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Affine-transformed model, a master theorem, and applications to linear ML

Definition (Affine-transformed model)

For Z ∈ Rp×n having i.i.d. sub-gaussian entries of zero mean and unit variance, and let A ∈ Rq×n and
C ∈ Rq×p be two deterministic matrices, we say X is a affine transformed random matrix model

X = A + CZ ∈ Rq×n. (1)

▶ this extends SCM, and can be used to derive results for a wide range of linear ML methods
▶ exhibit different behaviors and intuitions, on classical or proportional regime, analogous to SCMs

Table: Roadmap of linear ML models considered.

ML Problem Classical Regime Proportional Regime

Low rank approximation X̂
of info-plus-noise matrix X

smooth decay of
∥X − X̂∥2/∥X∥2 ≃ (1 + ℓ)−1

Proposition 1 Item (i)

sharp transition of
∥X − X̂∥2/∥X∥2 at ℓ = c +

√
c

Proposition 1 Item (ii)

Classification of binary
Gaussian mixtures of distance in means ∆µ

pairwise ≃ spectral approach
Proposition 2 Item (i)

pairwise ≪ spectral approach
Proposition 2 Item (ii)

Linear least squares
regression risk as n ↑

bias = 0 and
variance ∝ n−1

Proposition 3 Item (i)

monotonic bias and
non-monotonic variance

Proposition 3 Item (ii)
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Affine-transformed model

Definition (Affine-transformed model)

For Z ∈ Rp×n having i.i.d. sub-gaussian entries of zero mean and unit variance, and let A ∈ Rq×n and
C ∈ Rq×p be two deterministic matrices, we say X is an affine transformed random matrix model

X = A + CZ ∈ Rq×n. (2)

▶ matrix version of an affine transformation of a vector: for z ∈ Rp having independent entries of zero
mean and unit variance, deterministic a ∈ Rq and matrix C ∈ Rq×p,

x = a + Cz ∈ Rq, (3)

is an affine transformation of z with mean E[x] = a and covariance Cov[x] = CCT ⪰ 0
▶ due to the “structure” in X, we shall see:

(i) the limiting eigenvalue distribution of 1
n XXT can significantly diverge from the Marc̆enko-Pastur law

(ii) depending on the dimension ratio c = p/n, a few eigenvalues of 1
n XXT may isolate from the rest of

eigenvalue bulk, for which a phase transition behavior can be observed
▶ can be assessed via the proposed Deterministic Equivalent for resolvent approach in a unified fashion
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Deterministic Equivalents for resolvent of affine SCM

Theorem (Asymptotic Deterministic Equivalent for resolvent of affine-transformed model)

For random matrix Z ∈ Rp×n having i.i.d. sub-gaussian entries of zero mean and unit variance, let X = A + CZ be an
affine-transformed model, for deterministic A ∈ Rq×n, C ∈ Rq×p such that ∥C∥2 ≤ C, ∥A∥2 ≤ C

√
n, and ∥ai∥ ≤ C

for some universal constant C > 0, with ai ∈ Rq the ith column of A. Then, one has, for z ∈ C not an eigenvalue of
1
n XXT and as p, q, n → ∞ at the same pace, the following asymptotic Deterministic Equivalent,

Q(z) ↔ Q̄(z), Q̄(z) =

(
1
n AAT + CCT

1 + δ(z)
− zIq

)−1

(4)

for the resolvent Q(z) ≡ ( 1
n XXT − zIq)−1, with δ(z) the unique Stieltjes transform solution to the fixed point equation

δ(z) =
1
n

tr CTQ̄(z)C. (5)

▶ For the co-resolvent Q̃(z) ≡ ( 1
n XTX − zIn)−1, one has instead

Q̃(z) ↔ ¯̃Q(z), ¯̃Q(z) = − In

z(1 + δ(z))
. (6)
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Useful lemmas: recap

Lemma (Resolvent identity)

For invertible matrices A and B, we have A−1 − B−1 = A−1(B − A)B−1.

Lemma (Woodbury)

For A ∈ Rp×p, U, V ∈ Rp×n, such that both A and A + UVT are invertible, we have

(A + UVT)−1 = A−1 − A−1U(In + VTA−1U)−1VTA−1.

In particular, for n = 1, i.e., UVT = uvT for U = u ∈ Rp and V = v ∈ Rp, the above identity specializes to the
following Sherman–Morrison formula,

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
, and (A + uvT)−1u =

A−1u
1 + vTA−1u

.

And the matrix A + uvT ∈ Rp×p is invertible if and only if 1 + vTA−1u ̸= 0.
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Heuristic derivation via “leave-one-out”

▶ propose Q̄ = (F − zIq)−1 for some deterministic F ∈ Rq×q to be determined, and try to “guess” F
▶ by resolvent identity

E[Q − Q̄] = E

[
Q
(

F − 1
n

XXT
)]

Q̄ = E[Q]FQ̄ − 1
n

n

∑
i=1

E
[
Qxix

T
i

]
Q̄

= E[Q]FQ̄ − 1
n

n

∑
i=1

E

[
Q−ixixT

i

1 + 1
n xT

i Q−ixi

]
Q̄

with xi = ai + Czi ∈ Rq the ith column of X ∈ Rq×n for ai ∈ Rq the ith column of A ∈ Rq×n and zi ∈ Rp

the ith column of Z, Q−i = ( 1
n ∑j ̸=i xjxT

j − zIp)−1 independent of xi,
▶ in the denominator

1
n

xT
i Q−ixi =

1
n
(ai + Czi)

TQ−i(ai + Czi) ≃
1
n

aT
i Q−iai +

1
n

zT
i CTQ−iCzi

≃ 1
n

tr(CTQ−iC) ≃ 1
n

tr(CTQ̄C) ≡ δ(z),

▶ ignore the cross terms (of the form 2aT
i Q−iCzi/n, which, when conditioned on Q−i, is sub-gaussian with

zero mean and variance 4aT
i Q−iCCTQ−iai/n2 ≤ 4n−2∥ai∥2 · ∥Q−i∥2

2 · ∥C∥2
2 = O(n−2))

▶ approximate the term 1
n zT

i CTQ−iCzi by its expectation (e.g., Hanson-Wright) and use Deterministic
Equivalent relations Q−i ↔ Q ↔ Q̄
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Heuristic derivation via “leave-one-out”

▶ the Deterministic Equivalent relations Q−i ↔ Q ↔ Q̄ holds since

0 ⪯ E[Q−i − Q] = E

[
Q−i

1
n xixT

i Q−i

1 + 1
n xT

i Q−ixi

]
⪯ 1

n
E[Q−ixix

T
i Q−i] =

1
n

E
[
Q−i(aia

T
i + CCT)Q−i

]
, (7)

for ∥ai∥ = O(1) and ∥C∥2 = O(1).

