Random Matrix Theory for Modern Machine Learning: New Intuitions, Improved Methods, and Beyond: Part 3
 Short Course @ Institut de Mathématiques de Toulouse, France

Zhenyu Liao

School of Electronic Information and Communications Huazhong University of Science and Technology

July 3rd, 2024

Outline

(1) A Linear Theorem for Affine-transformed Model

- A master theorem for affine-transformed model
- The information-plus-noise spiked model
- The additive spiked model
(2) RMT for Machine Learning: Linear Models
- Low-rank approximation
- Classification
- Linear least squares

Affine-transformed model, a master theorem, and applications to linear ML

Definition (Affine-transformed model)

For $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having i.i.d. sub-gaussian entries of zero mean and unit variance, and let $\mathbf{A} \in \mathbb{R}^{q \times n}$ and $\mathbf{C} \in \mathbb{R}^{q \times p}$ be two deterministic matrices, we say \mathbf{X} is a affine transformed random matrix model

$$
\begin{equation*}
\mathbf{X}=\mathbf{A}+\mathbf{C Z} \in \mathbb{R}^{q \times n} \tag{1}
\end{equation*}
$$

- this extends SCM, and can be used to derive results for a wide range of linear ML methods
- exhibit different behaviors and intuitions, on classical or proportional regime, analogous to SCMs

Table: Roadmap of linear ML models considered.

ML Problem	Classical Regime	Proportional Regime								
Low rank approximation $\hat{\mathbf{X}}$	smooth decay of	sharp transition of								
of info-plus-noise matrix \mathbf{X}	$\\|\mathbf{X}-\hat{\mathbf{X}}\\|_{2} /\\|\mathbf{X}\\|_{2} \simeq(1+\ell)^{-1}$	$\\|\mathbf{X}-\hat{\mathbf{X}}\\|_{2} /\\|\mathbf{X}\\|_{2}$ at $\ell=c+\sqrt{c}$								
	Proposition 1 Item (i)	Proposition 1 Item (ii)								
Classification of binary	pairwise \simeq spectral approach	pairwise \ll spectral approach								
Gaussian mixtures of distance in means $\Delta \mu$	Proposition 2 Item (i)	Proposition 2 Item (ii)								
Linear least squares	bias $=0$ and	monotonic bias and								
regression risk as $n \uparrow$	variance $\propto n^{-1}$	non-monotonic variance								
Proposition 3 Item (i)	Proposition 3 Item (ii)									

Affine-transformed model

Definition (Affine-transformed model)

For $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having i.i.d. sub-gaussian entries of zero mean and unit variance, and let $\mathbf{A} \in \mathbb{R}^{q \times n}$ and $\mathbf{C} \in \mathbb{R}^{q \times p}$ be two deterministic matrices, we say \mathbf{X} is an affine transformed random matrix model

$$
\begin{equation*}
\mathbf{X}=\mathbf{A}+\mathbf{C Z} \in \mathbb{R}^{q \times n} \tag{2}
\end{equation*}
$$

- matrix version of an affine transformation of a vector: for $\mathbf{z} \in \mathbb{R}^{p}$ having independent entries of zero mean and unit variance, deterministic $\mathbf{a} \in \mathbb{R}^{q}$ and matrix $\mathbf{C} \in \mathbb{R}^{q \times p}$,

$$
\begin{equation*}
\mathbf{x}=\mathbf{a}+\mathbf{C} \mathbf{z} \in \mathbb{R}^{q} \tag{3}
\end{equation*}
$$

is an affine transformation of \mathbf{z} with mean $\mathbb{E}[\mathbf{x}]=\mathbf{a}$ and covariance $\operatorname{Cov}[\mathbf{x}]=\mathbf{C C}^{\boldsymbol{\top}} \succeq \mathbf{0}$

- due to the "structure" in \mathbf{X}, we shall see:
(i) the limiting eigenvalue distribution of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ can significantly diverge from the Marčenko-Pastur law
(ii) depending on the dimension ratio $c=p / n$, a few eigenvalues of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ may isolate from the rest of eigenvalue bulk, for which a phase transition behavior can be observed
- can be assessed via the proposed Deterministic Equivalent for resolvent approach in a unified fashion

Deterministic Equivalents for resolvent of affine SCM

Theorem (Asymptotic Deterministic Equivalent for resolvent of affine-transformed model)

For random matrix $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having i.i.d. sub-gaussian entries of zero mean and unit variance, let $\mathbf{X}=\mathbf{A}+\mathbf{C Z}$ be an affine-transformed model, for deterministic $\mathbf{A} \in \mathbb{R}^{q \times n}, \mathbf{C} \in \mathbb{R}^{q \times p}$ such that $\|\mathbf{C}\|_{2} \leq C,\|\mathbf{A}\|_{2} \leq C \sqrt{n}$, and $\left\|\mathbf{a}_{i}\right\| \leq C$ for some universal constant $C>0$, with $\mathbf{a}_{i} \in \mathbb{R}^{q}$ the $i^{\text {th }}$ column of \mathbf{A}. Then, one has, for $z \in \mathbb{C}$ not an eigenvalue of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ and as $p, q, n \rightarrow \infty$ at the same pace, the following asymptotic Deterministic Equivalent,

$$
\begin{equation*}
\mathbf{Q}(z) \leftrightarrow \overline{\mathbf{Q}}(z), \quad \overline{\mathbf{Q}}(z)=\left(\frac{\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}+\mathbf{C C}^{\top}}{1+\delta(z)}-z \mathbf{I}_{q}\right)^{-1} \tag{4}
\end{equation*}
$$

for the resolvent $\mathbf{Q}(z) \equiv\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{q}\right)^{-1}$, with $\delta(z)$ the unique Stieltjes transform solution to the fixed point equation

$$
\begin{equation*}
\delta(z)=\frac{1}{n} \operatorname{tr} \mathbf{C}^{\top} \overline{\mathbf{Q}}(z) \mathbf{C} \tag{5}
\end{equation*}
$$

- For the co-resolvent $\tilde{\mathbf{Q}}(z) \equiv\left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}-z \mathbf{I}_{n}\right)^{-1}$, one has instead

$$
\begin{equation*}
\tilde{\mathbf{Q}}(z) \leftrightarrow \overline{\tilde{\mathbf{Q}}}(z), \quad \overline{\tilde{\mathbf{Q}}}(z)=-\frac{\mathbf{I}_{n}}{z(1+\delta(z))} \tag{6}
\end{equation*}
$$

Useful lemmas: recap

Lemma (Resolvent identity)

For invertible matrices \mathbf{A} and \mathbf{B}, we have $\mathbf{A}^{-1}-\mathbf{B}^{-1}=\mathbf{A}^{-1}(\mathbf{B}-\mathbf{A}) \mathbf{B}^{-1}$.

Lemma (Woodbury)

For $\mathbf{A} \in \mathbb{R}^{p \times p}, \mathbf{U}, \mathbf{V} \in \mathbb{R}^{p \times n}$, such that both \mathbf{A} and $\mathbf{A}+\mathbf{U V}^{\top}$ are invertible, we have

$$
\left(\mathbf{A}+\mathbf{U} \mathbf{V}^{\top}\right)^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{U}\left(\mathbf{I}_{n}+\mathbf{V}^{\top} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V}^{\top} \mathbf{A}^{-1}
$$

In particular, for $n=1$, i.e., $\mathbf{U V}^{\top}=\mathbf{u v}^{\top}$ for $\mathbf{U}=\mathbf{u} \in \mathbb{R}^{p}$ and $\mathbf{V}=\mathbf{v} \in \mathbb{R}^{p}$, the above identity specializes to the following Sherman-Morrison formula,

$$
\left(\mathbf{A}+\mathbf{u} \mathbf{v}^{\top}\right)^{-1}=\mathbf{A}^{-1}-\frac{\mathbf{A}^{-1} \mathbf{u v}^{\top} \mathbf{A}^{-1}}{1+\mathbf{v}^{\top} \mathbf{A}^{-1} \mathbf{u}}, \quad \text { and }\left(\mathbf{A}+\mathbf{u} \mathbf{v}^{\top}\right)^{-1} \mathbf{u}=\frac{\mathbf{A}^{-1} \mathbf{u}}{1+\mathbf{v}^{\top} \mathbf{A}^{-1} \mathbf{u}}
$$

And the matrix $\mathbf{A}+\mathbf{u v}^{\top} \in \mathbb{R}^{p \times p}$ is invertible if and only if $1+\mathbf{v}^{\top} \mathbf{A}^{-1} \mathbf{u} \neq 0$.

Heuristic derivation via "leave-one-out"

- propose $\overline{\mathbf{Q}}=\left(\mathbf{F}-z \mathbf{I}_{q}\right)^{-1}$ for some deterministic $\mathbf{F} \in \mathbb{R}^{q \times q}$ to be determined, and try to "guess" \mathbf{F}
- by resolvent identity

$$
\begin{aligned}
\mathbb{E}[\mathbf{Q}-\overline{\mathbf{Q}}] & =\mathbb{E}\left[\mathbf{Q}\left(\mathbf{F}-\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}\right)\right] \overline{\mathbf{Q}}=\mathbb{E}[\mathbf{Q}] \mathbf{F} \overline{\mathbf{Q}}-\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{Q} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right] \overline{\mathbf{Q}} \\
& =\mathbb{E}[\mathbf{Q}] \mathbf{F} \overline{\mathbf{Q}}-\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\frac{\mathbf{Q}_{-i} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i} \mathbf{x}_{i}}\right] \overline{\mathbf{Q}}
\end{aligned}
$$

with $\mathbf{x}_{i}=\mathbf{a}_{i}+\mathbf{C} \mathbf{z}_{i} \in \mathbb{R}^{q}$ the $i^{\text {th }}$ column of $\mathbf{X} \in \mathbb{R}^{q \times n}$ for $\mathbf{a}_{i} \in \mathbb{R}^{q}$ the $i^{\text {th }}$ column of $\mathbf{A} \in \mathbb{R}^{q \times n}$ and $\mathbf{z}_{i} \in \mathbb{R}^{p}$ the $i^{\text {th }}$ column of $\mathbf{Z}, \mathbf{Q}_{-i}=\left(\frac{1}{n} \sum_{j \neq i} \mathbf{x}_{j} \mathbf{x}_{j}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ independent of \mathbf{x}_{i},

- in the denominator

$$
\begin{aligned}
\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i} \mathbf{x}_{i} & =\frac{1}{n}\left(\mathbf{a}_{i}+\mathbf{C} \mathbf{z}_{i}\right)^{\top} \mathbf{Q}_{-i}\left(\mathbf{a}_{i}+\mathbf{C} \mathbf{z}_{i}\right) \simeq \frac{1}{n} \mathbf{a}_{i}^{\top} \mathbf{Q}_{-i} \mathbf{a}_{i}+\frac{1}{n} \mathbf{z}_{i}^{\top} \mathbf{C}^{\top} \mathbf{Q}_{-i} \mathbf{C} \mathbf{z}_{i} \\
& \simeq \frac{1}{n} \operatorname{tr}\left(\mathbf{C}^{\top} \mathbf{Q}_{-i} \mathbf{C}\right) \simeq \frac{1}{n} \operatorname{tr}\left(\mathbf{C}^{\top} \overline{\mathbf{Q}} \mathbf{C}\right) \equiv \delta(z),
\end{aligned}
$$

