p\right)\right\}_{i, j=1}^{n}$ :


## Reminder on kernel spectral clustering


$\Downarrow K$-dimensional representation $\Downarrow$


Eig. 1
$\Downarrow$
EM or k-means clustering

Cluster Gaussian data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbf{R}^{p}$ into $\mathcal{C}_{1}$ or $\mathcal{C}_{2}$, with second top eigenvectors $\mathbf{v}_{2}$ of heat kernel $\mathbf{K}_{i j}=\exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 p\right)$, small and large dimensional data.
(a) $p=5, n=500$
(b) $p=250, n=500$





Kernel matrices for large dimensional real-world data
(a) MNIST


(b) Fashion-MNIST



## A RMT viewpoint of large kernel matrices

- "local" linearization of nonlinear kernel matrices in large dimensions, e.g., Gaussian kernel matrix $\mathbf{K}_{i j}=\exp \left(-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 p\right)$ with $\mathbf{C}_{1}=\mathbf{C}_{2}=\mathbf{I}_{p}$ (e.g., $\mathcal{C}_{1}: \mathbf{x}_{i}=\mu_{1}+\mathbf{z}_{i}$ versus $\mathcal{C}_{2}: \mathbf{x}_{j}=\mu_{2}+\mathbf{z}_{j}$ ) so that

$$
\begin{equation*}
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / p \xrightarrow{\text { a.s. }} 2, \text { and } \mathbf{K}=\exp \left(-\frac{2}{2}\right)\left(\mathbf{1}_{n} \mathbf{1}_{n}^{\top}+\frac{1}{p} \mathbf{Z}^{\top} \mathbf{Z}\right)+g\left(\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right\|\right) \frac{1}{p} \mathbf{j j}^{\top}+*+o_{\|\cdot\|} \tag{1}
\end{equation*}
$$

with Gaussian $\mathbf{Z}=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right] \in \mathbb{R}^{p \times n}$ and class-information $\mathbf{j}=\left[\mathbf{1}_{n / 2} ;-\mathbf{1}_{n / 2}\right]$,

- accumulated effect of small "hidden" statistical information ( $\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right\|$ in this case)


## A RMT viewpoint of large kernel matrices

## Therefore

- entry-wise:

$$
\mathbf{K}_{i j}=\exp (-1)(1+\underbrace{\frac{1}{p} \mathbf{z}_{i}^{\top} \mathbf{z}_{j}}_{O\left(p^{-1 / 2}\right)}) \pm \underbrace{\frac{1}{p^{2}} g\left(\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right\|\right)}_{O\left(p^{-1}\right)}+* \text {, so that } \frac{1}{p^{\prime}} g\left(\left\|\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right\|\right) \ll \frac{1}{p} \mathbf{z}_{i}^{\top} \mathbf{z}_{j}
$$

- spectrum-wise:
$-\left\|\mathbf{K}-\exp (-1) \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right\| \nrightarrow 0 ;$
$-\left\|\frac{1}{p} \mathbf{Z}^{\top} \mathbf{Z}\right\|=O(1)$ and $\left\|g\left(\left\|\boldsymbol{\mu}_{1}-\mu_{2}\right\|\right) \frac{1}{p} \mathbf{j j}^{\mathbf{\top}}\right\|=O(1)$ !
- Same phenomenon as the sample covariance example: $[\hat{\mathbf{C}}-\mathbf{C}]_{i j} \rightarrow 0 \nRightarrow\|\hat{\mathbf{C}}-\mathbf{C}\| \rightarrow 0$ !
$\Rightarrow$ With RMT, we understand kernel spectral clustering for large dimensional data!


## Some more numerical results



Figure: Empirical histogram of LS-SVM soft output versus RMT prediction, $n=2048, p=784, \gamma=1$ with Gaussian kernel, for MINST (left, 7 versus 9) and Fashion-MNIST (right, 8 versus 9) data. Results averaged over 30 runs.

[^1]- sample covariance matrix $\hat{\mathbf{C}}$ have different behavior in the large $n, p$ regime
- loss of matrix norm "equivalence" for large matrices $\|\mathbf{A}\|_{\max } \leq\|\mathbf{A}\| \leq p\|\mathbf{A}\|_{\max }$ for $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\|\mathbf{A}\|_{\text {max }} \equiv \max _{i j}\left|\mathbf{A}_{i j}\right|$
- in the non-trivial classification regime: loss of relevance of Euclidean distance
- direct consequence in all distance-based ML methods, e.g., kernel spectral clustering
- RMT provides an answer


## Characterization of scalar random variables: from moments to tails

## Definition (Moments and moment generating function, MGF)

For a scalar random variable $x$ defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, we denote

- $\mathbb{E}[x]$ the expectation of $x$;
- $\operatorname{Var}[x]=\mathbb{E}\left[(x-\mathbb{E}[x])^{2}\right]$ the variance of $x$;
- for $p>0, \mathbb{E}\left[x^{p}\right]$ the $p^{\text {th }}$ moment of $x$, and $\mathbb{E}\left[|x|^{p}\right]$ the $p^{\text {th }}$ absolute moment;
- for $\lambda \in \mathbb{R}, M_{x}(\lambda)=\mathbb{E}\left[e^{\lambda x}\right]=\sum_{p=0}^{\infty} \frac{\lambda^{p}}{p!} \mathbb{E}\left[x^{p}\right]$ the moment generating function (MGF) of $x$.
- the (absolute) moment of $x$ writes as an integral of the tail of $x$
- characterization of the probability that $x$ differs from a deterministic value by more than $t>0$.


## Lemma (Moments versus tails)

For a scalar random variable $x$ and fixed $p>0$, we have
(1) $\mathbb{E}\left[|x|^{p}\right]=\int_{0}^{\infty} p t^{p-1} \mathbb{P}(|x| \geq t) d t$
(2) $\mathbb{P}(|x| \geq t) \leq \exp (-\lambda t) M_{x}(\lambda)$, for $t>0$ and $\operatorname{MGF} M_{x}(\lambda)$

## Sub-gaussian distribution

## Definition (Sub-gaussian and sub-exponential distributions)

For a standard Gaussian random variable $x \sim \mathcal{N}(0,1)$, its law given by $\mu(d t)=\frac{1}{\sqrt{2 \pi}} \exp \left(-t^{2} / 2\right)$, so that $\mathbb{P}(x \geq X)=\mu([X, \infty))=\frac{1}{\sqrt{2 \pi}} \int_{X}^{\infty} \exp \left(-t^{2} / 2\right) d t \leq \exp \left(-X^{2} / 2\right)$.

- We say $y$ is a sub-gaussian random variable if it has a tail that decays as fast as standard Gaussian random variables, that is

$$
\begin{equation*}
\mathbb{P}(|y| \geq t) \leq \exp \left(-t^{2} / \sigma_{\mathcal{N}}^{2}\right) \tag{1}
\end{equation*}
$$

for some $\sigma_{\mathcal{N}}>0$ (known as the sub-gaussian norm of $y$ ) for all $t>0$.

- We can define a sub-exponential random variable $z$ similarly via $\mathbb{P}(|z| \geq t) \leq \exp \left(-t / \sigma_{\mathcal{N}}\right)$.
- for a sub-gaussian random variable $x$ of mean $\mu=\mathbb{E}[x]$ and sub-gaussian norm $\sigma_{\mathcal{N}}$ that

$$
\begin{equation*}
\mathbb{P}\left(|x-\mu| \geq t \sigma_{\mathcal{N}}\right) \leq \exp \left(-t^{2}\right) \tag{2}
\end{equation*}
$$

for all $t>0$, in which the sub-gaussian norm $\sigma_{\mathcal{N}}$ of $x$ acts as a scale parameter (that is similar, in spirit, to the variance parameter of Gaussian distribution).

## A collection of scalar random variables: from LLN to CLT

For a collection of independent and identically distributed (i.i.d.) random variables $x_{1}, \ldots, x_{n}$ of mean $\mu$ and variance $\sigma^{2}$, we have, by independence, that

$$
\begin{equation*}
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}\right]=\mu, \quad \operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[x_{i}\right]=\frac{\sigma^{2}}{n} . \tag{3}
\end{equation*}
$$

- for $\mu, \sigma^{2}$ do not scale with $n$, the (random) sample mean strongly concentrates around its expectation $\mu$.