E[Q − Q̄] = E[Q]FQ̄ − 1
n

n

∑
i=1

E
[
Qxix

T
i

]
Q̄ ≃ E[Q]FQ̄ − 1

n

n

∑
i=1

E
[
Q−ixixT

i
]

1 + δ(z)
Q̄

= E[Q]FQ̄ − 1
n

n

∑
i=1

E[Q−i](aiaT
i + CCT)

1 + δ(z)
Q̄

≃ E[Q]

(
F −

1
n ∑n

i=1(aiaT
i + CCT)

1 + δ(z)

)
Q̄

= E[Q]

(
F −

1
n AAT + CCT

1 + δ(z)

)
Q̄

▶ independence between Q−i and xi in the third line

▶ to have E[Q] ≃ Q̄, just take F =
1
n AAT+CCT

1+δ(z)
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Remark: on the low-rankness of A

▶ we consider E[X] = A ∈ Rq×n satisfies (i) ∥A∥2 ≤ C
√

n and (ii) ∥ai∥ ≤ C for all i ∈ {1, . . . , n}, ai ∈ Rq the
i-th column of A ∈ Rq×n, and some constant C > 0

(i) the first is just proper scaling, so that ∥A∥2 and ∥CZ∥2 are of the same order
(ii) the second bound on the Euclidean norm of all columns of A is more subtle: taking ∥A∥2 = C1

√
n and

∥ai∥ = C2,i for C1, C2,i > 0,

n

∑
i=1

∥ai∥2 =
n

∑
i=1

C2
2,i = ∥A∥2

F =
rank(A)

∑
i=1

σ2
i (A) = Θ(n) (8)

with σ1(A) ≥ . . . ≥ σrank(A)(A) the (nonzero) singular values of A arranged in a non-increasing order.
Since σ2

1 (A) = ∥A∥2
2 = Θ(n), the following two typical scenarios:

(1) rank(A) = Θ(n), a majority (of size Θ(n)) of singular values σi(A) = O(1), so that the matrix A has a fast
decay in its singular values; or

(2) rank(A) = Θ(1), a few singular values σi(A) = Θ(n), and A is exactly of low rank.
▶ This is in consistent with common ML assumptions, e.g., that the data are drawn from one or a mixture

(when in a classification context) of distributions, and the mean A is of low rank.
▶ existing RMT results, e.g., on spiked model [BS06; BGN11], mostly focuses on exactly low rank A.
▶ However, if one further relaxes the assumption ∥ai∥ = O(1) and let A have a slow singular decay, the

result collapses.
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Remark: Stieltjes transform can not capture few important eigenvalues

Lemma ([SB95, Lemma 2.6])

For A, M ∈ Rp×p symmetric and nonnegative definite, u ∈ Rp, τ > 0 and z < 0,∣∣∣tr A(M + τuuT − zIp)
−1 − tr A(M − zIp)

−1
∣∣∣ ≤ ∥A∥2

|z| .

▶ for low-rank A, δ(z) is asymptotically independent on A.

δ(z) =
1
n

tr CCT

(
1
n AAT + CCT

1 + δ(z)
− zIq

)−1

=
1
n

tr CCT
(

CCT

1 + δ(z)
− zIq

)−1

+ O(n−1). (9)

▶ same holds for 1
q tr Q̄(z) = 1

q tr
(

CCT

1+δ(z) − zIq

)−1
+ O(n−1) for n, p, q large

▶ while the Deterministic Equivalent Q̄(z) is itself dependent on A, its normalized trace is NOT
▶ this independence of δ(z) and 1

q tr Q̄(z) on A is also a limitation of the Stieltjes transform approach, does
not allow for a characterization of a negligible proportion (of order o(n)) of eigenvalues (e.g., due to
1
n AAT).

▶ contrasts with Deterministic Equivalents approach: Q(z) and Q̃(z) remain dependent on A, and thus can
capture the influence of the low rank A
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Remarks

Remark (DE-SCM as a corollary of the Linear Master Theorem)

The Deterministic Equivalents for resolvents of SCM, can be derived from our Linear Master Theorem above: Taking
q = p, c = p/n, A = 0 and C = Ip,

Q̄(z) =
1

−z + 1
1+cm(z)

Ip ≡ m(z)Ip, (10)

where we denote m(z) ≡ 1
p tr Q̄(z) that satisfies the following quadratic equation

czm2(z)− (1 − c − z)m(z) + 1 = 0. (11)
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Table: Overview of upcoming results, illustrating the connection between the Linear Master Theorem different random
matrix models, and applications.

A C z RMT results Related ML applications

0 Ip complex Distribution of eigenvalues
(Marc̆enko-Pastur law) Previous results on SCM

low rank Ip complex Extreme eigenvalues
(Additive spiked eigenvalues in Theorem 12) Low rank approximation

low rank Ip complex Extreme eigenvectors
(Info-plus-noise spiked eigenvectors in Theorem 10) Classification

0 Ip real Resolvent matrix
(Deterministic Equivalent in Theorem 3 ) Linear least squares
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Information-plus-noise spiked model

▶ C = Ip, random matrix Z for homogeneous “noise”, and A ∈ Rp×n informative “signal” matrix, low rank

Definition (Information-plus-noise spiked model)

We say a symmetric random matrix X ∈ Rp×p follows an information-plus-noise spiked model if

X =
1
n
(A + Z)(A + Z)T, (12)

for some deterministic matrix A ∈ Rp×n and random matrix Z ∈ Rp×n with E[Z] = 0.

▶ determine when the “information in A can be “found,” and when it is “lost” due to the noise in Z
▶ for A ̸= 0, expect a few eigenvalues “jumping” out the Marc̆enko-Pastur support (due to A, refer to as the

spikes) and isolate from the main eigenvalue bulk [(1 −√
c)2, (1 +

√
c)2]

1
n

E[(A + Z)(A + Z)T] =
1
n

AAT +
1
n

E[ZZT] =
1
n

AAT + Ip (13)

▶ so for n ≫ p, the information-plus-noise spiked model 1
n (A + Z)(A + Z)T is close to 1

n AAT + Ip, the
largest r eigenvalues are 1 + λi(

1
n AAT)

▶ in the case of n ∼ p ≫ 1 both large, expects the top eigenvalues/eigenvectors of 1
n (A + Z)(A + Z)T still

somewhat relates to those of 1
n AAT
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Eigenvalue characterization for the information-plus-noise spiked model

▶ already know that if Z ∈ Rp×n is a random matrix having i.i.d. entries of zero mean and unit variance,
then as n, p → ∞, the limiting eigenvalue distribution of 1

n ZZT is the Marc̆enko-Pastur law
▶ it does not guarantee that no eigenvalue lies outside of the support of the Marc̆enko-Pastur law (i.e.,

outside the interval [(1 −√
c)2, (1 +

√
c)2])

▶ e.g., only states that the averaged number of eigenvalues of 1
n ZZT lying within

