Random Matrix Theory for Modern Machine Learning: New Intuitions, Improved Methods, and Beyond: Part 3 Short Course @ Institut de Mathématiques de Toulouse, France

Zhenyu Liao

School of Electronic Information and Communications Huazhong University of Science and Technology

July 3rd, 2024



Outline

A Linear Theorem for Affine-transformed Model

- A master theorem for affine-transformed model
- The information-plus-noise spiked model
- The additive spiked model
- 2 RMT for Machine Learning: Linear Models
 - Low-rank approximation
 - Classification
 - Linear least squares

Affine-transformed model, a master theorem, and applications to linear ML

Definition (Affine-transformed model)

For $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having i.i.d. sub-gaussian entries of zero mean and unit variance, and let $\mathbf{A} \in \mathbb{R}^{q \times n}$ and $\mathbf{C} \in \mathbb{R}^{q \times p}$ be two deterministic matrices, we say **X** is a affine transformed random matrix model

 $\mathbf{X} = \mathbf{A} + \mathbf{CZ} \in \mathbb{R}^{q \times n}$

this extends SCM, and can be used to derive results for a wide range of **linear ML** methods

exhibit different behaviors and intuitions, on classical or proportional regime, analogous to SCMs

ML Problem	Classical Regime	Proportional Regime	
Low rank approximation \hat{X} of info-plus-noise matrix X	smooth decay of $\ \mathbf{X} - \hat{\mathbf{X}}\ _2 / \ \mathbf{X}\ _2 \simeq (1 + \ell)^{-1}$ Proposition 1 Item (i)	sharp transition of $\ \mathbf{X} - \hat{\mathbf{X}}\ _2 / \ \mathbf{X}\ _2$ at $\ell = c + \sqrt{c}$ Proposition 1 Item (ii)	
Classification of binary Gaussian mixtures of distance in means $\Delta \mu$	pairwise \simeq spectral approach Proposition 2 Item (i)	pairwise ≪ spectral approach Proposition 2 Item (ii)	
Linear least squares regression risk as $n \uparrow$	bias = 0 and variance $\propto n^{-1}$ Proposition 3 Item (i)	monotonic bias and non-monotonic variance Proposition 3 Item (ii)	
Z. Liao (EIC, HUST)	RMT4ML	July 3rd, 2024	

Table: Roadmap of linear ML models considered.

(1)

Definition (Affine-transformed model)

For $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having i.i.d. sub-gaussian entries of zero mean and unit variance, and let $\mathbf{A} \in \mathbb{R}^{q \times n}$ and $\mathbf{C} \in \mathbb{R}^{q \times p}$ be two deterministic matrices, we say \mathbf{X} is an *affine transformed random matrix model*

$$\mathbf{X} = \mathbf{A} + \mathbf{C}\mathbf{Z} \in \mathbb{R}^{q \times n}.$$

matrix version of an affine transformation of a vector: for z ∈ ℝ^p having independent entries of zero mean and unit variance, deterministic a ∈ ℝ^q and matrix C ∈ ℝ^{q×p},

$$\mathbf{x} = \mathbf{a} + \mathbf{C}\mathbf{z} \in \mathbb{R}^{q},\tag{3}$$

is an affine transformation of z with mean $\mathbb{E}[x] = a$ and covariance $\text{Cov}[x] = CC^{\mathsf{T}} \succeq 0$

- due to the "structure" in X, we shall see:
- (i) the limiting eigenvalue distribution of $\frac{1}{n}XX^{\mathsf{T}}$ can significantly diverge from the Marčenko-Pastur law
- (ii) depending on the dimension ratio c = p/n, a few eigenvalues of $\frac{1}{n}XX^{\mathsf{T}}$ may isolate from the rest of eigenvalue **bulk**, for which a **phase transition** behavior can be observed
- ► can be assessed via the proposed **Deterministic Equivalent for resolvent** approach in a unified fashion

(2)

Deterministic Equivalents for resolvent of affine SCM

Theorem (Asymptotic Deterministic Equivalent for resolvent of affine-transformed model)

For random matrix $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having i.i.d. sub-gaussian entries of zero mean and unit variance, let $\mathbf{X} = \mathbf{A} + \mathbf{CZ}$ be an affine-transformed model, for deterministic $\mathbf{A} \in \mathbb{R}^{q \times n}$, $\mathbf{C} \in \mathbb{R}^{q \times p}$ such that $\|\mathbf{C}\|_2 \leq C$, $\|\mathbf{A}\|_2 \leq C\sqrt{n}$, and $\|\mathbf{a}_i\| \leq C$ for some universal constant C > 0, with $\mathbf{a}_i \in \mathbb{R}^q$ the *i*th column of \mathbf{A} . Then, one has, for $z \in \mathbb{C}$ not an eigenvalue of $\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}$ and as $p, q, n \to \infty$ at the same pace, the following asymptotic Deterministic Equivalent,

$$\mathbf{Q}(z) \leftrightarrow \bar{\mathbf{Q}}(z), \quad \bar{\mathbf{Q}}(z) = \left(\frac{\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}} + \mathbf{C}\mathbf{C}^{\mathsf{T}}}{1 + \delta(z)} - z\mathbf{I}_{q}\right)^{-1}$$
(4)

for the resolvent $\mathbf{Q}(z) \equiv (\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}} - z\mathbf{I}_q)^{-1}$, with $\delta(z)$ the unique Stieltjes transform solution to the fixed point equation

$$\delta(z) = \frac{1}{n} \operatorname{tr} \mathbf{C}^{\mathsf{T}} \bar{\mathbf{Q}}(z) \mathbf{C}.$$
 (5)

For the co-resolvent $\tilde{\mathbf{Q}}(z) \equiv (\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{X} - z\mathbf{I}_n)^{-1}$, one has instead

$$\tilde{\mathbf{Q}}(z) \leftrightarrow \bar{\tilde{\mathbf{Q}}}(z), \quad \bar{\tilde{\mathbf{Q}}}(z) = -\frac{\mathbf{I}_n}{z(1+\delta(z))}.$$
 (6)

Lemma (Resolvent identity)

For invertible matrices **A** and **B**, we have $\mathbf{A}^{-1} - \mathbf{B}^{-1} = \mathbf{A}^{-1}(\mathbf{B} - \mathbf{A})\mathbf{B}^{-1}$.

Lemma (Woodbury)

For $\mathbf{A} \in \mathbb{R}^{p \times p}$, $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{p \times n}$, such that both \mathbf{A} and $\mathbf{A} + \mathbf{U}\mathbf{V}^{\mathsf{T}}$ are invertible, we have

$$(\mathbf{A} + \mathbf{U}\mathbf{V}^{\mathsf{T}})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{I}_n + \mathbf{V}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}^{\mathsf{T}}\mathbf{A}^{-1}.$$

In particular, for n = 1, i.e., $\mathbf{U}\mathbf{V}^{\mathsf{T}} = \mathbf{u}\mathbf{v}^{\mathsf{T}}$ for $\mathbf{U} = \mathbf{u} \in \mathbb{R}^{p}$ and $\mathbf{V} = \mathbf{v} \in \mathbb{R}^{p}$, the above identity specializes to the following Sherman–Morrison formula,

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^{\mathsf{T}})^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^{\mathsf{T}}\mathbf{A}^{-1}}{1 + \mathbf{v}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{u}}, \quad and \ (\mathbf{A} + \mathbf{u}\mathbf{v}^{\mathsf{T}})^{-1}\mathbf{u} = \frac{\mathbf{A}^{-1}\mathbf{u}}{1 + \mathbf{v}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{u}},$$

And the matrix $\mathbf{A} + \mathbf{u}\mathbf{v}^{\mathsf{T}} \in \mathbb{R}^{p \times p}$ is invertible if and only if $1 + \mathbf{v}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{u} \neq 0$.

Heuristic derivation via "leave-one-out"

propose Q

 = (F − zI_q)⁻¹ for some deterministic F ∈ ℝ^{q×q} to be determined, and try to "guess" F
 by resolvent identity

$$\mathbb{E}[\mathbf{Q} - \bar{\mathbf{Q}}] = \mathbb{E}\left[\mathbf{Q}\left(\mathbf{F} - \frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}\right)\right]\bar{\mathbf{Q}} = \mathbb{E}[\mathbf{Q}]\mathbf{F}\bar{\mathbf{Q}} - \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[\mathbf{Q}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}}\right]\bar{\mathbf{Q}}$$
$$= \mathbb{E}[\mathbf{Q}]\mathbf{F}\bar{\mathbf{Q}} - \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[\frac{\mathbf{Q}_{-i}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}}}{1 + \frac{1}{n}\mathbf{x}_{i}^{\mathsf{T}}\mathbf{Q}_{-i}\mathbf{x}_{i}}\right]\bar{\mathbf{Q}}$$

with $\mathbf{x}_i = \mathbf{a}_i + \mathbf{C}\mathbf{z}_i \in \mathbb{R}^q$ the *i*th column of $\mathbf{X} \in \mathbb{R}^{q \times n}$ for $\mathbf{a}_i \in \mathbb{R}^q$ the *i*th column of $\mathbf{A} \in \mathbb{R}^{q \times n}$ and $\mathbf{z}_i \in \mathbb{R}^p$ the *i*th column of $\mathbf{Z}, \mathbf{Q}_{-i} = (\frac{1}{n} \sum_{j \neq i} \mathbf{x}_j \mathbf{x}_j^{\mathsf{T}} - z \mathbf{I}_p)^{-1}$ independent of \mathbf{x}_i ,

▶ in the denominator

$$\begin{split} \frac{1}{n} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{Q}_{-i} \mathbf{x}_{i} &= \frac{1}{n} (\mathbf{a}_{i} + \mathbf{C} \mathbf{z}_{i})^{\mathsf{T}} \mathbf{Q}_{-i} (\mathbf{a}_{i} + \mathbf{C} \mathbf{z}_{i}) \simeq \frac{1}{n} \mathbf{a}_{i}^{\mathsf{T}} \mathbf{Q}_{-i} \mathbf{a}_{i} + \frac{1}{n} \mathbf{z}_{i}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \mathbf{Q}_{-i} \mathbf{C} \mathbf{z}_{i} \\ &\simeq \frac{1}{n} \operatorname{tr}(\mathbf{C}^{\mathsf{T}} \mathbf{Q}_{-i} \mathbf{C}) \simeq \frac{1}{n} \operatorname{tr}(\mathbf{C}^{\mathsf{T}} \bar{\mathbf{Q}} \mathbf{C}) \equiv \delta(z), \end{split}$$

- ▶ ignore the cross terms (of the form $2\mathbf{a}_i^\mathsf{T}\mathbf{Q}_{-i}\mathbf{C}\mathbf{z}_i/n$, which, when conditioned on \mathbf{Q}_{-i} , is sub-gaussian with zero mean and variance $4\mathbf{a}_i^\mathsf{T}\mathbf{Q}_{-i}\mathbf{C}\mathbf{C}^\mathsf{T}\mathbf{Q}_{-i}\mathbf{a}_i/n^2 \le 4n^{-2}\|\mathbf{a}_i\|^2 \cdot \|\mathbf{Q}_{-i}\|_2^2 \cdot \|\mathbf{C}\|_2^2 = O(n^{-2})$)
- approximate the term $\frac{1}{n}\mathbf{z}_i^{\mathsf{T}}\mathbf{C}^{\mathsf{T}}\mathbf{Q}_{-i}\mathbf{C}\mathbf{z}_i$ by its expectation (e.g., Hanson-Wright) and use Deterministic Equivalent relations $\mathbf{Q}_{-i} \leftrightarrow \mathbf{Q} \leftrightarrow \bar{\mathbf{Q}}$