\checkmark ignore the cross terms (of the form $2 \mathbf{a}_{i}^{\top} \mathbf{Q}_{-i} \mathbf{C z}_{i} / n$, which, when conditioned on \mathbf{Q}_{-i}, is sub-gaussian with zero mean and variance $\left.4 \mathbf{a}_{i}^{\top} \mathbf{Q}_{-i} \mathbf{C C}^{\top} \mathbf{Q}_{-i} \mathbf{a}_{i} / n^{2} \leq 4 n^{-2}\left\|\mathbf{a}_{i}\right\|^{2} \cdot\left\|\mathbf{Q}_{-i}\right\|_{2}^{2} \cdot\|\mathbf{C}\|_{2}^{2}=O\left(n^{-2}\right)\right)$

- approximate the term $\frac{1}{n} \mathbf{z}_{i}^{\top} \mathbf{C}^{\top} \mathbf{Q}_{-i} \mathbf{C} \mathbf{z}_{i}$ by its expectation (e.g., Hanson-Wright) and use Deterministic Equivalent relations $\mathbf{Q}_{-i} \leftrightarrow \mathbf{Q} \leftrightarrow \overline{\mathbf{Q}}$

Heuristic derivation via "leave-one-out"

- the Deterministic Equivalent relations $\mathbf{Q}_{-i} \leftrightarrow \mathbf{Q} \leftrightarrow \overline{\mathbf{Q}}$ holds since

$$
\begin{equation*}
0 \preceq \mathbb{E}\left[\mathbf{Q}_{-i}-\mathbf{Q}\right]=\mathbb{E}\left[\frac{\mathbf{Q}_{-i} \frac{1}{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i} \mathbf{x}_{i}}\right] \preceq \frac{1}{n} \mathbb{E}\left[\mathbf{Q}_{-i} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}\right]=\frac{1}{n} \mathbb{E}\left[\mathbf{Q}_{-i}\left(\mathbf{a}_{i} \mathbf{a}_{i}^{\top}+\mathbf{C} \mathbf{C}^{\top}\right) \mathbf{Q}_{-i}\right], \tag{7}
\end{equation*}
$$

for $\left\|\mathbf{a}_{i}\right\|=O(1)$ and $\|\mathbf{C}\|_{2}=O(1)$.

$$
\begin{aligned}
\mathbb{E}[\mathbf{Q}-\overline{\mathbf{Q}}] & =\mathbb{E}[\mathbf{Q}] \mathbf{F} \overline{\mathbf{Q}}-\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{Q} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right] \overline{\mathbf{Q}} \simeq \mathbb{E}[\mathbf{Q}] \mathbf{F} \overline{\mathbf{Q}}-\frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{E}\left[\mathbf{Q}_{-i} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right]}{1+\delta(z)} \overline{\mathbf{Q}} \\
& \left.=\mathbb{E}[\mathbf{Q}] \mathbf{F} \overline{\mathbf{Q}}-\frac{1}{n} \sum_{i=1}^{n} \frac{\mathbb{E}\left[\mathbf{Q}_{-i}\right]\left(\mathbf{a}_{\mathbf{a}} \mathbf{a}_{i}^{\top}+\mathbf{C C}\right.}{} \mathbf{C C}^{\boldsymbol{\top}}\right) \overline{\mathbf{Q}} \\
& \simeq \mathbb{E}[\mathbf{Q}]\left(\mathbf{F}-\frac{\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{a}_{i} \mathbf{a}_{i}^{\top}+\mathbf{C C}^{\top}\right)}{1+\delta(z)}\right) \overline{\mathbf{Q}} \\
& =\mathbb{E}[\mathbf{Q}]\left(\mathbf{F}-\frac{\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}+\mathbf{C C}}{1+\delta(z)}\right) \overline{\mathbf{Q}}
\end{aligned}
$$

- independence between \mathbf{Q}_{-i} and \mathbf{x}_{i} in the third line
- to have $\mathbb{E}[\mathbf{Q}] \simeq \overline{\mathbf{Q}}$, just take $\mathbf{F}=\frac{\frac{1}{n} \mathbf{A A}^{\boldsymbol{\top}}+\mathbf{C C}^{\boldsymbol{\top}}}{1+\delta(z)}$

Remark: on the low-rankness of \mathbf{A}

- we consider $\mathbb{E}[\mathbf{X}]=\mathbf{A} \in \mathbb{R}^{q \times n}$ satisfies (i) $\|\mathbf{A}\|_{2} \leq C \sqrt{n}$ and (ii) $\left\|\mathbf{a}_{i}\right\| \leq C$ for all $i \in\{1, \ldots, n\}, \mathbf{a}_{i} \in \mathbb{R}^{q}$ the i-th column of $\mathbf{A} \in \mathbb{R}^{q \times n}$, and some constant $C>0$
(i) the first is just proper scaling, so that $\|\mathbf{A}\|_{2}$ and $\|\mathbf{C Z}\|_{2}$ are of the same order
(ii) the second bound on the Euclidean norm of all columns of \mathbf{A} is more subtle: taking $\|\mathbf{A}\|_{2}=C_{1} \sqrt{n}$ and $\left\|\mathbf{a}_{i}\right\|=C_{2, i}$ for $C_{1}, C_{2, i}>0$,

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|\mathbf{a}_{i}\right\|^{2}=\sum_{i=1}^{n} C_{2, i}^{2}=\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{\operatorname{rank}(\mathbf{A})} \sigma_{i}^{2}(\mathbf{A})=\Theta(n) \tag{8}
\end{equation*}
$$

with $\sigma_{1}(\mathbf{A}) \geq \ldots \geq \sigma_{\operatorname{rank}(\mathbf{A})}(\mathbf{A})$ the (nonzero) singular values of \mathbf{A} arranged in a non-increasing order. Since $\sigma_{1}^{2}(\mathbf{A})=\|\mathbf{A}\|_{2}^{2}=\Theta(n)$, the following two typical scenarios:
(1) $\operatorname{rank}(\mathbf{A})=\Theta(n)$, a majority (of size $\Theta(n)$) of singular values $\sigma_{i}(\mathbf{A})=O(1)$, so that the matrix \mathbf{A} has a fast decay in its singular values; or
(2) $\operatorname{rank}(\mathbf{A})=\Theta(1)$, a few singular values $\sigma_{i}(\mathbf{A})=\Theta(n)$, and \mathbf{A} is exactly of low rank.

- This is in consistent with common ML assumptions, e.g., that the data are drawn from one or a mixture (when in a classification context) of distributions, and the mean \mathbf{A} is of low rank.
- existing RMT results, e.g., on spiked model [BS06; BGN11], mostly focuses on exactly low rank A.
- However, if one further relaxes the assumption $\left\|\mathbf{a}_{i}\right\|=O(1)$ and let \mathbf{A} have a slow singular decay, the result collapses.

Remark: Stieltjes transform can not capture few important eigenvalues

Lemma ([SB95, Lemma 2.6])

For $\mathbf{A}, \mathbf{M} \in \mathbb{R}^{p \times p}$ symmetric and nonnegative definite, $\mathbf{u} \in \mathbb{R}^{p}, \tau>0$ and $z<0$,

$$
\left|\operatorname{tr} \mathbf{A}\left(\mathbf{M}+\tau \mathbf{u} \mathbf{u}^{\top}-z \mathbf{I}_{p}\right)^{-1}-\operatorname{tr} \mathbf{A}\left(\mathbf{M}-z \mathbf{I}_{p}\right)^{-1}\right| \leq \frac{\|\mathbf{A}\|_{2}}{|z|}
$$

- for low-rank $\mathbf{A}, \delta(z)$ is asymptotically independent on \mathbf{A}.

$$
\begin{equation*}
\delta(z)=\frac{1}{n} \operatorname{tr} \mathbf{C C}^{\top}\left(\frac{\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}+\mathbf{C C}^{\top}}{1+\delta(z)}-z \mathbf{I}_{q}\right)^{-1}=\frac{1}{n} \operatorname{tr} \mathbf{C C}^{\top}\left(\frac{\mathbf{C C}^{\top}}{1+\delta(z)}-z \mathbf{I}_{q}\right)^{-1}+O\left(n^{-1}\right) \tag{9}
\end{equation*}
$$

- same holds for $\frac{1}{q} \operatorname{tr} \overline{\mathbf{Q}}(z)=\frac{1}{q} \operatorname{tr}\left(\frac{\mathrm{CC}^{\boldsymbol{\top}}}{1+\delta(z)}-z \mathbf{I}_{q}\right)^{-1}+O\left(n^{-1}\right)$ for n, p, q large
- while the Deterministic Equivalent $\overline{\mathbf{Q}}(z)$ is itself dependent on \mathbf{A}, its normalized trace is NOT
- this independence of $\delta(z)$ and $\frac{1}{q} \operatorname{tr} \overline{\mathbf{Q}}(z)$ on \mathbf{A} is also a limitation of the Stieltjes transform approach, does not allow for a characterization of a negligible proportion (of order $o(n)$) of eigenvalues (e.g., due to $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}$.
- contrasts with Deterministic Equivalents approach: $\mathbf{Q}(z)$ and $\tilde{\mathbf{Q}}(z)$ remain dependent on \mathbf{A}, and thus can capture the influence of the low rank \mathbf{A}

Remarks

Remark (DE-SCM as a corollary of the Linear Master Theorem)

The Deterministic Equivalents for resolvents of SCM, can be derived from our Linear Master Theorem above: Taking $q=p, c=p / n, \mathbf{A}=\mathbf{0}$ and $\mathbf{C}=\mathbf{I}_{p}$,

$$
\begin{equation*}
\overline{\mathbf{Q}}(z)=\frac{1}{-z+\frac{1}{1+c m(z)}} \mathbf{I}_{p} \equiv m(z) \mathbf{I}_{p} \tag{10}
\end{equation*}
$$

where we denote $m(z) \equiv \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$ that satisfies the following quadratic equation

$$
\begin{equation*}
c z m^{2}(z)-(1-c-z) m(z)+1=0 \tag{11}
\end{equation*}
$$

Table: Overview of upcoming results, illustrating the connection between the Linear Master Theorem different random matrix models, and applications.

\mathbf{A}	\mathbf{C}	z	RMT results	Related ML applications
$\mathbf{0}$	\mathbf{I}_{p}	complex	Distribution of eigenvalues (Marčenko-Pastur law)	Previous results on SCM
low rank	\mathbf{I}_{p}	complex	(Additive spiked eigenvalues in Theorem 12)	Low rank approximation
low rank	\mathbf{I}_{p}	complex	(Info-plus-noise spiked eigenvectors in Theorem 10)	Classification
$\mathbf{0}$	\mathbf{I}_{p}	real	Resolvent matrix (Deterministic Equivalent in Theorem 3)	Linear least squares

Information-plus-noise spiked model

- $\mathbf{C}=\mathbf{I}_{p}$, random matrix \mathbf{Z} for homogeneous "noise", and $\mathbf{A} \in \mathbb{R}^{p \times n}$ informative "signal" matrix, low rank

Definition (Information-plus-noise spiked model)

We say a symmetric random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ follows an information-plus-noise spiked model if

$$
\begin{equation*}
\mathbf{X}=\frac{1}{n}(\mathbf{A}+\mathbf{Z})(\mathbf{A}+\mathbf{Z})^{\top} \tag{12}
\end{equation*}
$$

for some deterministic matrix $\mathbf{A} \in \mathbb{R}^{p \times n}$ and random matrix $\mathbf{Z} \in \mathbb{R}^{p \times n}$ with $\mathbb{E}[\mathbf{Z}]=\mathbf{0}$.