[a, b] ⊂ [(1 −√
c)2, (1 +

√
c)2] converges to µ([a, b])—more precisely, is of the order p × µ([a, b]) + o(p)

▶ remains unclear, e.g., whether there could be a number of order o(p) “leaking” from the limiting
Marc̆enko-Pastur support [(1 −√

c)2, (1 +
√

c)2], even for n, p sufficiently large

Theorem (“No eigenvalue outside the support” in the absence of information, [BS98])

Let XA=0 be the information-plus-noise spiked model with A = 0, and random noise matrix Z ∈ Rp×n having
independent entries of zero mean, unit variance, and κ-kurtosis, then as n, p → ∞ with p/n → c ∈ (0, ∞), with
probability one, the empirical spectral measure µXA=0 of XA=0, converges weakly to the Marc̆enko-Pastur law and

(i) if κ < ∞, then
λmin (XA=0) → (1 −

√
c)2, λmax (XA=0) → (1 +

√
c)2 (14)

that is, no eigenvalue of XA=0 = 1
n ZZT appears outside the limiting Marc̆enko-Pastur support; and

(ii) if κ = ∞, then
λmax (XA=0) → ∞. (15)
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Eigenvalue characterization for the information-plus-noise spiked model

0.5 1 1.5 2

Empirical eigenvalues
Marc̆enko-Pastur law

(a) Gaussian Z

2 4 6

Empirical eigenvalues
Marc̆enko-Pastur law

2 4 6

Empirical eigenvalues
Marc̆enko-Pastur law

2 4 6

Empirical eigenvalues
Marc̆enko-Pastur law

(b) Student-t Z with degree of freedom three

Figure: Eigenvalue distribution of sample covariance matrix 1
n ZZT for Gaussian (left) and Student-t (right) Z, versus the

same limiting Marc̆enko-Pastur law, with p = 512 and n = 8p.

(i) in the Gaussian case (left), no eigenvalue outside the Marc̆enko-Pastur support; and
(ii) in the Student-t case (right), a few eigenvalues are observed to “leak” from the Marc̆enko-Pastur support,

even in the noise -only model with A = 0, in line with the “no eigenvalue outside the support” result
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Eigenvalue characterization for the information-plus-noise spiked model

Theorem (Information-plus-noise spiked eigenvalues, [BS06])

Let Z ∈ Rp×n be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and let A ∈ Rp×n

be a deterministic matrix of rank r with ∥A∥ ≤ C
√

n for some constants r, C > 0. Then, for X = A + Z ∈ Rp×n and
1
n AAT = ∑r

i=1 ℓiuiuT
i the spectral decomposition of 1

n AAT, one has, as n, p → ∞ with p/n → c ∈ (0, ∞), that

λi

(
1
n

XXT
)
→ λ̄i =

{
1 + c + ℓi +

c
ℓi

, ℓi >
√

c
(1 +

√
c)2 ≡ E+, ℓi ≤

√
c.

(16)

almost surely, for λi(
1
n XXT) and ℓi the ith largest eigenvalue of the information-plus-noise spiked model 1

n XXT in
Theorem 7 and of 1

n AAT, respectively.

1Jinho Baik and Jack W. Silverstein. “Eigenvalues of large sample covariance matrices of spiked population models”. In: Journal of
Multivariate Analysis 97.6 (2006), pp. 1382–1408
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Proof using the Linear Master Theorem

▶ it follows from Woodbury identity the following Deterministic Equivalent holds

Q(z) ↔ Q̄(z), Q̄(z) =

(
1
n AAT + Ip

1 + δ(z)
− zIp

)−1

=
1 + δ(z)

1 − z − zδ(z)

(
Ip − U

(
(1 − z − zδ(z))L−1 + Ir

)−1
UT
)

. (17)

▶ here, 1
n AAT = ULUT = ∑r

i=1 ℓiuiuT
i is the spectral decomposition of 1

n AAT, for {ℓi}r
i=1 the (non-zero)

eigenvalue, ui ∈ Rp the corresponding eigenvectors, and δ(z) the unique valid Stieltjes transform
solution to the quadratic equation

zδ2(z)− (1 − c − z)δ(z) + c = 0. (18)
▶ To locate a possibly isolated eigenvalue of the information-plus-noise random matrix 1

n XXT outside the
Marc̆enko-Pastur support, we are looking for z ∈ R such that δ(z) in Equation (18) is well defined (so that
it is “outside” the limiting bulk) but the Deterministic Equivalent Q̄(z) in Equation (17) is undefined (so
that z is an eigenvalue of 1

n XXT).
▶ check that δ(z) = z−1 − 1 is not a solution to Equation (18), so that the denominator of Q̄(z) is not zero,

and the real z that we are looking for must satisfy

z(1 + δ(z)) = 1 + ℓi. (19)
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Proof using the Linear Master Theorem

Location of spiked eigenvalues: real z such that

z(1 + δ(z)) = 1 + ℓi. (20)

▶ determine the condition under which this equation has a solution: for z ∈ R the function
zδ(z) =

∫ z
t−z µ(dt) is increasing on its domain of definition and

lim
z↓(1+√

c)2
z(1 + δ(z)) = 1 +

√
c. (21)

▶ admits a solution (that corresponds to an isolated eigenvalue) if and only if

ℓi ≥
√

c. (22)

▶ Plugging back, this leads to the following explicit solution

z = 1 + ℓi + c +
c
ℓi

≥ (1 +
√

c)2 . (23)
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Phase transition in spiked eigenvalues

0 0.5 √
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Empirical λ1(
1
n XXT)

Theory

Figure: Phase transition behavior of the largest eigenvalue λ1(XXT/n) of the information-plus-noise model 1
n XXT, as a

function of ℓ1, with X = A + Z, A =
√
ℓ1 · u11T

n for ∥u1∥ = 1, so that λ1(AAT/n) = ℓ1, for p = 512 and n = 1 024.

Phase transition: depending on “signal strength” ℓ1 = ∥ 1
n AAT∥2,

(i) if ℓ1 ≤ √
c: largest eigenvalue of 1

n XXT asymptotically the same as 1
n ZZT and independent of ℓ1

(ii) if ℓ1 >
√

c: larger than that of 1
n ZZT, and increases as ℓ1 becomes large
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Eigenvector characterization for the information-plus-noise spiked model

Theorem (Information-plus-noise spiked eigenvectors, [Pau07])

In the setting of Theorem 9, assume that the eigenvalues ℓi of 1
n AAT are all distinct and satisfy ℓ1 > . . . > ℓr > 0, and

let û1, . . . , ûr be the eigenvectors associated with the r largest eigenvalues λ1(
1
n XXT) > . . . > λr(

1
n XXT) of the

information-plus-noise model 1
n XXT. Then, for a, b ∈ Rp deterministic vectors of unit norm,

aTûiû
T
i b → ηi =

{
1−cℓ−2

i
1+cℓ−1

i
· aTuiuT

i b, ℓi >
√

c;