Heuristic derivation via "leave-one-out"

▶ the Deterministic Equivalent relations $\mathbf{Q}_{-i} \leftrightarrow \mathbf{Q} \leftrightarrow \bar{\mathbf{Q}}$ holds since

$$0 \leq \mathbb{E}[\mathbf{Q}_{-i} - \mathbf{Q}] = \mathbb{E}\left[\frac{\mathbf{Q}_{-i}\frac{1}{n}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}}\mathbf{Q}_{-i}}{1 + \frac{1}{n}\mathbf{x}_{i}^{\mathsf{T}}\mathbf{Q}_{-i}\mathbf{x}_{i}}\right] \leq \frac{1}{n}\mathbb{E}[\mathbf{Q}_{-i}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}}\mathbf{Q}_{-i}] = \frac{1}{n}\mathbb{E}\left[\mathbf{Q}_{-i}(\mathbf{a}_{i}\mathbf{a}_{i}^{\mathsf{T}} + \mathbf{C}\mathbf{C}^{\mathsf{T}})\mathbf{Q}_{-i}\right], \quad (7)$$

for $\|\mathbf{a}_{i}\| = O(1)$ and $\|\mathbf{C}\|_{2} = O(1)$.

$$\begin{split} \mathbb{E}[\mathbf{Q} - \bar{\mathbf{Q}}] &= \mathbb{E}[\mathbf{Q}]\mathbf{F}\bar{\mathbf{Q}} - \frac{1}{n}\sum_{i=1}^{n} \mathbb{E}\left[\mathbf{Q}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}}\right]\bar{\mathbf{Q}} \simeq \mathbb{E}[\mathbf{Q}]\mathbf{F}\bar{\mathbf{Q}} - \frac{1}{n}\sum_{i=1}^{n} \frac{\mathbb{E}\left[\mathbf{Q}_{-i}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}}\right]}{1 + \delta(z)}\bar{\mathbf{Q}} \\ &= \mathbb{E}[\mathbf{Q}]\mathbf{F}\bar{\mathbf{Q}} - \frac{1}{n}\sum_{i=1}^{n} \frac{\mathbb{E}[\mathbf{Q}_{-i}](\mathbf{a}_{i}\mathbf{a}_{i}^{\mathsf{T}} + \mathbf{C}\mathbf{C}^{\mathsf{T}})}{1 + \delta(z)}\bar{\mathbf{Q}} \\ &\simeq \mathbb{E}[\mathbf{Q}]\left(\mathbf{F} - \frac{\frac{1}{n}\sum_{i=1}^{n}(\mathbf{a}_{i}\mathbf{a}_{i}^{\mathsf{T}} + \mathbf{C}\mathbf{C}^{\mathsf{T}})}{1 + \delta(z)}\right)\bar{\mathbf{Q}} \\ &= \mathbb{E}[\mathbf{Q}]\left(\mathbf{F} - \frac{\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}} + \mathbf{C}\mathbf{C}^{\mathsf{T}}}{1 + \delta(z)}\right)\bar{\mathbf{Q}} \end{split}$$

independence between Q_{-i} and x_i in the third line
 to have E[Q] ≃ Q̄, just take F = ¹/_πAA^T+CC^T</sup>/_{1+δ(z)}

_

Remark: on the low-rankness of A

- we consider $\mathbb{E}[\mathbf{X}] = \mathbf{A} \in \mathbb{R}^{q \times n}$ satisfies (i) $\|\mathbf{A}\|_2 \leq C\sqrt{n}$ and (ii) $\|\mathbf{a}_i\| \leq C$ for all $i \in \{1, ..., n\}$, $\mathbf{a}_i \in \mathbb{R}^q$ the *i*-th column of $\mathbf{A} \in \mathbb{R}^{q \times n}$, and some constant C > 0
- (i) the first is just proper scaling, so that $\|\mathbf{A}\|_2$ and $\|\mathbf{CZ}\|_2$ are of the same order
- (ii) the second bound on the Euclidean norm of *all* columns of **A** is more subtle: taking $\|\mathbf{A}\|_2 = C_1 \sqrt{n}$ and $\|\mathbf{a}_i\| = C_{2,i}$ for $C_1, C_{2,i} > 0$,

$$\sum_{i=1}^{n} \|\mathbf{a}_{i}\|^{2} = \sum_{i=1}^{n} C_{2,i}^{2} = \|\mathbf{A}\|_{F}^{2} = \sum_{i=1}^{\operatorname{rank}(\mathbf{A})} \sigma_{i}^{2}(\mathbf{A}) = \Theta(n)$$
(8)

with $\sigma_1(\mathbf{A}) \ge \ldots \ge \sigma_{\operatorname{rank}(\mathbf{A})}(\mathbf{A})$ the (nonzero) singular values of \mathbf{A} arranged in a non-increasing order. Since $\sigma_1^2(\mathbf{A}) = \|\mathbf{A}\|_2^2 = \Theta(n)$, the following two typical scenarios:

- (1) rank(\mathbf{A}) = $\Theta(n)$, a majority (of size $\Theta(n)$) of singular values $\sigma_i(\mathbf{A}) = O(1)$, so that the matrix \mathbf{A} has a fast decay in its singular values; or
- (2) rank(\mathbf{A}) = $\Theta(1)$, a few singular values $\sigma_i(\mathbf{A}) = \Theta(n)$, and \mathbf{A} is exactly of low rank.
- This is in consistent with common ML assumptions, e.g., that the data are drawn from one or a mixture (when in a classification context) of distributions, and the mean A is of low rank.
- ▶ existing RMT results, e.g., on spiked model [BS06; BGN11], mostly focuses on exactly low rank A.
- However, if one further relaxes the assumption $\|\mathbf{a}_i\| = O(1)$ and let **A** have a slow singular decay, the result collapses.

Remark: Stieltjes transform can not capture few important eigenvalues

Lemma ([SB95, Lemma 2.6])

For $\mathbf{A}, \mathbf{M} \in \mathbb{R}^{p \times p}$ symmetric and nonnegative definite, $\mathbf{u} \in \mathbb{R}^{p}$, $\tau > 0$ and z < 0,

$$\left|\operatorname{tr} \mathbf{A}(\mathbf{M} + \tau \mathbf{u} \mathbf{u}^{\mathsf{T}} - z \mathbf{I}_p)^{-1} - \operatorname{tr} \mathbf{A}(\mathbf{M} - z \mathbf{I}_p)^{-1}\right| \leq \frac{\|\mathbf{A}\|_2}{|z|}.$$

• for low-rank **A**, $\delta(z)$ is asymptotically independent on **A**.

$$\delta(z) = \frac{1}{n} \operatorname{tr} \mathbf{C} \mathbf{C}^{\mathsf{T}} \left(\frac{\frac{1}{n} \mathbf{A} \mathbf{A}^{\mathsf{T}} + \mathbf{C} \mathbf{C}^{\mathsf{T}}}{1 + \delta(z)} - z \mathbf{I}_{q} \right)^{-1} = \frac{1}{n} \operatorname{tr} \mathbf{C} \mathbf{C}^{\mathsf{T}} \left(\frac{\mathbf{C} \mathbf{C}^{\mathsf{T}}}{1 + \delta(z)} - z \mathbf{I}_{q} \right)^{-1} + O(n^{-1}).$$
(9)

► same holds for $\frac{1}{q} \operatorname{tr} \bar{\mathbf{Q}}(z) = \frac{1}{q} \operatorname{tr} \left(\frac{\mathbf{C}\mathbf{C}^{\intercal}}{1+\delta(z)} - z\mathbf{I}_q \right)^{-1} + O(n^{-1})$ for n, p, q large

• while the Deterministic Equivalent $\bar{\mathbf{Q}}(z)$ is itself dependent on **A**, its normalized trace is NOT

- this independence of $\delta(z)$ and $\frac{1}{q} \operatorname{tr} \bar{\mathbf{Q}}(z)$ on **A** is also a limitation of the Stieltjes transform approach, does **not** allow for a characterization of a negligible proportion (of order o(n)) of eigenvalues (e.g., due to $\frac{1}{n} \mathbf{A} \mathbf{A}^{\mathsf{T}}$).
- contrasts with Deterministic Equivalents approach: $\mathbf{Q}(z)$ and $\tilde{\mathbf{Q}}(z)$ remain dependent on **A**, and thus can capture the influence of the low rank **A**

Remark (DE-SCM as a corollary of the Linear Master Theorem)

The Deterministic Equivalents for resolvents of SCM, can be derived from our Linear Master Theorem above: Taking q = p, c = p/n, A = 0 and $C = I_p$,

$$\bar{\mathbf{Q}}(z) = \frac{1}{-z + \frac{1}{1 + cm(z)}} \mathbf{I}_p \equiv m(z) \mathbf{I}_p, \tag{10}$$

where we denote $m(z) \equiv \frac{1}{p} \operatorname{tr} \bar{\mathbf{Q}}(z)$ that satisfies the following quadratic equation

$$czm^{2}(z) - (1 - c - z)m(z) + 1 = 0.$$
 (11)

Table: Overview of upcoming results, illustrating the connection between the Linear Master Theorem different random matrix models, and applications.

Α	С	z	RMT results	Related ML applications
0	\mathbf{I}_p	complex	Distribution of eigenvalues (Marčenko-Pastur law)	Previous results on SCM
low rank	\mathbf{I}_p	complex	Extreme eigenvalues (Additive spiked eigenvalues in Theorem 12)	Low rank approximation
low rank	\mathbf{I}_p	complex	Extreme eigenvectors (Info-plus-noise spiked eigenvectors in Theorem 10)	Classification
0	\mathbf{I}_p	real	Resolvent matrix (Deterministic Equivalent in Theorem 3)	Linear least squares

Information-plus-noise spiked model

▶ $\mathbf{C} = \mathbf{I}_p$, random matrix \mathbf{Z} for homogeneous "**noise**", and $\mathbf{A} \in \mathbb{R}^{p \times n}$ informative "**signal**" matrix, low rank

Definition (Information-plus-noise spiked model)

We say a symmetric random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ follows an *information-plus-noise spiked model* if

$$\mathbf{X} = \frac{1}{n} (\mathbf{A} + \mathbf{Z}) (\mathbf{A} + \mathbf{Z})^{\mathsf{T}},$$
(12)

for some *deterministic* matrix $\mathbf{A} \in \mathbb{R}^{p \times n}$ and random matrix $\mathbf{Z} \in \mathbb{R}^{p \times n}$ with $\mathbb{E}[\mathbf{Z}] = \mathbf{0}$.

determine when the "information in A can be "found," and when it is "lost" due to the noise in Z
 for A ≠ 0, expect a few eigenvalues "jumping" out the Marčenko-Pastur support (due to A, refer to as the spikes) and isolate from the main eigenvalue bulk [(1 - √c)², (1 + √c)²]

$$\frac{1}{n}\mathbb{E}[(\mathbf{A}+\mathbf{Z})(\mathbf{A}+\mathbf{Z})^{\mathsf{T}}] = \frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}} + \frac{1}{n}\mathbb{E}[\mathbf{Z}\mathbf{Z}^{\mathsf{T}}] = \frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}} + \mathbf{I}_{p}$$
(13)

► so for $n \gg p$, the information-plus-noise spiked model $\frac{1}{n}(\mathbf{A} + \mathbf{Z})(\mathbf{A} + \mathbf{Z})^{\mathsf{T}}$ is close to $\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}} + \mathbf{I}_p$, the largest *r* eigenvalues are $1 + \lambda_i(\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}})$