## Theorem (Weak and strong law of large numbers, LLN)

For a sequence of i.i.d. random variables $x_{1}, \ldots, x_{n}$ with finite expectation $\mathbb{E}\left[x_{i}\right]=\mu<\infty$, we have

- the sample mean $\frac{1}{n} \sum_{i=1}^{n} x_{i} \rightarrow \mu$ in probability as $n \rightarrow \infty$, known as the weak law of large numbers (WLLN);
- the sample mean $\frac{1}{n} \sum_{i=1}^{n} x_{i} \rightarrow \mu$ almost surely as $n \rightarrow \infty$, known as the strong law of large numbers (SLLN).


## A collection of scalar random variables: from LLN to CLT

## Theorem (Central limit theorem, CLT)

For a sequence of i.i.d. random variables $x_{1}, \ldots, x_{n}$ with $\mathbb{E}\left[x_{i}\right]=\mu$ and $\operatorname{Var}\left[x_{i}\right]=\sigma^{2}$, we have, for every $t \in \mathbb{R}$ that

$$
\begin{equation*}
\mathbb{P}\left(\frac{1}{\sigma \sqrt{n}} \sum_{i=1}^{n}\left(x_{i}-\mu\right) \geq t\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{t}^{\infty} e^{-x^{2} / 2} d x \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$. That is, as $n \rightarrow \infty$, the random variable $\frac{1}{\sigma \sqrt{n}} \sum_{i=1}^{n}\left(x_{i}-\mu\right) \rightarrow \mathcal{N}(0,1)$ in distribution.
Remark: the results of LLN and CLT can be compactly written as

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} x_{i} \simeq \underbrace{\mu}_{O(1)}+\underbrace{\mathcal{N}(0,1) \cdot \sigma / \sqrt{n}}_{O\left(n^{-1 / 2}\right)} \tag{5}
\end{equation*}
$$

as $n \rightarrow \infty$, for $\mu, \sigma$ both of order $O(1)$.
(i) In the first order (of magnitude $O(1)$ ), it has an asymptotically deterministic behavior around the expectation $\mu$; and
(ii) in the second order (of magnitude $O\left(n^{-1 / 2}\right)$ ), it strongly concentrates around this deterministic quantity with a universal Gaussian fluctuation, regardless of the distribution of the component of $x_{i}$.

## Concentration of random vectors in high dimensions?

- "concentration" for a random vector $\mathbf{x} \in \mathbb{R}^{n}$ ?


## Observation (Random vectors do not "concentrate" around their means)

For two independent random vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, having i.i.d. entries with zero mean and unit variance (that is, $\mu=0$ and $\sigma=1$ ), we have that

$$
\begin{equation*}
\mathbb{E}\left[\|\mathbf{x}-\mathbf{0}\|_{2}^{2}\right]=\mathbb{E}\left[\mathbf{x}^{\top} \mathbf{x}\right]=\operatorname{tr}\left(\mathbb{E}\left[\mathbf{x} \mathbf{x}^{\top}\right]\right)=n, \tag{6}
\end{equation*}
$$

and further by independence that

$$
\begin{equation*}
\mathbb{E}\left[\|\mathbf{x}-\mathbf{y}\|_{2}^{2}\right]=\mathbb{E}\left[\mathbf{x}^{\top} \mathbf{x}+\mathbf{y}^{\top} \mathbf{y}\right]=2 n . \tag{7}
\end{equation*}
$$

- the origin $\mathbf{0}$ (and mean of $\mathbf{x}$ ) is always, in expectation, at the midpoint of two independent draws of random vectors in $\mathbb{R}^{n}$
- any random vector $\mathbf{x} \in \mathbb{R}^{n}$ with $n$ large is not close to its mean
- $\mathbf{x}$ does not itself "concentrate" around any $n$-dimensional deterministic vector in any traditional sense.


## Concentration of random vectors and their linear scalar observations

- In spite of this, from the LLN and CLT one expects that some types of "observations" of $\mathbf{x} \in \mathbb{R}^{n}$ (e.g., averages over all the entries of $\mathbf{x}$, to retrieve the sample mean), must concentrate in some sense for $n$ large
- we "interpret" the sample mean as a linear scalar observation of a vector $\mathbf{x} \in \mathbb{R}^{n}$.


## Remark (Sample mean as a linear scalar observation)

Let $\mathbf{x} \in \mathbb{R}^{n}$ be a random vector having i.i.d. entries, then the sample mean of the entries of $\mathbf{x}$ can be rewritten as the following linear scalar observation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of $\mathbf{x}$ defined as

$$
\begin{equation*}
f(\mathbf{x})=\mathbf{1}_{n}^{\top} \mathbf{x} / n=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \text { or } f(\cdot)=\mathbf{1}_{n}^{\top}(\cdot) / n \tag{8}
\end{equation*}
$$

- LLN and CLT are nothing but asymptotic characterization of the concentration behavior of the linear scalar observation $f(\mathbf{x})$ of the random vector $\mathbf{x} \in \mathbb{R}^{n}$
- we can say things non-asymptotically as well, under two different assumptions on the tail of $\mathbf{x}$.
(i) are only assumed to have finite variance $\sigma^{2}$ (but nothing on its tail behavior or higher-order moments); and
(ii) have sub-gaussian tails with sub-gaussian norm $\sigma_{\mathcal{N}}$.


## Asymptotic and non-asymptotic concentration of random vectors

Table: Different types of characterizations of the linear scalar observation $f(\mathbf{x})=\mathbf{x}^{\boldsymbol{\top}} \mathbf{1}_{n} / n$ for $\mathbf{x} \in \mathbb{R}^{n}$, having i.i.d. entries with mean $\mathbb{E}\left[x_{i}\right]=\mu$ and variance $\sigma^{2}$ or sub-gaussian norm $\sigma_{\mathcal{N}}$.
\(\left.$$
\begin{array}{ccc}\hline & \text { First-order behavior } & \text { Second-order behavior } \\
\hline \text { Asymptotic } & \begin{array}{c}f(\mathbf{x}) \rightarrow \mu \\
\text { via Law of Large Numbers }\end{array}
$$ \& \frac{\sqrt{n}}{\sigma}(f(\mathbf{x})-\mu) \rightarrow \mathcal{N}(0,1) in law <br>

Central Limit Theorem\end{array}\right]\)| $\mathbb{P}(\|f(\mathbf{x})-\mu\| \geq t \sigma / \sqrt{n}) \leq t^{-2}$ |  |
| :---: | :---: |
| Non-asymptotic under finite variance | $\mathbb{E}[f(\mathbf{x})]=\mu$ |

Remark (Concentration of scalar observation of large random vectors: asymptotic and non-asymptotics): A random vector $\mathbf{x} \in \mathbb{R}^{n}$, when "observed" via the linear scalar observation $f(\mathbf{x})=\mathbf{1}_{n}^{\top} \mathbf{x} / n$ :

$$
\begin{equation*}
f(\mathbf{x}) \simeq \underbrace{\mu}_{O(1)}+\underbrace{X / \sqrt{n}}_{O\left(n^{-1 / 2}\right)} \tag{9}
\end{equation*}
$$

for $n$ large, with some random $X$ of order $O(1)$ that:
(i-i) has a tail that decays (at least) as $t^{-2}$, for finite $n$ and $\mathbf{x}$ having entries of bounded variance;
(i-ii) has a sub-gaussian tail (at least) as $\exp \left(-t^{2}\right)$, for finite $n$ and $\mathbf{x}$ having sub-gaussian entries;
(ii) has a precise Gaussian tail independent of the law of (the entries of) $\mathbf{x}$, but in the limit of $n \rightarrow \infty$ via CLT.

Lipschitz, quadratic concentration, and beyond

The concentration properties extend beyond the specific linear observation, $f(\mathbf{x})=\mathbf{1}_{n}^{\top} \mathbf{x} / n$, to many types of (possibly) nonlinear observations.