0, ℓi ≤
√

c.
(24)

almost surely as n, p → ∞ with p/n → c ∈ (0, ∞), for ui the eigenvector associated with ℓi of 1
n AAT. In particular,

taking a = b = ui leads to

(ûT
i ui)

2 → ηi =

{
1−cℓ−2

i
1+cℓ−1

i
, ℓi >

√
c;

0, ℓi ≤
√

c.
(25)

2Debashis Paul. “Asymptotics of Sample Eigenstructure for a Large Dimensional Spiked Covariance Model”. In: Statistica Sinica 17.4
(2007), pp. 1617–1642
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Proof using the Linear Master Theorem

▶ consider the ith eigenvalue ℓi of 1
n AAT that satisfies ℓi >

√
c above the phase transition threshold

▶ by Cauchy’s integral formula

aTûiû
T
i b = − 1

2πı

∮
Γλi

aT
(

1
n

XXT − zIp

)−1
b dz (26)

for Γλi a positively oriented contour enclosing only the ith eigenvalue of λi(
1
n XXT)

▶ according to Theorem 9, this converges almost surely to λ̄i = 1 + c + ℓi +
c
ℓi

as n, p → ∞
▶ by our Linear Master Theorem

aT
(

1
n

XXT − zIp

)−1
b ≃ 1 + δ(z)

1 − z − zδ(z)
aT
(

Ip − U
(
(1 − z − zδ(z))L−1 + Ir

)−1
UT
)

b

=
1 + δ(z)

1 − z − zδ(z)
aTb − 1 + δ(z)

1 − z − zδ(z)

r

∑
j=1

aTujuT
j b

1 + (1 − z − zδ(z))ℓ−1
j

with 1
n AAT = ULUT = ∑r

i=1 ℓiuiuT
i the spectral decomposition of 1

n AAT, and δ(z) unique solution to

zδ2(z)− (1 − c − z)δ(z) + c = 0. (27)

▶ 1+δ(z)
1−z−zδ(z)aTb has no pole outside the Marc̆enko-Pastur support (i.e., the denominator 1 − z − zδ(z) ̸= 0).
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Proof using the Linear Master Theorem

▶ we further deduce that

aTûiû
T
i b ≃ 1

2πı

∮
Γλi

1 + δ(z)
1 − z − zδ(z)

aTuiuT
i b

1 + (1 − z − zδ(z))ℓ−1
i

dz, (28)

which has a pole satisfying 1 + (1 − z − zδ(z))ℓ−1
i = 0 and corresponds to spike location z = λ̄i above

▶ one can evaluate the above expression by residue calculus at z = λ̄i as

aTûiû
T
i b ≃ aTuiu

T
i b · lim

z→λ̄i

(z − λ̄i)(1 + δ(z))
(1 − z − zδ(z)) + (1 − z − zδ(z))2ℓ−1

i

=
1 + δ(λ̄i)

1 + δ(λ̄i) + λ̄iδ
′(λ̄i)

· aTuiu
T
i b,

by L’Hôpital’s rule, where we denote δ′(z) the derivative of δ(z) with respect to z, given by

δ′(z) =
δ(z)(1 + δ(z))

1 − c − z − 2zδ(z)
. (29)

▶ This is aTûiû
T
i b → 1 − cℓ−2

i

1 + cℓ−1
i

· aTuiu
T
i b.
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Figure: Phase transition behavior of the eigenvector projection (ûT
1 u1)

2 of the top eigenvector ûi associated with the largest
eigenvalue of the information-plus-noise model 1

n XXT, as a function of ℓ1, with X = A + Z, A =
√
ℓ1u11T

n for ∥u1∥ = 1, so
that λ1(AAT/n) = ℓ1, for different values of p, n with n = 2p.

(i) empirical transitions for p = 256, 1 024 not sharp, uT
1 û1 > 0 even below threshold ℓ1 ≤ √

c;
(ii) become closer to the limiting theoretical one as the dimensions n, p grow large
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The additive spiked model

Definition (Additive spiked model)

We say a symmetric random matrix X ∈ Rp×p follows an additive spiked model if

X = B +
1
n

ZZT, (30)

for some deterministic symmetric matrix B ∈ Rp×p and random matrix Z ∈ Rp×n with E[Z] = 0.

▶ useful (and low rank) information B buried by random symmetric noise matrix 1
n ZZT

▶ of interest in low-rank approximation of noise matrices for data science applications of, e.g.,
recommendation system or LoRA technique in Large Language Models (LLMs) [Hu+21]

3Edward J. Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In: International Conference on Learning Representations.
Oct. 2021
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Eigenvalue characterization for the information-plus-noise spiked model

▶ recall from “no eigenvalue outside the support” that in the absence of the additive term B = 0 and
sub-gaussian Z, no eigenvalue of 1

n ZZT is outside the Marc̆enko-Pastur support

Theorem (Additive spiked eigenvalues, [BGN11])

Let Z ∈ Rp×n be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and let B ∈ Rp×p

be a symmetric deterministic matrix of rank r with ∥B∥2 ≤ C for some constants r, C > 0. Then, for additive spiked
model X = B + 1

n ZZT ∈ Rp×p in Theorem 11 with symmetric B = ∑r
i=1 ℓiuiuT

i the spectral decomposition of B, one
has, as n, p → ∞ with p/n → c ∈ (0, ∞), that

λi (X) → λ̄i =

{
1 + ℓi +

c
ℓi−c , ℓi > c +

√
c

(1 +
√

c)2, ℓi ≤ c +
√

c.
(31)

almost surely, for λi(X) and ℓi the ith largest eigenvalue of the additive spiked model X and of B, respectively.

4Florent Benaych-Georges and Raj Rao Nadakuditi. “The eigenvalues and eigenvectors of finite, low rank perturbations of large random
matrices”. In: Advances in Mathematics 227.1 (2011), pp. 494–521
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Proof using the Linear Master Theorem

▶ to locate a possibly isolated eigenvalue of X outside the (limiting) Marc̆enko-Pastur support (of the
eigenvalues of 1

n ZZT), look for z ∈ R solution to the following determinant equation

0 = det
(

B +
1
n

ZZT − zIp

)
= det

(
1
n

ZZT − zIp

)
· det

(
Ip + Q(z)ULUT

)
. (32)

▶ Here, Q(z) = ( 1
n ZZT − zIp)−1 is the resolvent of 1

n ZZT, and B = ULUT is the spectral decomposition of
B, with U = [u1, . . . , ur] ∈ Rp×r and L = diag{ℓi}r

i=1
▶ looking for z ∈ R outside the main bulk, so that Q(z) is well defined and det Q−1(z) ̸= 0,

0 = det
(

Ip + Q(z)ULUT
)
⇔ 0 = det

(
Ir + LUTQ(z)U

)
, (33)

▶ apply the Linear Master Theorem to approximate

UTQ(z)U ≃ UTQ̄(z)U = m(z)Ir, (34)

with m(z) the unique Stieltjes transform solution to the Marc̆enko-Pastur equation,

0 = det
(

Ip + Q(z)ULUT
)
⇔ 0 = det(Ir + m(z)L) ↔ m(z) = −ℓ−1

i . (35)
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Proof using the Linear Master Theorem

Spiked eigenvalues z ∈ R such that m(z) = −ℓ−1
i .