I both large, expects the top eigenvalues/eigenvectors of ¹/_n(A + Z)(A + Z)^T still somewhat relates to those of ¹/_nAA^T

Eigenvalue characterization for the information-plus-noise spiked model

- ▶ already know that if $\mathbf{Z} \in \mathbb{R}^{p \times n}$ is a random matrix having i.i.d. entries of zero mean and unit variance, then as $n, p \to \infty$, the limiting eigenvalue distribution of $\frac{1}{n}\mathbf{Z}\mathbf{Z}^{\mathsf{T}}$ is the Marčenko-Pastur law
- ▶ it does not guarantee that no eigenvalue lies outside of the support of the Marčenko-Pastur law (i.e., outside the interval $[(1 \sqrt{c})^2, (1 + \sqrt{c})^2]$)
- e.g., only states that the averaged number of eigenvalues of ¹/_nZZ^T lying within
 [a, b] ⊂ [(1 − √c)², (1 + √c)²] converges to µ([a, b])—more precisely, is of the order p × µ([a, b]) + o(p)
 remains unclear, e.g., whether there could be a number of order o(p) "leaking" from the limiting Marčenko-Pastur support [(1 − √c)², (1 + √c)²], even for n, p sufficiently large

Theorem ("No eigenvalue outside the support" in the absence of information, [BS98])

Let $X_{A=0}$ be the information-plus-noise spiked model with A = 0, and random noise matrix $Z \in \mathbb{R}^{p \times n}$ having independent entries of zero mean, unit variance, and κ -kurtosis, then as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, with probability one, the empirical spectral measure $\mu_{X_{A=0}}$ of $X_{A=0}$, converges weakly to the Marčenko-Pastur law and (i) if $\kappa < \infty$, then

$$\lambda_{\min} \left(\mathbf{X}_{\mathbf{A}=\mathbf{0}} \right) \rightarrow (1 - \sqrt{c})^2, \quad \lambda_{\max} \left(\mathbf{X}_{\mathbf{A}=\mathbf{0}} \right) \rightarrow (1 + \sqrt{c})^2$$
(14)

that is, no eigenvalue of $\mathbf{X}_{\mathbf{A}=\mathbf{0}} = \frac{1}{n} \mathbf{Z} \mathbf{Z}^{\mathsf{T}}$ appears outside the limiting Marčenko-Pastur support; and (ii) if $\kappa = \infty$, then

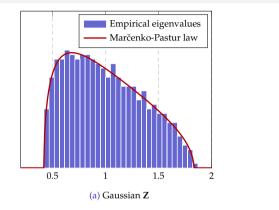
$$\lambda_{\max} \left(\mathbf{X}_{\mathbf{A}=\mathbf{0}} \right) \to \infty. \tag{15}$$

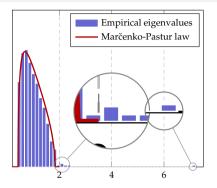
Z. Liao (EIC, HUST)

KIVI 14IVI

July 3rd, 2024

Eigenvalue characterization for the information-plus-noise spiked model





(b) Student-t \mathbf{Z} with degree of freedom three

Figure: Eigenvalue distribution of sample covariance matrix $\frac{1}{n}ZZ^{T}$ for Gaussian (left) and Student-t (right) Z, versus the *same* limiting Marčenko-Pastur law, with p = 512 and n = 8p.

(i) in the Gaussian case (left), no eigenvalue outside the Marčenko-Pastur support; and
 (ii) in the Student-t case (right), a few eigenvalues are observed to "leak" from the Marčenko-Pastur support, even in the noise -only model with A = 0, in line with the "no eigenvalue outside the support" result
 EXAMPLE

Theorem (Information-plus-noise spiked eigenvalues, [BS06])

Let $\mathbf{Z} \in \mathbb{R}^{p \times n}$ be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and let $\mathbf{A} \in \mathbb{R}^{p \times n}$ be a deterministic matrix of rank r with $\|\mathbf{A}\| \leq C\sqrt{n}$ for some constants r, C > 0. Then, for $\mathbf{X} = \mathbf{A} + \mathbf{Z} \in \mathbb{R}^{p \times n}$ and $\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}} = \sum_{i=1}^{r} \ell_{i}\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}}$ the spectral decomposition of $\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}}$, one has, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, that

$$\lambda_i \left(\frac{1}{n} \mathbf{X} \mathbf{X}^\mathsf{T}\right) \to \bar{\lambda}_i = \begin{cases} 1 + c + \ell_i + \frac{c}{\ell_i}, & \ell_i > \sqrt{c} \\ (1 + \sqrt{c})^2 \equiv E_+, & \ell_i \le \sqrt{c}. \end{cases}$$
(16)

almost surely, for $\lambda_i(\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}})$ and ℓ_i the i^{th} largest eigenvalue of the information-plus-noise spiked model $\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}$ in Theorem 7 and of $\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}}$, respectively.

¹Jinho Baik and Jack W. Silverstein. "Eigenvalues of large sample covariance matrices of spiked population models". In: *Journal of Multivariate Analysis* 97.6 (2006), pp. 1382–1408

it follows from Woodbury identity the following Deterministic Equivalent holds

$$\mathbf{Q}(z) \leftrightarrow \bar{\mathbf{Q}}(z), \quad \bar{\mathbf{Q}}(z) = \left(\frac{\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}} + \mathbf{I}_{p}}{1 + \delta(z)} - z\mathbf{I}_{p}\right)^{-1}$$
$$= \frac{1 + \delta(z)}{1 - z - z\delta(z)} \left(\mathbf{I}_{p} - \mathbf{U}\left((1 - z - z\delta(z))\mathbf{L}^{-1} + \mathbf{I}_{r}\right)^{-1}\mathbf{U}^{\mathsf{T}}\right). \tag{17}$$

▶ here, $\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{U}\mathbf{L}\mathbf{U}^{\mathsf{T}} = \sum_{i=1}^{r} \ell_{i}\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}}$ is the spectral decomposition of $\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}}$, for $\{\ell_{i}\}_{i=1}^{r}$ the (non-zero) eigenvalue, $\mathbf{u}_{i} \in \mathbb{R}^{p}$ the corresponding eigenvectors, and $\delta(z)$ the unique valid Stieltjes transform solution to the quadratic equation

$$z\delta^{2}(z) - (1 - c - z)\delta(z) + c = 0.$$
(18)

► To locate a possibly **isolated** eigenvalue of the information-plus-noise random matrix $\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}$ outside the Marčenko-Pastur support, we are looking for $z \in \mathbb{R}$ such that $\delta(z)$ in Equation (18) is well defined (so that it is "**outside**" the limiting bulk) **but** the Deterministic Equivalent $\bar{\mathbf{Q}}(z)$ in Equation (17) is **undefined** (so that z is an eigenvalue of $\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}$).

• check that $\delta(z) = z^{-1} - 1$ is not a solution to Equation (18), so that the denominator of $\bar{\mathbf{Q}}(z)$ is not zero, and the real *z* that we are looking for must satisfy

$$z(1+\delta(z)) = 1+\ell_i.$$
 (19)

Location of spiked eigenvalues: real *z* such that

$$\left| z(1+\delta(z)) = 1 + \ell_i. \right|$$
(20)

• determine the condition under which this equation has a solution: for $z \in \mathbb{R}$ the function $z\delta(z) = \int \frac{z}{t-z} \mu(dt)$ is increasing on its domain of definition and

$$\lim_{z \downarrow (1+\sqrt{c})^2} z(1+\delta(z)) = 1 + \sqrt{c}.$$
(21)

admits a solution (that corresponds to an isolated eigenvalue) if and only if

$$\ell_i \ge \sqrt{c}.\tag{22}$$

Plugging back, this leads to the following explicit solution

$$z = 1 + \ell_i + c + \frac{c}{\ell_i} \ge (1 + \sqrt{c})^2$$
(23)

Phase transition in spiked eigenvalues

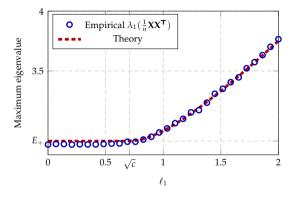


Figure: Phase transition behavior of the largest eigenvalue $\lambda_1(\mathbf{X}\mathbf{X}^{\mathsf{T}}/n)$ of the information-plus-noise model $\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}$, as a function of ℓ_1 , with $\mathbf{X} = \mathbf{A} + \mathbf{Z}$, $\mathbf{A} = \sqrt{\ell_1} \cdot \mathbf{u}_1 \mathbf{1}_n^{\mathsf{T}}$ for $\|\mathbf{u}_1\| = 1$, so that $\lambda_1(\mathbf{A}\mathbf{A}^{\mathsf{T}}/n) = \ell_1$, for p = 512 and $n = 1\,024$.

Phase transition: depending on "signal strength" $\ell_1 = \|\frac{1}{n} \mathbf{A} \mathbf{A}^{\mathsf{T}}\|_2$, (i) if $\ell_1 \leq \sqrt{c}$: largest eigenvalue of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}$ asymptotically the same as $\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\mathsf{T}}$ and independent of ℓ_1 (ii) if $\ell_1 > \sqrt{c}$: larger than that of $\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\mathsf{T}}$, and increases as ℓ_1 becomes large **Z. Liao** (EIC, HUST) **RMT4ML**

22 / 61

Theorem (Information-plus-noise spiked eigenvectors, [Pau07])

In the setting of Theorem 9, assume that the eigenvalues ℓ_i of $\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}}$ are all distinct and satisfy $\ell_1 > \ldots > \ell_r > 0$, and let $\hat{\mathbf{u}}_1, \ldots, \hat{\mathbf{u}}_r$ be the eigenvectors associated with the r largest eigenvalues $\lambda_1(\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}) > \ldots > \lambda_r(\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}})$ of the information-plus-noise model $\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}$. Then, for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^p$ deterministic vectors of unit norm,

$$\mathbf{a}^{\mathsf{T}} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\mathsf{T}} \mathbf{b} \to \eta_{i} = \begin{cases} \frac{1 - c\ell_{i}^{-2}}{1 + c\ell_{i}^{-1}} \cdot \mathbf{a}^{\mathsf{T}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}} \mathbf{b}, & \ell_{i} > \sqrt{c}; \\ 0, & \ell_{i} \le \sqrt{c}. \end{cases}$$
(24)

almost surely as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, for \mathbf{u}_i the eigenvector associated with ℓ_i of $\frac{1}{n}\mathbf{A}\mathbf{A}^\mathsf{T}$. In particular, taking $\mathbf{a} = \mathbf{b} = \mathbf{u}_i$ leads to

$$(\hat{\mathbf{u}}_i^{\mathsf{T}} \mathbf{u}_i)^2 \to \eta_i = \begin{cases} \frac{1-c\ell_i^{-2}}{1+c\ell_i^{-1}}, & \ell_i > \sqrt{c};\\ 0, & \ell_i \le \sqrt{c}. \end{cases}$$
(25)

