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Schedule of the mini-course

1 Monday, July 1st (today): Motivation and Mathematical Background (concentration, resolvent-based
approach to eigenspectral analysis, etc.)

2 Tuesday, July 2nd (afternoon): Four Ways to Characterize Sample Covariance Matrices and Some More
Random Matrix Models (Wigner semicircle law, generalized sample covariance model, and separable
covariance model)

3 Wednesday, July 3rd: Linear Master Theorem (information-plus-noise and additive spiked models) and
RMT for Linear Machine Learning (Low-rank approximation, classification, and linear least squares)

4 Thursday, July 4th: Linearization of Nonlinear Models (Taylor expansion and Orthogonal Polynomial)
and Nonlinear ML models via linearization: Kernel Methods in the Proportional Regime
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Outline

1 Introduction and Motivation
Sample covariance matrix
RMT for machine learning: kernel spectral clustering

2 Mathematical Background
From random scalars to random vectors, LLN, and CLT
A quick recap on linear algebra
A unified spectral analysis approach via the resolvent

Z. Liao (EIC, HUST) RMT4ML July 1, 2024 3 / 57



Motivation: understanding large-dimensional machine learning

Big Model
of size N

Big Data
x1, . . . , xn ∈ Rp

▶ Big Data era: exploit large n, p, N
▶ counterintuitive phenomena different from classical

asymptotics statistics
▶ complete change of understanding of many methods

in statistics, machine learning, signal processing, and
wireless communications

▶ Random Matrix Theory (RMT) provides the tools!
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Sample covariance matrix in the large n, p regime

▶ Problem: estimate covariance C ∈ Rp×p from n data samples x1, . . . , xn with xi ∼ N (0, C),

▶ Maximum likelihood sample covariance matrix with entry-wise convergence

Ĉ =
1
n

n

∑
i=1

xix
T
i ∈ Rp×p, [Ĉ]ij → [C]ij

almost surely as n → ∞: optimal for n ≫ p (or, for p “small”).

▶ In the regime n ∼ p, conventional wisdom breaks down: for C = Ip with n < p, Ĉ has at least p − n zero
eigenvalues:

∥Ĉ − C∥ ̸→ 0, n, p → ∞ ⇒ eigenvalue mismatch and not consistent!

▶ due to loss of matrix norm “equivalence”: ∥A∥max ≤ ∥A∥ ≤ p∥A∥max for A ∈ Rp×p and
∥A∥max ≡ maxij |Aij|.
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When is one in the random matrix regime? Almost always!

What about n = 100p? For C = Ip, as n, p → ∞ with p/n → c ∈ (0, ∞): MP law

µ(dx) = (1 − c−1)+δ(x) +
1

2πcx

√
(x − E−)+(E+ − x)+dx

where E− = (1 −
√

c)2, E+ = (1 +
√

c)2 and (x)+ ≡ max(x, 0). Close match!
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Empirical eigenvalues of Ĉ

Marc̆enko-Pastur law

Population eigenvalue

Figure: Eigenvalue distribution of Ĉ versus Marc̆enko-Pastur law, p = 500, n = 50 000.

▶ eigenvalues span on [E− = (1−
√

c)2, E+ = (1+
√

c)2].
▶ for n = 100p, on a range of ±2

√
c = ±0.2 around the population eigenvalue 1.
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Classical large-n asymptotic analysis mostly fails today

▶ large-n intuition, and many existing popular methods in biology, finance, signal processing,
telecommunication, and machine learning, must fail even with n = 100p!

▶ RMT as a flexible and powerful tool to understand and recreate these methods
▶ in essence: large-scale system with increasing complexity in need of low complexity analysis
▶ as an motivating example, how RMT can be applied to assess kernel spectral clustering in machine

learning
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“Curse of dimensionality”: loss of relevance of Euclidean distance

▶ Binary Gaussian mixture classification x ∈ Rp:

C1 : x ∼ N (µ1, C1), versus C2 : x ∼ N (µ2, C2);

▶ Neyman-Pearson test: classification is possible only when

∥µ1 − µ2∥ ≥ Cµ, or ∥C1 − C2∥ ≥ CC · p−1/2

for some constants Cµ, CC > 0 [CLM18].
▶ In this non-trivial setting, for xi ∈ Ca, xj ∈ Cb:

max
1≤i ̸=j≤n

{∣∣∣∣1p∥xi − xj∥2 − 2
p

tr C◦
∣∣∣∣} a.s.−→ 0

as n, p → ∞ (i.e., n ∼ p), for C◦ ≡ 1
2 (C1 + C2), regardless of the classes Ca, Cb!

1Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. “Classification asymptotics in the random matrix regime”. In: 2018 26th European Signal
Processing Conference (EUSIPCO). IEEE. 2018, pp. 1875–1879
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Loss of relevance of Euclidean distance: visual representation

O(
√

p)

O(1)

Figure: Visual representation of classification in (left) small and (right) large dimensions.

⇒ Direct consequence to various distance-based machine learning methods
(e.g., kernel spectral clustering)!
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Reminder on kernel spectral clustering

Two-step classification of n data points with distance kernel K ≡ {f (∥xi − xj∥2/p)}n
i,j=1:

0 isolated eigenvalues

⇓ Top eigenvectors ⇓
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Reminder on kernel spectral clustering

⇓ K-dimensional representation ⇓

Eig. 1
Ei

g.
2

⇓
EM or k-means clustering
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Cluster Gaussian data x1, . . . , xn ∈ Rp into C1 or C2, with second top eigenvectors v2 of heat kernel
Kij = exp(−∥xi − xj∥2/2p), small and large dimensional data.