- determine when the "information in A can be "found," and when it is "lost" due to the noise in \mathbf{Z}
- for $\mathbf{A} \neq \mathbf{0}$, expect a few eigenvalues "jumping" out the Marčenko-Pastur support (due to \mathbf{A}, refer to as the spikes) and isolate from the main eigenvalue bulk $\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]$

$$
\begin{equation*}
\frac{1}{n} \mathbb{E}\left[(\mathbf{A}+\mathbf{Z})(\mathbf{A}+\mathbf{Z})^{\boldsymbol{\top}}\right]=\frac{1}{n} \mathbf{A} \mathbf{A}^{\boldsymbol{\top}}+\frac{1}{n} \mathbb{E}\left[\mathbf{Z} \mathbf{Z}^{\boldsymbol{\top}}\right]=\frac{1}{n} \mathbf{A} \mathbf{A}^{\boldsymbol{\top}}+\mathbf{I}_{p} \tag{13}
\end{equation*}
$$

- so for $n \gg p$, the information-plus-noise spiked model $\frac{1}{n}(\mathbf{A}+\mathbf{Z})(\mathbf{A}+\mathbf{Z})^{\top}$ is close to $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}+\mathbf{I}_{p}$, the largest r eigenvalues are $1+\lambda_{i}\left(\frac{1}{n} \mathbf{A} \mathbf{A}^{\mathbf{T}}\right)$
- in the case of $n \sim p \gg 1$ both large, expects the top eigenvalues/eigenvectors of $\frac{1}{n}(\mathbf{A}+\mathbf{Z})(\mathbf{A}+\mathbf{Z})^{\top}$ still somewhat relates to those of $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}$

Eigenvalue characterization for the information-plus-noise spiked model

- already know that if $\mathbf{Z} \in \mathbb{R}^{p \times n}$ is a random matrix having i.i.d. entries of zero mean and unit variance, then as $n, p \rightarrow \infty$, the limiting eigenvalue distribution of $\frac{1}{n} \mathbf{Z Z}^{\top}$ is the Marčenko-Pastur law
- it does not guarantee that no eigenvalue lies outside of the support of the Marčenko-Pastur law (i.e., outside the interval $\left.\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]\right)$
- e.g., only states that the averaged number of eigenvalues of $\frac{1}{n} \mathbf{Z Z}^{\top}$ lying within $[a, b] \subset\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]$ converges to $\mu([a, b])$-more precisely, is of the order $p \times \mu([a, b])+o(p)$
- remains unclear, e.g., whether there could be a number of order $o(p)$ "leaking" from the limiting Marčenko-Pastur support $\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]$, even for n, p sufficiently large

Theorem ("No eigenvalue outside the support" in the absence of information, [BS98])

Let $\mathbf{X}_{\mathbf{A}=0}$ be the information-plus-noise spiked model with $\mathbf{A}=\mathbf{0}$, and random noise matrix $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having independent entries of zero mean, unit variance, and κ-kurtosis, then as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, with probability one, the empirical spectral measure $\mu_{\mathbf{X}_{\mathbf{A}}=0}$ of $\mathbf{X}_{\mathbf{A}=0}$, converges weakly to the Marčenko-Pastur law and
(i) if $\kappa<\infty$, then

$$
\begin{equation*}
\lambda_{\min }\left(\mathbf{X}_{\mathbf{A}=\mathbf{0}}\right) \rightarrow(1-\sqrt{c})^{2}, \quad \lambda_{\max }\left(\mathbf{X}_{\mathbf{A}=\mathbf{0}}\right) \rightarrow(1+\sqrt{c})^{2} \tag{14}
\end{equation*}
$$

that is, no eigenvalue of $\mathbf{X}_{\mathbf{A}=\mathbf{0}}=\frac{1}{n} \mathbf{Z Z} \mathbf{Z}^{\top}$ appears outside the limiting Marčenko-Pastur support; and
(ii) if $\kappa=\infty$, then

$$
\begin{equation*}
\lambda_{\max }\left(\mathbf{X}_{\mathbf{A}=\mathbf{0}}\right) \rightarrow \infty . \tag{15}
\end{equation*}
$$

Eigenvalue characterization for the information-plus-noise spiked model

(a) Gaussian \mathbf{Z}

(b) Student-t \mathbf{Z} with degree of freedom three

Figure: Eigenvalue distribution of sample covariance matrix $\frac{1}{n} \mathbf{Z Z}^{\top}$ for Gaussian (left) and Student-t (right) \mathbf{Z}, versus the same limiting Marc̆enko-Pastur law, with $p=512$ and $n=8 p$.
(i) in the Gaussian case (left), no eigenvalue outside the Marčenko-Pastur support; and
(ii) in the Student-t case (right), a few eigenvalues are observed to "leak" from the Marčenko-Pastur support, even in the noise -only model with $\mathbf{A}=\mathbf{0}$, in line with the "no eigenvalue outside the support" result

Eigenvalue characterization for the information-plus-noise spiked model

Theorem (Information-plus-noise spiked eigenvalues, [BS06])

Let $\mathbf{Z} \in \mathbb{R}^{p \times n}$ be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and let $\mathbf{A} \in \mathbb{R}^{p \times n}$ be a deterministic matrix of rank r with $\|\mathbf{A}\| \leq C \sqrt{n}$ for some constants $r, C>0$. Then, for $\mathbf{X}=\mathbf{A}+\mathbf{Z} \in \mathbb{R}^{p \times n}$ and $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}=\sum_{i=1}^{r} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$ the spectral decomposition of $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}$, one has, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, that

$$
\lambda_{i}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}\right) \rightarrow \bar{\lambda}_{i}= \begin{cases}1+c+\ell_{i}+\frac{c}{\ell_{i},} & \ell_{i}>\sqrt{c} \tag{16}\\ (1+\sqrt{c})^{2} \equiv E_{+}, & \ell_{i} \leq \sqrt{c}\end{cases}
$$

almost surely, for $\lambda_{i}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}\right)$ and ℓ_{i} the $i^{\text {th }}$ largest eigenvalue of the information-plus-noise spiked model $\frac{1}{n} \mathbf{X} \mathbf{X}^{\boldsymbol{\top}}$ in Theorem 7 and of $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}$, respectively.

[^0]
Proof using the Linear Master Theorem

- it follows from Woodbury identity the following Deterministic Equivalent holds

$$
\begin{align*}
\mathbf{Q}(z) \leftrightarrow \overline{\mathbf{Q}}(z), \quad \overline{\mathbf{Q}}(z) & =\left(\frac{\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}+\mathbf{I}_{p}}{1+\delta(z)}-z \mathbf{I}_{p}\right)^{-1} \\
& =\frac{1+\delta(z)}{1-z-z \delta(z)}\left(\mathbf{I}_{p}-\mathbf{U}\left((1-z-z \delta(z)) \mathbf{L}^{-1}+\mathbf{I}_{r}\right)^{-1} \mathbf{U}^{\top}\right) . \tag{17}
\end{align*}
$$

- here, $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}=\mathbf{U L U} \mathbf{U}^{\top}=\sum_{i=1}^{r} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$ is the spectral decomposition of $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}$, for $\left\{\ell_{i}\right\}_{i=1}^{r}$ the (non-zero) eigenvalue, $\mathbf{u}_{i} \in \mathbb{R}^{p}$ the corresponding eigenvectors, and $\delta(z)$ the unique valid Stieltjes transform solution to the quadratic equation

$$
\begin{equation*}
z \delta^{2}(z)-(1-c-z) \delta(z)+c=0 \tag{18}
\end{equation*}
$$

- To locate a possibly isolated eigenvalue of the information-plus-noise random matrix $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ outside the Marčenko-Pastur support, we are looking for $z \in \mathbb{R}$ such that $\delta(z)$ in Equation (18) is well defined (so that it is "outside" the limiting bulk) but the Deterministic Equivalent $\overline{\mathbf{Q}}(z)$ in Equation (17) is undefined (so that z is an eigenvalue of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$).
- check that $\delta(z)=z^{-1}-1$ is not a solution to Equation (18), so that the denominator of $\overline{\mathbf{Q}}(z)$ is not zero, and the real z that we are looking for must satisfy

$$
\begin{equation*}
z(1+\delta(z))=1+\ell_{i} \tag{19}
\end{equation*}
$$

Proof using the Linear Master Theorem

Location of spiked eigenvalues: real z such that

$$
\begin{equation*}
z(1+\delta(z))=1+\ell_{i} \tag{20}
\end{equation*}
$$

- determine the condition under which this equation has a solution: for $z \in \mathbb{R}$ the function $z \delta(z)=\int \frac{z}{t-z} \mu(d t)$ is increasing on its domain of definition and

$$
\begin{equation*}
\lim _{z \downarrow(1+\sqrt{c})^{2}} z(1+\delta(z))=1+\sqrt{c} \tag{21}
\end{equation*}
$$

- admits a solution (that corresponds to an isolated eigenvalue) if and only if

$$
\begin{equation*}
\ell_{i} \geq \sqrt{c} \tag{22}
\end{equation*}
$$

- Plugging back, this leads to the following explicit solution

$$
\begin{equation*}
z=1+\ell_{i}+c+\frac{c}{\ell_{i}} \geq(1+\sqrt{c})^{2} \tag{23}
\end{equation*}
$$

Phase transition in spiked eigenvalues

Figure: Phase transition behavior of the largest eigenvalue $\lambda_{1}\left(\mathbf{X} \mathbf{X}^{\top} / n\right)$ of the information-plus-noise model $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$, as a function of ℓ_{1}, with $\mathbf{X}=\mathbf{A}+\mathbf{Z}, \mathbf{A}=\sqrt{\ell_{1}} \cdot \mathbf{u}_{1} \mathbf{1}_{n}^{\top}$ for $\left\|\mathbf{u}_{1}\right\|=1$, so that $\lambda_{1}\left(\mathbf{A A}^{\top} / n\right)=\ell_{1}$, for $p=512$ and $n=1024$.

Phase transition: depending on "signal strength" $\ell_{1}=\left\|\frac{1}{n} \mathbf{A A}^{\top}\right\|_{2}$,
(i) if $\ell_{1} \leq \sqrt{c}$: largest eigenvalue of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ asymptotically the same as $\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}$ and independent of ℓ_{1}
(ii) if $\ell_{1}>\sqrt{c}$: larger than that of $\frac{1}{n} \mathbf{Z Z}^{\top}$, and increases as ℓ_{1} becomes large

Eigenvector characterization for the information-plus-noise spiked model

Theorem (Information-plus-noise spiked eigenvectors, [Pau07])

In the setting of Theorem 9, assume that the eigenvalues ℓ_{i} of $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}$ are all distinct and satisfy $\ell_{1}>\ldots>\ell_{r}>0$, and let $\hat{\mathbf{u}}_{1}, \ldots, \hat{\mathbf{u}}_{r}$ be the eigenvectors associated with the r largest eigenvalues $\lambda_{1}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\boldsymbol{\top}}\right)>\ldots>\lambda_{r}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\boldsymbol{\top}}\right)$ of the information-plus-noise model $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$. Then, for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{p}$ deterministic vectors of unit norm,

$$
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b} \rightarrow \eta_{i}= \begin{cases}\frac{1-c \ell_{i}^{-2}}{1+c \ell_{i}^{-1}} \cdot \mathbf{a}^{\top} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{b}, & \ell_{i}>\sqrt{c} \tag{24}\\ 0, & \ell_{i} \leq \sqrt{c}\end{cases}
$$

almost surely as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, for \mathbf{u}_{i} the eigenvector associated with ℓ_{i} of $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}$. In particular, taking $\mathbf{a}=\mathbf{b}=\mathbf{u}_{i}$ leads to

$$
\left(\hat{\mathbf{u}}_{i}^{\top} \mathbf{u}_{i}\right)^{2} \rightarrow \eta_{i}= \begin{cases}\frac{1-c \ell_{i}^{-2}}{1+c \ell_{i}^{-1}}, & \ell_{i}>\sqrt{c} \tag{25}\\ 0, & \ell_{i} \leq \sqrt{c}\end{cases}
$$