July 3rd, 2024

²Debashis Paul. "Asymptotics of Sample Eigenstructure for a Large Dimensional Spiked Covariance Model". In: *Statistica Sinica* 17.4 (2007), pp. 1617–1642

consider the *ith* eigenvalue ℓ_i of 1/n AA^T that satisfies ℓ_i > √c above the phase transition threshold
 by Cauchy's integral formula

$$\mathbf{a}^{\mathsf{T}}\hat{\mathbf{u}}_{i}\hat{\mathbf{u}}_{i}^{\mathsf{T}}\mathbf{b} = -\frac{1}{2\pi\iota}\oint_{\Gamma_{\lambda_{i}}}\mathbf{a}^{\mathsf{T}}\left(\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}} - z\mathbf{I}_{p}\right)^{-1}\mathbf{b}\,dz$$
(26)

for Γ_{λ_i} a positively oriented contour enclosing only the *i*th eigenvalue of $\lambda_i(\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}})$ • according to Theorem 9, this converges almost surely to $\bar{\lambda}_i = 1 + c + \ell_i + \frac{c}{\ell_i}$ as $n, p \to \infty$ • by our Linear Master Theorem

$$\mathbf{a}^{\mathsf{T}} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}} - z \mathbf{I}_{p}\right)^{-1} \mathbf{b} \simeq \frac{1 + \delta(z)}{1 - z - z \delta(z)} \mathbf{a}^{\mathsf{T}} \left(\mathbf{I}_{p} - \mathbf{U} \left((1 - z - z \delta(z)) \mathbf{L}^{-1} + \mathbf{I}_{r}\right)^{-1} \mathbf{U}^{\mathsf{T}}\right) \mathbf{b}$$
$$= \frac{1 + \delta(z)}{1 - z - z \delta(z)} \mathbf{a}^{\mathsf{T}} \mathbf{b} - \frac{1 + \delta(z)}{1 - z - z \delta(z)} \sum_{j=1}^{r} \frac{\mathbf{a}^{\mathsf{T}} \mathbf{u}_{j} \mathbf{u}_{j}^{\mathsf{T}} \mathbf{b}}{1 + (1 - z - z \delta(z)) \ell_{j}^{-1}}$$

with $\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{U}\mathbf{L}\mathbf{U}^{\mathsf{T}} = \sum_{i=1}^{r} \ell_{i}\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}}$ the spectral decomposition of $\frac{1}{n}\mathbf{A}\mathbf{A}^{\mathsf{T}}$, and $\delta(z)$ unique solution to $z\delta^{2}(z) - (1-c-z)\delta(z) + c = 0.$ (27)

 $\frac{1+\delta(z)}{1-z-z\delta(z)} \mathbf{a}^{\mathsf{T}}\mathbf{b} \text{ has no pole outside the Marčenko-Pastur support (i.e., the denominator } 1-z-z\delta(z) \neq 0).$

we further deduce that

$$\mathbf{a}^{\mathsf{T}}\hat{\mathbf{u}}_{i}\hat{\mathbf{u}}_{i}^{\mathsf{T}}\mathbf{b} \simeq \frac{1}{2\pi\iota} \oint_{\Gamma_{\lambda_{i}}} \frac{1+\delta(z)}{1-z-z\delta(z)} \frac{\mathbf{a}^{\mathsf{T}}\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}}\mathbf{b}}{1+(1-z-z\delta(z))\ell_{i}^{-1}} dz,$$
(28)

which has a **pole** satisfying $1 + (1 - z - z\delta(z))\ell_i^{-1} = 0$ and corresponds to spike location $z = \bar{\lambda}_i$ above one can evaluate the above expression by residue calculus at $z = \bar{\lambda}_i$ as

$$\begin{split} \mathbf{a}^{\mathsf{T}} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\mathsf{T}} \mathbf{b} &\simeq \mathbf{a}^{\mathsf{T}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}} \mathbf{b} \cdot \lim_{z \to \bar{\lambda}_{i}} \frac{(z - \bar{\lambda}_{i})(1 + \delta(z))}{(1 - z - z\delta(z)) + (1 - z - z\delta(z))^{2} \ell_{i}^{-1}} \\ &= \frac{1 + \delta(\bar{\lambda}_{i})}{1 + \delta(\bar{\lambda}_{i}) + \bar{\lambda}_{i} \delta'(\bar{\lambda}_{i})} \cdot \mathbf{a}^{\mathsf{T}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}} \mathbf{b}, \end{split}$$

by L'Hôpital's rule, where we denote $\delta'(z)$ the derivative of $\delta(z)$ with respect to z, given by

$$\delta'(z) = \frac{\delta(z)(1+\delta(z))}{1-c-z-2z\delta(z)}.$$
(29)

• This is
$$\mathbf{a}^{\mathsf{T}} \hat{\mathbf{u}}_i \hat{\mathbf{u}}_i^{\mathsf{T}} \mathbf{b} \rightarrow \frac{1 - c\ell_i^{-2}}{1 + c\ell_i^{-1}} \cdot \mathbf{a}^{\mathsf{T}} \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}} \mathbf{b}.$$

Z. Liao (EIC, HUST)

July 3rd, 2024

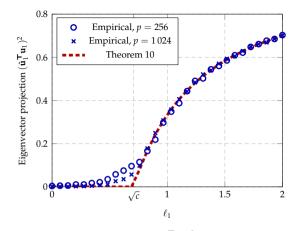


Figure: Phase transition behavior of the eigenvector projection $(\hat{\mathbf{u}}_1^{\mathsf{T}}\mathbf{u}_1)^2$ of the top eigenvector $\hat{\mathbf{u}}_i$ associated with the largest eigenvalue of the information-plus-noise model $\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{T}}$, as a function of ℓ_1 , with $\mathbf{X} = \mathbf{A} + \mathbf{Z}$, $\mathbf{A} = \sqrt{\ell_1}\mathbf{u}_1\mathbf{1}_n^{\mathsf{T}}$ for $\|\mathbf{u}_1\| = 1$, so that $\lambda_1(\mathbf{A}\mathbf{A}^{\mathsf{T}}/n) = \ell_1$, for different values of *p*, *n* with n = 2p.

(i) empirical transitions for p = 256, 1024 not sharp, $\mathbf{u}_1^{\mathsf{T}} \hat{\mathbf{u}}_1 > 0$ even below threshold $\ell_1 \leq \sqrt{c}$; (ii) become **closer** to the limiting theoretical one as the dimensions n, p grow large

Definition (Additive spiked model)

We say a symmetric random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ follows an *additive spiked model* if

$$\mathbf{X} = \mathbf{B} + \frac{1}{n} \mathbf{Z} \mathbf{Z}^{\mathsf{T}},\tag{30}$$

for some *deterministic* symmetric matrix $\mathbf{B} \in \mathbb{R}^{p \times p}$ and random matrix $\mathbf{Z} \in \mathbb{R}^{p \times n}$ with $\mathbb{E}[\mathbf{Z}] = \mathbf{0}$.

- useful (and low rank) information **B** buried by random symmetric noise matrix $\frac{1}{n}ZZ^{T}$
- of interest in low-rank approximation of noise matrices for data science applications of, e.g., recommendation system or LoRA technique in Large Language Models (LLMs) [Hu+21]

³Edward J. Hu et al. "LoRA: Low-Rank Adaptation of Large Language Models". In: International Conference on Learning Representations. Oct. 2021

Eigenvalue characterization for the information-plus-noise spiked model

▶ recall from "no eigenvalue outside the support" that in the absence of the additive term $\mathbf{B} = \mathbf{0}$ and sub-gaussian \mathbf{Z} , no eigenvalue of $\frac{1}{n}\mathbf{Z}\mathbf{Z}^{\mathsf{T}}$ is outside the Marčenko-Pastur support

Theorem (Additive spiked eigenvalues, [BGN11])

Let $\mathbf{Z} \in \mathbb{R}^{p \times n}$ be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and let $\mathbf{B} \in \mathbb{R}^{p \times p}$ be a symmetric deterministic matrix of rank r with $\|\mathbf{B}\|_2 \leq C$ for some constants r, C > 0. Then, for additive spiked model $\mathbf{X} = \mathbf{B} + \frac{1}{n}\mathbf{Z}\mathbf{Z}^{\mathsf{T}} \in \mathbb{R}^{p \times p}$ in Theorem 11 with symmetric $\mathbf{B} = \sum_{i=1}^{r} \ell_i \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}$ the spectral decomposition of \mathbf{B} , one has, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, that

$$\lambda_i \left(\mathbf{X} \right) \to \bar{\lambda}_i = \begin{cases} 1 + \ell_i + \frac{c}{\ell_i - c}, & \ell_i > c + \sqrt{c} \\ (1 + \sqrt{c})^2, & \ell_i \le c + \sqrt{c}. \end{cases}$$
(31)

almost surely, for $\lambda_i(\mathbf{X})$ and ℓ_i the *i*th largest eigenvalue of the additive spiked model \mathbf{X} and of \mathbf{B} , respectively.

⁴Florent Benaych-Georges and Raj Rao Nadakuditi. "The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices". In: *Advances in Mathematics* 227.1 (2011), pp. 494–521

▶ to locate a possibly isolated eigenvalue of **X** outside the (limiting) Marčenko-Pastur support (of the eigenvalues of $\frac{1}{n}ZZ^{\mathsf{T}}$), look for $z \in \mathbb{R}$ solution to the following determinant equation

$$0 = \det\left(\mathbf{B} + \frac{1}{n}\mathbf{Z}\mathbf{Z}^{\mathsf{T}} - z\mathbf{I}_{p}\right) = \det\left(\frac{1}{n}\mathbf{Z}\mathbf{Z}^{\mathsf{T}} - z\mathbf{I}_{p}\right) \cdot \det\left(\mathbf{I}_{p} + \mathbf{Q}(z)\mathbf{U}\mathbf{L}\mathbf{U}^{\mathsf{T}}\right).$$
(32)

▶ Here, $\mathbf{Q}(z) = (\frac{1}{n}\mathbf{Z}\mathbf{Z}^{\mathsf{T}} - z\mathbf{I}_p)^{-1}$ is the resolvent of $\frac{1}{n}\mathbf{Z}\mathbf{Z}^{\mathsf{T}}$, and $\mathbf{B} = \mathbf{U}\mathbf{L}\mathbf{U}^{\mathsf{T}}$ is the spectral decomposition of **B**, with $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_r] \in \mathbb{R}^{p \times r}$ and $\mathbf{L} = \text{diag}\{\ell_i\}_{i=1}^r$

▶ looking for $z \in \mathbb{R}$ outside the main bulk, so that $\mathbf{Q}(z)$ is well defined and det $\mathbf{Q}^{-1}(z) \neq 0$,

$$0 = \det \left(\mathbf{I}_{p} + \mathbf{Q}(z)\mathbf{U}\mathbf{L}\mathbf{U}^{\mathsf{T}} \right) \Leftrightarrow 0 = \det \left(\mathbf{I}_{r} + \mathbf{L}\mathbf{U}^{\mathsf{T}}\mathbf{Q}(z)\mathbf{U} \right),$$
(33)

apply the Linear Master Theorem to approximate

$$\mathbf{U}^{\mathsf{T}}\mathbf{Q}(z)\mathbf{U}\simeq\mathbf{U}^{\mathsf{T}}\bar{\mathbf{Q}}(z)\mathbf{U}=m(z)\mathbf{I}_{r},\tag{34}$$

with m(z) the unique Stieltjes transform solution to the Marčenko-Pastur equation,

$$0 = \det\left(\mathbf{I}_{p} + \mathbf{Q}(z)\mathbf{U}\mathbf{L}\mathbf{U}^{\mathsf{T}}\right) \Leftrightarrow 0 = \det(\mathbf{I}_{r} + m(z)\mathbf{L}) \leftrightarrow \boxed{m(z) = -\ell_{i}^{-1}}.$$
(35)

30 / 61

Spiked eigenvalues $z \in \mathbb{R}$ such that $m(z) = -\ell_i^{-1}$.