(a) p = 5, n = 500

K =




v2 =

[ ]

(b) p = 250, n = 500

K =




v2 =

[ ]
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Kernel matrices for large dimensional real-world data

(a) MNIST

K =




v2 =

[ ]

(b) Fashion-MNIST

K =




v2 =

[ ]
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A RMT viewpoint of large kernel matrices

▶ “local” linearization of nonlinear kernel matrices in large dimensions, e.g., Gaussian kernel matrix
Kij = exp(−∥xi − xj∥2/2p) with C1 = C2 = Ip (e.g., C1 : xi = µ1 + zi versus C2 : xj = µ2 + zj) so that

∥xi − xj∥2/p a.s.−→ 2, and K = exp
(
−2

2

)(
1n1T

n +
1
p

ZTZ
)
+ g(∥µ1 − µ2∥)

1
p

jjT + ∗+ o∥·∥(1)

with Gaussian Z = [z1, . . . , zn] ∈ Rp×n and class-information j = [1n/2;−1n/2],
▶ accumulated effect of small “hidden” statistical information (∥µ1 − µ2∥ in this case)
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A RMT viewpoint of large kernel matrices

Therefore
▶ entry-wise:

Kij = exp(−1)
(

1 +
1
p

zT
i zj︸ ︷︷ ︸

O(p−1/2)

)
± 1

p
g(∥µ1 − µ2∥)︸ ︷︷ ︸

O(p−1)

+∗, so that
1
p

g(∥µ1 − µ2∥) ≪
1
p

zT
i zj,

▶ spectrum-wise:

− ∥K − exp(−1)1n1T
n ∥ ̸→ 0;

− ∥ 1
p ZTZ∥ = O(1) and ∥g(∥µ1 − µ2∥) 1

p jjT∥ = O(1)!

▶ Same phenomenon as the sample covariance example: [Ĉ − C]ij → 0 ̸⇒ ∥Ĉ − C∥ → 0!

⇒ With RMT, we understand kernel spectral clustering for large dimensional data!
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Some more numerical results

−0.05 0 0.05

(a) MNIST

−0.1 0 0.1

(b) Fashion-MNIST

Figure: Empirical histogram of LS-SVM soft output versus RMT prediction, n = 2 048, p = 784, γ = 1 with Gaussian kernel,
for MINST (left, 7 versus 9) and Fashion-MNIST (right, 8 versus 9) data. Results averaged over 30 runs.

2Zhenyu Liao and Romain Couillet. “A Large Dimensional Analysis of Least Squares Support Vector Machines”. In: IEEE Transactions on
Signal Processing 67.4 (2019), pp. 1065–1074
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Take-away of this section

▶ sample covariance matrix Ĉ have different behavior in the large n, p regime
▶ loss of matrix norm “equivalence” for large matrices ∥A∥max ≤ ∥A∥ ≤ p∥A∥max for A ∈ Rp×p and

∥A∥max ≡ maxij |Aij|
▶ in the non-trivial classification regime: loss of relevance of Euclidean distance
▶ direct consequence in all distance-based ML methods, e.g., kernel spectral clustering
▶ RMT provides an answer
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Characterization of scalar random variables: from moments to tails

Definition (Moments and moment generating function, MGF)

For a scalar random variable x defined on some probability space (Ω,F , P), we denote
▶ E[x] the expectation of x;
▶ Var[x] = E[(x − E[x])2] the variance of x;
▶ for p > 0, E[xp] the pth moment of x, and E[|x|p] the pth absolute moment;
▶ for λ ∈ R, Mx(λ) = E[eλx] = ∑∞

p=0
λp

p! E[xp] the moment generating function (MGF) of x.

▶ the (absolute) moment of x writes as an integral of the tail of x
▶ characterization of the probability that x differs from a deterministic value by more than t > 0.

Lemma (Moments versus tails)

For a scalar random variable x and fixed p > 0, we have
1 E[|x|p] =

∫ ∞
0 ptp−1P (|x| ≥ t) dt

2 P (|x| ≥ t) ≤ exp(−λt)Mx(λ), for t > 0 and MGF Mx(λ)
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Sub-gaussian distribution

Definition (Sub-gaussian and sub-exponential distributions)

For a standard Gaussian random variable x ∼ N (0, 1), its law given by µ(dt) = 1√
2π

exp(−t2/2), so that

P(x ≥ X) = µ([X, ∞)) = 1√
2π

∫ ∞
X exp(−t2/2) dt ≤ exp(−X2/2).

▶ We say y is a sub-gaussian random variable if it has a tail that decays as fast as standard Gaussian random
variables, that is

P (|y| ≥ t) ≤ exp(−t2/σ2
N ), (1)

for some σN > 0 (known as the sub-gaussian norm of y) for all t > 0.
▶ We can define a sub-exponential random variable z similarly via P(|z| ≥ t) ≤ exp(−t/σN ).

▶ for a sub-gaussian random variable x of mean µ = E[x] and sub-gaussian norm σN that

P (|x − µ| ≥ tσN ) ≤ exp(−t2), (2)

for all t > 0, in which the sub-gaussian norm σN of x acts as a scale parameter (that is similar, in spirit, to
the variance parameter of Gaussian distribution).
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A collection of scalar random variables: from LLN to CLT

For a collection of independent and identically distributed (i.i.d.) random variables x1, . . . , xn of mean µ and
variance σ2, we have, by independence, that

E

[
1
n

n

∑
i=1

xi

]
= µ, Var

[
1
n

n

∑
i=1

xi

]
=

1
n2

n

∑
i=1

Var[xi] =
σ2

n
. (3)

▶ for µ, σ2 do not scale with n, the (random) sample mean strongly concentrates around its expectation µ.