## Definition (Observation maps)

For random vector $\mathbf{x} \in \mathbb{R}^{n}$, we say $f(\mathbf{x}) \in \mathbb{R}$ is a scalar observation of $\mathbf{x}$ with observation map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Table: Different types of scalar observations $f(\mathbf{x})$ of random vector $\mathbf{x} \in \mathbb{R}^{n}$, having independent entries.

|  | Scalar observation | Characterization |
| :---: | :---: | :---: |
| Linear | sample mean $f(\mathbf{x})=\mathbf{1}_{n}^{\top} \mathbf{x} / n$, <br> and $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}$ for $\mathbf{a} \in \mathbb{R}^{n}$ | Table in last slide |
| Lipschitz | $f(\mathbf{x})$ for a Lipschitz map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ | Lipschitz concentration |
| Quadratic form | $f(\mathbf{x})=\mathbf{x}^{\boldsymbol{\top}} \mathbf{A x}$ for some $\mathbf{A} \in \mathbb{R}^{n \times n}$ | Hanson-Wright inequality |
| Nonlinear quadratic form | $f(\mathbf{x})=\sigma\left(\mathbf{x}^{\boldsymbol{\top}} \mathbf{Y}\right) \mathbf{A} \sigma\left(\mathbf{Y}^{\top} \mathbf{x}\right)$ <br> for entry-wise $\sigma: \mathbb{R} \rightarrow \mathbb{R}, \mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{Y} \in \mathbb{R}^{p \times n}$ | Nonlinear quadratic concentration, <br> of direct use in NN |

## Lipschitz concentration

## Theorem (Concentration of Lipschitz map of Gaussian random vectors, [Ver18, Theorem 5.2.2])

For a standard Gaussian random vector $\mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{n}\right)$ and a Lipschitz function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies $\left|f\left(\mathbf{y}_{1}\right)-f\left(\mathbf{y}_{2}\right)\right| \leq K_{f}\left\|\mathbf{y}_{1}-\mathbf{y}_{2}\right\|_{2}$ for any $\mathbf{y}_{1}, \mathbf{y}_{2} \in \mathbb{R}^{n}$, we have, for all $t>0$ that

$$
\begin{equation*}
\mathbb{P}(|f(\mathbf{x})-\mathbb{E}[f(\mathbf{x})]| \geq t) \leq \exp \left(-C t^{2} / K_{f}^{2}\right) \tag{10}
\end{equation*}
$$

for some universal constant $C>0$, with $K_{f}>0$ known as the Lipschitz constant off.
Remark (Concentration of Lipschitz observation of large random vectors): The Lipschitz scalar observations $f(\mathbf{x})$ of the random vector $\mathbf{x} \in \mathbb{R}^{n}$ behave as

$$
\begin{equation*}
f(\mathbf{x}) \simeq \mathbb{E}[f(\mathbf{x})]+K_{f} \tag{11}
\end{equation*}
$$

for $n$ large, where $K_{f}$ is the Lipschitz constant of $f$ (that is, in general, of order $O\left(n^{-1 / 2}\right)$, for example for $\left.f(\mathbf{x})=\mathbf{x}^{\top} \mathbf{1}_{n} / n\right)$. This leads to first- and second-order behaviors:
(i) In the first order, $f(\mathbf{x})$ fluctuate around the deterministic quantity $\mathbb{E}[f(\mathbf{x})]$; and
(ii) in the second order, it concentrates around this deterministic quantity with a fluctuation/deviation that is proportional to $K_{f}$ (and or order $O\left(n^{-1 / 2}\right)$ ) and has a sub-gaussian tail

[^2]
## Concentration of quadratic forms

- intuitively expect that non-Lipschitz observation $f(\mathbf{x})$ still concentrates in some way, but "less so"
- important special case of quadratic forms, $\mathbf{x}^{\top} \mathbf{A x}$ for some given $\mathbf{A} \in \mathbb{R}^{n \times n}$


## Theorem (Hanson-Wright inequality for quadratic forms, [Ver18, Theorem 6.2.1])

For a random vector $\mathbf{x} \in \mathbb{R}^{n}$ having independent, zero-mean, unit-variance, sub-gaussian entries with sub-gaussian norm bounded by $\sigma_{\mathcal{N}}$, and deterministic matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we have, for every $t>0$, that

$$
\begin{equation*}
\mathbb{P}\left(\left|\mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\operatorname{tr} \mathbf{A}\right| \geq t\right) \leq \exp \left(-\frac{C}{\sigma_{\mathcal{N}}^{2}} \min \left(\frac{t^{2}}{\sigma_{\mathcal{N}}^{2}\|\mathbf{A}\|_{F}^{2}}, \frac{t}{\|\mathbf{A}\|_{2}}\right)\right) \tag{12}
\end{equation*}
$$

for some universal constant $C>0$.

- depending on the interplay between the "range" $t$ and the deterministic matrix $\mathbf{A}$, the random quadratic form $\mathbf{x}^{\top} \mathbf{A} \boldsymbol{x}$ swings between a sub-gaussian $\left(\exp \left(-t^{2}\right)\right)$ and a sub-exponential $(\exp (-t))$ tail
- Remark: squared norm $\|\mathbf{x}\|_{2}^{2}$ as quadratic observation of $\mathbf{x} \in \mathbb{R}^{n}: \frac{1}{n}\|\mathbf{x}\|_{2}^{2} \simeq 1+O\left(n^{-1 / 2}\right)$ for $n$ large,
(i) In the first order, $\|\mathbf{x}\|_{2}^{2} / n$ fluctuate around the deterministic quantity one; and
(ii) in the second order, it concentrates around this deterministic quantity with a fluctuation/deviation that grows with $\sigma_{\mathcal{N}}^{2}$ and of order $O\left(n^{-1 / 2}\right)$ with a sub-gaussian tail when close to the deterministic quantity, and with a sub-exponential tail (so with a fluctuation with heavier tail and concentrates "less" than the Lipschitz case) when far away.


## Concentration of nonlinear quadratic forms

- nonlinear quadratic forms $\frac{1}{n} f\left(\mathbf{x}^{\top} \mathbf{Y}\right) \mathbf{A} f\left(\mathbf{Y}^{\top} \mathbf{x}\right)$ for Gaussian $\mathbf{x} \in \mathbb{R}^{p}$ and deterministic $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{Y} \in \mathbb{R}^{p \times n}$


## Theorem (Concentration of nonlinear quadratic forms, [LtC18, Lemma 1])

For a standard Gaussian random vector $\mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{p}\right)$ and deterministic $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{Y} \in \mathbb{R}^{p \times n}$ such that $\|\mathbf{A}\|_{2} \leq 1,\|\mathbf{Y}\|_{2}=1$, we have, for Lipschitz function $f: \mathbb{R} \rightarrow \mathbb{R}$ with Lipschitz constant $K_{f}$ and any $t>0$ that

$$
\begin{equation*}
\mathbb{P}\left(\left|\frac{1}{n} f\left(\mathbf{x}^{\top} \mathbf{Y}\right) \mathbf{A} f\left(\mathbf{Y}^{\top} \mathbf{x}\right)-\frac{1}{n} \operatorname{tr} \mathbf{A} \mathbf{K}_{f}(\mathbf{Y})\right| \geq \frac{t}{\sqrt{n}}\right) \leq \exp \left(-\frac{C}{K_{f}^{2}} \min \left(\frac{t^{2}}{\left(|f(0)|+K_{f} \sqrt{p / n}\right)^{2}}, \sqrt{n} t\right)\right) \tag{13}
\end{equation*}
$$

with $\mathbf{K}_{f}(\mathbf{Y})=\mathbb{E}_{\mathbf{x}}\left[f\left(\mathbf{Y}^{\top} \mathbf{x}\right) f\left(\mathbf{x}^{\top} \mathbf{Y}\right)\right] \in \mathbb{R}^{n \times n}$, for some universal constant $C>0$.

- a nonlinear extension of the Hanson-Wright inequality (consider, e.g., $\mathbf{Y}=\mathbf{I}_{n}$ with $p=n$ )

Remark (Concentration of nonlinear quadratic form observation of large random vectors):

$$
\begin{equation*}
\frac{1}{n} f\left(\mathbf{x}^{\top} \mathbf{Y}\right) \mathbf{A} f\left(\mathbf{Y}^{\top} \mathbf{x}\right) \simeq \frac{1}{n} \operatorname{tr} \mathbf{A} \mathbf{K}_{f}(\mathbf{Y})+O\left(n^{-1 / 2}\right) \tag{14}
\end{equation*}
$$

for $n$ large, with $\max \left\{f(0), K_{f}, p / n\right\}=O(1)$, and similar first and second order behavior as above.