• Since $m(z) = \int \frac{\mu(dt)}{t-z}$ is an increasing function of *z* on its domain of definition and

$$\lim_{z \downarrow (1+\sqrt{c})^2} m(z) = -\frac{1}{c + \sqrt{c}},$$
(36)

the equation $m(z) = -\ell_i^{-1}$ admits a solution *if and only if*

$$\ell_i > c + \sqrt{c},$$
(37)

with explicit solution (and therefore the spike location)

$$z = 1 + \ell_i + \frac{c}{\ell_i - c} \ge (1 + \sqrt{c})^2.$$
(38)

Comparison of spiked eigenvalues for information-plus-noise versus additive model

• for information-plus-noise spiked model $\mathbf{X} = \frac{1}{n} (\mathbf{A} + \mathbf{Z}) (\mathbf{A} + \mathbf{Z})^{\mathsf{T}}$:

$$\lambda_i(\mathbf{X}) \to \bar{\lambda}_i = 1 + c + \ell_i + \frac{c}{\ell_i}, \quad \ell_i > \sqrt{c}, \quad \ell_i = \lambda_i \left(\frac{1}{n} \mathbf{A} \mathbf{A}^\mathsf{T}\right); \tag{39}$$

• for additive spiked model $\mathbf{B} + \frac{1}{n} \mathbf{Z} \mathbf{Z}^{\mathsf{T}}$:

$$\lambda_i(\mathbf{X}) \to \bar{\lambda}_i = 1 + \ell_i + \frac{c}{\ell_i - c}, \quad \ell_i > c + \sqrt{c}, \quad \ell_i = \lambda_i(\mathbf{B});$$

$$(40)$$

- ► connected via the "change-of-variable" $\lambda_i(\mathbf{A}\mathbf{A}^{\mathsf{T}}/n) + c \sim \lambda_i(\mathbf{B})$ with c = p/n, in the sense that:
- (i) the phase transition condition is $\lambda_i(\mathbf{AA^T}/n) \ge \sqrt{c}$ for the information-plus-noise model and $\lambda_i(\mathbf{B}) \ge c + \sqrt{c}$ for the additive model; and
- (ii) above phase transition, the isolated eigenvalues of the information-plus-noise model are given by $1 + c + \lambda_i (\mathbf{A}\mathbf{A}^{\mathsf{T}}/n) + c/\lambda_i (\mathbf{A}\mathbf{A}^{\mathsf{T}}/n)$, while those of the additive model are given by $1 + \lambda_i (\mathbf{B}) + c/(\lambda_i (\mathbf{B}) c)$.

Theorem (Additive spiked eigenvectors, [BGN11])

In the setting of Theorem 12, assume that the eigenvalues ℓ_i of **B** are all distinct and satisfy $\ell_1 > \ldots > \ell_r > 0$, and let $\hat{\mathbf{u}}_1, \ldots, \hat{\mathbf{u}}_r$ be the eigenvectors associated with the r largest eigenvalues $\lambda_1(\mathbf{X}) > \ldots > \lambda_r(\mathbf{X})$ of the additive model $\mathbf{X} = \mathbf{B} + \frac{1}{n}\mathbf{Z}\mathbf{Z}^{\mathsf{T}}$. Then, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$,

$$(\hat{\mathbf{u}}_i^{\mathsf{T}} \mathbf{u}_i)^2 \to \eta = \begin{cases} 1 - \frac{c}{(\ell_i - c)^2}, & \ell_i > c + \sqrt{c} \\ 0, & \ell_i \le c + \sqrt{c}. \end{cases}$$
(41)

almost surely, for \mathbf{u}_i the eigenvector associated with the eigenvalue ℓ_i of **B**.

⁵Florent Benaych-Georges and Raj Rao Nadakuditi. "The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices". In: *Advances in Mathematics* 227.1 (2011), pp. 494–521

Follow the same line of arguments as in the proof of information-plus-noise spiked model
 write, for **a**, **b** ∈ ℝ^p of unit norm,

$$\mathbf{a}^{\mathsf{T}}\hat{\mathbf{u}}_{i}\hat{\mathbf{u}}_{i}^{\mathsf{T}}\mathbf{b} = -\frac{1}{2\pi\iota}\oint_{\Gamma_{\lambda_{i}}}\mathbf{a}^{\mathsf{T}}\left(\mathbf{B} + \frac{1}{n}\mathbf{Z}\mathbf{Z}^{\mathsf{T}} - z\mathbf{I}_{p}\right)^{-1}\mathbf{b}\,dz,\tag{42}$$

for Γ_{λ_i} a positively oriented contour enclosing only the i^{th} eigenvalue of $\mathbf{X} = \mathbf{B} + \frac{1}{n}\mathbf{Z}\mathbf{Z}^{\mathsf{T}}$ (that admits the almost sure limit $\bar{\lambda}_i = 1 + \ell_i + \frac{c}{\ell_i - c}$)

▶ let $\mathbf{B} = \mathbf{U}\mathbf{L}\mathbf{U}^{\mathsf{T}} = \sum_{i=1}^{r} \ell_i \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}$ be the spectral decomposition of \mathbf{B} , then

$$\mathbf{a}^{\mathsf{T}} \left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\mathsf{T}} - z \mathbf{I}_{p} + \mathbf{U} \mathbf{L} \mathbf{U}^{\mathsf{T}}\right)^{-1} \mathbf{b} = \mathbf{a}^{\mathsf{T}} \mathbf{Q}(z) \mathbf{b} - \mathbf{a}^{\mathsf{T}} \mathbf{Q}(z) \mathbf{U} (\mathbf{L}^{-1} + \mathbf{U}^{\mathsf{T}} \mathbf{Q}(z) \mathbf{U})^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{Q}(z) \mathbf{b},$$

with $\mathbf{Q}(z) = (\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\mathsf{T}} - z \mathbf{I}_p)^{-1}$ • applying the Deterministic Equivalent result $\mathbf{Q}(z) \leftrightarrow m(z) \mathbf{I}_p$

$$\mathbf{a}^{\mathsf{T}} \left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\mathsf{T}} - z \mathbf{I}_{p} + \mathbf{U} \mathbf{L} \mathbf{U}^{\mathsf{T}}\right)^{-1} \mathbf{b} \simeq m(z) \mathbf{a}^{\mathsf{T}} \mathbf{b} - m^{2}(z) \mathbf{a}^{\mathsf{T}} \mathbf{U} \left(m(z) \mathbf{I}_{r} + \mathbf{L}^{-1}\right)^{-1} \mathbf{U}^{\mathsf{T}} \mathbf{b},$$

with m(z) unique solution to

$$zcm^{2}(z) - (1 - c - z)m(z) + 1 = 0.$$
 (43)

• the first term $m(z)\mathbf{a}^{\mathsf{T}}\mathbf{b}$ has no pole outside the Marčenko-Pastur support

 Z. Liao (EIC, HUST)
 RMT4ML
 July 3rd, 2024
 34 / 61

So

$$\mathbf{a}^{\mathsf{T}}\hat{\mathbf{u}}_{i}\hat{\mathbf{u}}_{i}^{\mathsf{T}}\mathbf{b} \simeq \frac{1}{2\pi\iota} \oint_{\Gamma_{\lambda_{i}}} \frac{m^{2}(z) \cdot \mathbf{a}^{\mathsf{T}}\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}}\mathbf{b}}{m(z) + \ell_{i}^{-1}} dz.$$
(44)

► This has a pole satisfying $m(z) = -\ell_i^{-1}$ and corresponds to spike location at $z = \bar{\lambda}_i = 1 + \ell_i + \frac{c}{\ell_i - c}$ characterized in Theorem 12.

• evaluate this expression by the residue calculus at $z = \bar{\lambda}_i$ as

$$\mathbf{a}^{\mathsf{T}}\hat{\mathbf{u}}_{i}\hat{\mathbf{u}}_{i}^{\mathsf{T}}\mathbf{b} \simeq \mathbf{a}^{\mathsf{T}}\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}}\mathbf{b} \cdot \frac{m^{2}(\bar{\lambda}_{i})}{m'(\bar{\lambda}_{i})} = \mathbf{a}^{\mathsf{T}}\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}}\mathbf{b}\left(1 - \frac{c}{(\ell_{i} - c)^{2}}\right),\tag{45}$$

with m'(z) the derivative of m(z) with respect to *z* satisfying

$$m'(z) = \frac{m^2(z)}{1 - \frac{cm^2(z)}{(1 + cm(z))^2}}.$$
(46)

Plugging in we conclude the proof.

Take-away of this section

- a Master Theorem: Deterministic Equivalent for resolvent for affine-transformed SCM model X = A + CZ
- information-plus-noise spiked model $\mathbf{X} = \frac{1}{n} (\mathbf{A} + \mathbf{Z}) (\mathbf{A} + \mathbf{Z})^{\mathsf{T}}$: phase transition in spiked eigenvalues and eigenvectors
- **additive spiked model B** + $\frac{1}{n}ZZ^{T}$: phase transition in spiked eigenvalues and eigenvectors

ML Problem	Classical Regime	Proportional Regime sharp transition of $\ \mathbf{X} - \hat{\mathbf{X}}\ _2 / \ \mathbf{X}\ _2$ at $\ell = c + \sqrt{c}$ Proposition 1 Item (ii)	
Low rank approximation \hat{X} of info-plus-noise matrix X	smooth decay of $\ \mathbf{X} - \hat{\mathbf{X}}\ _2 / \ \mathbf{X}\ _2 \simeq (1 + \ell)^{-1}$ Proposition 1 Item (i)		
Classification of binary Gaussian mixtures of distance in means $\Delta \mu$	pairwise \simeq spectral approach Proposition 2 Item (i)	pairwise ≪ spectral approach Proposition 2 Item (ii)	
Linear least squares regression risk as $n \uparrow$	bias = 0 and variance $\propto n^{-1}$ Proposition 3 Item (i)	monotonic bias and non-monotonic variance Proposition 3 Item (ii)	

Table: Roadmap of li	inear ML models	considered.
----------------------	-----------------	-------------

Low-rank approximation

Definition (Rank-one matrix recovery)

Taking $\mathbf{B} = \ell \mathbf{u} \mathbf{u}^{\mathsf{T}}$ in Theorem 11 of the additive spiked model, we have

$$\mathbf{X} = \ell \mathbf{u} \mathbf{u}^{\mathsf{T}} + \frac{1}{n} \mathbf{Z} \mathbf{Z}^{\mathsf{T}} \in \mathbb{R}^{p \times p},\tag{47}$$

for $\mathbf{u} \in \mathbb{R}^p$ some deterministic signal of unit norm, i.e., $\|\mathbf{u}\| = 1$, $\ell \ge 0$ the informative "signal strength," and $\mathbf{Z} \in \mathbb{R}^{p \times n}$ a random "noise" matrix having i.i.d. entries of zero mean and unit variance.

- known from Eckart-Young-Mirsky theorem that the "best" low-rank approximation of a given matrix X, measured by any unitarily invariant matrix norm (including the Frobenius and the spectral/operator norm) is given by retaining the top singular/eigenvalue decomposition
- ▶ let $\mathbf{X} = \sum_{i=1}^{p} \lambda_i(\mathbf{X}) \hat{\mathbf{u}}_i \hat{\mathbf{u}}_i^\mathsf{T}$, be the eigenvalue-eigenvector decomposition of a symmetric and nonnegative definite matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, with $\lambda_1(\mathbf{X}) \ge \ldots \ge \lambda_p(\mathbf{X}) \ge 0$ listed in a non-increasing order. Then, for $k \le \operatorname{rank}(\mathbf{X})$, the solution to

$$\hat{\mathbf{X}}_{*} = \underset{\operatorname{rank}(\hat{\mathbf{X}})=k}{\operatorname{arg\,min}} \|\mathbf{X} - \hat{\mathbf{X}}\| = \sum_{i=1}^{k} \lambda_{i}(\mathbf{X}) \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\mathsf{T}},$$
(48)

for any unitarily invariant norm $\|\cdot\|$.