Theorem (Weak and strong law of large numbers, LLN)

For a sequence of i.i.d. random variables x1, . . . , xn with finite expectation E[xi] = µ < ∞, we have
▶ the sample mean 1

n ∑n
i=1 xi → µ in probability as n → ∞, known as the weak law of large numbers (WLLN);

▶ the sample mean 1
n ∑n

i=1 xi → µ almost surely as n → ∞, known as the strong law of large numbers (SLLN).
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A collection of scalar random variables: from LLN to CLT

Theorem (Central limit theorem, CLT)

For a sequence of i.i.d. random variables x1, . . . , xn with E[xi] = µ and Var[xi] = σ2, we have, for every t ∈ R that

P

(
1

σ
√

n

n

∑
i=1

(xi − µ) ≥ t

)
→ 1√

2π

∫ ∞

t
e−x2/2 dx (4)

as n → ∞. That is, as n → ∞, the random variable 1
σ
√

n ∑n
i=1(xi − µ) → N (0, 1) in distribution.

Remark: the results of LLN and CLT can be compactly written as

1
n

n

∑
i=1

xi ≃ µ︸︷︷︸
O(1)

+N (0, 1) · σ/
√

n︸ ︷︷ ︸
O(n−1/2)

, (5)

as n → ∞, for µ, σ both of order O(1).
(i) In the first order (of magnitude O(1)), it has an asymptotically deterministic behavior around the

expectation µ; and
(ii) in the second order (of magnitude O(n−1/2)), it strongly concentrates around this deterministic quantity

with a universal Gaussian fluctuation, regardless of the distribution of the component of xi.
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Concentration of random vectors in high dimensions?

▶ “concentration” for a random vector x ∈ Rn?

Observation (Random vectors do not “concentrate” around their means)

For two independent random vectors x, y ∈ Rn, having i.i.d. entries with zero mean and unit variance (that is,
µ = 0 and σ = 1), we have that

E[∥x − 0∥2
2] = E[xTx] = tr(E[xxT]) = n, (6)

and further by independence that

E[∥x − y∥2
2] = E[xTx + yTy] = 2n. (7)

▶ the origin 0 (and mean of x) is always, in expectation, at the midpoint of two independent draws of
random vectors in Rn

▶ any random vector x ∈ Rn with n large is not close to its mean
▶ x does not itself “concentrate” around any n-dimensional deterministic vector in any traditional sense.
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Concentration of random vectors and their linear scalar observations

▶ In spite of this, from the LLN and CLT one expects that some types of “observations” of x ∈ Rn (e.g.,
averages over all the entries of x, to retrieve the sample mean), must concentrate in some sense for n large

▶ we “interpret” the sample mean as a linear scalar observation of a vector x ∈ Rn.

Remark (Sample mean as a linear scalar observation)

Let x ∈ Rn be a random vector having i.i.d. entries, then the sample mean of the entries of x can be rewritten as the
following linear scalar observation f : Rn → R of x defined as

f (x) = 1T
n x/n =

1
n

n

∑
i=1

xi, or f (·) = 1T
n (·)/n. (8)

▶ LLN and CLT are nothing but asymptotic characterization of the concentration behavior of the linear
scalar observation f (x) of the random vector x ∈ Rn

▶ we can say things non-asymptotically as well, under two different assumptions on the tail of x.
(i) are only assumed to have finite variance σ2 (but nothing on its tail behavior or higher-order moments); and

(ii) have sub-gaussian tails with sub-gaussian norm σN .

Z. Liao (EIC, HUST) RMT4ML July 1, 2024 28 / 57



Asymptotic and non-asymptotic concentration of random vectors

Table: Different types of characterizations of the linear scalar observation f (x) = xT1n/n for x ∈ Rn, having i.i.d. entries
with mean E[xi] = µ and variance σ2 or sub-gaussian norm σN .

First-order behavior Second-order behavior

Asymptotic f (x) → µ
via Law of Large Numbers

√
n

σ (f (x)− µ) → N (0, 1) in law
Central Limit Theorem

Non-asymptotic under finite variance E[f (x)] = µ
P
(
|f (x)− µ| ≥ tσ/

√
n
)
≤ t−2

via variance computation and Chebyshev’s inequality

Non-asymptotic under sub-gaussianity E[f (x)] = µ
P
(
|f (x)− µ| ≥ tσN /

√
n
)
≤ exp(−Ct2)

via sub-gaussian tail bound

Remark (Concentration of scalar observation of large random vectors: asymptotic and non-asymptotics): A
random vector x ∈ Rn, when “observed” via the linear scalar observation f (x) = 1T

n x/n:

f (x) ≃ µ︸︷︷︸
O(1)

+ X/
√

n︸ ︷︷ ︸
O(n−1/2)

, (9)

for n large, with some random X of order O(1) that:
(i-i) has a tail that decays (at least) as t−2, for finite n and x having entries of bounded variance;

(i-ii) has a sub-gaussian tail (at least) as exp(−t2), for finite n and x having sub-gaussian entries;
(ii) has a precise Gaussian tail independent of the law of (the entries of) x, but in the limit of n → ∞ via CLT.
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Lipschitz, quadratic concentration, and beyond

The concentration properties extend beyond the specific linear observation, f (x) = 1T
n x/n, to many types of

(possibly) nonlinear observations.