[^3] (2018), pp. 1190-1248

## A quick recap on linear algebra: vectors

## Lemma (Polarization identity)

For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, we have $\mathbf{x}^{\top} \mathbf{y}=\frac{1}{2}\left(\|\mathbf{x}\|_{2}^{2}+\|\mathbf{y}\|_{2}^{2}-\|\mathbf{x}-\mathbf{y}\|_{2}^{2}\right)$.

## Observation (Different scaling for inner products and Euclidean norms of large random vectors)

Consider a random vector $\mathbf{x} \in \mathbb{R}^{n}$, so that $\sqrt{n} \mathbf{x}$ has i.i.d. entries with zero mean, unit variance, and finite fourth order moment $m_{4}<\infty$ (the scaling by $\sqrt{n}$ is so that $\mathbb{E}\left[\|\mathbf{x}\|_{2}^{2}\right]=1$ ), and a deterministic vector $\mathbf{y} \in \mathbb{R}^{n}$ of unit norm $\|\mathbf{y}\|_{2}=1$. Then, by LLN and CLT

$$
\begin{equation*}
\mathbf{x}^{\top} \mathbf{y} \simeq 0+\mathcal{N}(0,1) / \sqrt{n} \tag{15}
\end{equation*}
$$

for $n$ large, so inner product $\mathbf{x}^{\top} \mathbf{y}=O\left(n^{-1 / 2}\right)$. On the other hand, $\mathbb{E}\left[\left(\mathbf{x}^{\top} \mathbf{x}\right)^{2}\right]=\frac{n+m_{4}-1}{n}$ and

$$
\begin{equation*}
\|\mathbf{x}\|_{2}^{2}=\mathbf{x}^{\top} \mathbf{x} \simeq 1+\mathcal{N}\left(0, m_{4}-1\right) / \sqrt{n}, \quad\|\mathbf{x}-\mathbf{y}\|_{2}^{2}=\|\mathbf{x}\|_{2}^{2}+\|\mathbf{y}\|_{2}^{2}+O\left(n^{-1 / 2}\right)=2+O\left(n^{-1 / 2}\right) \tag{16}
\end{equation*}
$$

so that the Euclidean distance between $\mathbf{x}$ and any fixed $\mathbf{y}$ (or their norms) is much larger (in fact by a factor of $\sqrt{n}$ ) than their inner product.

## Numerical illustration



Figure: Visualization of the polarization identity or (a) deterministic $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and (b) large-dimensional random vector $\mathbf{x} \in \mathbb{R}^{n}$ and deterministic $\mathbf{y} \in \mathbb{R}^{n}$.

## A quick recap on linear algebra: matrices

## Definition (Matrix inner product and Frobenius norm)

Given matrices $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$,
$\operatorname{tr}\left(\mathbf{X}^{\top} \mathbf{Y}\right)=\sum_{i=1}^{n}\left[\mathbf{X}^{\top} \mathbf{Y}\right]_{i i}=\sum_{i=1}^{n} \sum_{j=1}^{m} X_{j i} Y_{j i}$ is the matrix inner product between $\mathbf{X}$ and $\mathbf{Y}$, where $\operatorname{tr}(\mathbf{A})$ is the trace of $\mathbf{A}$; and
$-\|\mathbf{X}\|_{F}^{2}=\operatorname{tr}\left(\mathbf{X}^{\top} \mathbf{X}\right)=\sum_{i=1}^{n}\left[\mathbf{X}^{\top} \mathbf{X}\right]_{i i}=\sum_{i=1}^{n} \sum_{j=1}^{m} X_{j i}^{2}$ denotes the (squared) Frobenius norm of $\mathbf{X}$, which is also the sum of the squared entries of $\mathbf{X}$.

## Definition (Matrix norm)

For $\mathbf{X} \in \mathbb{R}^{p \times n}$, the following "entry-wise" extension of the $p$-norms of vectors.
(1) matrix Frobenius norm $\|\mathbf{X}\|_{F}=\sqrt{\sum_{i, j} X_{i j}^{2}}=\|\operatorname{vec}(\mathbf{X})\|_{2}$ that extends the vector $\ell_{2}$ Euclidean norm; and
(2) matrix maximum norm $\|\mathbf{X}\|_{\max }=\max _{i, j}\left|X_{i j}\right|=\|\operatorname{vec}(\mathbf{X})\|_{\infty}$ that extends the vector $\ell_{\infty}$ norm.
and also matrix norm induced by vectors: $\|\mathbf{X}\|_{p} \equiv \sup _{\|\mathbf{v}\|_{p}=1}\|\mathbf{X v}\|_{p}$.
taking $p=2$ is the spectral norm: $\|\mathbf{X}\|_{2}=\sqrt{\lambda_{\max }\left(\mathbf{X X}^{\top}\right)}=\sigma_{\max }(\mathbf{X})$, with $\lambda_{\max }\left(\mathbf{X X}^{\top}\right)$ and $\sigma_{\max }(\mathbf{X})$ the maximum eigenvalue and singular of $\mathbf{X} \mathbf{X}^{\top}$ and $\mathbf{X}$, respectively.

## A quick recap on linear algebra: matrices

- Frobenius norm and spectral norm are matrix Schatten norms (that applies the vector $p$-norms on the vector of singular values of the matrix)
- are known to be unitarily invariant, that is $\|\mathbf{X}\|=\|\mathbf{U X V}\|$ for all matrices $\mathbf{X}$ and unitary matrices $\mathbf{U}, \mathbf{V}$ of appropriate dimensions


## Remark (Matrix norm "equivalence")

For a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, one has the following
(1) $\|\mathbf{A}\|_{2} \leq\|\mathbf{A}\|_{F} \leq \sqrt{\operatorname{rank}(\mathbf{A})} \cdot\|\mathbf{A}\|_{2} \leq \sqrt{\max (m, n)} \cdot\|\mathbf{A}\|_{2}$, so that the control of the spectral norm via the Frobenius norm can be particularly loose for matrices of large rank; and
(2) $\|\mathbf{A}\|_{\max } \leq\|\mathbf{A}\|_{2} \leq \sqrt{m n} \cdot\|\mathbf{A}\|_{\max }$, with $\|\mathbf{A}\|_{\max } \equiv \max _{i, j}\left|A_{i j}\right|$ the max norm of $\mathbf{A}$, so that the max and spectral norm can be significantly different for matrices of large size.

- The fact that matrix norm "equivalence" holds only up to dimensional factors (e.g., rank and size) is crucial in large-dimensional data analysis and ML, as we have seen in the examples of SCM and kernel spectral clustering above.


## A quick recap on linear algebra: eigenspectral decomposition

## Definition (Eigen-decomposition of symmetric matrices)

A symmetric real matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$ admits the following eigen-decomposition

$$
\begin{equation*}
\mathbf{X}=\mathbf{U}_{\mathbf{X}} \boldsymbol{\Lambda}_{\mathbf{X}} \mathbf{U}_{\mathbf{X}}^{\top}=\sum_{i=1}^{n} \lambda_{i}(\mathbf{X}) \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \tag{17}
\end{equation*}
$$

for diagonal $\Lambda_{\mathbf{X}}=\operatorname{diag}\left\{\lambda_{i}(\mathbf{X})\right\}_{i=1}^{n}$ containing $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{n}(\mathbf{X})$ the real eigenvalues of $\mathbf{X}$, and orthonormal $\mathbf{U}_{\mathbf{X}}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right] \in \mathbb{R}^{n \times n}$ containing the corresponding eigenvectors. In particular,

$$
\begin{equation*}
\mathbf{X} \mathbf{u}_{i}=\lambda_{i}(\mathbf{X}) \mathbf{u}_{i} \tag{18}
\end{equation*}
$$

- interested in a single eigenvalue of a symmetric real matrix, $\mathbf{X} \in \mathbb{R}^{n \times n}$, one may either resort to the eigenvalue-eigenvector equation in (18) or the determinant equation $\operatorname{det}\left(\mathbf{X}-\lambda \mathbf{I}_{n}\right)=0$
- classical RMT is interested in the joint behavior of all eigenvalues $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{n}(\mathbf{X})$, e.g., the (empirical) eigenvalue distribution of $\mathbf{X}$


## Empirical spectral distribution of matrices

## Definition (Empirical Spectral Distribution, ESD)

For a real symmetric matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$, the empirical spectral distribution (ESD) or empirical spectral measure $\mu_{\mathbf{X}}$ of $\mathbf{X}$ is defined as the normalized counting measure of the eigenvalues $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{n}(\mathbf{X})$ of $\mathbf{X}$,

$$
\begin{equation*}
\mu_{\mathbf{X}} \equiv \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(\mathbf{X})} \tag{19}
\end{equation*}
$$

where $\delta_{x}$ represents the Dirac measure at $x$. Since $\int \mu_{\mathbf{X}}(d x)=1$, the spectral measure $\mu_{\mathbf{X}}$ of a matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$ (which may be random or not) is a probability measure.

