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Affine-transformed model, a master theorem, and applications to linear ML

Definition (Affine-transformed model)

For Z € RP*" having i.i.d. sub-gaussian entries of zero mean and unit variance, and let A € R7*" and
C € R7*? be two deterministic matrices, we say X is a affine transformed random matrix model

X = A+ CZ € RI*"., Q)

> this extends SCM, and can be used to derive results for a wide range of linear ML methods
» exhibit different behaviors and intuitions, on classical or proportional regime, analogous to SCMs

Table: Roadmap of linear ML models considered.

ML Problem Classical Regime Proportional Regime
Low rank approximation X smooth decay of sharp transition of
of info-plus motse matrix X IX=Xla/ X2~ (107 [X=X|a/[X2at€ = c+ V&
Proposition 1 Item (i) Proposition 1 Item (ii)
Classification of binary pairwise ~~ spectral approach  pairwise < spectral approach
Gaussian mixtures of distance in means Ay Proposition 2 Item (i) Proposition 2 Item (ii)
Linear least squares bias = 0 and monotonic bias and
reoression risl?as nt variance o 1! non-monotonic variance
& Proposition 3 Item (i) Proposition 3 Item (ii)
TR
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Affine-transformed model

Definition (Affine-transformed model)

For Z € RP*" having ii.d. sub-gaussian entries of zero mean and unit variance, and let A € R7*" and
C € R7*? be two deterministic matrices, we say X is an affine transformed random matrix model

X = A+ CZ € RI*", @)

> matrix version of an affine transformation of a vector: for z € R” having independent entries of zero
mean and unit variance, deterministic a € IR7 and matrix C € R7*?,

x=a+Cz€eRI, ®)
is an affine transformation of z with mean [E[x] = a and covariance Cov[x] = CCT > 0
» due to the “structure” in X, we shall see:
(i) the limiting eigenvalue distribution of %XXT can significantly diverge from the Maréenko-Pastur law

(ii) depending on the dimension ratio c = p/n, a few eigenvalues of %XXT may isolate from the rest of
eigenvalue bulk, for which a phase transition behavior can be observed

> can be assessed via the proposed Deterministic Equivalent for resolvent approach in a unified fashion
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Deterministic Equivalents for resolvent of affine SCM

Theorem (Asymptotic Deterministic Equivalent for resolvent of affine-transformed model)

For random matrix Z € RP*" having i.i.d. sub-gaussian entries of zero mean and unit variance, let X = A + CZ be an
affine-transformed model, for deterministic A € R7*",C € R7*P such that ||C||; < C, ||A]|2 < Cy/n, and ||a;|| < C
for some universal constant C > 0, with a; € RY the it column of A. Then, one has, for z € C not an eigenvalue of
%XXT and as p,q,n — oo at the same pace, the following asymptotic Deterministic Equivalent,

IAAT T -1
a6 Q). Q) = (HAEEE ) "

for the resolvent Q(z) = (LXXT — zI;) ™Y, with §(z) the unique Stieltjes transform solution to the fixed point equation

5(z) = %trCTQ(Z)C. )

> For the co-resolvent Q(z) = (%XTX —zI,,) "1, one has instead

Q(z) ¢ Q(z), Qz) = ‘z(liﬁ' o
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Useful lemmas: recap

Lemma (Resolvent identity)

For invertible matrices A and B, we have A~ —B~! = A"1(B— A)B~ L.

Lemma (Woodbury)
For A € RP*P, U,V € RP*" such that both A and A + UV are invertible, we have
A+Uuvhl=A1l_Alum, +v'a-lu)'via-lL

In particular, forn = 1,ie, UV'T =uv' for U =u € RF and V = v € IR, the above identity specializes to the
following Sherman—Morrison formula,
A luvTA!
1+viA-lu’

A 1lu

Atu’)t=A"1 = e,
(A+uv’) 1+vTA-1lu

and (A +uv') lu

And the matrix A +uv' € RP*? is invertible if and only if 1 + v' A~lu # 0.
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Heuristic derivation via “leave-one-out”