Definition (Observation maps)

For random vector x ∈ Rn, we say f (x) ∈ R is a scalar observation of x with observation map f : Rn → R.

Table: Different types of scalar observations f (x) of random vector x ∈ Rn, having independent entries.

Scalar observation Characterization

Linear sample mean f (x) = 1T
n x/n,

and f (x) = aTx for a ∈ Rn Table in last slide

Lipschitz f (x) for a Lipschitz map f : Rn → R Lipschitz concentration

Quadratic form f (x) = xTAx for some A ∈ Rn×n Hanson–Wright inequality

Nonlinear quadratic form f (x) = σ(xTY)Aσ(YTx)
for entry-wise σ : R → R, A ∈ Rn×n and Y ∈ Rp×n

Nonlinear quadratic concentration,
of direct use in NN
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Lipschitz concentration

Theorem (Concentration of Lipschitz map of Gaussian random vectors, [Ver18, Theorem 5.2.2])

For a standard Gaussian random vector x ∼ N (0, In) and a Lipschitz function f : Rn → R that satisfies
|f (y1)− f (y2)| ≤ Kf ∥y1 − y2∥2 for any y1, y2 ∈ Rn, we have, for all t > 0 that

P (|f (x)− E[f (x)]| ≥ t) ≤ exp(−Ct2/K2
f ), (10)

for some universal constant C > 0, with Kf > 0 known as the Lipschitz constant of f .

Remark (Concentration of Lipschitz observation of large random vectors): The Lipschitz scalar observations
f (x) of the random vector x ∈ Rn behave as

f (x) ≃ E[f (x)] + Kf , (11)

for n large, where Kf is the Lipschitz constant of f (that is, in general, of order O(n−1/2), for example for
f (x) = xT1n/n). This leads to first- and second-order behaviors:

(i) In the first order, f (x) fluctuate around the deterministic quantity E[f (x)]; and
(ii) in the second order, it concentrates around this deterministic quantity with a fluctuation/deviation that is

proportional to Kf (and or order O(n−1/2)) and has a sub-gaussian tail
3Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and

Probabilistic Mathematics. Cambridge University Press, 2018
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Concentration of quadratic forms

▶ intuitively expect that non-Lipschitz observation f (x) still concentrates in some way, but “less so”
▶ important special case of quadratic forms, xTAx for some given A ∈ Rn×n

Theorem (Hanson–Wright inequality for quadratic forms, [Ver18, Theorem 6.2.1])

For a random vector x ∈ Rn having independent, zero-mean, unit-variance, sub-gaussian entries with sub-gaussian
norm bounded by σN , and deterministic matrix A ∈ Rn×n, we have, for every t > 0, that

P
(∣∣∣xTAx − tr A

∣∣∣ ≥ t
)
≤ exp

(
− C

σ2
N

min

(
t2

σ2
N ∥A∥2

F
,

t
∥A∥2

))
, (12)

for some universal constant C > 0.

▶ depending on the interplay between the “range” t and the deterministic matrix A, the random quadratic
form xTAx swings between a sub-gaussian (exp(−t2)) and a sub-exponential (exp(−t)) tail

▶ Remark: squared norm ∥x∥2
2 as quadratic observation of x ∈ Rn: 1

n∥x∥2
2 ≃ 1 + O(n−1/2) for n large,

(i) In the first order, ∥x∥2
2/n fluctuate around the deterministic quantity one; and

(ii) in the second order, it concentrates around this deterministic quantity with a fluctuation/deviation that grows
with σ2

N and of order O(n−1/2) with a sub-gaussian tail when close to the deterministic quantity, and with a
sub-exponential tail (so with a fluctuation with heavier tail and concentrates “less” than the Lipschitz case) when
far away.
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Concentration of nonlinear quadratic forms

▶ nonlinear quadratic forms 1
n f (xTY)Af (YTx) for Gaussian x ∈ Rp and deterministic A ∈ Rn×n, Y ∈ Rp×n

Theorem (Concentration of nonlinear quadratic forms, [LtC18, Lemma 1])

For a standard Gaussian random vector x ∼ N (0, Ip) and deterministic A ∈ Rn×n, Y ∈ Rp×n such that
∥A∥2 ≤ 1, ∥Y∥2 = 1, we have, for Lipschitz function f : R → R with Lipschitz constant Kf and any t > 0 that

P

(∣∣∣∣ 1n f (xTY)Af (YTx)− 1
n

tr AKf (Y)
∣∣∣∣ ≥ t√

n

)
≤ exp

(
− C

K2
f

min

(
t2

(|f (0)|+ Kf
√

p/n)2
,
√

nt

))
, (13)

with Kf (Y) = Ex[f (YTx)f (xTY)] ∈ Rn×n, for some universal constant C > 0.

▶ a nonlinear extension of the Hanson–Wright inequality (consider, e.g., Y = In with p = n)
Remark (Concentration of nonlinear quadratic form observation of large random vectors):

1
n

f (xTY)Af (YTx) ≃ 1
n

tr AKf (Y) + O(n−1/2), (14)

for n large, with max{f (0), Kf , p/n} = O(1), and similar first and second order behavior as above.
4Cosme Louart, Zhenyu Liao, and Romain Couillet. “A random matrix approach to neural networks”. In: Annals of Applied Probability 28.2

(2018), pp. 1190–1248
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A quick recap on linear algebra: vectors

Lemma (Polarization identity)

For x, y ∈ Rn, we have xTy = 1
2
(
∥x∥2

2 + ∥y∥2
2 − ∥x − y∥2

2
)
.