- $\int t \mu_{\mathbf{X}}(d t)=\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}(\mathbf{X})$ is the first moment of $\mu_{\mathbf{X}}$, and gives the average of all eigenvalues of $\mathbf{X}$; and
$-\int t^{2} \mu_{\mathbf{X}}(d t)=\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}^{2}(\mathbf{X})$ is the second moment of $\mu_{\mathbf{X}}$, so that $\int t^{2} \mu_{\mathbf{X}}(d t)-\left(\int t \mu_{\mathbf{X}}(d t)\right)^{2}$ gives the variance of the eigenvalues of $\mathbf{X}$.


## Connection between linear equation and spectral decomposition

Consider the linear equation

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{20}
\end{equation*}
$$

with $\mathbf{A} \in \mathbb{R}^{p \times n}$ and $\mathbf{b} \in \mathbb{R}^{p}$, we aim to solve for $\mathbf{x} \in \mathbb{R}^{n}$ solution to Equation (20).

- for square $\mathbf{A}$ with $p=n$, then Equation (20) admits a unique solution if and only if $\mathbf{A}$ is invertible, that is, 0 is not an eigenvalue of $\mathbf{A}$, and the solution is given by

$$
\begin{equation*}
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b} \tag{21}
\end{equation*}
$$

- in the general case with $p \neq n, \mathbf{A}$ can be a fat $(p<n)$ or tail $(p>n)$ matrix, and is not invertible in either case, we use the Moore-Penrose pseudoinverse.


## Definition (Moore-Penrose pseudoinverse)

For a real matrix $\mathbf{X} \in \mathbb{R}^{p \times n}$, we say $\mathbf{X}^{+} \in \mathbb{R}^{n \times p}$ is a (Moore-Penrose) pseudoinverse of $\mathbf{X}$ if it satisfies $\mathbf{X} \mathbf{X}^{+} \mathbf{X}=\mathbf{X}, \mathbf{X}^{+} \mathbf{X} \mathbf{X}^{+}=\mathbf{X}^{+}$, and both $\mathbf{X} \mathbf{X}^{+}$and $\mathbf{X}^{+} \mathbf{X}$ are symmetric. In particular, for $\mathbf{X}=\mathbf{U}_{\mathbf{X}} \boldsymbol{\Sigma}_{\mathbf{X}} \mathbf{V}_{\mathbf{X}}^{\mathbf{X}}$ the SVD of $\mathbf{X}$, with orthonormal $\mathbf{U}_{\mathbf{X}} \in \mathbb{R}^{p \times p}$ and $\mathbf{V}_{\mathbf{X}} \in \mathbb{R}^{n \times n}$, the pseudoinverse of $\mathbf{X}$ can be written as

$$
\begin{equation*}
\mathbf{X}^{+}=\mathbf{V}_{\mathbf{X}} \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} \mathbf{U}_{\mathbf{X}} \tag{22}
\end{equation*}
$$

with $\boldsymbol{\Sigma}_{\mathbf{X}}^{-1}$ inverting all positive values in $\boldsymbol{\Sigma}_{\mathbf{X}}$ and leaving zeros unchanged.

## Regularized inverse

The pseudoinverse "solves" the linear equation $\mathbf{A x}=\mathbf{b}$ in the following sense:

- The solutions to Equation (20) exist if and only if $\mathbf{A A}^{+} \mathbf{b}=\mathbf{b}$, and all its solutions are given by

$$
\begin{equation*}
\mathbf{x}=\mathbf{A}^{+} \mathbf{b}+\left(\mathbf{I}_{n}-\mathbf{A}^{+} \mathbf{A}\right) \mathbf{y} \tag{23}
\end{equation*}
$$

for arbitrary $\mathbf{y} \in \mathbb{R}^{n}$. The solution is unique if and only if $\mathbf{I}_{n}-\mathbf{A}^{+} \mathbf{A}=\mathbf{0}$ and that $\mathbf{A}$ has full column rank.

- As a consequence, the solution $\hat{\mathbf{x}}=\mathbf{A}^{+} \mathbf{b}$ provides the least squares solution to Equation (20), as

$$
\begin{equation*}
\underset{\mathbf{x} \in \mathbb{R}^{n}}{\arg \min }\|\mathbf{A x}-\mathbf{b}\|_{2}=\mathbf{A}^{+} \mathbf{b} \tag{24}
\end{equation*}
$$

- however, can be numerically unstable as it inverts all singular values $\sigma(\mathbf{X})$ of $\mathbf{X}$ to $1 / \sigma(\mathbf{X})$, see later (e.g., Part 3) for a manifestation of this under the (modern) name of double descent
- in the case of square $\mathbf{X}$, an alternative is the regularized inverse of $\mathbf{X}$,

$$
\begin{equation*}
\mathbf{Q}_{\mathbf{X}}(\gamma)=(\mathbf{X}+\gamma \mathbf{I})^{-1} \tag{25}
\end{equation*}
$$

for some regularization parameter $\gamma>0$, with $\lambda_{i}\left(\mathbf{Q}_{\mathbf{X}}(\gamma)\right)=\frac{1}{\lambda_{i}(\mathbf{X})+\gamma}$, and $\left\|\mathbf{Q}_{\mathbf{X}}\right\| \leq 1 / \gamma$.

- solves the regularized linear equation (i.e., ridge regression) as

$$
\begin{equation*}
\underset{\mathbf{x} \in \mathbb{R}^{n}}{\arg \min }\|\mathbf{A x}-\mathbf{b}\|_{2}+\gamma\|\mathbf{x}\|_{2}=\mathbf{A}^{\top}\left(\mathbf{A} \mathbf{A}^{\top}+\gamma \mathbf{I}_{p}\right)^{-1} \mathbf{b}=\left(\mathbf{A}^{\top} \mathbf{A}+\gamma \mathbf{I}_{n}\right)^{-1} \mathbf{A}^{\top} \mathbf{b} . \tag{26}
\end{equation*}
$$

- two solutions equivalent for any $\gamma>0$, taking $\gamma \rightarrow 0$ is the "ridgeless" least squares solution $\mathbf{A}^{+} \mathbf{b}$.


## A unified spectral analysis approach via the resolvent

- Note: here everything hold deterministically, not necessarily random yet
- combined with deterministic equivalent technique to be discussed in Part 2, gives the whole picture


## Definition (Resolvent)

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, the resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ of $\mathbf{X}$ is defined, for $z \in \mathbb{C}$ not an eigenvalue of $\mathbf{X}$, as

$$
\begin{equation*}
\mathbf{Q}_{\mathbf{X}}(z) \equiv\left(\mathbf{X}-z \mathbf{I}_{p}\right)^{-1} \tag{27}
\end{equation*}
$$

## Proposition (Properties of resolvent)

For $\mathbf{Q}_{\mathbf{X}}(z)$ the resolvent of a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ with ESD $\mu_{\mathbf{X}}$ with supported on $\operatorname{supp}\left(\mu_{\mathbf{X}}\right)$, then
(i) $\mathbf{Q}_{\mathbf{X}}(z)$ is complex analytic on its domain of definition $\mathbb{C} \backslash \operatorname{supp}\left(\mu_{\mathbf{X}}\right)$;
(ii) it is bounded in the sense that $\left\|\mathbf{Q}_{\mathbf{X}}(z)\right\|_{2} \leq 1 / \operatorname{dist}\left(z, \operatorname{supp}\left(\mu_{\mathbf{X}}\right)\right)$;
(iii) $x \mapsto \mathbf{Q}_{\mathbf{X}}(x)$ for $x \in \mathbb{R} \backslash \operatorname{supp}\left(\mu_{\mathbf{X}}\right)$ is an increasing matrix-valued function with respect to symmetric matrix partial ordering (i.e., $\mathbf{A} \succeq \mathbf{B}$ whenever $\mathbf{z}^{\top}(\mathbf{A}-\mathbf{B}) \mathbf{z} \geq 0$ for all $\mathbf{z}$ ).