• evaluate the relative spectral norm error $\|\mathbf{X} - \hat{\mathbf{X}}\|_2 / \|\mathbf{X}\|_2$ of rank-one approximation under rank-one matrix recovery model, for input $\mathbf{X} \in \mathbb{R}^p$ drawn from additive spiked model, and $\hat{\mathbf{X}} = \lambda_1(\mathbf{X})\hat{\mathbf{u}}_1\hat{\mathbf{u}}_1^\mathsf{T}$ the optimal rank-one approximation of \mathbf{X} given by its top eigenvalue-eigenvector pair $(\lambda_1(\mathbf{X}), \hat{\mathbf{u}}_1)$.

Proposition (Relative spectral error of low-rank approximation)

Let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be an additive spiked random matrix, for \mathbf{Z} having i.i.d. sub-gaussian entries of zero mean and unit variance, and let $\hat{\mathbf{X}} = \lambda_1(\mathbf{X})\hat{\mathbf{u}}_1\hat{\mathbf{u}}_1^{\mathsf{T}}$ the optimal rank-one approximation of \mathbf{X} given by its top eigenvalue-eigenvector pair $(\lambda_1(\mathbf{X}), \hat{\mathbf{u}}_1)$. Then, one has,

(i) in the classical regime, for p fixed and $n \to \infty$ that

$$\frac{\|\mathbf{X} - \hat{\mathbf{X}}\|_2}{\|\mathbf{X}\|_2} \to f_{n \gg p}(\ell) \equiv \frac{1}{1+\ell'},\tag{49}$$

almost surely; and

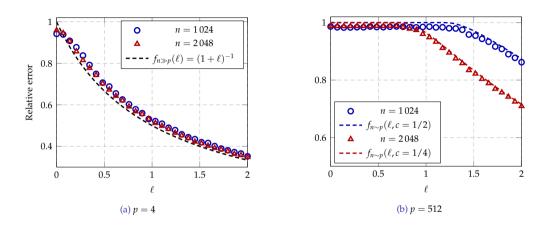
(ii) in the **proportional** regime, as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$ that

$$\frac{\|\mathbf{X} - \hat{\mathbf{X}}\|_2}{\|\mathbf{X}\|_2} \to f_{n \sim p}(\ell, c) \equiv \begin{cases} \frac{(1+\sqrt{c})^2}{1+\ell+\frac{c}{\ell-c}}, & \ell > c + \sqrt{c} \\ 1, & \ell \le c + \sqrt{c} \end{cases}$$

almost surely.

(50)

Numerical results



- **b** sharp phase transition of the relative error as the signal strength ℓ increases
- ▶ for *p* large and fixed, transition thresholds in *l* are different for different values of *n*, and they become smaller as the dimension *n* increases from 1 024 to 2 048

Z. Liao	EIC, HUS	5T

RMT4ML

Proof in the classical regime

evoking the LLN, one has

$$\mathbf{X} \to \mathbb{E}[\mathbf{X}] = \mathbf{I}_p + \ell \mathbf{u} \mathbf{u}^\mathsf{T},\tag{51}$$

almost surely as $n \to \infty$ for *p* fixed

• in the classical $n \gg p$ regime, **X** is close, in both a max and a spectral norm sense, to its expectation $\mathbb{E}[\mathbf{X}] = \mathbf{I}_p + \ell \mathbf{u} \mathbf{u}^\mathsf{T}$, and the eigenvalues $\lambda_i(\mathbf{X})$ of **X**, when arranged in a non-increasing order, are (asymptotically and approximately) given by

$$\|\mathbf{X}\|_{2} \approx \lambda_{1}(\mathbf{X}) = 1 + \ell \ge \lambda_{2}(\mathbf{X}) = \ldots = \lambda_{p}(\mathbf{X}) \approx 1.$$
(52)

• for $n \gg p$ that

$$\frac{\|\mathbf{X} - \hat{\mathbf{X}}\|_2}{\|\mathbf{X}\|_2} \approx \frac{\lambda_2(\mathbb{E}[\mathbf{X}])}{\lambda_1(\mathbb{E}[\mathbf{X}])} = \frac{1}{1+\ell} \equiv f_{n \gg p}(\ell).$$
(53)

The approximation " \approx " can be replaced by an almost sure convergence in the limit of $n \rightarrow \infty$ for *p* fixed

In the proportional $n \sim p$ regime:

- (i) by Marčenko-Pastur law, in the absence of information signal ℓuu^T (i.e., $\ell = 0$), the eigenvalues of X have a Marčenko-Pastur shape;
- (ii) by Theorem 12, in the presence of the rank-one informative signal $\ell \mathbf{u}\mathbf{u}^{\mathsf{T}}$ in Equation (47), that depending the "signal strength" $\|\ell \mathbf{u}\mathbf{u}^{\mathsf{T}}\|_2 = \ell > 0$, the largest eigenvalue of **X** establishes a phase transition behavior and is no longer a smooth function of ℓ (as opposed to its classical counterpart in Item (i) of Proposition 1)

For additive spiked model, one has

$$\|\mathbf{X}\|_{2} \to \bar{\lambda}_{1} = \begin{cases} 1 + \ell + \frac{c}{\ell - c}, & \ell > c + \sqrt{c} \\ (1 + \sqrt{c})^{2}, & \ell \le c + \sqrt{c}. \end{cases}$$
(54)

almost surely as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$. Since $\|\mathbf{X} - \hat{\mathbf{X}}\|_2 = \lambda_2(\mathbf{X})$ and $\lambda_2(\mathbf{Z}\mathbf{Z}^\mathsf{T}/n) \le \lambda_2(\mathbf{X}) \le \lambda_1(\mathbf{Z}\mathbf{Z}^\mathsf{T}/n)$ (Weyl's inequality), one has also

$$\|\mathbf{X} - \hat{\mathbf{X}}\|_2 \to (1 + \sqrt{c})^2,$$
 (55)

almost surely, so that by Slutsky's Theorem, one has $\frac{\|\mathbf{X} - \hat{\mathbf{X}}\|_2}{\|\mathbf{X}\|_2} \to f_{n \sim p}(\ell, c)$.

Definition (Gaussian Mixture Model, GMM)

We say $\mathbf{x} \in \mathbb{R}^p$ follows a two-class (C_1 and C_2) Gaussian Mixture Model if it is drawn from one of the two multivariate Gaussian distribution, that is

 $\mathcal{C}_1: \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_1, \mathbf{I}_p), \quad \mathcal{C}_2: \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_2, \mathbf{I}_p); \quad \Delta \boldsymbol{\mu} \equiv \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2, \quad \|\Delta \boldsymbol{\mu}\| = \Theta(1).$ (56)

Proposition (Fundamental limits of GMM classification: pairwise versus spectral approach)

For Gaussian mixture classification between $\mathcal{N}(\mu_1, \mathbf{I}_p)$ and $\mathcal{N}(\mu_2, \mathbf{I}_p)$, with $\Delta \mu = \mu_1 - \mu_2$, one has, for some constant C > 0 independent of p,

- (i) based on a pairwise (Euclidean) distance comparison approach, one is able to separate binary Gaussian mixtures satisfying $\|\Delta \mu\| \ge Cp^{1/4}$; and
- (ii) based on an eigenspectral approach, one is able to separate a closer distance of $\|\Delta \mu\| \ge C$, which is, up to a constant factor, the minimum distance possible.

Illustration

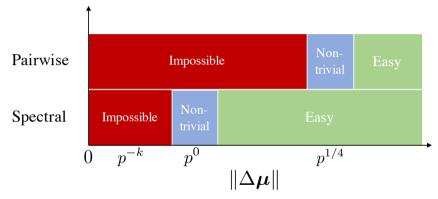


Figure: Illustration of different regimes in separating a binary GMM based on the distance in means $\|\Delta \mu\|$, with k > 0, for both pairwise and spectral approaches.

classification of the binary Gaussian mixture

$$\mathcal{C}_1: \mathcal{N}(\boldsymbol{\mu}_1, \mathbf{I}_p) \quad \text{versus} \quad \mathcal{C}_2: \mathcal{N}(\boldsymbol{\mu}_2, \mathbf{I}_p), \quad \Delta \boldsymbol{\mu} = \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2.$$
(57)

▶ for two distinct data vectors \mathbf{x}_i and \mathbf{x}_j , $i \neq j$, belonging to class C_a and C_b , $a, b \in \{1, 2\}$, we have $\mathbf{x}_i = \boldsymbol{\mu}_a + \mathbf{z}_i \in C_a$ and $\mathbf{x}_j = \boldsymbol{\mu}_b + \mathbf{z}_j \in C_b$, for standard Gaussian $\mathbf{z}_i, \mathbf{z}_j \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$. Then, their (normalized) Euclidean distance is given by

$$\frac{1}{p} \|\mathbf{x}_i - \mathbf{x}_j\|^2 = \frac{1}{p} \|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b + \mathbf{z}_i - \mathbf{z}_j\|^2,$$
(58)

which is also the (i, j) entry of the Euclidean distance matrix $\mathbf{E} \equiv \{ \|\mathbf{x}_i - \mathbf{x}_j\|^2 / p \}_{i,j=1}^n$.

 $\frac{1}{p} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} = \frac{1}{p} \|\mathbf{z}_{i} - \mathbf{z}_{j}\|^{2} + \frac{1}{p} \|\boldsymbol{\mu}_{a} - \boldsymbol{\mu}_{b}\|^{2} + \frac{2}{p} (\boldsymbol{\mu}_{a} - \boldsymbol{\mu}_{b})^{\mathsf{T}} (\mathbf{z}_{i} - \mathbf{z}_{j})$ $= \frac{1}{p} \|\mathbf{z}_{i}\|^{2} + \frac{1}{p} \|\mathbf{z}_{j}\|^{2} - \frac{2}{p} \mathbf{z}_{i}^{\mathsf{T}} \mathbf{z}_{j} + \frac{1}{p} \|\boldsymbol{\mu}_{a} - \boldsymbol{\mu}_{b}\|^{2} + \frac{2}{p} (\boldsymbol{\mu}_{a} - \boldsymbol{\mu}_{b})^{\mathsf{T}} (\mathbf{z}_{i} - \mathbf{z}_{j}).$ (59)

► in expectation, we have $\frac{1}{p}\mathbb{E}\left[\|\mathbf{x}_i - \mathbf{x}_j\|^2\right] = 2 + \frac{1}{p}\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\|^2$, for $i \neq j$, where we used the fact that $\mathbb{E}[\mathbf{z}_i^{\mathsf{T}}\mathbf{z}_i]/p = \operatorname{tr}(\mathbb{E}[\mathbf{z}_i\mathbf{z}_i^{\mathsf{T}}])/p = 1;$ $\operatorname{Var}\left[\frac{1}{p}\|\mathbf{x}_i - \mathbf{x}_j\|^2\right] = \operatorname{Var}\left[\frac{1}{p}(\Delta \mathbf{z} + 2(\boldsymbol{\mu}_a - \boldsymbol{\mu}_b))^{\mathsf{T}}\Delta \mathbf{z}\right]$ $= \frac{4}{p^2}\mathbb{E}\left[(\boldsymbol{\mu}_a - \boldsymbol{\mu}_b)^{\mathsf{T}}\Delta \mathbf{z}\Delta \mathbf{z}^{\mathsf{T}}(\boldsymbol{\mu}_a - \boldsymbol{\mu}_b) + (\boldsymbol{\mu}_a - \boldsymbol{\mu}_b)^{\mathsf{T}}\Delta \mathbf{z}\Delta \mathbf{z}^{\mathsf{T}}\Delta \mathbf{z}\right] + \frac{1}{p^2}\operatorname{Var}[\|\Delta \mathbf{z}\|^2]$ $= \frac{8}{p^2}\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\|^2 + \frac{8}{p} \leq \frac{16}{p}$

for $\Delta \mathbf{z} \equiv \mathbf{z}_i - \mathbf{z}_j \sim \mathcal{N}(\mathbf{0}, 2\mathbf{I}_p)$ and $\|\boldsymbol{\mu}_a - \boldsymbol{\mu}_b\| \leq \sqrt{p}$.