[^1]
Proof using the Linear Master Theorem

- consider the $i^{\text {th }}$ eigenvalue ℓ_{i} of $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}$ that satisfies $\ell_{i}>\sqrt{c}$ above the phase transition threshold
- by Cauchy's integral formula

$$
\begin{equation*}
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b} d z \tag{26}
\end{equation*}
$$

for $\Gamma_{\lambda_{i}}$ a positively oriented contour enclosing only the $i^{\text {th }}$ eigenvalue of $\lambda_{i}\left(\frac{1}{n} \mathbf{X X}^{\boldsymbol{\top}}\right)$

- according to Theorem 9 , this converges almost surely to $\bar{\lambda}_{i}=1+c+\ell_{i}+\frac{c}{\ell_{i}}$ as $n, p \rightarrow \infty$
- by our Linear Master Theorem

$$
\begin{aligned}
\mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b} & \simeq \frac{1+\delta(z)}{1-z-z \delta(z)} \mathbf{a}^{\top}\left(\mathbf{I}_{p}-\mathbf{U}\left((1-z-z \delta(z)) \mathbf{L}^{-1}+\mathbf{I}_{r}\right)^{-1} \mathbf{U}^{\top}\right) \mathbf{b} \\
& =\frac{1+\delta(z)}{1-z-z \delta(z)} \mathbf{a}^{\top} \mathbf{b}-\frac{1+\delta(z)}{1-z-z \delta(z)} \sum_{j=1}^{r} \frac{\mathbf{a}^{\top} \mathbf{u}_{j} \mathbf{u}_{j}^{\top} \mathbf{b}}{1+(1-z-z \delta(z)) \ell_{j}^{-1}}
\end{aligned}
$$

with $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}=\mathbf{U L U}^{\top}=\sum_{i=1}^{r} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$ the spectral decomposition of $\frac{1}{n} \mathbf{A} \mathbf{A}^{\top}$, and $\delta(z)$ unique solution to

$$
\begin{equation*}
z \delta^{2}(z)-(1-c-z) \delta(z)+c=0 \tag{27}
\end{equation*}
$$

$-\frac{1+\delta(z)}{1-z-z \delta(z)} \mathbf{a}^{\top} \mathbf{b}$ has no pole outside the Marčenko-Pastur support (i.e., the denominator $\left.1-z-z \delta(z) \neq 0\right)$.

Proof using the Linear Master Theorem

- we further deduce that

$$
\begin{equation*}
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b} \simeq \frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} \frac{1+\delta(z)}{1-z-z \delta(z)} \frac{\mathbf{a}^{\top} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{b}}{1+(1-z-z \delta(z)) \ell_{i}^{-1}} d z \tag{28}
\end{equation*}
$$

which has a pole satisfying $1+(1-z-z \delta(z)) \ell_{i}^{-1}=0$ and corresponds to spike location $z=\bar{\lambda}_{i}$ above

- one can evaluate the above expression by residue calculus at $z=\bar{\lambda}_{i}$ as

$$
\begin{aligned}
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b} & \simeq \mathbf{a}^{\top} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{b} \cdot \lim _{z \rightarrow \bar{\lambda}_{i}} \frac{\left(z-\bar{\lambda}_{i}\right)(1+\delta(z))}{(1-z-z \delta(z))+(1-z-z \delta(z))^{2} \ell_{i}^{-1}} \\
& =\frac{1+\delta\left(\bar{\lambda}_{i}\right)}{1+\delta\left(\bar{\lambda}_{i}\right)+\bar{\lambda}_{i} \delta^{\prime}\left(\bar{\lambda}_{i}\right)} \cdot \mathbf{a}^{\top} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{b}
\end{aligned}
$$

by L'Hôpital's rule, where we denote $\delta^{\prime}(z)$ the derivative of $\delta(z)$ with respect to z, given by

$$
\begin{equation*}
\delta^{\prime}(z)=\frac{\delta(z)(1+\delta(z))}{1-c-z-2 z \delta(z)} \tag{29}
\end{equation*}
$$

- This is $\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b} \rightarrow \frac{1-c \ell_{i}^{-2}}{1+c \ell_{i}^{-1}} \cdot \mathbf{a}^{\top} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{b}$.

Figure: Phase transition behavior of the eigenvector projection $\left(\hat{\mathbf{u}}_{1}^{\top} \mathbf{u}_{1}\right)^{2}$ of the top eigenvector $\hat{\mathbf{u}}_{i}$ associated with the largest eigenvalue of the information-plus-noise model $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$, as a function of ℓ_{1}, with $\mathbf{X}=\mathbf{A}+\mathbf{Z}, \mathbf{A}=\sqrt{\ell_{1}} \mathbf{u}_{1} \mathbf{1}_{n}^{\top}$ for $\left\|\mathbf{u}_{1}\right\|=1$, so that $\lambda_{1}\left(\mathbf{A A}^{\top} / n\right)=\ell_{1}$, for different values of p, n with $n=2 p$.
(i) empirical transitions for $p=256,1024$ not sharp, $\mathbf{u}_{1}^{\top} \hat{\mathbf{u}}_{1}>0$ even below threshold $\ell_{1} \leq \sqrt{c}$;
(ii) become closer to the limiting theoretical one as the dimensions n, p grow large

The additive spiked model

Definition (Additive spiked model)

We say a symmetric random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ follows an additive spiked model if

$$
\begin{equation*}
\mathbf{X}=\mathbf{B}+\frac{1}{n} \mathbf{Z Z}^{\top}, \tag{30}
\end{equation*}
$$

for some deterministic symmetric matrix $\mathbf{B} \in \mathbb{R}^{p \times p}$ and random matrix $\mathbf{Z} \in \mathbb{R}^{p \times n}$ with $\mathbb{E}[\mathbf{Z}]=\mathbf{0}$.

- useful (and low rank) information \mathbf{B} buried by random symmetric noise matrix $\frac{1}{n} \mathbf{Z Z}^{\top}$
- of interest in low-rank approximation of noise matrices for data science applications of, e.g., recommendation system or LoRA technique in Large Language Models (LLMs) [Hu+21]

[^2]
Eigenvalue characterization for the information-plus-noise spiked model

- recall from "no eigenvalue outside the support" that in the absence of the additive term $\mathbf{B}=\mathbf{0}$ and sub-gaussian \mathbf{Z}, no eigenvalue of $\frac{1}{n} \mathbf{Z Z}{ }^{\top}$ is outside the Marčenko-Pastur support

Theorem (Additive spiked eigenvalues, [BGN11])

Let $\mathbf{Z} \in \mathbb{R}^{p \times n}$ be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and let $\mathbf{B} \in \mathbb{R}^{p \times p}$ be a symmetric deterministic matrix of rank r with $\|\mathbf{B}\|_{2} \leq C$ for some constants $r, C>0$. Then, for additive spiked model $\mathbf{X}=\mathbf{B}+\frac{1}{n} \mathbf{Z Z}^{\top} \in \mathbb{R}^{p \times p}$ in Theorem 11 with symmetric $\mathbf{B}=\sum_{i=1}^{r} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$ the spectral decomposition of \mathbf{B}, one has, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, that

$$
\lambda_{i}(\mathbf{X}) \rightarrow \bar{\lambda}_{i}= \begin{cases}1+\ell_{i}+\frac{c}{\ell_{i}-c}, & \ell_{i}>c+\sqrt{c} \tag{31}\\ (1+\sqrt{c})^{2}, & \ell_{i} \leq c+\sqrt{c}\end{cases}
$$

almost surely, for $\lambda_{i}(\mathbf{X})$ and ℓ_{i} the $i^{\text {th }}$ largest eigenvalue of the additive spiked model \mathbf{X} and of \mathbf{B}, respectively.

[^3]
Proof using the Linear Master Theorem

- to locate a possibly isolated eigenvalue of \mathbf{X} outside the (limiting) Marčenko-Pastur support (of the eigenvalues of $\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}$), look for $z \in \mathbb{R}$ solution to the following determinant equation

$$
\begin{equation*}
0=\operatorname{det}\left(\mathbf{B}+\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right)=\operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right) \cdot \operatorname{det}\left(\mathbf{I}_{p}+\mathbf{Q}(z) \mathbf{U L} \mathbf{U}^{\top}\right) \tag{32}
\end{equation*}
$$

- Here, $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ is the resolvent of $\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}$, and $\mathbf{B}=\mathbf{U L U} \mathbf{U}^{\top}$ is the spectral decomposition of \mathbf{B}, with $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right] \in \mathbb{R}^{p \times r}$ and $\mathbf{L}=\operatorname{diag}\left\{\ell_{i}\right\}_{i=1}^{r}$
- looking for $z \in \mathbb{R}$ outside the main bulk, so that $\mathbf{Q}(z)$ is well defined and $\operatorname{det} \mathbf{Q}^{-1}(z) \neq 0$,

$$
\begin{equation*}
0=\operatorname{det}\left(\mathbf{I}_{p}+\mathbf{Q}(z) \mathbf{U L} \mathbf{U}^{\top}\right) \Leftrightarrow 0=\operatorname{det}\left(\mathbf{I}_{r}+\mathbf{L} \mathbf{U}^{\top} \mathbf{Q}(z) \mathbf{U}\right) \tag{33}
\end{equation*}
$$

- apply the Linear Master Theorem to approximate

$$
\begin{equation*}
\mathbf{U}^{\top} \mathbf{Q}(z) \mathbf{U} \simeq \mathbf{U}^{\top} \overline{\mathbf{Q}}(z) \mathbf{U}=m(z) \mathbf{I}_{r} \tag{34}
\end{equation*}
$$

with $m(z)$ the unique Stieltjes transform solution to the Marčenko-Pastur equation,

$$
\begin{equation*}
0=\operatorname{det}\left(\mathbf{I}_{p}+\mathbf{Q}(z) \mathbf{U L} \mathbf{U}^{\top}\right) \Leftrightarrow 0=\operatorname{det}\left(\mathbf{I}_{r}+m(z) \mathbf{L}\right) \leftrightarrow m(z)=-\ell_{i}^{-1} \tag{35}
\end{equation*}
$$

Proof using the Linear Master Theorem

Spiked eigenvalues $z \in \mathbb{R}$ such that $m(z)=-\ell_{i}^{-1}$.