Observation (Different scaling for inner products and Euclidean norms of large random vectors)

Consider a random vector x ∈ Rn, so that
√

nx has i.i.d. entries with zero mean, unit variance, and finite fourth order
moment m4 < ∞ (the scaling by

√
n is so that E[∥x∥2

2] = 1), and a deterministic vector y ∈ Rn of unit norm
∥y∥2 = 1. Then, by LLN and CLT

xTy ≃ 0 +N (0, 1)/
√

n, (15)

for n large, so inner product xTy = O(n−1/2). On the other hand, E[(xTx)2] = n+m4−1
n and

∥x∥2
2 = xTx ≃ 1 +N (0, m4 − 1)/

√
n, ∥x − y∥2

2 = ∥x∥2
2 + ∥y∥2

2 + O(n−1/2) = 2 + O(n−1/2), (16)

so that the Euclidean distance between x and any fixed y (or their norms) is much larger (in fact by a factor of
√

n) than
their inner product.
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Numerical illustration

y

x

x − y

xTy

(a) Deterministic

y

xTy ≈ 0

x

(b) Large-dimensional random

Figure: Visualization of the polarization identity or (a) deterministic x, y ∈ Rn and (b) large-dimensional random vector
x ∈ Rn and deterministic y ∈ Rn.

Z. Liao (EIC, HUST) RMT4ML July 1, 2024 36 / 57



A quick recap on linear algebra: matrices

Definition (Matrix inner product and Frobenius norm)

Given matrices X, Y ∈ Rm×n,
▶ tr(XTY) = ∑n

i=1[X
TY]ii = ∑n

i=1 ∑m
j=1 XjiYji is the matrix inner product between X and Y, where tr(A) is

the trace of A; and
▶ ∥X∥2

F = tr(XTX) = ∑n
i=1[X

TX]ii = ∑n
i=1 ∑m

j=1 X2
ji denotes the (squared) Frobenius norm of X, which is also

the sum of the squared entries of X.

Definition (Matrix norm)

For X ∈ Rp×n, the following “entry-wise” extension of the p-norms of vectors.

1 matrix Frobenius norm ∥X∥F =
√

∑i,j X2
ij = ∥vec(X)∥2 that extends the vector ℓ2 Euclidean norm; and

2 matrix maximum norm ∥X∥max = maxi,j |Xij| = ∥vec(X)∥∞ that extends the vector ℓ∞ norm.

and also matrix norm induced by vectors: ∥X∥p ≡ sup∥v∥p=1 ∥Xv∥p.

▶ taking p = 2 is the spectral norm: ∥X∥2 =
√

λmax(XXT) = σmax(X), with λmax(XXT) and σmax(X) the
maximum eigenvalue and singular of XXT and X, respectively.
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A quick recap on linear algebra: matrices

▶ Frobenius norm and spectral norm are matrix Schatten norms (that applies the vector p-norms on the
vector of singular values of the matrix)

▶ are known to be unitarily invariant, that is ∥X∥ = ∥UXV∥ for all matrices X and unitary matrices U, V of
appropriate dimensions

Remark (Matrix norm “equivalence”)

For a matrix A ∈ Rm×n, one has the following
1 ∥A∥2 ≤ ∥A∥F ≤

√
rank(A) · ∥A∥2 ≤

√
max(m, n) · ∥A∥2, so that the control of the spectral norm via the

Frobenius norm can be particularly loose for matrices of large rank; and
2 ∥A∥max ≤ ∥A∥2 ≤

√
mn · ∥A∥max, with ∥A∥max ≡ maxi,j |Aij| the max norm of A, so that the max and spectral

norm can be significantly different for matrices of large size.

▶ The fact that matrix norm “equivalence” holds only up to dimensional factors (e.g., rank and size) is
crucial in large-dimensional data analysis and ML, as we have seen in the examples of SCM and kernel
spectral clustering above.
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A quick recap on linear algebra: eigenspectral decomposition

Definition (Eigen-decomposition of symmetric matrices)

A symmetric real matrix X ∈ Rn×n admits the following eigen-decomposition

X = UXΛXUT
X =

n

∑
i=1

λi(X)uiu
T
i , (17)

for diagonal ΛX = diag{λi(X)}n
i=1 containing λ1(X), . . . , λn(X) the real eigenvalues of X, and orthonormal

UX = [u1, . . . , un] ∈ Rn×n containing the corresponding eigenvectors. In particular,

Xui = λi(X)ui. (18)

▶ interested in a single eigenvalue of a symmetric real matrix, X ∈ Rn×n, one may either resort to the
eigenvalue-eigenvector equation in (18) or the determinant equation det(X − λIn) = 0

▶ classical RMT is interested in the joint behavior of all eigenvalues λ1(X), . . . , λn(X), e.g., the (empirical)
eigenvalue distribution of X

Z. Liao (EIC, HUST) RMT4ML July 1, 2024 39 / 57



Empirical spectral distribution of matrices

Definition (Empirical Spectral Distribution, ESD)

For a real symmetric matrix X ∈ Rn×n, the empirical spectral distribution (ESD) or empirical spectral measure µX of
X is defined as the normalized counting measure of the eigenvalues λ1(X), . . . , λn(X) of X,

µX ≡ 1
n

n

∑
i=1

δλi(X), (19)

where δx represents the Dirac measure at x. Since
∫

µX(dx) = 1, the spectral measure µX of a matrix X ∈ Rn×n

(which may be random or not) is a probability measure.