▶ Since m(z) =
∫ µ(dt)

t−z is an increasing function of z on its domain of definition and

lim
z↓(1+√

c)2
m(z) = − 1

c +
√

c
, (36)

the equation m(z) = −ℓ−1
i admits a solution if and only if

ℓi > c +
√

c, (37)

with explicit solution (and therefore the spike location)

z = 1 + ℓi +
c

ℓi − c
≥ (1 +

√
c)2. (38)
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Comparison of spiked eigenvalues for information-plus-noise versus additive model

▶ for information-plus-noise spiked model X = 1
n (A + Z)(A + Z)T:

λi (X) → λ̄i = 1 + c + ℓi +
c
ℓi

, ℓi >
√

c, ℓi = λi

(
1
n

AAT
)

; (39)

▶ for additive spiked model B + 1
n ZZT:

λi (X) → λ̄i = 1 + ℓi +
c

ℓi − c
, ℓi > c +

√
c, ℓi = λi(B); (40)

▶ connected via the “change-of-variable” λi(AAT/n) + c ∼ λi(B) with c = p/n, in the sense that:

(i) the phase transition condition is λi(AAT/n) ≥ √
c for the information-plus-noise model and

λi(B) ≥ c +
√

c for the additive model; and

(ii) above phase transition, the isolated eigenvalues of the information-plus-noise model are given by
1 + c + λi(AAT/n) + c/λi(AAT/n), while those of the additive model are given by
1 + λi(B) + c/ (λi(B)− c).
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Eigenvector characterization for the information-plus-noise spiked model

Theorem (Additive spiked eigenvectors, [BGN11])

In the setting of Theorem 12, assume that the eigenvalues ℓi of B are all distinct and satisfy ℓ1 > . . . > ℓr > 0, and let
û1, . . . , ûr be the eigenvectors associated with the r largest eigenvalues λ1(X) > . . . > λr(X) of the additive model
X = B + 1

n ZZT. Then, as n, p → ∞ with p/n → c ∈ (0, ∞),

(ûT
i ui)

2 → η =

{
1 − c

(ℓi−c)2 , ℓi > c +
√

c
0, ℓi ≤ c +

√
c.

(41)

almost surely, for ui the eigenvector associated with the eigenvalue ℓi of B.

5Florent Benaych-Georges and Raj Rao Nadakuditi. “The eigenvalues and eigenvectors of finite, low rank perturbations of large random
matrices”. In: Advances in Mathematics 227.1 (2011), pp. 494–521
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Proof using the Linear Master Theorem

▶ follow the same line of arguments as in the proof of information-plus-noise spiked model
▶ write, for a, b ∈ Rp of unit norm,

aTûiû
T
i b = − 1

2πı

∮
Γλi

aT
(

B +
1
n

ZZT − zIp

)−1
b dz, (42)

for Γλi a positively oriented contour enclosing only the ith eigenvalue of X = B + 1
n ZZT (that admits the

almost sure limit λ̄i = 1 + ℓi +
c

ℓi−c )
▶ let B = ULUT = ∑r

i=1 ℓiuiuT
i be the spectral decomposition of B, then

aT
(

1
n

ZZT − zIp + ULUT
)−1

b = aTQ(z)b − aTQ(z)U(L−1 + UTQ(z)U)−1UTQ(z)b,

with Q(z) = ( 1
n ZZT − zIp)−1

▶ applying the Deterministic Equivalent result Q(z) ↔ m(z)Ip

aT
(

1
n

ZZT − zIp + ULUT
)−1

b ≃ m(z)aTb − m2(z)aTU
(

m(z)Ir + L−1
)−1

UTb,

with m(z) unique solution to
zcm2(z)− (1 − c − z)m(z) + 1 = 0. (43)

▶ the first term m(z)aTb has no pole outside the Marc̆enko-Pastur support
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Proof using the Linear Master Theorem

▶ So

aTûiû
T
i b ≃ 1

2πı

∮
Γλi

m2(z) · aTuiuT
i b

m(z) + ℓ−1
i

dz. (44)

▶ This has a pole satisfying m(z) = −ℓ−1
i and corresponds to spike location at z = λ̄i = 1 + ℓi +

c
ℓi−c

characterized in Theorem 12.
▶ evaluate this expression by the residue calculus at z = λ̄i as

aTûiû
T
i b ≃ aTuiu

T
i b · m2(λ̄i)

m′(λ̄i)
= aTuiu

T
i b
(

1 − c
(ℓi − c)2

)
, (45)

with m′(z) the derivative of m(z) with respect to z satisfying

m′(z) =
m2(z)

1 − cm2(z)
(1+cm(z))2

. (46)

▶ Plugging in we conclude the proof.
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Take-away of this section

▶ a Master Theorem: Deterministic Equivalent for resolvent for affine-transformed SCM model X = A+CZ
▶ information-plus-noise spiked model X = 1

n (A + Z)(A + Z)T: phase transition in spiked eigenvalues
and eigenvectors

▶ additive spiked model B + 1
n ZZT: phase transition in spiked eigenvalues and eigenvectors

Table: Roadmap of linear ML models considered.

ML Problem Classical Regime Proportional Regime

Low rank approximation X̂
of info-plus-noise matrix X

smooth decay of
∥X − X̂∥2/∥X∥2 ≃ (1 + ℓ)−1

Proposition 1 Item (i)

sharp transition of
∥X − X̂∥2/∥X∥2 at ℓ = c +

√
c

Proposition 1 Item (ii)

Classification of binary
Gaussian mixtures of distance in means ∆µ

pairwise ≃ spectral approach
Proposition 2 Item (i)

pairwise ≪ spectral approach
Proposition 2 Item (ii)

Linear least squares
regression risk as n ↑

bias = 0 and
variance ∝ n−1

Proposition 3 Item (i)

monotonic bias and
non-monotonic variance

Proposition 3 Item (ii)

Z. Liao (EIC, HUST) RMT4ML July 3rd, 2024 36 / 61



Low-rank approximation

Definition (Rank-one matrix recovery)

Taking B = ℓuuT in Theorem 11 of the additive spiked model, we have

X = ℓuuT +
1
n

ZZT ∈ Rp×p, (47)

for u ∈ Rp some deterministic signal of unit norm, i.e., ∥u∥ = 1, ℓ ≥ 0 the informative “signal strength,” and
Z ∈ Rp×n a random “noise” matrix having i.i.d. entries of zero mean and unit variance.