- Since $m(z)=\int \frac{\mu(d t)}{t-z}$ is an increasing function of z on its domain of definition and

$$
\begin{equation*}
\lim _{z \downarrow(1+\sqrt{c})^{2}} m(z)=-\frac{1}{c+\sqrt{c}}, \tag{36}
\end{equation*}
$$

the equation $m(z)=-\ell_{i}^{-1}$ admits a solution if and only if

$$
\begin{equation*}
\ell_{i}>c+\sqrt{c}, \tag{37}
\end{equation*}
$$

with explicit solution (and therefore the spike location)

$$
\begin{equation*}
z=1+\ell_{i}+\frac{c}{\ell_{i}-c} \geq(1+\sqrt{c})^{2} . \tag{38}
\end{equation*}
$$

Comparison of spiked eigenvalues for information-plus-noise versus additive model

- for information-plus-noise spiked model $\mathbf{X}=\frac{1}{n}(\mathbf{A}+\mathbf{Z})(\mathbf{A}+\mathbf{Z})^{\top}$:

$$
\begin{equation*}
\lambda_{i}(\mathbf{X}) \rightarrow \bar{\lambda}_{i}=1+c+\ell_{i}+\frac{c}{\ell_{i}}, \quad \ell_{i}>\sqrt{c}, \quad \ell_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{A A}^{\top}\right) ; \tag{39}
\end{equation*}
$$

- for additive spiked model $\mathbf{B}+\frac{1}{n} \mathbf{Z Z}^{\top}$:

$$
\begin{equation*}
\lambda_{i}(\mathbf{X}) \rightarrow \bar{\lambda}_{i}=1+\ell_{i}+\frac{c}{\ell_{i}-c}, \quad \ell_{i}>c+\sqrt{c}, \quad \ell_{i}=\lambda_{i}(\mathbf{B}) ; \tag{40}
\end{equation*}
$$

- connected via the "change-of-variable" $\lambda_{i}\left(\mathbf{A A}^{\top} / n\right)+c \sim \lambda_{i}(\mathbf{B})$ with $c=p / n$, in the sense that:
(i) the phase transition condition is $\lambda_{i}\left(\mathbf{A A}^{\top} / n\right) \geq \sqrt{c}$ for the information-plus-noise model and $\lambda_{i}(\mathbf{B}) \geq c+\sqrt{c}$ for the additive model; and
(ii) above phase transition, the isolated eigenvalues of the information-plus-noise model are given by $1+c+\lambda_{i}\left(\mathbf{A A}^{\top} / n\right)+c / \lambda_{i}\left(\mathbf{A A}^{\top} / n\right)$, while those of the additive model are given by $1+\lambda_{i}(\mathbf{B})+c /\left(\lambda_{i}(\mathbf{B})-c\right)$.

Eigenvector characterization for the information-plus-noise spiked model

Theorem (Additive spiked eigenvectors, [BGN11])

In the setting of Theorem 12, assume that the eigenvalues ℓ_{i} of \mathbf{B} are all distinct and satisfy $\ell_{1}>\ldots>\ell_{r}>0$, and let $\hat{\mathbf{u}}_{1}, \ldots, \hat{\mathbf{u}}_{r}$ be the eigenvectors associated with the r largest eigenvalues $\lambda_{1}(\mathbf{X})>\ldots>\lambda_{r}(\mathbf{X})$ of the additive model $\mathbf{X}=\mathbf{B}+\frac{1}{n} \mathbf{Z Z}^{\top}$. Then, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$,

$$
\left(\hat{\mathbf{u}}_{i}^{\top} \mathbf{u}_{i}\right)^{2} \rightarrow \eta= \begin{cases}1-\frac{c}{\left(\ell_{i}-c\right)^{2}}, & \ell_{i}>c+\sqrt{c} \tag{41}\\ 0, & \ell_{i} \leq c+\sqrt{c}\end{cases}
$$

almost surely, for \mathbf{u}_{i} the eigenvector associated with the eigenvalue ℓ_{i} of \mathbf{B}.

[^4]
Proof using the Linear Master Theorem

- follow the same line of arguments as in the proof of information-plus-noise spiked model
- write, for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{p}$ of unit norm,

$$
\begin{equation*}
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} \mathbf{a}^{\top}\left(\mathbf{B}+\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b} d z \tag{42}
\end{equation*}
$$

for $\Gamma_{\lambda_{i}}$ a positively oriented contour enclosing only the $i^{\text {th }}$ eigenvalue of $\mathbf{X}=\mathbf{B}+\frac{1}{n} \mathbf{Z Z}^{\top}$ (that admits the almost sure limit $\left.\bar{\lambda}_{i}=1+\ell_{i}+\frac{c}{\ell_{i}-c}\right)$

- let $\mathbf{B}=\mathbf{U L U}^{\top}=\sum_{i=1}^{r} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$ be the spectral decomposition of \mathbf{B}, then

$$
\mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}+\mathbf{U L} \mathbf{U}^{\top}\right)^{-1} \mathbf{b}=\mathbf{a}^{\top} \mathbf{Q}(z) \mathbf{b}-\mathbf{a}^{\top} \mathbf{Q}(z) \mathbf{U}\left(\mathbf{L}^{-1}+\mathbf{U}^{\top} \mathbf{Q}(z) \mathbf{U}\right)^{-1} \mathbf{U}^{\top} \mathbf{Q}(z) \mathbf{b}
$$

with $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\boldsymbol{\top}}-z \mathbf{I}_{p}\right)^{-1}$

- applying the Deterministic Equivalent result $\mathbf{Q}(z) \leftrightarrow m(z) \mathbf{I}_{p}$

$$
\mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{Z Z}^{\top}-z \mathbf{I}_{p}+\mathbf{U L} \mathbf{U}^{\top}\right)^{-1} \mathbf{b} \simeq m(z) \mathbf{a}^{\top} \mathbf{b}-m^{2}(z) \mathbf{a}^{\top} \mathbf{U}\left(m(z) \mathbf{I}_{r}+\mathbf{L}^{-1}\right)^{-1} \mathbf{U}^{\top} \mathbf{b}
$$

with $m(z)$ unique solution to

$$
\begin{equation*}
z c m^{2}(z)-(1-c-z) m(z)+1=0 . \tag{43}
\end{equation*}
$$

- the first term $m(z) \mathbf{a}^{\top} \mathbf{b}$ has no pole outside the Marčenko-Pastur support

Proof using the Linear Master Theorem

- So

$$
\begin{equation*}
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b} \simeq \frac{1}{2 \pi l} \oint_{\Gamma_{\lambda_{i}}} \frac{m^{2}(z) \cdot \mathbf{a}^{\top} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{b}}{m(z)+\ell_{i}^{-1}} d z \tag{44}
\end{equation*}
$$

- This has a pole satisfying $m(z)=-\ell_{i}^{-1}$ and corresponds to spike location at $z=\bar{\lambda}_{i}=1+\ell_{i}+\frac{c}{\ell_{i}-c}$ characterized in Theorem 12.
- evaluate this expression by the residue calculus at $z=\bar{\lambda}_{i}$ as

$$
\begin{equation*}
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b} \simeq \mathbf{a}^{\top} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{b} \cdot \frac{m^{2}\left(\bar{\lambda}_{i}\right)}{m^{\prime}\left(\bar{\lambda}_{i}\right)}=\mathbf{a}^{\top} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{b}\left(1-\frac{c}{\left(\ell_{i}-c\right)^{2}}\right) \tag{45}
\end{equation*}
$$

with $m^{\prime}(z)$ the derivative of $m(z)$ with respect to z satisfying

$$
\begin{equation*}
m^{\prime}(z)=\frac{m^{2}(z)}{1-\frac{c m^{2}(z)}{(1+c m(z))^{2}}} \tag{46}
\end{equation*}
$$

- Plugging in we conclude the proof.

Take-away of this section

- a Master Theorem: Deterministic Equivalent for resolvent for affine-transformed SCM model $\mathbf{X}=\mathbf{A}+\mathbf{C Z}$
- information-plus-noise spiked model $\mathbf{X}=\frac{1}{n}(\mathbf{A}+\mathbf{Z})(\mathbf{A}+\mathbf{Z})^{\top}$: phase transition in spiked eigenvalues and eigenvectors
- additive spiked model $\mathbf{B}+\frac{1}{n} \mathbf{Z Z}^{\top}$: phase transition in spiked eigenvalues and eigenvectors

Table: Roadmap of linear ML models considered.

ML Problem	Classical Regime	Proportional Regime								
Low rank approximation $\hat{\mathbf{X}}$	smooth decay of	sharp transition of								
of info-plus-noise matrix \mathbf{X}	$\\|\mathbf{X}-\hat{\mathbf{X}}\\|_{2} /\\|\mathbf{X}\\|_{2} \simeq(1+\ell)^{-1}$	$\\|\mathbf{X}-\hat{\mathbf{X}}\\|_{2} /\\|\mathbf{X}\\|_{2}$ at $\ell=c+\sqrt{c}$								
Proposition 1 Item (i)	Proposition 1 Item (ii)									
Classification of binary	pairwise \simeq spectral approach	pairwise \ll spectral approach								
Gaussian mixtures of distance in means $\Delta \mu$	Proposition 2 Item (i)	Proposition 2 Item (ii)								
Linear least squares	bias $=0$ and	monotonic bias and								
regression risk as $n \uparrow$	variance $\propto n^{-1}$	non-monotonic variance Proposition 3 Item (ii)								

Low-rank approximation

Definition (Rank-one matrix recovery)

Taking $\mathbf{B}=\ell \mathbf{u} \mathbf{u}^{\top}$ in Theorem 11 of the additive spiked model, we have

$$
\begin{equation*}
\mathbf{X}=\ell \mathbf{u} \mathbf{u}^{\top}+\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top} \in \mathbb{R}^{p \times p} \tag{47}
\end{equation*}
$$

for $\mathbf{u} \in \mathbb{R}^{p}$ some deterministic signal of unit norm, i.e., $\|\mathbf{u}\|=1, \ell \geq 0$ the informative "signal strength," and $\mathbf{Z} \in \mathbb{R}^{p \times n}$ a random "noise" matrix having i.i.d. entries of zero mean and unit variance.

- known from Eckart-Young-Mirsky theorem that the "best" low-rank approximation of a given matrix \mathbf{X}, measured by any unitarily invariant matrix norm (including the Frobenius and the spectral/operator norm) is given by retaining the top singular/eigenvalue decomposition
- let $\mathbf{X}=\sum_{i=1}^{p} \lambda_{i}(\mathbf{X}) \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top}$, be the eigenvalue-eigenvector decomposition of a symmetric and nonnegative definite matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, with $\lambda_{1}(\mathbf{X}) \geq \ldots \geq \lambda_{p}(\mathbf{X}) \geq 0$ listed in a non-increasing order. Then, for $k \leq \operatorname{rank}(\mathbf{X})$, the solution to

$$
\begin{equation*}
\hat{\mathbf{X}}_{*}=\underset{\operatorname{rank}(\hat{\mathbf{X}})=k}{\arg \min }\|\mathbf{X}-\hat{\mathbf{X}}\|=\sum_{i=1}^{k} \lambda_{i}(\mathbf{X}) \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \tag{48}
\end{equation*}
$$

for any unitarily invariant norm $\|\cdot\|$.
\checkmark evaluate the relative spectral norm error $\|\mathbf{X}-\hat{\mathbf{X}}\|_{2} /\|\mathbf{X}\|_{2}$ of rank-one approximation under rank-one matrix recovery model, for input $\mathbf{X} \in \mathbb{R}^{p}$ drawn from additive spiked model, and $\hat{\mathbf{X}}=\lambda_{1}(\mathbf{X}) \hat{\mathbf{u}}_{1} \hat{\mathbf{u}}_{1}^{\top}$ the optimal rank-one approximation of \mathbf{X} given by its top eigenvalue-eigenvector pair $\left(\lambda_{1}(\mathbf{X}), \hat{\mathbf{u}}_{1}\right)$.

Proposition (Relative spectral error of low-rank approximation)

Let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be an additive spiked random matrix, for \mathbf{Z} having i.i.d. sub-gaussian entries of zero mean and unit variance, and let $\hat{\mathbf{X}}=\lambda_{1}(\mathbf{X}) \hat{\mathbf{u}}_{1} \hat{\mathbf{u}}_{1}^{\top}$ the optimal rank-one approximation of \mathbf{X} given by its top eigenvalue-eigenvector pair $\left(\lambda_{1}(\mathbf{X}), \hat{\mathbf{u}}_{1}\right)$. Then, one has,
(i) in the classical regime, for p fixed and $n \rightarrow \infty$ that

$$
\begin{equation*}
\frac{\|\mathbf{X}-\hat{\mathbf{X}}\|_{2}}{\|\mathbf{X}\|_{2}} \rightarrow f_{n \gg p}(\ell) \equiv \frac{1}{1+\ell^{\prime}} \tag{49}
\end{equation*}
$$

almost surely; and
(ii) in the proportional regime, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$ that

$$
\frac{\|\mathbf{X}-\hat{\mathbf{X}}\|_{2}}{\|\mathbf{X}\|_{2}} \rightarrow f_{n \sim p}(\ell, c) \equiv \begin{cases}\frac{(1+\sqrt{c})^{2}}{1+\ell+\frac{c}{\ell-c}}, & \ell>c+\sqrt{c} \tag{50}\\ 1, & \ell \leq c+\sqrt{c}\end{cases}
$$

almost surely.