▶
∫

tµX(dt) = 1
n ∑n

i=1 λi(X) is the first moment of µX, and gives the average of all eigenvalues of X; and

▶
∫

t2µX(dt) = 1
n ∑n

i=1 λ2
i (X) is the second moment of µX, so that

∫
t2µX(dt)−

(∫
tµX(dt)

)2 gives the
variance of the eigenvalues of X.
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Connection between linear equation and spectral decomposition

Consider the linear equation
Ax = b, (20)

with A ∈ Rp×n and b ∈ Rp, we aim to solve for x ∈ Rn solution to Equation (20).
▶ for square A with p = n, then Equation (20) admits a unique solution if and only if A is invertible, that is,

0 is not an eigenvalue of A, and the solution is given by

x = A−1b. (21)

▶ in the general case with p ̸= n, A can be a fat (p < n) or tail (p > n) matrix, and is not invertible in either
case, we use the Moore–Penrose pseudoinverse.

Definition (Moore–Penrose pseudoinverse)

For a real matrix X ∈ Rp×n, we say X+ ∈ Rn×p is a (Moore–Penrose) pseudoinverse of X if it satisfies
XX+X = X, X+XX+ = X+, and both XX+ and X+X are symmetric. In particular, for X = UXΣXVT

X the SVD of
X, with orthonormal UX ∈ Rp×p and VX ∈ Rn×n, the pseudoinverse of X can be written as

X+ = VXΣ−1
X UX, (22)

with Σ−1
X inverting all positive values in ΣX and leaving zeros unchanged.
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Regularized inverse

The pseudoinverse “solves” the linear equation Ax = b in the following sense:
▶ The solutions to Equation (20) exist if and only if AA+b = b, and all its solutions are given by

x = A+b + (In − A+A)y, (23)

for arbitrary y ∈ Rn. The solution is unique if and only if In − A+A = 0 and that A has full column rank.
▶ As a consequence, the solution x̂ = A+b provides the least squares solution to Equation (20), as

arg min
x∈Rn

∥Ax − b∥2 = A+b. (24)

▶ however, can be numerically unstable as it inverts all singular values σ(X) of X to 1/σ(X), see later (e.g.,
Part 3) for a manifestation of this under the (modern) name of double descent

▶ in the case of square X, an alternative is the regularized inverse of X,

QX(γ) = (X + γI)−1, (25)

for some regularization parameter γ > 0, with λi(QX(γ)) =
1

λi(X)+γ
, and ∥QX∥ ≤ 1/γ.

▶ solves the regularized linear equation (i.e., ridge regression) as

arg min
x∈Rn

∥Ax − b∥2 + γ∥x∥2 = AT(AAT + γIp)
−1b = (ATA + γIn)

−1ATb. (26)

▶ two solutions equivalent for any γ > 0, taking γ → 0 is the “ridgeless” least squares solution A+b.
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A unified spectral analysis approach via the resolvent

▶ Note: here everything hold deterministically, not necessarily random yet
▶ combined with deterministic equivalent technique to be discussed in Part 2, gives the whole picture

Definition (Resolvent)

For a symmetric matrix X ∈ Rp×p, the resolvent QX(z) of X is defined, for z ∈ C not an eigenvalue of X, as

QX(z) ≡
(
X − zIp

)−1 . (27)

Proposition (Properties of resolvent)

For QX(z) the resolvent of a symmetric matrix X ∈ Rp×p with ESD µX with supported on supp(µX), then

(i) QX(z) is complex analytic on its domain of definition C \ supp(µX);

(ii) it is bounded in the sense that ∥QX(z)∥2 ≤ 1/ dist(z, supp(µX));

(iii) x 7→ QX(x) for x ∈ R \ supp(µX) is an increasing matrix-valued function with respect to symmetric
matrix partial ordering (i.e., A ⪰ B whenever zT(A − B)z ≥ 0 for all z).
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A unified spectral analysis approach via the resolvent

▶ for real z, the resolvent QX(z) is nothing but a regularized inverse of X
▶ when interested in the eigenvalues and eigenvectors of X ∈ Rp×p, consider the eigenvalue and

eigenvector equation
Xv = λv ⇔ (X − λIp)v = 0, λ ∈ R, v ∈ Rp, (28)

for an eigenvalue-eigenvector pair (λ, v) of X with v ̸= 0
▶ again a linear system, but solving for a pair of eigenvalue and eigenvector (λ, v) for which the

inverse/resolvent (X − λIp)−1 does not exist
▶ while seemingly less convenient at first sight, turns out to be very efficient in providing a unified assess

to general spectral functionals of X, by taking z to be complex and exploiting tools from complex analysis

Theorem (Cauchy’s integral formula)

For Γ ⊂ C a positively (i.e., counterclockwise) oriented simple closed curve and a complex function f (z) analytic in a
region containing Γ and its inside, then

(i) if z0 ∈ C is enclosed by Γ, f (z0) = − 1
2πı
∮

Γ
f (z)
z0−z dz;

(ii) if not, 1
2πı
∮

Γ
f (z)
z0−z dz = 0.
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A resolvent approach to spectral analysis

(X − λIp)v = 0 ⇒ QX(z) = (X − zIn)
−1 (29)

▶ let X = UΛUT be the spectral decomposition of X, with Λ = {λi(X)}
p
i=1 eigenvalues and

U = [u1, . . . , up] ∈ Rp×p the associated eigenvectors, then

Q(z) = U(Λ − zIp)
−1UT =

p

∑
i=1

uiuT
i

λi(X)− z
. (30)

▶ thus, same eigenspace as X, but maps the eigenvalues λi(X) of X to 1/(λi(X)− z).
Applying Cauchy’s integral formula to the resolvent matrix QX(z) allows one to (somewhat magically!)
assess the eigenvalue and eigenvector behavior of X:
▶ characterize the eigenvalues of X, one needs to determine a z ∈ R such that QX(z) does not exist.
▶ can be done by directly calling the Cauchy’s integral formula, which allows to determine the value of a

(sufficiently nice) function f at a point of interest z0 ∈ R, by integrating its “inverse”
gf (z) = f (z)/(z0 − z) on the complex plane.