> propose Q = (F — zI,) ! for some deterministic F € IR7*¥ to be determined, and try to “guess” F
> by resolvent identity

E[Q- Q] =E {Q (F— %XXTH Q = E[QJFO — iﬁ]}i [Qx,-xiT] Q

1 & lxix-r _
QFQ — - ottty S
JFQ nzi 1—|—1xTQ X; Q
with x; = a; + Cz; € R7 the i column of X € R7*" for a; € R the i column of A € R7*" and z; € R?
the i column of Z, Q_; = (% Y xjx]T — ZIP)*1 independent of x;,

» in the denominator

—_

1 1 1
gX;erin‘ = —(a;+Cz;)"Q_;(a; + Cz;) ~ Ea,TQ ja; + ZTCTQ iCz;

[ — 3

12

tr(CTQ_;C) ~ %tr(CTQC) = 6(z),

> ignore the cross terms (of the form Za;rQ,iCzi/ n, which, when conditioned on Q_;, is sub-gaussian with
zero mean and variance 4a] Q ,CCTQ _;a;/n* < 4n~2(|a;||? - [[Q_;||3 - [|C[3 = O(n~2))
> approximate the term zTCTQ_Zsz by its expectation (e.g., Hanson-Wright) and use Deterministic

Equivalent relations Q_; <> Q +> Q
TR ity 2, A D/G



Heuristic derivation via “leave-one-out”
> the Deterministic Equivalent relations Q_; <> Q <> Q holds since

Qi ixxTQ_; 1 T 1 T T
H‘;X,—I—szz] = ;]E[inxixj in] = glE [in(aiaj +CC )in] , (7)

for [|a;[| = O(1) and |[C[|2 = O(1).

0=E[Q;,-Q]=

B0~ 0]~ El0F0 - | 3k [oxs]] 0 = Elor0 - - B3
1 [Q,i}(aia-r—i—CCT) -
—E = i
[QIFQ - n ; 1+6(2)

Lyr (aal +cCT)

~E[Q] < 1+6(z) >
1 T T

~ E[Q) (F%>Q

» independence between Q_; and x, in the third line
LAAT+CCT
> to have E[Q] ~ Q, just take F = B b
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Remark: on the low-rankness of A

> we consider E[X] = A € R7*" satisfies (i) ||A]2 < Cy/nand (ii) ||a;|| < Cforalli € {1,...,n}, a; € R the
i-th column of A € R7*", and some constant C > 0
(i) the first is just proper scaling, so that ||A ||, and ||CZ||, are of the same order
(ii) the second bound on the Euclidean norm of all columns of A is more subtle: taking ||A||» = C1v/n and
la;]| = Cy for Cy,Cp; > 0,

n n rank(A)
Ylal* =Y =lAlf= ) of(a)=0@n ®)
i=1 i=1 i=1
with oy (A) > ... > Orank(A) (A) the (nonzero) singular values of A arranged in a non-increasing order.
Since 0?(A) = ||A|5 = ®(n), the following two typical scenarios:
(1) rank(A) = ©(n), a majority (of size ®(n)) of singular values 7;(A) = O(1), so that the matrix A has a fast
decay in its singular values; or
(2) rank(A) = ©(1), a few singular values 0;(A) = @(n), and A is exactly of low rank.
» This is in consistent with common ML assumptions, e.g., that the data are drawn from one or a mixture
(when in a classification context) of distributions, and the mean A is of low rank.
> existing RMT results, e.g., on spiked model [BS06; BGN11], mostly focuses on exactly low rank A.
> However, if one further relaxes the assumption ||a;|| = O(1) and let A have a slow singular decay, the
result collapses.