Numerical results

- sharp phase transition of the relative error as the signal strength ℓ increases
- for p large and fixed, transition thresholds in ℓ are different for different values of n, and they become smaller as the dimension n increases from 1024 to 2048

Proof in the classical regime

- evoking the LLN, one has

$$
\begin{equation*}
\mathbf{X} \rightarrow \mathbb{E}[\mathbf{X}]=\mathbf{I}_{p}+\ell \mathbf{u u}^{\top} \tag{51}
\end{equation*}
$$

almost surely as $n \rightarrow \infty$ for p fixed

- in the classical $n \gg p$ regime, \mathbf{X} is close, in both a max and a spectral norm sense, to its expectation $\mathbb{E}[\mathbf{X}]=\mathbf{I}_{p}+\ell \mathbf{u} \mathbf{u}^{\top}$, and the eigenvalues $\lambda_{i}(\mathbf{X})$ of \mathbf{X}, when arranged in a non-increasing order, are (asymptotically and approximately) given by

$$
\begin{equation*}
\|\mathbf{X}\|_{2} \approx \lambda_{1}(\mathbf{X})=1+\ell \geq \lambda_{2}(\mathbf{X})=\ldots=\lambda_{p}(\mathbf{X}) \approx 1 \tag{52}
\end{equation*}
$$

- for $n \gg p$ that

$$
\begin{equation*}
\frac{\|\mathbf{X}-\hat{\mathbf{X}}\|_{2}}{\|\mathbf{X}\|_{2}} \approx \frac{\lambda_{2}(\mathbb{E}[\mathbf{X}])}{\lambda_{1}(\mathbb{E}[\mathbf{X}])}=\frac{1}{1+\ell} \equiv f_{n \gg p}(\ell) . \tag{53}
\end{equation*}
$$

The approximation " \approx " can be replaced by an almost sure convergence in the limit of $n \rightarrow \infty$ for p fixed

Proof in the proportional regime

In the proportional $n \sim p$ regime:
(i) by Marčenko-Pastur law, in the absence of information signal $\ell \mathbf{u u}^{\top}$ (i.e., $\ell=0$), the eigenvalues of \mathbf{X} have a Marčenko-Pastur shape;
(ii) by Theorem 12, in the presence of the rank-one informative signal $\ell \mathbf{u u}^{\top}$ in Equation (47), that depending the "signal strength" $\left\|\ell \mathbf{u u}^{\top}\right\|_{2}=\ell>0$, the largest eigenvalue of \mathbf{X} establishes a phase transition behavior and is no longer a smooth function of ℓ (as opposed to its classical counterpart in Item (i) of Proposition 1)
For additive spiked model, one has

$$
\|\mathbf{X}\|_{2} \rightarrow \bar{\lambda}_{1}= \begin{cases}1+\ell+\frac{c}{\ell-c}, & \ell>c+\sqrt{c} \tag{54}\\ (1+\sqrt{c})^{2}, & \ell \leq c+\sqrt{c}\end{cases}
$$

almost surely as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$. Since $\|\mathbf{X}-\hat{\mathbf{X}}\|_{2}=\lambda_{2}(\mathbf{X})$ and $\lambda_{2}\left(\mathbf{Z Z}^{\top} / n\right) \leq \lambda_{2}(\mathbf{X}) \leq \lambda_{1}\left(\mathbf{Z Z}^{\top} / n\right)$ (Weyl's inequality), one has also

$$
\begin{equation*}
\|\mathbf{X}-\hat{\mathbf{X}}\|_{2} \rightarrow(1+\sqrt{c})^{2} \tag{55}
\end{equation*}
$$

almost surely, so that by Slutsky's Theorem, one has $\frac{\|\mathbf{X}-\hat{\mathbf{X}}\|_{2}}{\|\mathbf{X}\|_{2}} \rightarrow f_{n \sim p}(\ell, c)$.

Gaussian Mixture Model classification

Definition (Gaussian Mixture Model, GMM)

We say $\mathbf{x} \in \mathbb{R}^{p}$ follows a two-class (\mathcal{C}_{1} and \mathcal{C}_{2}) Gaussian Mixture Model if it is drawn from one of the two multivariate Gaussian distribution, that is

$$
\begin{equation*}
\mathcal{C}_{1}: \mathbf{x} \sim \mathcal{N}\left(\mu_{1}, \mathbf{I}_{p}\right), \quad \mathcal{C}_{2}: \mathbf{x} \sim \mathcal{N}\left(\mu_{2}, \mathbf{I}_{p}\right) ; \quad \Delta \mu \equiv \mu_{1}-\mu_{2}, \quad\|\Delta \mu\|=\Theta(1) . \tag{56}
\end{equation*}
$$

Proposition (Fundamental limits of GMM classification: pairwise versus spectral approach)

For Gaussian mixture classification between $\mathcal{N}\left(\boldsymbol{\mu}_{1}, \mathbf{I}_{p}\right)$ and $\mathcal{N}\left(\boldsymbol{\mu}_{2}, \mathbf{I}_{p}\right)$, with $\Delta \boldsymbol{\mu}=\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}$, one has, for some constant $C>0$ independent of p,
(i) based on a pairwise (Euclidean) distance comparison approach, one is able to separate binary Gaussian mixtures satisfying $\|\Delta \mu\| \geq C p^{1 / 4} ;$ and
(ii) based on an eigenspectral approach, one is able to separate a closer distance of $\|\Delta \mu\| \geq C$, which is, up to a constant factor, the minimum distance possible.

Illustration

Figure: Illustration of different regimes in separating a binary GMM based on the distance in means $\|\Delta \mu\|$, with $k>0$, for both pairwise and spectral approaches.

Proof in the classical regime

- classification of the binary Gaussian mixture

$$
\begin{equation*}
\mathcal{C}_{1}: \mathcal{N}\left(\boldsymbol{\mu}_{1}, \mathbf{I}_{p}\right) \quad \text { versus } \quad \mathcal{C}_{2}: \mathcal{N}\left(\boldsymbol{\mu}_{2}, \mathbf{I}_{p}\right), \quad \Delta \boldsymbol{\mu}=\mu_{1}-\mu_{2} \tag{57}
\end{equation*}
$$

- for two distinct data vectors \mathbf{x}_{i} and $\mathbf{x}_{j}, i \neq j$, belonging to class \mathcal{C}_{a} and $\mathcal{C}_{b}, a, b \in\{1,2\}$, we have $\mathbf{x}_{i}=\mu_{a}+\mathbf{z}_{i} \in \mathcal{C}_{a}$ and $\mathbf{x}_{j}=\boldsymbol{\mu}_{b}+\mathbf{z}_{j} \in \mathcal{C}_{b}$, for standard Gaussian $\mathbf{z}_{i}, \mathbf{z}_{j} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{p}\right)$. Then, their (normalized) Euclidean distance is given by

$$
\begin{equation*}
\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=\frac{1}{p}\left\|\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}+\mathbf{z}_{i}-\mathbf{z}_{j}\right\|^{2} \tag{58}
\end{equation*}
$$

which is also the (i, j) entry of the Euclidean distance matrix $\mathbf{E} \equiv\left\{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / p\right\}_{i, j=1}^{n}$.

- so

$$
\begin{align*}
\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} & =\frac{1}{p}\left\|\mathbf{z}_{i}-\mathbf{z}_{j}\right\|^{2}+\frac{1}{p}\left\|\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right\|^{2}+\frac{2}{p}\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right)^{\top}\left(\mathbf{z}_{i}-\mathbf{z}_{j}\right) \\
& =\frac{1}{p}\left\|\mathbf{z}_{i}\right\|^{2}+\frac{1}{p}\left\|\mathbf{z}_{j}\right\|^{2}-\frac{2}{p} \mathbf{z}_{i}^{\top} \mathbf{z}_{j}+\frac{1}{p}\left\|\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right\|^{2}+\frac{2}{p}\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right)^{\top}\left(\mathbf{z}_{i}-\mathbf{z}_{j}\right) \tag{59}
\end{align*}
$$

Proof in the classical regime

- in expectation, we have $\frac{1}{p} \mathbb{E}\left[\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}\right]=2+\frac{1}{p}\left\|\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right\|^{2}$, for $i \neq j$, where we used the fact that $\mathbb{E}\left[\mathbf{z}_{i}^{\top} \mathbf{z}_{i}\right] / p=\operatorname{tr}\left(\mathbb{E}\left[\mathbf{z}_{i} \mathbf{z}_{i}^{\top}\right]\right) / p=1 ;$

$$
\begin{aligned}
\operatorname{Var}\left[\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}\right] & =\operatorname{Var}\left[\frac{1}{p}\left(\Delta \mathbf{z}+2\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right)\right)^{\top} \Delta \mathbf{z}\right] \\
& =\frac{4}{p^{2}} \mathbb{E}\left[\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right)^{\top} \Delta \mathbf{z} \Delta \mathbf{z}^{\top}\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right)+\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right)^{\top} \Delta \mathbf{z} \Delta \mathbf{z}^{\top} \Delta \mathbf{z}\right]+\frac{1}{p^{2}} \operatorname{Var}\left[\|\Delta \mathbf{z}\|^{2}\right] \\
& =\frac{8}{p^{2}}\left\|\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right\|^{2}+\frac{8}{p} \leq \frac{16}{p}
\end{aligned}
$$

for $\Delta \mathbf{z} \equiv \mathbf{z}_{i}-\mathbf{z}_{j} \sim \mathcal{N}\left(\mathbf{0}, 2 \mathbf{I I}_{p}\right)$ and $\left\|\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right\| \leq \sqrt{\bar{p}}$.

- to ensure that the pairwise approach works, one must have that the distances between data points $\mathbf{x}_{i}, \mathbf{x}_{j}$ from the same Gaussian (with $a=b$) are, with non-trivial probability, smaller than those from different Gaussian (with $a \neq b$). This requires that

$$
\begin{equation*}
2 \pm \sqrt{C p^{-1}} \leq 2+\|\Delta \mu\|^{2} / p \pm \sqrt{C p^{-1}} \tag{60}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\|\Delta \mu\| \geq C^{\prime} p^{1 / 4} \tag{61}
\end{equation*}
$$

for some $C, C^{\prime}>0$ independent of p.

Proof in the proportional regime

- consider the more challenging setting of $\|\Delta \boldsymbol{\mu}\|=\Theta(1)$ in the proportional regime, that classification remains doable via an eigenspectral approach on Euclidean distance matrix $\mathbf{E}=\left\{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / p\right\}_{i, j=1}^{n}$
- for $\|\Delta \mu\|=\Theta(1)$ and n, p both large, it follows from the expansion in Equation (59) that

$$
\begin{equation*}
\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=2+\underbrace{\psi_{i}+\psi_{j}-\frac{2}{p} \mathbf{z}_{i}^{\top} \mathbf{z}_{j}}_{O\left(p^{-1 / 2}\right)}+\underbrace{\frac{1}{p}\left\|\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right\|^{2}+\frac{2}{p}\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right)^{\top}\left(\mathbf{z}_{i}-\mathbf{z}_{j}\right)}_{O\left(p^{-1}\right)} \tag{62}
\end{equation*}
$$

where we denote $\psi_{i} \equiv\left\|\mathbf{z}_{i}\right\|^{2} / p-1$ with $\mathbb{E}\left[\psi_{i}\right]=0$ and $\operatorname{Var}\left[\psi_{i}\right]=2 / p$.