## A unified spectral analysis approach via the resolvent

- for real $z$, the resolvent $\mathbf{Q}_{\mathbf{x}}(z)$ is nothing but a regularized inverse of $\mathbf{X}$
- when interested in the eigenvalues and eigenvectors of $\mathbf{X} \in \mathbb{R}^{p \times p}$, consider the eigenvalue and eigenvector equation

$$
\begin{equation*}
\mathbf{X} \mathbf{v}=\lambda \mathbf{v} \Leftrightarrow\left(\mathbf{X}-\lambda \mathbf{I}_{p}\right) \mathbf{v}=\mathbf{0}, \quad \lambda \in \mathbb{R}, \mathbf{v} \in \mathbb{R}^{p}, \tag{28}
\end{equation*}
$$

for an eigenvalue-eigenvector pair $(\lambda, \mathbf{v})$ of $\mathbf{X}$ with $\mathbf{v} \neq \mathbf{0}$

- again a linear system, but solving for a pair of eigenvalue and eigenvector $(\lambda, \mathbf{v})$ for which the inverse/resolvent $\left(\mathbf{X}-\lambda \mathbf{I}_{p}\right)^{-1}$ does not exist
- while seemingly less convenient at first sight, turns out to be very efficient in providing a unified assess to general spectral functionals of $\mathbf{X}$, by taking $z$ to be complex and exploiting tools from complex analysis


## Theorem (Cauchy's integral formula)

For $\Gamma \subset \mathbb{C}$ a positively (i.e., counterclockwise) oriented simple closed curve and a complex function $f(z)$ analytic in a region containing $\Gamma$ and its inside, then
(i) if $z_{0} \in \mathrm{C}$ is enclosed by $\Gamma, f\left(z_{0}\right)=-\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(z)}{z_{0}-z} d z$;
(ii) ifnot, $\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(z)}{z_{0}-z} d z=0$.

A resolvent approach to spectral analysis

$$
\begin{equation*}
\left(\mathbf{X}-\lambda \mathbf{I}_{p}\right) \mathbf{v}=\mathbf{0} \Rightarrow \mathbf{Q}_{\mathbf{X}}(z)=\left(\mathbf{X}-z \mathbf{I}_{n}\right)^{-1} \tag{29}
\end{equation*}
$$

- let $\mathbf{X}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$ be the spectral decomposition of $\mathbf{X}$, with $\boldsymbol{\Lambda}=\left\{\lambda_{i}(\mathbf{X})\right\}_{i=1}^{p}$ eigenvalues and $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right] \in \mathbb{R}^{p \times p}$ the associated eigenvectors, then

$$
\begin{equation*}
\mathbf{Q}(z)=\mathbf{U}\left(\boldsymbol{\Lambda}-z \mathbf{I}_{p}\right)^{-1} \mathbf{U}^{\top}=\sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\top}}{\lambda_{i}(\mathbf{X})-z} \tag{30}
\end{equation*}
$$

- thus, same eigenspace as $\mathbf{X}$, but maps the eigenvalues $\lambda_{i}(\mathbf{X})$ of $\mathbf{X}$ to $1 /\left(\lambda_{i}(\mathbf{X})-z\right)$.

Applying Cauchy's integral formula to the resolvent matrix $\mathbf{Q}_{\mathbf{X}}(z)$ allows one to (somewhat magically!) assess the eigenvalue and eigenvector behavior of $\mathbf{X}$ :

- characterize the eigenvalues of $\mathbf{X}$, one needs to determine a $z \in \mathbb{R}$ such that $\mathbf{Q}_{\mathbf{X}}(z)$ does not exist.
- can be done by directly calling the Cauchy's integral formula, which allows to determine the value of a (sufficiently nice) function $f$ at a point of interest $z_{0} \in \mathbb{R}$, by integrating its "inverse"
$g_{f}(z)=f(z) /\left(z_{0}-z\right)$ on the complex plane.
- this "inverse" $g_{f}(z)$ is akin to the resolvent and does not, by design, exist at the point of interest $z_{0}$.
- in the following example, we compare the two approaches of
(i) directly solving the determinantal equation; and
(ii) use resolvent + Cauchy's integral formula.


## A resolvent approach to spectral analysis: an example

Consider the following two-by-two real symmetric random matrix

$$
\mathbf{X}=\left[\begin{array}{ll}
x_{1} & x_{2}  \tag{31}\\
x_{2} & x_{3}
\end{array}\right] \in \mathbb{R}^{2 \times 2}
$$

for (say independent) random variables $x_{1}, x_{2}, x_{3}$. For $\lambda_{1}(\mathbf{X})$ and $\lambda_{2}(\mathbf{X})$ the two (random) eigenvalues of $\mathbf{X}$ with associated (random) eigenvectors $\mathbf{u}_{1}(\mathbf{X}), \mathbf{u}_{2}(\mathbf{X}) \in \mathbb{R}^{2}$, we are interested in

$$
\begin{equation*}
f_{\mathbf{X}}=\mathbb{E}\left[f\left(\lambda_{1}(\mathbf{X})\right)+f\left(\lambda_{2}(\mathbf{X})\right)\right], \quad g_{i, \mathbf{X}}=\mathbf{a}^{\top} \mathbb{E}\left[\mathbf{u}_{i}(\mathbf{X}) \mathbf{u}_{i}(\mathbf{X})^{\top}\right] \mathbf{b}, i \in\{1,2\} \tag{32}
\end{equation*}
$$

for some function $f: \mathbb{R} \rightarrow \mathbb{R}$ and deterministic $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{2}$.
(i) Directly solve for the eigenvalues from the determinantal equation as

$$
\begin{equation*}
0=\operatorname{det}\left(\mathbf{X}-\lambda \mathbf{I}_{2}\right) \Leftrightarrow \lambda(\mathbf{X})=\frac{1}{2}\left(x_{1}+x_{3} \pm \sqrt{\left(x_{1}+x_{3}\right)^{2}-4\left(x_{1} x_{3}-x_{2}^{2}\right)}\right) \tag{33}
\end{equation*}
$$

and the associated eigenvectors from $\mathbf{X} \mathbf{u}_{i}(\mathbf{X})=\lambda_{i}(\mathbf{X}) \mathbf{u}_{i}(\mathbf{X}), i \in\{1,2\}$. Then compute $f_{\mathbf{X}}=\mathbb{E}\left[f\left(\lambda_{1}(\mathbf{X})\right)+f\left(\lambda_{2}(\mathbf{X})\right)\right], g_{i, \mathbf{X}}=\mathbf{a}^{\top} \mathbb{E}\left[\mathbf{u}_{i}(\mathbf{X}) \mathbf{u}_{i}(\mathbf{X})^{\top}\right] \mathbf{b}$

- needs to re-compute of the expectation for a different choice of function $f$ and the eigen-pair $\left(\lambda_{1}(\mathbf{X}), \mathbf{u}_{1}(\mathbf{X})\right)$ or $\left(\lambda_{2}(\mathbf{X}), \mathbf{u}_{2}(\mathbf{X})\right)$ of interest.
(ii) The resolvent approach:

$$
\begin{aligned}
f_{\mathbf{X}} & =\mathbb{E}\left[f\left(\lambda_{1}(\mathbf{X})\right)+f\left(\lambda_{2}(\mathbf{X})\right)\right] \\
& =\mathbb{E}\left[-\frac{1}{2 \pi \imath} \oint_{\Gamma}\left(\frac{f(z)}{\lambda_{1}(\mathbf{X})-z}+\frac{f(z)}{\lambda_{2}(\mathbf{X})-z}\right) d z\right] \\
& =-\frac{1}{2 \pi \imath} \oint_{\Gamma} \mathbb{E}\left[f(z) \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z) d z\right]=-\frac{1}{2 \pi \imath} \oint_{\Gamma} f(z) \operatorname{tr}\left(\mathbb{E}\left[\mathbf{Q}_{\mathbf{X}}(z)\right]\right) d z
\end{aligned}
$$

for $\Gamma$ a positively-oriented contour that circles around both (random) eigenvalues of $\mathbf{X}$.