▶ this “inverse” gf (z) is akin to the resolvent and does not, by design, exist at the point of interest z0.
▶ in the following example, we compare the two approaches of
(i) directly solving the determinantal equation; and

(ii) use resolvent + Cauchy’s integral formula.
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A resolvent approach to spectral analysis: an example

Consider the following two-by-two real symmetric random matrix

X =

[
x1 x2
x2 x3

]
∈ R2×2, (31)

for (say independent) random variables x1, x2, x3. For λ1(X) and λ2(X) the two (random) eigenvalues of X
with associated (random) eigenvectors u1(X), u2(X) ∈ R2, we are interested in

fX = E [f (λ1(X)) + f (λ2(X))] , gi,X = aTE[ui(X)ui(X)
T]b, i ∈ {1, 2}, (32)

for some function f : R → R and deterministic a, b ∈ R2.

(i) Directly solve for the eigenvalues from the determinantal equation as

0 = det(X − λI2) ⇔ λ(X) =
1
2

(
x1 + x3 ±

√
(x1 + x3)2 − 4(x1x3 − x2

2)

)
, (33)

and the associated eigenvectors from Xui(X) = λi(X)ui(X), i ∈ {1, 2}. Then compute
fX = E [f (λ1(X)) + f (λ2(X))], gi,X = aTE[ui(X)ui(X)T]b

▶ needs to re-compute of the expectation for a different choice of function f and the eigen-pair
(λ1(X), u1(X)) or (λ2(X), u2(X)) of interest.
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(ii) The resolvent approach:

fX = E [f (λ1(X)) + f (λ2(X))]

= E

[
− 1

2πı

∮
Γ

(
f (z)

λ1(X)− z
+

f (z)
λ2(X)− z

)
dz
]

= − 1
2πı

∮
Γ

E [f (z) tr QX(z)dz] = − 1
2πı

∮
Γ

f (z) tr (E[QX(z)]) dz,

for Γ a positively-oriented contour that circles around both (random) eigenvalues of X.
▶ a much more unified approach to the quantity fX for different choices of f
▶ compute the expected resolvent once (which is much simpler in the case of large random matrices)
▶ then perform contour integration with the function f of interest.
▶ similarly, for gi,X, it follows that

gi,X = aTE[ui(X)ui(X)
T]b = − 1

2πı

∮
Γi

aTE[QX(z)]b dz (34)

for some contour Γi that circles around only λi(X), i ∈ {1, 2}
▶ given the expected resolvent E[Q(z)], it suffices to choose the specific contour Γi to get the different

expressions of g1,X and g2,X
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Resolvent as the core object

Objects of interest Functionals of resolvent QX(z)

ESD µX of X Stieltjes transform mµX (z) =
1
p tr QX(z)

Linear spectral statistics (LSS):
f (X) ≡ 1

p ∑i f (λi(X))
Integration of trace of QX(z): − 1

2πı
∮

Γ f (z) 1
p tr QX(z) dz

(via Cauchy’s integral)

Projections of eigenvectors
vTu(X) and vTU(X) onto
some given vector v ∈ Rp

Bilinear form vTQX(z)v of QX

General matrix functional
F(X) = ∑i f (λi(X))vT

1 ui(X)ui(X)Tv2
involving both eigenvalues and eigenvectors

Integration of bilinear form of QX(z):
− 1

2πı
∮

Γ f (z)vT
1 QX(z)v2 dz
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Using the resolvent to access eigenvalue distribution

Definition (Resolvent)

For a symmetric matrix X ∈ Rp×p, the resolvent QX(z) of X is defined, for z ∈ C not an eigenvalue of X, as

QX(z) ≡
(
X − zIp

)−1 . (35)

▶ let X = UΛUT be the spectral decomposition of X, with Λ = {λi(X)}
p
i=1 eigenvalues and

U = [u1, . . . , up] ∈ Rp×p the associated eigenvectors, then

Q(z) = U(Λ − zIp)
−1UT =

p

∑
i=1

uiuT
i

λi(X)− z
. (36)

▶ thus, same eigenspace as X, but maps the eigenvalues λi(X) of X to 1/(λi(X)− z).
▶ eigenvalue of QX(z), and the resolvent matrix itself, must explode as z approaches any eigenvalue of X.
▶ take the trace tr QX(z) of QX(z) as the quantity to “locate” the eigenvalues of the matrix X of interest
▶ for µX ≡ 1

p ∑
p
i=1 δλi(X) the ESD of X,

1
p

tr Q(z) =
1
p

p

∑
i=1

1
λi(X)− z

=
∫

µX(dt)
t − z

≡ mµX (z) . (37)
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The Stieltjes transform

Definition (Stieltjes transform)

For a real probability measure µ with support supp(µ), the Stieltjes transform mµ(z) is defined, for all
z ∈ C \ supp(µ), as

mµ(z) ≡
∫

µ(dt)
t − z

. (38)

Proposition (Properties of Stieltjes transform, [HLN07])

For mµ the Stieltjes transform of a probability measure µ, it holds that

(i) mµ is complex analytic on its domain of definition C \ supp(µ);