- in matrix form,

$$
\mathbf{E}=2 \cdot \mathbf{1}_{n} \mathbf{1}_{n}^{\top}+\boldsymbol{\psi} \mathbf{1}_{n}^{\top}+\mathbf{1}_{n} \boldsymbol{\psi}^{\top}-\frac{2}{p} \mathbf{Z}^{\top} \mathbf{Z}+\frac{1}{p} \mathbf{J}\left[\begin{array}{cc}
0 & \|\Delta \boldsymbol{\mu}\|^{2} \tag{63}\\
\|\Delta \boldsymbol{\mu}\|^{2} & 0
\end{array}\right] \mathbf{J}^{\top}+\boldsymbol{\Theta}-\operatorname{diag}(\cdot)
$$

where we denote $\mathbf{J}=\left[\begin{array}{ll}\mathbf{j}_{1} & \mathbf{j}_{2}\end{array}\right] \in \mathbb{R}^{n \times 2}$ for $\mathbf{j}_{a} \in \mathbb{R}^{n}$ the label vector of class \mathcal{C}_{a} such that $\left[\mathbf{j}_{a}\right]_{i}=\delta_{\mathbf{x}_{i} \in \mathcal{C}_{a}}$, $\boldsymbol{\psi} \in \mathbb{R}^{n}$ a random vector containing ψ_{i} as its i-th entry, $\boldsymbol{\Theta} \equiv\left\{2\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right)^{\top}\left(\mathbf{z}_{i}-\mathbf{z}_{j}\right) / p\right\}_{i, j=1}^{n}$, and we use the notation $\mathbf{X}-\operatorname{diag}(\cdot)$ to remove the diagonal of a given matrix \mathbf{X}.

Proof in the proportional regime

$$
\mathbf{E}=2 \cdot \mathbf{1}_{n} \mathbf{1}_{n}^{\top}+\boldsymbol{\psi} \mathbf{1}_{n}^{\top}+\mathbf{1}_{n} \boldsymbol{\psi}^{\top}-\frac{2}{p} \mathbf{Z}^{\top} \mathbf{Z}+\frac{1}{p} \mathbf{J}\left[\begin{array}{cc}
0 & \|\Delta \boldsymbol{\mu}\|^{2} \tag{64}\\
\|\Delta \boldsymbol{\mu}\|^{2} & 0
\end{array}\right] \mathbf{J}^{\top}+\boldsymbol{\Theta}-\operatorname{diag}(\cdot)
$$

- a low-rank non-informative matrix $2 \cdot \mathbf{1}_{n} \mathbf{1}_{n}^{\top}+\boldsymbol{\psi} \mathbf{1}_{n}^{\top}+\mathbf{1}_{n} \boldsymbol{\psi}^{\top}$ of spectral norm of order $O(n)$
- a sample covariance-type random matrix $2 \mathbf{Z}^{\top} \mathbf{Z} / p$ for $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having i.i.d. standard Gaussian entries, the spectrum of which follows a Marčenko-Pastur shape (and is of order $O(1)$)
- a low-rank informative matrix $\frac{1}{p} \mathbf{J}\left[\begin{array}{cc}0 & \|\Delta \mu\|^{2} \\ \|\Delta \mu\|^{2} & 0\end{array}\right] \mathbf{J}^{\top}+\boldsymbol{\Theta}$ that depends on the label vector $\mathbf{j}_{1}, \mathbf{j}_{2} \in \mathbb{R}^{n}$ (so of interest for classification) and the statistical difference (in means) $\Delta \mu$, also of spectral norm order O (1)
(i) while in the critical regime $\|\Delta \mu\|=\Theta(1)$, data vectors $\mathbf{x}_{i}, \mathbf{x}_{j}$ are pairwise indistinguishable based on their Euclidean distance, due to the dominant order of the random $\mathbf{z}_{i}^{\top} \mathbf{z}_{j} / p=O\left(p^{-1 / 2}\right)$ over the informative term $\left\|\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right\|^{2} / p=\Theta\left(p^{-1}\right)$ in Equation (62);
(ii) they can still be "clustered" into two classes with a spectral approach based on the global observation of the large Euclidean distance matrix E, since the sample covariance-type random matrix and the low-rank informative matrix are both of spectral norm order $O(1)$, and thus comparable for n, p large.

Numerical results

Figure: Phase transition behavior of the classification accuracy using the sign of the second top eigenvector \mathbf{v}_{2} of the Euclidean distance matrix \mathbf{E}, as a function of the statistical difference $\|\Delta \mu\|$ in the non-trivial $\|\Delta \mu\|=\Theta(1)$ regime, for $p=512, n=4 p$, and $\mathbf{C}_{1}=\mathbf{C}_{2}=\mathbf{I}_{p}$. Results averaged over 10 independent runs.
"More refined" sharp phase transition, the second dominant eigenvector \mathbf{v}_{2} of \mathbf{E} :
(i) for n, p fixed and large, when $\|\Delta \mu\|$ below threshold, \mathbf{v}_{2} does not contain data class information, the clustering/classification based on $\operatorname{sign}\left(\mathbf{v}_{2}\right)$ random guess
(ii) above the phase transition threshold, the eigenvector \mathbf{v}_{2} contains data class information \mathbf{j}_{a}, and the classification accuracy increases as $\|\Delta \mu\|$ and /or n / p becomes large.

Noisy linear model

Consider a given set of data $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$ of size n, composed of the (random) input data $\mathbf{x}_{i} \in \mathbb{R}^{p}$ and its corresponding output target $y_{i} \in \mathbb{R}$, drawn from the following noisy linear model.

Definition (Noisy linear model)

We say a data-target pair $(\mathbf{x}, y) \in \mathbb{R}^{p} \times \mathbb{R}$ follows a noisy linear model if it satisfies

$$
\begin{equation*}
y=\boldsymbol{\beta}_{*}^{\top} \mathbf{x}+\epsilon \tag{65}
\end{equation*}
$$

for some deterministic (ground-truth) vector $\boldsymbol{\beta}_{*} \in \mathbb{R}^{p}$, and random variable $\epsilon \in \mathbb{R}$ independent of $\mathbf{x} \in \mathbb{R}^{p}$, with $\mathbb{E}[\epsilon]=0$ and $\operatorname{Var}[\epsilon]=\sigma^{2}$.

- aim to find a regressor $\boldsymbol{\beta} \in \mathbb{R}^{p}$ that best describes the linear relation $y_{i} \approx \boldsymbol{\beta}^{\top} \mathbf{x}_{i}$, by minimizing the ridge-regularized mean squared error (MSE)

$$
\begin{equation*}
L(\boldsymbol{\beta})=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\boldsymbol{\beta}^{\boldsymbol{\top}} \mathbf{x}_{i}\right)^{2}+\gamma\|\boldsymbol{\beta}\|^{2}=\frac{1}{n}\left\|\mathbf{X}^{\top} \boldsymbol{\beta}-\mathbf{y}\right\|^{2}+\gamma\|\boldsymbol{\beta}\|^{2} \tag{66}
\end{equation*}
$$

for $\mathbf{y}=\left[y_{1}, \ldots, y_{n}\right]^{\top} \in \mathbb{R}^{n}, \mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$, and some regularization penalty $\gamma \geq 0$

Out-of-sample prediction risk

- unique solution given by

$$
\begin{equation*}
\boldsymbol{\beta}_{\gamma}=\left(\mathbf{X} \mathbf{X}^{\top}+n \gamma \mathbf{I}_{p}\right)^{-1} \mathbf{X} \mathbf{y}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+n \gamma \mathbf{I}_{n}\right)^{-1} \mathbf{y}, \quad \gamma>0 \tag{67}
\end{equation*}
$$

- in the $\gamma=0$ setting, the minimum ℓ_{2} norm least squares solution

$$
\begin{equation*}
\boldsymbol{\beta}_{0}=\left(\mathbf{X} \mathbf{X}^{\top}\right)^{+} \mathbf{X} \mathbf{y}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{+} \mathbf{y} \tag{68}
\end{equation*}
$$

where $(\mathbf{A})^{+}$denotes the Moore-Penrose pseudoinverse, also "ridgeless" least squares solution.

- "statistical quality" of β, as a function of dimensions n, p, noise level σ^{2}, and the regularization γ
- evaluating the out-of-sample prediction risk (or simply, risk)

$$
\begin{equation*}
R_{\mathbf{X}}(\boldsymbol{\beta})=\mathbb{E}\left[\left(\boldsymbol{\beta}^{\top} \hat{\mathbf{x}}-\boldsymbol{\beta}_{*}^{\top} \hat{\mathbf{x}}\right)^{2} \mid \mathbf{X}\right]=\underbrace{\left(\mathbb{E}[\boldsymbol{\beta} \mid \mathbf{X}]-\boldsymbol{\beta}_{*}\right)^{\top} \mathbf{C}\left(\mathbb{E}[\boldsymbol{\beta} \mid \mathbf{X}]-\boldsymbol{\beta}_{*}\right)}_{\equiv B_{\mathbf{X}}(\boldsymbol{\beta})}+\underbrace{\operatorname{tr}(\operatorname{Cov}[\boldsymbol{\beta} \mid \mathbf{X}] \mathbf{C})}_{\equiv V_{\mathbf{X}}(\boldsymbol{\beta})} \tag{69}
\end{equation*}
$$

for an independent test data point. We denote $\mathbb{E}\left[\mathbf{x}_{i} \mathbf{x}_{i}^{\boldsymbol{\top}}\right]=\mathbf{C}$, and $B_{\mathbf{X}}(\boldsymbol{\beta}), V_{X}(\boldsymbol{\beta})$ the bias as well as variance of the solution β.

Risk of linear ridge regression

Proposition (Risk of linear ridge regression)

Let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be a random data matrix having i.i.d. sub-gaussian entries of zero mean and unit variance (so that $\mathbf{C}=\mathbf{I}_{p}$). Then, under the linear model and for the out-of-sample prediction risk $R_{\mathbf{X}}$ of the linear ridge regressor $\boldsymbol{\beta}_{\gamma}$ given in Equation (67), one has $R_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)=B_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)+V_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)$ and
(i) in the classical regime, for p fixed and $n \rightarrow \infty$ that

$$
\begin{equation*}
B_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)-\left(\frac{\gamma}{1+\gamma}\right)^{2}\left\|\boldsymbol{\beta}_{*}\right\|^{2} \rightarrow 0, \quad V_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)-\frac{p}{n} \frac{\sigma^{2}}{(1+\gamma)^{2}} \rightarrow 0 \tag{70}
\end{equation*}
$$

almost surely, so that $R_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)-R_{n \gg p}(\gamma) \rightarrow 0$, with $R_{n \gg p}(\gamma) \equiv \frac{\gamma^{2}\left\|\boldsymbol{\beta}_{\boldsymbol{*}}\right\|^{2}+\frac{p}{n} \sigma^{2}}{(1+\gamma)^{2}}$;
(ii) in the proportional regime, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0,1) \cup(1, \infty)$ that

$$
\begin{equation*}
B_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)-\gamma^{2}\left\|\boldsymbol{\beta}_{*}\right\|^{2} m^{\prime}(-\gamma) \rightarrow 0, \quad V_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)-\sigma^{2} c\left(m(-\gamma)-\gamma m^{\prime}(-\gamma)\right) \rightarrow 0 \tag{71}
\end{equation*}
$$

almost surely, with $m^{\prime}(-\gamma)=\frac{m(-\gamma)(c m(-\gamma)+1)}{2 c \gamma m(-\gamma)+1-c+\gamma}$ by differentiating the Marc̆enko-Pastur equation

$$
\begin{equation*}
R_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)-R_{n \sim p}(\gamma) \rightarrow 0, \quad \text { with } \quad R_{n \sim p}(\gamma) \equiv \sigma^{2} c m(-\gamma)+\gamma m^{\prime}(-\gamma)\left(\sigma^{2} c-\gamma\left\|\boldsymbol{\beta}_{*}\right\|^{2}\right) \tag{72}
\end{equation*}
$$

Numerical results

Figure: Out-of-sample risk $R_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)=B_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)+V_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)$ of the ridge regression solution $\boldsymbol{\beta}_{\gamma}$ defined in Equation (67) as a function of the dimension ratio n / p, for fixed $p=512,\left\|\boldsymbol{\beta}_{*}\right\|=1$, and different regularization penalty $\gamma=10^{-2}$ and $\gamma=10^{-5}$, Gaussian $\mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{p}\right)$ and $\varepsilon \sim \mathcal{N}\left(0, \sigma^{2}=0.1\right)$.