▶ to ensure that the pairwise approach works, one must have that the distances between data points x_i, x_j from the *same* Gaussian (with a = b) are, with non-trivial probability, smaller than those from *different* Gaussian (with $a \neq b$). This requires that

$$2 \pm \sqrt{Cp^{-1}} \le 2 + \|\Delta \mu\|^2 / p \pm \sqrt{Cp^{-1}}$$
(60)

and therefore

$$\|\Delta \mu\| \ge C' p^{1/4},\tag{61}$$

for some C, C' > 0 independent of p.

Z. Liao (EIC, HUST) RMT4ML July 3rd, 2024 4	Z. Liao (EIC, HUST)	July 3rd, 2024 48 / 61
---	---------------------	------------------------

• consider the more challenging setting of $\|\Delta \mu\| = \Theta(1)$ in the proportional regime, that classification remains doable via an eigenspectral approach on Euclidean distance matrix $\mathbf{E} = \{\|\mathbf{x}_i - \mathbf{x}_j\|^2 / p\}_{i,j=1}^n$

▶ for $\|\Delta \mu\| = \Theta(1)$ and *n*, *p* both large, it follows from the expansion in Equation (59) that

$$\frac{1}{p} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} = 2 + \underbrace{\psi_{i} + \psi_{j} - \frac{2}{p} \mathbf{z}_{i}^{\mathsf{T}} \mathbf{z}_{j}}_{O(p^{-1/2})} + \underbrace{\frac{1}{p} \|\boldsymbol{\mu}_{a} - \boldsymbol{\mu}_{b}\|^{2} + \frac{2}{p} (\boldsymbol{\mu}_{a} - \boldsymbol{\mu}_{b})^{\mathsf{T}} (\mathbf{z}_{i} - \mathbf{z}_{j})}_{O(p^{-1})} \tag{62}$$

where we denote $\psi_i \equiv ||\mathbf{z}_i||^2 / p - 1$ with $\mathbb{E}[\psi_i] = 0$ and $\operatorname{Var}[\psi_i] = 2/p$. in matrix form,

$$\mathbf{E} = 2 \cdot \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} + \boldsymbol{\psi} \mathbf{1}_n^{\mathsf{T}} + \mathbf{1}_n \boldsymbol{\psi}^{\mathsf{T}} - \frac{2}{p} \mathbf{Z}^{\mathsf{T}} \mathbf{Z} + \frac{1}{p} \mathbf{J} \begin{bmatrix} 0 & \|\Delta \boldsymbol{\mu}\|^2 \\ \|\Delta \boldsymbol{\mu}\|^2 & 0 \end{bmatrix} \mathbf{J}^{\mathsf{T}} + \boldsymbol{\Theta} - \operatorname{diag}(\cdot)$$
(63)

where we denote $\mathbf{J} = \begin{bmatrix} \mathbf{j}_1 & \mathbf{j}_2 \end{bmatrix} \in \mathbb{R}^{n \times 2}$ for $\mathbf{j}_a \in \mathbb{R}^n$ the label vector of class C_a such that $[\mathbf{j}_a]_i = \delta_{\mathbf{x}_i \in C_a}$, $\boldsymbol{\psi} \in \mathbb{R}^n$ a random vector containing ψ_i as its *i*-th entry, $\boldsymbol{\Theta} \equiv \{2(\boldsymbol{\mu}_a - \boldsymbol{\mu}_b)^{\mathsf{T}}(\mathbf{z}_i - \mathbf{z}_j)/p\}_{i,j=1}^n$, and we use the notation $\mathbf{X} - \operatorname{diag}(\cdot)$ to remove the diagonal of a given matrix \mathbf{X} .

$$\mathbf{E} = 2 \cdot \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} + \boldsymbol{\psi} \mathbf{1}_n^{\mathsf{T}} + \mathbf{1}_n \boldsymbol{\psi}^{\mathsf{T}} - \frac{2}{p} \mathbf{Z}^{\mathsf{T}} \mathbf{Z} + \frac{1}{p} \mathbf{J} \begin{bmatrix} 0 & \|\Delta \boldsymbol{\mu}\|^2 \\ \|\Delta \boldsymbol{\mu}\|^2 & 0 \end{bmatrix} \mathbf{J}^{\mathsf{T}} + \boldsymbol{\Theta} - \operatorname{diag}(\cdot)$$
(64)

► a low-rank non-informative matrix $2 \cdot \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} + \boldsymbol{\psi} \mathbf{1}_n^{\mathsf{T}} + \mathbf{1}_n \boldsymbol{\psi}^{\mathsf{T}}$ of spectral norm of order O(n)

- ▶ a sample covariance-type random matrix $2\mathbf{Z}^{\mathsf{T}}\mathbf{Z}/p$ for $\mathbf{Z} \in \mathbb{R}^{p \times n}$ having i.i.d. standard Gaussian entries, the spectrum of which follows a Marčenko-Pastur shape (and is of order O(1))
- a low-rank informative matrix ¹/_pJ ⁰ ^{||Δμ||²} ^{||Δμ||²</sub> ^{||Δμ||²} ^{||Δμ||²} ^{||Δμ||²</sub> ^{||Δμ||²} ^{||Δμ||²} ^{||Δμ||²</sub> ^{||Δμ||²} ^{||Δμ||²</sub> ^{||Δμ||²} ^{||Δμ||²</sub> ^{||Δμ||²</sub> ^{||Δμ||²} ^{||Δμ||²</sub> ^{||Δμ||²</sub> ^{||Δμ||²</sub> ^{||Δμ||²} ^{||Δμ||²</sub> ^{||Δμ||²</sub> ^{||Δμ||²} ^{||Δμ||²</sub> ^{||Δμ|||Δμ||²</sub> ^{||Δμ||²</sub> ^{||Δμ||²</sub> ^{||Δμ||²</sub> ^{||Δμ||²</sub> [|]}}}}}}}}}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>
- (ii) they can still be "clustered" into two classes with a spectral approach based on the global observation of the large Euclidean distance matrix \mathbf{E} , since the sample covariance-type random matrix and the low-rank informative matrix are both of spectral norm order O(1), and thus comparable for n, p large.

Numerical results

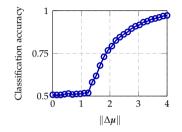


Figure: Phase transition behavior of the classification accuracy using the sign of the second top eigenvector \mathbf{v}_2 of the Euclidean distance matrix \mathbf{E} , as a function of the statistical difference $\|\Delta \mu\|$ in the non-trivial $\|\Delta \mu\| = \Theta(1)$ regime, for p = 512, n = 4p, and $\mathbf{C}_1 = \mathbf{C}_2 = \mathbf{I}_p$. Results averaged over 10 independent runs.

"More refined" sharp phase transition, the second dominant eigenvector \mathbf{v}_2 of **E**:

- (i) for *n*, *p* fixed and large, when $\|\Delta \mu\|$ below threshold, \mathbf{v}_2 does not contain data class information, the clustering/classification based on sign(\mathbf{v}_2) random guess
- (ii) above the phase transition threshold, the eigenvector \mathbf{v}_2 contains data class information \mathbf{j}_a , and the classification accuracy increases as $\|\Delta \mu\|$ and/or n/p becomes large.

Noisy linear model

Consider a given set of data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ of size *n*, composed of the (random) input data $\mathbf{x}_i \in \mathbb{R}^p$ and its corresponding output target $y_i \in \mathbb{R}$, drawn from the following noisy linear model.

Definition (Noisy linear model)

We say a data-target pair $(\mathbf{x}, y) \in \mathbb{R}^p \times \mathbb{R}$ follows a noisy linear model if it satisfies

$$y = \boldsymbol{\beta}_*^{\mathsf{T}} \mathbf{x} + \boldsymbol{\epsilon} \tag{65}$$

for some deterministic (ground-truth) vector $\boldsymbol{\beta}_* \in \mathbb{R}^p$, and random variable $\boldsymbol{\epsilon} \in \mathbb{R}$ independent of $\mathbf{x} \in \mathbb{R}^p$, with $\mathbb{E}[\boldsymbol{\epsilon}] = 0$ and $\operatorname{Var}[\boldsymbol{\epsilon}] = \sigma^2$.

• aim to find a regressor $\beta \in \mathbb{R}^p$ that best describes the linear relation $y_i \approx \beta^T \mathbf{x}_i$, by minimizing the ridge-regularized mean squared error (MSE)

$$L(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i)^2 + \gamma \|\boldsymbol{\beta}\|^2 = \frac{1}{n} \|\mathbf{X}^{\mathsf{T}} \boldsymbol{\beta} - \mathbf{y}\|^2 + \gamma \|\boldsymbol{\beta}\|^2$$
(66)

for $\mathbf{y} = [y_1, \dots, y_n]^\mathsf{T} \in \mathbb{R}^n$, $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$, and some regularization penalty $\gamma \ge 0$

Out-of-sample prediction risk

unique solution given by

$$\boldsymbol{\beta}_{\gamma} = \left(\mathbf{X}\mathbf{X}^{\mathsf{T}} + n\gamma\mathbf{I}_{p} \right)^{-1}\mathbf{X}\mathbf{y} = \mathbf{X}\left(\mathbf{X}^{\mathsf{T}}\mathbf{X} + n\gamma\mathbf{I}_{n} \right)^{-1}\mathbf{y}, \quad \gamma > 0$$
(67)

• in the $\gamma = 0$ setting, the minimum ℓ_2 norm least squares solution

$$\boldsymbol{\beta}_{0} = \left(\mathbf{X}\mathbf{X}^{\mathsf{T}}\right)^{+}\mathbf{X}\mathbf{y} = \mathbf{X}\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{+}\mathbf{y},\tag{68}$$

where $(\mathbf{A})^+$ denotes the Moore–Penrose pseudoinverse, also "ridgeless" least squares solution.

"statistical quality" of β, as a function of dimensions n, p, noise level σ², and the regularization γ
 evaluating the out-of-sample prediction risk (or simply, risk)

$$R_{\mathbf{X}}(\boldsymbol{\beta}) = \mathbb{E}[(\boldsymbol{\beta}^{\mathsf{T}}\hat{\mathbf{x}} - \boldsymbol{\beta}_{*}^{\mathsf{T}}\hat{\mathbf{x}})^{2} \mid \mathbf{X}] = \underbrace{(\mathbb{E}[\boldsymbol{\beta} \mid \mathbf{X}] - \boldsymbol{\beta}_{*})^{\mathsf{T}} \mathbf{C}(\mathbb{E}[\boldsymbol{\beta} \mid \mathbf{X}] - \boldsymbol{\beta}_{*})}_{\equiv B_{\mathbf{X}}(\boldsymbol{\beta})} + \underbrace{\operatorname{tr}\left(\operatorname{Cov}[\boldsymbol{\beta} \mid \mathbf{X}]\mathbf{C}\right)}_{\equiv V_{\mathbf{X}}(\boldsymbol{\beta})}$$
(69)

for an independent test data point. We denote $\mathbb{E}[\mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}] = \mathbf{C}$, and $B_{\mathbf{X}}(\boldsymbol{\beta})$, $V_X(\boldsymbol{\beta})$ the **bias** as well as **variance** of the solution $\boldsymbol{\beta}$.