- a much more unified approach to the quantity $f_{\mathbf{X}}$ for different choices of $f$
- compute the expected resolvent once (which is much simpler in the case of large random matrices)
- then perform contour integration with the function $f$ of interest.
- similarly, for $g_{i, \mathbf{X}}$, it follows that

$$
\begin{equation*}
g_{i, \mathbf{X}}=\mathbf{a}^{\top} \mathbb{E}\left[\mathbf{u}_{i}(\mathbf{X}) \mathbf{u}_{i}(\mathbf{X})^{\boldsymbol{\top}}\right] \mathbf{b}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{i}} \mathbf{a}^{\boldsymbol{\top}} \mathbb{E}\left[\mathbf{Q}_{\mathbf{X}}(z)\right] \mathbf{b} d z \tag{34}
\end{equation*}
$$

for some contour $\Gamma_{i}$ that circles around only $\lambda_{i}(\mathbf{X}), i \in\{1,2\}$

- given the expected resolvent $\mathbb{E}[\mathbf{Q}(z)]$, it suffices to choose the specific contour $\Gamma_{i}$ to get the different expressions of $g_{1, \mathbf{X}}$ and $g_{2, \mathbf{X}}$


## Resolvent as the core object

| Objects of interest | Functionals of resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ |
| :---: | :---: |
| ESD $\mu_{\mathbf{X}}$ of $\mathbf{X}$ | Stieltjes transform $m_{\mu \mathbf{X}}(z)=\frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)$ |
| Linear spectral statistics (LSS): $f(\mathbf{X}) \equiv \frac{1}{p} \sum_{i} f\left(\lambda_{i}(\mathbf{X})\right)$ | Integration of trace of $\mathbf{Q}_{\mathbf{x}}(z):-\frac{1}{2 \pi ı} \oint_{\Gamma} f(z) \frac{1}{p} \operatorname{tr} \mathbf{Q} \mathbf{x}(z) d z$ (via Cauchy's integral) |
| Projections of eigenvectors $\mathbf{v}^{\boldsymbol{\top}} \mathbf{u}(\mathbf{X})$ and $\mathbf{v}^{\boldsymbol{\top}} \mathbf{U}(\mathbf{X})$ onto some given vector $\mathbf{v} \in \mathbb{R}^{p}$ | Bilinear form $\mathbf{v}^{\mathbf{\top}} \mathbf{Q} \mathbf{X}(z) \mathbf{v}$ of $\mathbf{Q}_{\mathbf{x}}$ |
| General matrix functional $F(\mathbf{X})=\sum_{i} f\left(\lambda_{i}(\mathbf{X})\right) \mathbf{v}_{1}^{\top} \mathbf{u}_{i}(\mathbf{X}) \mathbf{u}_{i}(\boldsymbol{X})^{\top} \mathbf{v}_{2}$ <br> involving both eigenvalues and eigenvectors | Integration of bilinear form of $\mathbf{Q}_{\mathbf{x}}(z)$ : $-\frac{1}{2 \pi i} \oint_{\Gamma} f(z) \mathbf{v}_{1}^{\top} \mathbf{Q} \mathbf{x}(z) \mathbf{v}_{2} d z$ |

## Using the resolvent to access eigenvalue distribution

## Definition (Resolvent)

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, the resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ of $\mathbf{X}$ is defined, for $z \in \mathbb{C}$ not an eigenvalue of $\mathbf{X}$, as

$$
\begin{equation*}
\mathbf{Q}_{\mathbf{X}}(z) \equiv\left(\mathbf{X}-z \mathbf{I}_{p}\right)^{-1} \tag{35}
\end{equation*}
$$

- let $\mathbf{X}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\boldsymbol{\top}}$ be the spectral decomposition of $\mathbf{X}$, with $\boldsymbol{\Lambda}=\left\{\lambda_{i}(\mathbf{X})\right\}_{i=1}^{p}$ eigenvalues and $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right] \in \mathbb{R}^{p \times p}$ the associated eigenvectors, then

$$
\begin{equation*}
\mathbf{Q}(z)=\mathbf{U}\left(\boldsymbol{\Lambda}-z \mathbf{I}_{p}\right)^{-1} \mathbf{U}^{\top}=\sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\top}}{\lambda_{i}(\mathbf{X})-z} \tag{36}
\end{equation*}
$$

- thus, same eigenspace as $\mathbf{X}$, but maps the eigenvalues $\lambda_{i}(\mathbf{X})$ of $\mathbf{X}$ to $1 /\left(\lambda_{i}(\mathbf{X})-z\right)$.
- eigenvalue of $\mathbf{Q}_{\mathbf{X}}(z)$, and the resolvent matrix itself, must explode as $z$ approaches any eigenvalue of $\mathbf{X}$.
- take the trace $\operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)$ of $\mathbf{Q}_{\mathbf{X}}(z)$ as the quantity to "locate" the eigenvalues of the matrix $\mathbf{X}$ of interest
- for $\mu_{\mathbf{X}} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(\mathbf{X})}$ the ESD of $\mathbf{X}$,

$$
\begin{equation*}
\frac{1}{p} \operatorname{tr} \mathbf{Q}(z)=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}(\mathbf{X})-z}=\int \frac{\mu_{\mathbf{X}}(d t)}{t-z} \equiv m_{\mu_{\mathbf{X}}}(z) \tag{37}
\end{equation*}
$$

## The Stieltjes transform

## Definition (Stieltjes transform)

For a real probability measure $\mu$ with support $\operatorname{supp}(\mu)$, the Stieltjes transform $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
\begin{equation*}
m_{\mu}(z) \equiv \int \frac{\mu(d t)}{t-z} \tag{38}
\end{equation*}
$$

## Proposition (Properties of Stieltjes transform, [HLN07])

For $m_{\mu}$ the Stieltjes transform of a probability measure $\mu$, it holds that
(i) $m_{\mu}$ is complex analytic on its domain of definition $\mathbb{C} \backslash \operatorname{supp}(\mu)$;
(ii) it is bounded $\left|m_{\mu}(z)\right| \leq 1 / \operatorname{dist}(z, \operatorname{supp}(\mu))$;
(iii) it is an increasing function on all connected components of its restriction to $\mathbb{R} \backslash \operatorname{supp}(\mu)$ (since $\left.m_{\mu}^{\prime}(x)=\int(t-x)^{-2} \mu(d t)>0\right)$ with $\lim _{x \rightarrow \pm \infty} m_{\mu}(x)=0$ if $\operatorname{supp}(\mu)$ is bounded; and
(iv) $m_{\mu}(z)>0$ for $z<\inf \operatorname{supp}(\mu), m_{\mu}(z)<0$ for $z>\sup \operatorname{supp}(\mu)$ and $\Im[z] \cdot \Im\left[m_{\mu}(z)\right]>0$ if $z \in \mathbb{C} \backslash \mathbb{R}$; and

BTW, for any $\mathbf{u} \in \mathbb{R}^{p}$ and matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ so that $\operatorname{tr}(\mathbf{A})=1, \mathbf{u}^{\top} \mathbf{Q}_{\mathbf{X}}(z) \mathbf{u}, \operatorname{tr}\left(\mathbf{A} \mathbf{Q}_{\mathbf{X}}(z)\right)$ are STs.
${ }^{5}$ Walid Hachem, Philippe Loubaton, and Jamal Najim. "Deterministic equivalents for certain functionals of large random matrices". In: The Annals of Applied Probability 17.3 (2007), pp. 875-930