(ii) it is bounded |mµ(z)| ≤ 1/ dist(z, supp(µ));

(iii) it is an increasing function on all connected components of its restriction to R \ supp(µ) (since
m′

µ(x) =
∫
(t − x)−2µ(dt) > 0) with limx→±∞ mµ(x) = 0 if supp(µ) is bounded; and

(iv) mµ(z) > 0 for z < inf supp(µ), mµ(z) < 0 for z > sup supp(µ) and ℑ[z] · ℑ[mµ(z)] > 0 if z ∈ C \ R; and

BTW, for any u ∈ Rp and matrix A ∈ Rp×p so that tr(A) = 1, uTQX(z)u, tr(AQX(z)) are STs.
5Walid Hachem, Philippe Loubaton, and Jamal Najim. “Deterministic equivalents for certain functionals of large random matrices”. In:

The Annals of Applied Probability 17.3 (2007), pp. 875–930
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The inverse Stieltjes transform

Definition (Inverse Stieltjes transform)

For a, b continuity points of the probability measure µ, we have

µ([a, b]) =
1
π

lim
y↓0

∫ b

a
ℑ
[
mµ(x + ıy)

]
dx. (39)

Besides, if µ admits a density f at x (i.e., µ(x) is differentiable in a neighborhood of x and
limϵ→0(2ϵ)−1µ([x − ϵ, x + ϵ]) = f (x)),

f (x) =
1
π

lim
y↓0

ℑ
[
mµ(x + ıy)

]
. (40)
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Use the resolvent for eigenvalue functionals

Definition (Linear Spectral Statistic, LSS)

For a symmetric matrix X ∈ Rp×p, the linear spectral statistics (LSS) fX of X is defined as the averaged statistics
of the eigenvalues λ1(X), . . . , λp(X) of X via some function f : R → R, that is

f (X) =
1
p

p

∑
i=1

f (λi(X)). (41)

In particular, we have =
∫

f (t)µX(dt), for µX the ESD of X.

LSS via contour integration: For λ1(X), . . . , λp(X) eigenvalues of a symmetric matrix X ∈ Rp×p, some
function f : R → R that is complex analytic in a compact neighborhood of the support supp(µX) (of the ESD
µX of X), then

f (X) =
∫

f (t)µX(dt) = −
∫ 1

2πı

∮
Γ

f (z) dz
t − z

µX(dt) = − 1
2πı

∮
Γ

f (z)mµX (z) dz, (42)

for any contour Γ that encloses supp(µX), i.e., all the eigenvalues λi(X).
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LSS to retrieve the inverse Stieltjes transform formula

Remark (LSS to retrieve the inverse Stieltjes transform formula):

1
p ∑

λi(X)∈[a,b]
δλi(X) = − 1

2πı

∮
Γ

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz

= − 1
2πı

∫ b+εx−ıεy

a−εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz − 1
2πı

∫ a−εx+ıεy

b+εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz

− 1
2πı

∫ a−εx−ıεy

a−εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz − 1
2πı

∫ b+εx+ıεy

b+εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz.

▶ Since ℜ[m(x + ıy)] = ℜ[m(x − ıy)],ℑ[m(x + ıy)] = −ℑ[m(x − ıy)];

▶ we have
∫ b+εx

a−εx
mµX (x − ıεy) dx +

∫ a−εx
b+εx

mµX (x + ıεy)dx = −2ı
∫ b+εx

a−εx
ℑ[mµX (x + ıεy)] dx;

▶ and consequently µ([a, b]) = 1
p ∑λi(X)∈[a,b] λi(X) = 1

π limεy↓0
∫ b

a ℑ[mµX (x + ıεy)] dx.
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Figure: Illustration of a rectangular contour Γ and support of µX on the complex plane.
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Spectral functionals via resolvent

Definition (Matrix spectral functionals)

For a symmetric matrix X ∈ Rp×p, we say F : Rp×p → Rp×p is a matrix spectral functional of X,

F(X) = ∑
i∈I⊆{1,...,p}

f (λi(X))uiu
T
i , X =

p

∑
i=1

λi(X)uiu
T
i . (43)

Spectral functional via contour integration: For X ∈ Rp×p, resolvent QX(z) = (X − zIp)−1, z ∈ C, and
f : R → R analytic in a neighborhood of the contour ΓI that circles around the eigenvalues λi(X) of X with
their indices in the set I ⊆ {1, . . . , p},

F(X) = − 1
2πı

∮
ΓI

f (z)QX(z) dz. (44)

Example: access to the i-th eigenvector ui of X through

uiu
T
i = − 1

2πı

∮
Γλi(X)

QX(z) dz, (45)

for Γλi(X) a contour circling around λi(X) only, so eigenvector projection (vTui)
2 = − 1

2πı
∮

Γλi(X)
vTQX(z)v dz.
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Take-away messages of this section

▶ “basic” probability: concentration of scalar observations of large random vectors: simple and involved,
linear and nonlinear objects

▶ boils down to expectation computation/evaluation
▶ same holds for scalar observations of large random matrices
▶ linear algebra: matrix norm “equivalence” but up to dimensional factors
▶ resolvent (i.e., regularized inverse) naturally appears in eigenvalue/eigenvector assessment
▶ a unified resolvent-based to eigenspectral analysis of (not necessarily random) matrices: Cauchy’s

integral formula, Stieltjes transform (and its inverse), Linear Spectral Statistic, and generic matrix spectral
functionals, etc.

Thank you! Q & A?
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