▶ known from Eckart-Young-Mirsky theorem that the “best” low-rank approximation of a given matrix X,
measured by any unitarily invariant matrix norm (including the Frobenius and the spectral/operator
norm) is given by retaining the top singular/eigenvalue decomposition

▶ let X = ∑
p
i=1 λi(X)ûiûT

i , be the eigenvalue-eigenvector decomposition of a symmetric and nonnegative
definite matrix X ∈ Rp×p, with λ1(X) ≥ . . . ≥ λp(X) ≥ 0 listed in a non-increasing order. Then, for
k ≤ rank(X), the solution to

X̂∗ = arg min
rank(X̂)=k

∥X − X̂∥ =
k

∑
i=1

λi(X)ûiû
T
i , (48)

for any unitarily invariant norm ∥ · ∥.
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▶ evaluate the relative spectral norm error ∥X − X̂∥2/∥X∥2 of rank-one approximation under rank-one
matrix recovery model, for input X ∈ Rp drawn from additive spiked model, and X̂ = λ1(X)û1ûT

1 the
optimal rank-one approximation of X given by its top eigenvalue-eigenvector pair (λ1(X), û1).

Proposition (Relative spectral error of low-rank approximation)

Let X ∈ Rp×n be an additive spiked random matrix, for Z having i.i.d. sub-gaussian entries of zero mean and unit
variance, and let X̂ = λ1(X)û1ûT

1 the optimal rank-one approximation of X given by its top eigenvalue-eigenvector pair
(λ1(X), û1). Then, one has,

(i) in the classical regime, for p fixed and n → ∞ that

∥X − X̂∥2
∥X∥2

→ fn≫p(ℓ) ≡
1

1 + ℓ
, (49)

almost surely; and
(ii) in the proportional regime, as n, p → ∞ with p/n → c ∈ (0, ∞) that

∥X − X̂∥2
∥X∥2

→ fn∼p(ℓ, c) ≡
{

(1+
√

c)2

1+ℓ+ c
ℓ−c

, ℓ > c +
√

c

1, ℓ ≤ c +
√

c
(50)

almost surely.
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Numerical results
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▶ sharp phase transition of the relative error as the signal strength ℓ increases
▶ for p large and fixed, transition thresholds in ℓ are different for different values of n, and they become

smaller as the dimension n increases from 1 024 to 2 048
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Proof in the classical regime

▶ evoking the LLN, one has
X → E[X] = Ip + ℓuuT, (51)

almost surely as n → ∞ for p fixed
▶ in the classical n ≫ p regime, X is close, in both a max and a spectral norm sense, to its expectation

E[X] = Ip + ℓuuT, and the eigenvalues λi(X) of X, when arranged in a non-increasing order, are
(asymptotically and approximately) given by

∥X∥2 ≈ λ1(X) = 1 + ℓ ≥ λ2(X) = . . . = λp(X) ≈ 1. (52)

▶ for n ≫ p that
∥X − X̂∥2
∥X∥2

≈ λ2(E[X])
λ1(E[X])

=
1

1 + ℓ
≡ fn≫p(ℓ). (53)

The approximation “≈” can be replaced by an almost sure convergence in the limit of n → ∞ for p fixed
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Proof in the proportional regime

In the proportional n ∼ p regime:

(i) by Marc̆enko-Pastur law, in the absence of information signal ℓuuT (i.e., ℓ = 0), the eigenvalues of X have
a Marc̆enko-Pastur shape;

(ii) by Theorem 12, in the presence of the rank-one informative signal ℓuuT in Equation (47), that depending
the “signal strength” ∥ℓuuT∥2 = ℓ > 0, the largest eigenvalue of X establishes a phase transition behavior
and is no longer a smooth function of ℓ (as opposed to its classical counterpart in Item (i) of Proposition 1)

For additive spiked model, one has

∥X∥2 → λ̄1 =

{
1 + ℓ+ c

ℓ−c , ℓ > c +
√

c
(1 +

√
c)2, ℓ ≤ c +

√
c.

(54)

almost surely as n, p → ∞ with p/n → c ∈ (0, ∞). Since ∥X − X̂∥2 = λ2(X) and
λ2(ZZT/n) ≤ λ2(X) ≤ λ1(ZZT/n) (Weyl’s inequality), one has also

∥X − X̂∥2 → (1 +
√

c)2, (55)

almost surely, so that by Slutsky’s Theorem, one has ∥X−X̂∥2
∥X∥2

→ fn∼p(ℓ, c).
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Gaussian Mixture Model classification

Definition (Gaussian Mixture Model, GMM)

We say x ∈ Rp follows a two-class (C1 and C2) Gaussian Mixture Model if it is drawn from one of the two
multivariate Gaussian distribution, that is

C1 : x ∼ N (µ1, Ip), C2 : x ∼ N (µ2, Ip); ∆µ ≡ µ1 − µ2, ∥∆µ∥ = Θ(1). (56)

Proposition (Fundamental limits of GMM classification: pairwise versus spectral approach)

For Gaussian mixture classification between N (µ1, Ip) and N (µ2, Ip), with ∆µ = µ1 − µ2, one has, for some constant
C > 0 independent of p,

(i) based on a pairwise (Euclidean) distance comparison approach, one is able to separate binary Gaussian mixtures
satisfying ∥∆µ∥ ≥ Cp1/4; and

(ii) based on an eigenspectral approach, one is able to separate a closer distance of ∥∆µ∥ ≥ C, which is, up to a constant
factor, the minimum distance possible.
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Figure: Illustration of different regimes in separating a binary GMM based on the distance in means ∥∆µ∥, with k > 0, for
both pairwise and spectral approaches.
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Proof in the classical regime

▶ classification of the binary Gaussian mixture

C1 : N (µ1, Ip) versus C2 : N (µ2, Ip), ∆µ = µ1 − µ2. (57)

▶ for two distinct data vectors xi and xj, i ̸= j, belonging to class Ca and Cb, a, b ∈ {1, 2}, we have
xi = µa + zi ∈ Ca and xj = µb + zj ∈ Cb, for standard Gaussian zi, zj ∼ N (0, Ip). Then, their (normalized)
Euclidean distance is given by

1
p
∥xi − xj∥2 =

1
p
∥µa − µb + zi − zj∥2, (58)

which is also the (i, j) entry of the Euclidean distance matrix E ≡ {∥xi − xj∥2/p}n
i,j=1.