Remark

for relatively small regularization $\gamma=10^{-5}$ and as the sample size n increases, that the total risk $R_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)$:
(1) first decreases and then increases as n approaches the input dimension p in the under-determined $n<p$ regime; and
(2) reaches a singular "peak point" at $n=p$ with a large risk; and

- decreases again monotonically as n continues to increase, in the over-determined $n>p$ regime.
(1) This phenomenon is largely alleviated, yet still visible, for larger regularization of $\gamma=10^{-2}$, and is referred to as the "double descent" test curve.

Proof in the classical regime

- denote $\mathbf{Q}(-\gamma) \equiv\left(\hat{\mathbf{C}}+\gamma \mathbf{I}_{p}\right)^{-1}$ the resolvent of the (un-centered) sample covariance matrix $\hat{\mathbf{C}}=\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ and $\mathbf{Q}(\gamma=0)=\lim _{\gamma \downarrow 0} \mathbf{Q}(-\gamma)=\hat{\mathbf{C}}^{+}$.
- we can write

$$
\begin{equation*}
B_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)=\boldsymbol{\beta}_{*}^{\top}\left(\mathbf{I}_{p}-\mathbf{Q}(-\gamma) \hat{\mathbf{C}}\right) \mathbf{C}\left(\mathbf{I}_{p}-\mathbf{Q}(-\gamma) \hat{\mathbf{C}}\right) \boldsymbol{\beta}_{*^{\prime}} \quad V_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)=\frac{\sigma^{2}}{n} \operatorname{tr}(\mathbf{Q}(-\gamma) \hat{\mathbf{C}} \mathbf{Q}(-\gamma) \mathbf{C}) . \tag{73}
\end{equation*}
$$

- for $\gamma>0$, one has $\mathbf{I}_{p}-\mathbf{Q}(-\gamma) \hat{\mathbf{C}}=\mathbf{I}_{p}-\mathbf{Q}(-\gamma)\left(\hat{\mathbf{C}}+\gamma \mathbf{I}_{p}-\gamma \mathbf{I}_{p}\right)=\gamma \mathbf{Q}(-\gamma)$, so that

$$
\begin{align*}
& B_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)=\gamma^{2} \boldsymbol{\beta}_{*}^{\top} \mathbf{Q}^{2}(-\gamma) \boldsymbol{\beta}_{*}=-\gamma^{2} \frac{\partial \boldsymbol{\beta}_{*}^{\top} \mathbf{Q}(-\gamma) \boldsymbol{\beta}_{*}}{\partial \gamma}, \tag{74}\\
& V_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)=\sigma^{2}\left(\frac{1}{n} \operatorname{tr} \mathbf{Q}(-\gamma)-\frac{\gamma}{n} \operatorname{tr} \mathbf{Q}^{2}(-\gamma)\right)=\sigma^{2}\left(\frac{1}{n} \operatorname{tr} \mathbf{Q}(-\gamma)+\frac{\gamma}{n} \frac{\partial \operatorname{tr} \mathbf{Q}(-\gamma)}{\partial \gamma}\right), \tag{75}
\end{align*}
$$

where we used the fact that $\mathbf{C}=\mathbf{I}_{p}$ and $\partial \mathbf{Q}(-\gamma) / \partial \gamma=-\mathbf{Q}^{2}(-\gamma)$.

Proof in the classical regime

- by LLN, we have, in the classical regime for fixed p and as $n \rightarrow \infty$ that $\hat{\mathbf{C}} \rightarrow \mathbf{C}=\mathbf{I}_{p}$, and therefore

$$
\begin{equation*}
\mathbf{Q}(-\gamma) \rightarrow\left(\mathbf{C}+\gamma \mathbf{I}_{p}\right)^{-1}=\frac{\mathbf{I}_{p}}{1+\gamma} \tag{76}
\end{equation*}
$$

- we have that

$$
\begin{aligned}
B_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right) & \rightarrow-\gamma^{2} \frac{\partial}{\partial \gamma} \frac{\left\|\boldsymbol{\beta}_{*}\right\|^{2}}{1+\gamma}=\left(\frac{\gamma}{1+\gamma}\right)^{2}\left\|\boldsymbol{\beta}_{*}\right\|^{2} \\
V_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right) & \rightarrow \sigma^{2}\left(\frac{p}{n} \frac{1}{1+\gamma}+\gamma \cdot \frac{p}{n} \frac{\partial}{\partial \gamma} \frac{1}{1+\gamma}\right)=\frac{p}{n} \frac{\sigma^{2}}{(1+\gamma)^{2}}
\end{aligned}
$$

- in the ridgeless setting with $\gamma=0$

$$
\begin{equation*}
B_{\mathbf{X}}\left(\boldsymbol{\beta}_{0}\right)=0, \quad V_{\mathbf{X}}\left(\boldsymbol{\beta}_{0}\right)=\frac{\sigma^{2}}{n} \operatorname{tr}(\mathbf{Q}(\gamma=0) \mathbf{C}) \rightarrow \sigma^{2} \frac{p}{n} \tag{77}
\end{equation*}
$$

Proof in the proportional regime

- it follows from our Linear Master Theorem that

$$
\begin{aligned}
& B_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right) \rightarrow-\gamma^{2}\left\|\boldsymbol{\beta}_{*}\right\|^{2} \frac{\partial m(-\gamma)}{\partial \gamma}=\gamma^{2}\left\|\boldsymbol{\beta}_{*}\right\|^{2} m^{\prime}(-\gamma) \\
& V_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right) \rightarrow \sigma^{2} \cdot \frac{p}{n}\left(m(-\gamma)-\gamma m^{\prime}(-\gamma)\right)
\end{aligned}
$$

with $m^{\prime}(z)=-\frac{m(z)(c m(z)+1)}{2 c z m(z)-1+c+z}$ the derivative of the Stieltjes transform $m(z)$

- in the ridgeless setting as $\gamma \rightarrow 0$, one has $m(\gamma)=\frac{1}{1-c}>0$ only if $c<1$ and $\lim _{\gamma \rightarrow 0} m(\gamma)$ undefined otherwise, but satisfying $\lim _{\gamma \rightarrow 0} \gamma m(\gamma)=\frac{c-1}{c}>0$, in the under-determined regime with $n<p$.

$$
\begin{gather*}
B_{\mathbf{X}}\left(\boldsymbol{\beta}_{0}\right) \rightarrow 0, \quad V_{\mathbf{X}}\left(\boldsymbol{\beta}_{0}\right) \rightarrow \sigma^{2} \frac{c}{1-c}, \text { for } c<1 \tag{78}\\
B_{\mathbf{X}}\left(\boldsymbol{\beta}_{0}\right)-\left\|\boldsymbol{\beta}_{*}\right\|^{2}\left(1-\frac{1}{c}\right) \rightarrow 0, \quad V_{\mathbf{X}}\left(\boldsymbol{\beta}_{0}\right) \rightarrow \sigma^{2} \frac{1}{c-1}, \text { for } c>1 \tag{79}
\end{gather*}
$$

- Note: for $c>1, V_{\mathbf{X}}\left(\beta_{0}\right)$ more involved, as one cannot take the limit $\gamma \rightarrow 0$. Instead,

$$
\begin{equation*}
V_{\mathbf{X}}\left(\boldsymbol{\beta}_{\gamma}\right)=\frac{\sigma^{2}}{n^{2}} \operatorname{tr}\left(\tilde{\mathbf{Q}}(-\gamma) \mathbf{X}^{\top} \mathbf{C} \mathbf{X} \tilde{\mathbf{Q}}(-\gamma)\right), \quad \tilde{\mathbf{Q}}(-\gamma) \equiv\left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}+\gamma \mathbf{I}_{n}\right)^{-1} \tag{80}
\end{equation*}
$$

which is more convenient to work with in the $c>1$ regime.

Take-away messages of this section

Table: Roadmap of linear ML models considered.

ML Problem	Classical Regime	Proportional Regime								
of info-plus-noise matrix \mathbf{X}	smooth decay of $\begin{gathered} \\|\mathbf{X}-\hat{\mathbf{X}}\\|_{2} /\\|\mathbf{X}\\|_{2} \simeq(1+\ell)^{-1} \\ \quad \text { Proposition } 1 \text { Item (i) } \\ \hline \end{gathered}$	sharp transition of $\begin{gathered} \\|\mathbf{X}-\hat{\mathbf{X}}\\|_{2} /\\|\mathbf{X}\\|_{2} \text { at } \ell=c+\sqrt{c} \\ \text { Proposition } 1 \text { Item (ii) } \\ \hline \end{gathered}$								
Classification of binary Gaussian mixtures of distance in means $\Delta \mu$	pairwise \simeq spectral approach Proposition 2 Item (i)	pairwise << spectral approach Proposition 2 Item (ii)								
Linear least squares regression risk as $n \uparrow$	$\begin{gathered} \text { bias }=0 \text { and } \\ \text { variance } \propto n^{-1} \\ \text { Proposition } 3 \text { Item (i) } \end{gathered}$	monotonic bias and non-monotonic variance Proposition 3 Item (ii)								

- Linear Master Theorem provides a unified analysis framework to
- low rank approximation: phase transition in spiked eigenvalue
- classification: phase transition in spiked eigenvector
- linear least squares: double descent as phase transition in resolvent

> Thank you! Q \& A?

[^0]: ${ }^{1}$ Jinho Baik and Jack W. Silverstein. "Eigenvalues of large sample covariance matrices of spiked population models". In: Journal of Multivariate Analysis 97.6 (2006), pp. 1382-1408

[^1]: ${ }^{2}$ Debashis Paul. "Asymptotics of Sample Eigenstructure for a Large Dimensional Spiked Covariance Model". In: Statistica Sinica 17.4 (2007), pp. 1617-1642

[^2]: ${ }^{3}$ Edward J. Hu et al. "LoRA: Low-Rank Adaptation of Large Language Models". In: International Conference on Learning Representations. Oct. 2021

[^3]: ${ }^{4}$ Florent Benaych-Georges and Raj Rao Nadakuditi. "The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices". In: Advances in Mathematics 227.1 (2011), pp. 494-521

[^4]: ${ }^{5}$ Florent Benaych-Georges and Raj Rao Nadakuditi. "The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices". In: Advances in Mathematics 227.1 (2011), pp. 494-521