Risk of linear ridge regression

Proposition (Risk of linear ridge regression)

Let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be a random data matrix having i.i.d. sub-gaussian entries of zero mean and unit variance (so that $\mathbf{C} = \mathbf{I}_p$). Then, under the linear model and for the out-of-sample prediction risk $R_{\mathbf{X}}$ of the linear ridge regressor $\boldsymbol{\beta}_{\gamma}$ given in Equation (67), one has $R_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) + V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma})$ and

(i) in the classical regime, for p fixed and $n \to \infty$ that

$$B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) - \left(\frac{\gamma}{1+\gamma}\right)^2 \|\boldsymbol{\beta}_*\|^2 \to 0, \quad V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) - \frac{p}{n} \frac{\sigma^2}{(1+\gamma)^2} \to 0, \tag{70}$$

almost surely, so that $R_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) - R_{n \gg p}(\gamma) \to 0$, with $R_{n \gg p}(\gamma) \equiv \frac{\gamma^2 \|\boldsymbol{\beta}_*\|^2 + \frac{p}{n} \sigma^2}{(1+\gamma)^2}$;

(ii) in the proportional regime, as $n, p \to \infty$ with $p/n \to c \in (0, 1) \cup (1, \infty)$ that

$$B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) - \gamma^{2} \|\boldsymbol{\beta}_{*}\|^{2} m'(-\gamma) \to 0, \quad V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) - \sigma^{2} c\left(m(-\gamma) - \gamma m'(-\gamma)\right) \to 0, \tag{71}$$

almost surely, with $m'(-\gamma) = \frac{m(-\gamma)(cm(-\gamma)+1)}{2c\gamma m(-\gamma)+1-c+\gamma}$ by differentiating the Marčenko-Pastur equation

$$R_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) - R_{n \sim p}(\gamma) \to 0, \quad \text{with} \quad R_{n \sim p}(\gamma) \equiv \sigma^2 cm(-\gamma) + \gamma m'(-\gamma) \left(\sigma^2 c - \gamma \|\boldsymbol{\beta}_*\|^2\right). \tag{72}$$

Numerical results

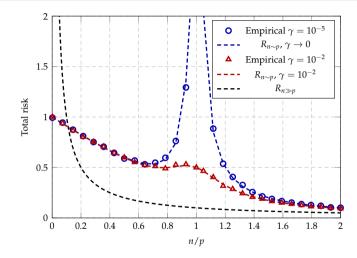


Figure: Out-of-sample risk $R_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) + V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma})$ of the ridge regression solution $\boldsymbol{\beta}_{\gamma}$ defined in Equation (67) as a function of the dimension ratio n/p, for fixed p = 512, $\|\boldsymbol{\beta}_{*}\| = 1$, and different regularization penalty $\gamma = 10^{-2}$ and $\gamma = 10^{-5}$, Gaussian $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{p})$ and $\varepsilon \sim \mathcal{N}(0, \sigma^{2} = 0.1)$.

56 / 61

Remark

for relatively small regularization $\gamma = 10^{-5}$ and as the sample size *n* increases, that the total risk $R_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma})$:

- first decreases and then increases as *n* approaches the input dimension *p* in the under-determined *n* < *p* regime; and
- **(2)** reaches a singular "**peak point**" at n = p with a large risk; and
- **(a)** decreases again monotonically as *n* continues to increase, in the over-determined n > p regime.
- This phenomenon is largely alleviated, yet still visible, for larger regularization of $\gamma = 10^{-2}$, and is referred to as the "double descent" test curve.

• denote $\mathbf{Q}(-\gamma) \equiv (\hat{\mathbf{C}} + \gamma \mathbf{I}_p)^{-1}$ the **resolvent** of the (un-centered) sample covariance matrix $\hat{\mathbf{C}} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{T}}$ and $\mathbf{Q}(\gamma = 0) = \lim_{\gamma \downarrow 0} \mathbf{Q}(-\gamma) = \hat{\mathbf{C}}^+$.

we can write

$$B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = \boldsymbol{\beta}_{*}^{\mathsf{T}} \left(\mathbf{I}_{p} - \mathbf{Q}(-\gamma) \hat{\mathbf{C}} \right) \mathbf{C} \left(\mathbf{I}_{p} - \mathbf{Q}(-\gamma) \hat{\mathbf{C}} \right) \boldsymbol{\beta}_{*}, \quad V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = \frac{\sigma^{2}}{n} \operatorname{tr} \left(\mathbf{Q}(-\gamma) \hat{\mathbf{C}} \mathbf{Q}(-\gamma) \mathbf{C} \right).$$
(73)

• for $\gamma > 0$, one has $\mathbf{I}_p - \mathbf{Q}(-\gamma)\mathbf{\hat{C}} = \mathbf{I}_p - \mathbf{Q}(-\gamma)(\mathbf{\hat{C}} + \gamma \mathbf{I}_p - \gamma \mathbf{I}_p) = \gamma \mathbf{Q}(-\gamma)$, so that

$$B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = \gamma^{2} \boldsymbol{\beta}_{*}^{\mathsf{T}} \mathbf{Q}^{2}(-\gamma) \boldsymbol{\beta}_{*} = -\gamma^{2} \frac{\partial \boldsymbol{\beta}_{*}^{\mathsf{T}} \mathbf{Q}(-\gamma) \boldsymbol{\beta}_{*}}{\partial \gamma},$$
(74)

~

$$V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = \sigma^2 \left(\frac{1}{n} \operatorname{tr} \mathbf{Q}(-\gamma) - \frac{\gamma}{n} \operatorname{tr} \mathbf{Q}^2(-\gamma) \right) = \sigma^2 \left(\frac{1}{n} \operatorname{tr} \mathbf{Q}(-\gamma) + \frac{\gamma}{n} \frac{\partial \operatorname{tr} \mathbf{Q}(-\gamma)}{\partial \gamma} \right),$$
(75)

where we used the fact that $\mathbf{C} = \mathbf{I}_p$ and $\partial \mathbf{Q}(-\gamma)/\partial \gamma = -\mathbf{Q}^2(-\gamma)$.

▶ by LLN, we have, in the classical regime for fixed *p* and as $n \to \infty$ that $\hat{\mathbf{C}} \to \mathbf{C} = \mathbf{I}_p$, and therefore

$$\mathbf{Q}(-\gamma) \to (\mathbf{C} + \gamma \mathbf{I}_p)^{-1} = \frac{\mathbf{I}_p}{1+\gamma}.$$
(76)

we have that

$$B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) \to -\gamma^{2} \frac{\partial}{\partial \gamma} \frac{\|\boldsymbol{\beta}_{*}\|^{2}}{1+\gamma} = \left(\frac{\gamma}{1+\gamma}\right)^{2} \|\boldsymbol{\beta}_{*}\|^{2},$$
$$V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) \to \sigma^{2} \left(\frac{p}{n} \frac{1}{1+\gamma} + \gamma \cdot \frac{p}{n} \frac{\partial}{\partial \gamma} \frac{1}{1+\gamma}\right) = \frac{p}{n} \frac{\sigma^{2}}{(1+\gamma)^{2}}.$$

• in the ridgeless setting with $\gamma = 0$

$$B_{\mathbf{X}}(\boldsymbol{\beta}_0) = 0, \quad V_{\mathbf{X}}(\boldsymbol{\beta}_0) = \frac{\sigma^2}{n} \operatorname{tr} \left(\mathbf{Q}(\gamma = 0) \mathbf{C} \right) \to \sigma^2 \frac{p}{n}, \tag{77}$$

it follows from our Linear Master Theorem that

$$B_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) \to -\gamma^{2} \|\boldsymbol{\beta}_{*}\|^{2} \frac{\partial m(-\gamma)}{\partial \gamma} = \gamma^{2} \|\boldsymbol{\beta}_{*}\|^{2} m'(-\gamma),$$

$$V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) \to \sigma^{2} \cdot \frac{p}{n} \left(m(-\gamma) - \gamma m'(-\gamma)\right),$$

with $m'(z) = -\frac{m(z)(cm(z)+1)}{2czm(z)-1+c+z}$ the derivative of the Stieltjes transform m(z)

▶ in the ridgeless setting as $\gamma \to 0$, one has $m(\gamma) = \frac{1}{1-c} > 0$ only if c < 1 and $\lim_{\gamma \to 0} m(\gamma)$ undefined otherwise, but satisfying $\lim_{\gamma \to 0} \gamma m(\gamma) = \frac{c-1}{c} > 0$, in the under-determined regime with n < p.

$$B_{\mathbf{X}}(\boldsymbol{\beta}_0) \to 0, \quad V_{\mathbf{X}}(\boldsymbol{\beta}_0) \to \sigma^2 \frac{c}{1-c}, \text{ for } c < 1$$
 (78)

$$B_{\mathbf{X}}(\boldsymbol{\beta}_0) - \|\boldsymbol{\beta}_*\|^2 \left(1 - \frac{1}{c}\right) \to 0, \quad V_{\mathbf{X}}(\boldsymbol{\beta}_0) \to \sigma^2 \frac{1}{c - 1}, \text{ for } c > 1$$

$$\tag{79}$$

▶ Note: for c > 1, $V_{\mathbf{X}}(\boldsymbol{\beta}_0)$ more involved, as one cannot take the limit $\gamma \rightarrow 0$. Instead,

$$V_{\mathbf{X}}(\boldsymbol{\beta}_{\gamma}) = \frac{\sigma^2}{n^2} \operatorname{tr}\left(\tilde{\mathbf{Q}}(-\gamma)\mathbf{X}^{\mathsf{T}}\mathbf{C}\mathbf{X}\tilde{\mathbf{Q}}(-\gamma)\right), \quad \tilde{\mathbf{Q}}(-\gamma) \equiv \left(\frac{1}{n}\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma\mathbf{I}_n\right)^{-1}.$$
(80)

which is more convenient to work with in the c > 1 regime.

Z. Liao (EIC, HUST)

Take-away messages of this section

ML Problem	Classical Regime	Proportional Regime
X̂ of info-plus-noise matrix X	smooth decay of $\ \mathbf{X} - \hat{\mathbf{X}}\ _2 / \ \mathbf{X}\ _2 \simeq (1 + \ell)^{-1}$ Proposition 1 Item (i)	sharp transition of $\ \mathbf{X} - \hat{\mathbf{X}}\ _2 / \ \mathbf{X}\ _2$ at $\ell = c + \sqrt{c}$ Proposition 1 Item (ii)
Classification of binary Gaussian mixtures of distance in means $\Delta \mu$	pairwise \simeq spectral approach Proposition 2 Item (i)	pairwise ≪ spectral approach Proposition 2 Item (ii)
Linear least squares regression risk as $n \uparrow$	bias = 0 and variance $\propto n^{-1}$ Proposition 3 Item (i)	monotonic bias and non-monotonic variance Proposition 3 Item (ii)

Table: Roadmap of linear ML models considered.

- Linear Master Theorem provides a unified analysis framework to
- Iow rank approximation: phase transition in spiked eigenvalue
- classification: phase transition in spiked eigenvector
- linear least squares: double descent as phase transition in resolvent

Thank you! Q & A?