▶ so

1
p
∥xi − xj∥2 =

1
p
∥zi − zj∥2 +

1
p
∥µa − µb∥2 +

2
p
(µa − µb)

T(zi − zj)

=
1
p
∥zi∥2 +

1
p
∥zj∥2 − 2

p
zT

i zj +
1
p
∥µa − µb∥2 +

2
p
(µa − µb)

T(zi − zj). (59)
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Proof in the classical regime

▶ in expectation, we have 1
p E
[
∥xi − xj∥2

]
= 2 + 1

p∥µa − µb∥2, for i ̸= j, where we used the fact that

E[zT
i zi]/p = tr(E[zizT

i ])/p = 1;

Var
[

1
p
∥xi − xj∥2

]
= Var

[
1
p
(∆z + 2(µa − µb))

T∆z
]

=
4
p2 E

[
(µa − µb)

T∆z∆zT(µa − µb) + (µa − µb)
T∆z∆zT∆z

]
+

1
p2 Var[∥∆z∥2]

=
8
p2 ∥µa − µb∥2 +

8
p
≤ 16

p

for ∆z ≡ zi − zj ∼ N (0, 2Ip) and ∥µa − µb∥ ≤ √
p.

▶ to ensure that the pairwise approach works, one must have that the distances between data points xi, xj
from the same Gaussian (with a = b) are, with non-trivial probability, smaller than those from different
Gaussian (with a ̸= b). This requires that

2 ±
√

Cp−1 ≤ 2 + ∥∆µ∥2/p ±
√

Cp−1 (60)

and therefore
∥∆µ∥ ≥ C′p1/4, (61)

for some C, C′ > 0 independent of p.
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Proof in the proportional regime

▶ consider the more challenging setting of ∥∆µ∥ = Θ(1) in the proportional regime, that classification
remains doable via an eigenspectral approach on Euclidean distance matrix E = {∥xi − xj∥2/p}n

i,j=1

▶ for ∥∆µ∥ = Θ(1) and n, p both large, it follows from the expansion in Equation (59) that

1
p
∥xi − xj∥2 = 2 + ψi + ψj −

2
p

zT
i zj︸ ︷︷ ︸

O(p−1/2)

+
1
p
∥µa − µb∥2 +

2
p
(µa − µb)

T(zi − zj)︸ ︷︷ ︸
O(p−1)

(62)

where we denote ψi ≡ ∥zi∥2/p − 1 with E[ψi] = 0 and Var[ψi] = 2/p.
▶ in matrix form,

E = 2 · 1n1T
n + ψ1T

n + 1nψT − 2
p

ZTZ +
1
p

J
[

0 ∥∆µ∥2

∥∆µ∥2 0

]
JT + Θ − diag(·) (63)

where we denote J =
[
j1 j2

]
∈ Rn×2 for ja ∈ Rn the label vector of class Ca such that [ja]i = δxi∈Ca ,

ψ ∈ Rn a random vector containing ψi as its i-th entry, Θ ≡ {2(µa − µb)
T(zi − zj)/p}n

i,j=1, and we use the
notation X − diag(·) to remove the diagonal of a given matrix X.
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Proof in the proportional regime

E = 2 · 1n1T
n + ψ1T

n + 1nψT − 2
p

ZTZ +
1
p

J
[

0 ∥∆µ∥2

∥∆µ∥2 0

]
JT + Θ − diag(·) (64)

▶ a low-rank non-informative matrix 2 · 1n1T
n + ψ1T

n + 1nψT of spectral norm of order O(n)
▶ a sample covariance-type random matrix 2ZTZ/p for Z ∈ Rp×n having i.i.d. standard Gaussian entries,

the spectrum of which follows a Marc̆enko-Pastur shape (and is of order O(1))

▶ a low-rank informative matrix 1
p J
[

0 ∥∆µ∥2

∥∆µ∥2 0

]
JT + Θ that depends on the label vector j1, j2 ∈ Rn (so

of interest for classification) and the statistical difference (in means) ∆µ, also of spectral norm order O(1)

(i) while in the critical regime ∥∆µ∥ = Θ(1), data vectors xi, xj are pairwise indistinguishable based on their
Euclidean distance, due to the dominant order of the random zT

i zj/p = O(p−1/2) over the informative
term ∥µa − µb∥2/p = Θ(p−1) in Equation (62);

(ii) they can still be “clustered” into two classes with a spectral approach based on the global observation of
the large Euclidean distance matrix E, since the sample covariance-type random matrix and the low-rank
informative matrix are both of spectral norm order O(1), and thus comparable for n, p large.
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Numerical results
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Figure: Phase transition behavior of the classification accuracy using the sign of the second top eigenvector v2 of the
Euclidean distance matrix E, as a function of the statistical difference ∥∆µ∥ in the non-trivial ∥∆µ∥ = Θ(1) regime, for
p = 512, n = 4p, and C1 = C2 = Ip. Results averaged over 10 independent runs.

“More refined” sharp phase transition, the second dominant eigenvector v2 of E:

(i) for n, p fixed and large, when ∥∆µ∥ below threshold, v2 does not contain data class information, the
clustering/classification based on sign(v2) random guess

(ii) above the phase transition threshold, the eigenvector v2 contains data class information ja, and the
classification accuracy increases as ∥∆µ∥ and/or n/p becomes large.
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Noisy linear model

Consider a given set of data {(xi, yi)}n
i=1 of size n, composed of the (random) input data xi ∈ Rp and its

corresponding output target yi ∈ R, drawn from the following noisy linear model.

Definition (Noisy linear model)

We say a data-target pair (x, y) ∈ Rp × R follows a noisy linear model if it satisfies

y = βT
∗ x + ϵ (65)

for some deterministic (ground-truth) vector β∗ ∈ Rp, and random variable ϵ ∈ R independent of x ∈ Rp,
with E[ϵ] = 0 and Var[ϵ] = σ2.

▶ aim to find a regressor β ∈ Rp that best describes the linear relation yi ≈ βTxi, by minimizing the
ridge-regularized mean squared error (MSE)

L(β) =
1
n

n

∑
i=1

(yi − βTxi)
2 + γ∥β∥2 =

1
n
∥XTβ − y∥2 + γ∥β∥2 (66)

for y = [y1, . . . , yn]T ∈ Rn, X = [x1, . . . , xn] ∈ Rp×n, and some regularization penalty γ ≥ 0
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Out-of-sample prediction risk

▶ unique solution given by

βγ =
(

XXT + nγIp

)−1
Xy = X

(
XTX + nγIn

)−1
y, γ > 0 (67)

▶ in the γ = 0 setting, the minimum ℓ2 norm least squares solution

β0 =
(

XXT
)+

Xy = X
(

XTX
)+

y, (68)

where (A)+ denotes the Moore–Penrose pseudoinverse, also “ridgeless” least squares solution.
▶ “statistical quality” of β, as a function of dimensions n, p, noise level σ2, and the regularization γ

▶ evaluating the out-of-sample prediction risk (or simply, risk)

RX(β) = E[(βTx̂ − βT
∗ x̂)2 | X] = (E[β | X]− β∗)

TC(E[β | X]− β∗)︸ ︷︷ ︸
≡BX(β)

+ tr (Cov[β | X]C)︸ ︷︷ ︸
≡VX(β)