The inverse Stieltjes transform

## Definition (Inverse Stieltjes transform)

For $a, b$ continuity points of the probability measure $\mu$, we have

$$
\begin{equation*}
\mu([a, b])=\frac{1}{\pi} \lim _{y \downarrow 0} \int_{a}^{b} \Im\left[m_{\mu}(x+\imath y)\right] d x \tag{39}
\end{equation*}
$$

Besides, if $\mu$ admits a density $f$ at $x$ (i.e., $\mu(x)$ is differentiable in a neighborhood of $x$ and $\left.\lim _{\epsilon \rightarrow 0}(2 \epsilon)^{-1} \mu([x-\epsilon, x+\epsilon])=f(x)\right)$,

$$
\begin{equation*}
f(x)=\frac{1}{\pi} \lim _{y \downarrow 0} \Im\left[m_{\mu}(x+\imath y)\right] \tag{40}
\end{equation*}
$$

## Use the resolvent for eigenvalue functionals

## Definition (Linear Spectral Statistic, LSS)

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, the linear spectral statistics (LSS) $f_{\mathbf{X}}$ of $\mathbf{X}$ is defined as the averaged statistics of the eigenvalues $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ of $\mathbf{X}$ via some function $f: \mathbb{R} \rightarrow \mathbb{R}$, that is

$$
\begin{equation*}
f(\mathbf{X})=\frac{1}{p} \sum_{i=1}^{p} f\left(\lambda_{i}(\mathbf{X})\right) \tag{41}
\end{equation*}
$$

In particular, we have $=\int f(t) \mu_{\mathbf{X}}(d t)$, for $\mu_{\mathbf{X}}$ the ESD of $\mathbf{X}$.
LSS via contour integration: For $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ eigenvalues of a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, some function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is complex analytic in a compact neighborhood of the support $\operatorname{supp}\left(\mu_{\mathbf{X}}\right)$ (of the ESD $\mu_{\mathbf{X}}$ of $\left.\mathbf{X}\right)$, then

$$
\begin{equation*}
f(\mathbf{X})=\int f(t) \mu_{\mathbf{X}}(d t)=-\int \frac{1}{2 \pi \imath} \oint_{\Gamma} \frac{f(z) d z}{t-z} \mu_{\mathbf{X}}(d t)=-\frac{1}{2 \pi \imath} \oint_{\Gamma} f(z) m_{\mu_{\mathbf{X}}}(z) d z \tag{42}
\end{equation*}
$$

for any contour $\Gamma$ that encloses $\operatorname{supp}\left(\mu_{\mathbf{X}}\right)$, i.e., all the eigenvalues $\lambda_{i}(\mathbf{X})$.

LSS to retrieve the inverse Stieltjes transform formula

Remark (LSS to retrieve the inverse Stieltjes transform formula):

$$
\begin{aligned}
& \frac{1}{p} \sum_{\lambda_{i}(\mathbf{X}) \in[a, b]} \delta_{\lambda_{i}(\mathbf{X})}=-\frac{1}{2 \pi \imath} \oint_{\Gamma} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z \\
& =-\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}-l \varepsilon_{y}}^{b+\varepsilon_{x}-l \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z-\frac{1}{2 \pi \imath} \int_{b+\varepsilon_{x}+l \varepsilon_{y}}^{a-\varepsilon_{x}+l \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{x}}}(z) d z \\
& -\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}+l \varepsilon_{y}}^{a-\varepsilon_{x}-l \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{x}}}(z) d z-\frac{1}{2 \pi \imath} \int_{b+\varepsilon_{x}-\imath \varepsilon_{y}}^{b+\varepsilon_{x}+l \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{x}}}(z) d z .
\end{aligned}
$$

- Since $\Re[m(x+\imath y)]=\Re[m(x-\imath y)], \Im[m(x+\imath y)]=-\Im[m(x-\imath y)]$;
- we have $\int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}} m_{\mu_{\mathbf{X}}}\left(x-\imath \varepsilon_{y}\right) d x+\int_{b+\varepsilon_{x}}^{a-\varepsilon_{x}} m_{\mu_{\mathbf{X}}}\left(x+\imath \varepsilon_{y}\right) d x=-2 \imath \int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}} \Im\left[m_{\mu_{\mathbf{X}}}\left(x+\imath \varepsilon_{y}\right)\right] d x$;
- and consequently $\mu([a, b])=\frac{1}{p} \sum_{\lambda_{i}(\mathbf{X}) \in[a, b]} \lambda_{i}(\mathbf{X})=\frac{1}{\pi} \lim _{\varepsilon_{y \downarrow} \downarrow} \int_{a}^{b} \Im\left[m_{\mu_{\mathbf{X}}}\left(x+\imath \varepsilon_{y}\right)\right] d x$.


Figure: Illustration of a rectangular contour $\Gamma$ and support of $\mu_{\mathrm{X}}$ on the complex plane.

## Spectral functionals via resolvent

## Definition (Matrix spectral functionals)

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, we say $F: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}^{p \times p}$ is a matrix spectral functional of $\mathbf{X}$,

$$
\begin{equation*}
F(\mathbf{X})=\sum_{i \in \mathcal{I} \subseteq\{1, \ldots, p\}} f\left(\lambda_{i}(\mathbf{X})\right) \mathbf{u}_{i} \mathbf{u}_{i}^{\top}, \quad \mathbf{X}=\sum_{i=1}^{p} \lambda_{i}(\mathbf{X}) \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \tag{43}
\end{equation*}
$$

Spectral functional via contour integration: For $\mathbf{X} \in \mathbb{R}^{p \times p}$, resolvent $\mathbf{Q}_{\mathbf{X}}(z)=\left(\mathbf{X}-z \mathbf{I}_{p}\right)^{-1}, z \in \mathbb{C}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ analytic in a neighborhood of the contour $\Gamma_{\mathcal{I}}$ that circles around the eigenvalues $\lambda_{i}(\mathbf{X})$ of $\mathbf{X}$ with their indices in the set $\mathcal{I} \subseteq\{1, \ldots, p\}$,

$$
\begin{equation*}
F(\mathbf{X})=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\mathcal{I}}} f(z) \mathbf{Q}_{\mathbf{X}}(z) d z \tag{44}
\end{equation*}
$$

Example: access to the $i$-th eigenvector $\mathbf{u}_{i}$ of $\mathbf{X}$ through

$$
\begin{equation*}
\mathbf{u}_{i} \mathbf{u}_{i}^{\top}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}(\mathbf{X})}} \mathbf{Q}_{\mathbf{X}}(z) d z \tag{45}
\end{equation*}
$$

for $\Gamma_{\lambda_{i}(\mathbf{X})}$ a contour circling around $\lambda_{i}(\mathbf{X})$ only, so eigenvector projection $\left(\mathbf{v}^{\top} \mathbf{u}_{i}\right)^{2}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}(\mathbf{X})}} \mathbf{v}^{\top} \mathbf{Q} \mathbf{X}(z) \mathbf{v} d z$.

- "basic" probability: concentration of scalar observations of large random vectors: simple and involved, linear and nonlinear objects
- boils down to expectation computation/evaluation
- same holds for scalar observations of large random matrices
- linear algebra: matrix norm "equivalence" but up to dimensional factors
- resolvent (i.e., regularized inverse) naturally appears in eigenvalue/eigenvector assessment
- a unified resolvent-based to eigenspectral analysis of (not necessarily random) matrices: Cauchy's integral formula, Stieltjes transform (and its inverse), Linear Spectral Statistic, and generic matrix spectral functionals, etc.


## Thank you! Q \& A?


[^0]:    ${ }^{1}$ Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. "Classification asymptotics in the random matrix regime". In: 201826 th European Signal Processing Conference (ELUSIPCO). IEEE. 2018, pp. 1875-1879

[^1]:    ${ }^{2}$ Zhenyu Liao and Romain Couillet. "A Large Dimensional Analysis of Least Squares Support Vector Machines". In: IEEE Transactions on Signal Processing 67.4 (2019), pp. 1065-1074

[^2]:    ${ }^{3}$ Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018

[^3]:    ${ }^{4}$ Cosme Louart, Zhenyu Liao, and Romain Couillet. "A random matrix approach to neural networks". In: Annals of Applied Probability 28.2