(69)

for an independent test data point. We denote E[xixT
i ] = C, and BX(β), VX(β) the bias as well as

variance of the solution β.
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Risk of linear ridge regression

Proposition (Risk of linear ridge regression)

Let X ∈ Rp×n be a random data matrix having i.i.d. sub-gaussian entries of zero mean and unit variance (so that
C = Ip). Then, under the linear model and for the out-of-sample prediction risk RX of the linear ridge regressor βγ given
in Equation (67), one has RX(βγ) = BX(βγ) + VX(βγ) and

(i) in the classical regime, for p fixed and n → ∞ that

BX(βγ)−
(

γ

1 + γ

)2
∥β∗∥2 → 0, VX(βγ)−

p
n

σ2

(1 + γ)2 → 0, (70)

almost surely, so that RX(βγ)− Rn≫p(γ) → 0, with Rn≫p(γ) ≡ γ2∥β∗∥2+ p
n σ2

(1+γ)2 ;

(ii) in the proportional regime, as n, p → ∞ with p/n → c ∈ (0, 1) ∪ (1, ∞) that

BX(βγ)− γ2∥β∗∥2m′(−γ) → 0, VX(βγ)− σ2c
(
m(−γ)− γm′(−γ)

)
→ 0, (71)

almost surely, with m′(−γ) = m(−γ)(cm(−γ)+1)
2cγm(−γ)+1−c+γ

by differentiating the Marc̆enko-Pastur equation

RX(βγ)− Rn∼p(γ) → 0, with Rn∼p(γ) ≡ σ2cm(−γ) + γm′(−γ)
(

σ2c − γ∥β∗∥2
)

. (72)
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Numerical results
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Figure: Out-of-sample risk RX(βγ) = BX(βγ) + VX(βγ) of the ridge regression solution βγ defined in Equation (67) as a
function of the dimension ratio n/p, for fixed p = 512, ∥β∗∥ = 1, and different regularization penalty γ = 10−2 and
γ = 10−5, Gaussian x ∼ N (0, Ip) and ε ∼ N (0, σ2 = 0.1).
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Remark

for relatively small regularization γ = 10−5 and as the sample size n increases, that the total risk RX(βγ):

1 first decreases and then increases as n approaches the input dimension p in the under-determined n < p
regime; and

2 reaches a singular “peak point” at n = p with a large risk; and
3 decreases again monotonically as n continues to increase, in the over-determined n > p regime.
4 This phenomenon is largely alleviated, yet still visible, for larger regularization of γ = 10−2, and is

referred to as the “double descent” test curve.
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Proof in the classical regime

▶ denote Q(−γ) ≡ (Ĉ + γIp)−1 the resolvent of the (un-centered) sample covariance matrix Ĉ = 1
n XXT

and Q(γ = 0) = limγ↓0 Q(−γ) = Ĉ+.
▶ we can write

BX(βγ) = βT
∗
(
Ip − Q(−γ)Ĉ

)
C
(
Ip − Q(−γ)Ĉ

)
β∗, VX(βγ) =

σ2

n
tr
(
Q(−γ)ĈQ(−γ)C

)
. (73)

▶ for γ > 0, one has Ip − Q(−γ)Ĉ = Ip − Q(−γ)(Ĉ + γIp − γIp) = γQ(−γ), so that

BX(βγ) = γ2βT
∗ Q2(−γ)β∗ = −γ2 ∂βT

∗ Q(−γ)β∗
∂γ

, (74)

VX(βγ) = σ2
(

1
n

tr Q(−γ)− γ

n
tr Q2(−γ)

)
= σ2

(
1
n

tr Q(−γ) +
γ

n
∂ tr Q(−γ)

∂γ

)
, (75)

where we used the fact that C = Ip and ∂Q(−γ)/∂γ = −Q2(−γ).
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Proof in the classical regime

▶ by LLN, we have, in the classical regime for fixed p and as n → ∞ that Ĉ → C = Ip, and therefore

Q(−γ) → (C + γIp)
−1 =

Ip

1 + γ
. (76)

▶ we have that

BX(βγ) → −γ2 ∂

∂γ

∥β∗∥2

1 + γ
=

(
γ

1 + γ

)2
∥β∗∥2,

VX(βγ) → σ2
(

p
n

1
1 + γ

+ γ · p
n

∂

∂γ

1
1 + γ

)
=

p
n

σ2

(1 + γ)2 .

▶ in the ridgeless setting with γ = 0

BX(β0) = 0, VX(β0) =
σ2

n
tr (Q(γ = 0)C) → σ2 p

n
, (77)
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Proof in the proportional regime

▶ it follows from our Linear Master Theorem that

BX(βγ) → −γ2∥β∗∥2 ∂m(−γ)

∂γ
= γ2∥β∗∥2m′(−γ),

VX(βγ) → σ2 · p
n
(
m(−γ)− γm′(−γ)

)
,

with m′(z) = − m(z)(cm(z)+1)
2czm(z)−1+c+z the derivative of the Stieltjes transform m(z)

▶ in the ridgeless setting as γ → 0, one has m(γ) = 1
1−c > 0 only if c < 1 and limγ→0 m(γ) undefined

otherwise, but satisfying limγ→0 γm(γ) = c−1
c > 0, in the under-determined regime with n < p.

BX(β0) → 0, VX(β0) → σ2 c
1 − c

, for c < 1 (78)

BX(β0)− ∥β∗∥2
(

1 − 1
c

)
→ 0, VX(β0) → σ2 1

c − 1
, for c > 1 (79)

▶ Note: for c > 1, VX(β0) more involved, as one cannot take the limit γ → 0. Instead,

VX(βγ) =
σ2

n2 tr
(

Q̃(−γ)XTCXQ̃(−γ)
)

, Q̃(−γ) ≡
(

1
n

XTX + γIn

)−1
. (80)

which is more convenient to work with in the c > 1 regime.
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Take-away messages of this section

Table: Roadmap of linear ML models considered.

ML Problem Classical Regime Proportional Regime

X̂
of info-plus-noise matrix X

smooth decay of
∥X − X̂∥2/∥X∥2 ≃ (1 + ℓ)−1

Proposition 1 Item (i)

sharp transition of
∥X − X̂∥2/∥X∥2 at ℓ = c +

√
c

Proposition 1 Item (ii)

Classification of binary
Gaussian mixtures of distance in means ∆µ

pairwise ≃ spectral approach
Proposition 2 Item (i)

pairwise ≪ spectral approach
Proposition 2 Item (ii)

Linear least squares
regression risk as n ↑

bias = 0 and
variance ∝ n−1

Proposition 3 Item (i)

monotonic bias and
non-monotonic variance

Proposition 3 Item (ii)

▶ Linear Master Theorem provides a unified analysis framework to
▶ low rank approximation: phase transition in spiked eigenvalue
▶ classification: phase transition in spiked eigenvector
▶ linear least squares: double descent as phase transition in resolvent

Thank you! Q & A?
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