Z.Liao (EIC, HUST) RMT4ML July 3rd, 2024 11/61
y



Remark: Stieltjes transform can not capture few important eigenvalues

Lemma ([SB95, Lemma 2.6])

For A,M € RF*P symmetric and nonnegative definite, u € RP, T > 0and z < 0,

A
‘trA(M +run’ —zl,) 7 —tr A(M - le)fl‘ = H |z‘||2.
> for low-rank A, 6(z) is asymptotically independent on A.
1 T tAAT +cCT 1 L ( ccT B
Ve (H«S() N =R iy ) o) O

. T -1 B
» same holds for % trQ(z) = % tr (1&%(2) — zlq) +O(n=1) for n,p, q large

> while the Deterministic Equivalent Q(z) is itself dependent on A, its normalized trace is NOT

> this independence of §(z) and % tr Q(z) on A is also a limitation of the Stieltjes transform approach, does
not allow for a characterization of a negligible proportion (of order o(n)) of eigenvalues (e.g., due to
LAAT).

> contrasts with Deterministic Equivalents approach: Q(z) and Q(z) remain dependent on A, and thus can
capture the influence of the low rank A

Z.Liao (EIC, HUST) RMT4ML July 3rd, 2024 12 /61
y



Remarks

Remark (DE-SCM as a corollary of the Linear Master Theorem)

The Deterministic Equivalents for resolvents of SCM, can be derived from our Linear Master Theorem above: Taking
g=pc=p/n, A=0andC=1,,
= 1
z)=———I, =m(2)l,, 10
Q( ) 4+ 1 P ( ) P ( )

1+cm(z)

where we denote m(z) = % tr Q(z) that satisfies the following quadratic equation

czm?(z) — (1 —c—2z)m(z) +1 = 0. (11)
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Table: Overview of upcoming results, illustrating the connection between the Linear Master Theorem different random

matrix models, and applications.

A C z RMT results Related ML applications
0 I, complex Di(sﬁisgéffo?é;i‘?jﬁﬁ avlvl;es Previous results on SCM
lowrank I,  complex (Additive s Elz(tilerr}e eigerlwah_lesTh 12 Low rank approximation
piked eigenvalues in Theorem 12)
lowrank T, complex (Info—plus—noiseE :I:t)riilg:‘(f :iiggjr?\js;:;);ss in Theorem 10) Classification
0 I, real Resolvent matrix Linear least squares

(Deterministic Equivalent in Theorem 3 )
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Information-plus-noise spiked model
» C = I, random matrix Z for homogeneous “noise”, and A € RP*" informative “signal” matrix, low rank
Definition (Information-plus-noise spiked model)
We say a symmetric random matrix X € RP*? follows an information-plus-noise spiked model if
X = %(A+Z)(A+Z)T, (12)

for some deterministic matrix A € RP*" and random matrix Z € RP*" with [E[Z] = 0.

» determine when the “information in A can be “found,” and when it is “lost” due to the noise in Z
> for A # 0, expect a few eigenvalues “jumping” out the Marcenko-Pastur support (due to A, refer to as the
spikes) and isolate from the main eigenvalue bulk [(1 — v/c)?, (1 + v/¢)?]

%]E[(A +7Z)(A+2)T] = %AAT + %IE[ZZT] = %AAT +1, (13)
> so for n > p, the information-plus-noise spiked model 1 (A + Z)(A + Z)T is close to 1AAT +1,,, the
largest r eigenvalues are 1 + A;( %AAT)
» in the case of n ~ p > 1 both large, expects the top eigenvalues/eigenvectors of %(A +2Z)(A+2)7 still

somewhat relates to those of %AAT
TR iy 2, A /G




Eigenvalue characterization for the information-plus-noise spiked model

> already know that if Z € IRP*" is a random matrix having i.i.d. entries of zero mean and unit variance,
then as n,p — oo, the limiting eigenvalue distribution of %ZZT is the Marcenko-Pastur law

» it does not guarantee that no eigenvalue lies outside of the support of the Marcenko-Pastur law (i.e.,
outside the interval [(1 — 1/c)?, (1 + 1/c)?])

> e.g., only states that the averaged number of eigenvalues of %ZZT lying within
[a,b] C [(1—+/c)%, (14 v/c)?] converges to i([a, b])—more precisely, is of the order p x p([a,b]) + o(p)

> remains unclear, e.g., whether there could be a number of order o(p) “leaking” from the limiting
Maréenko-Pastur support [(1 — 1/c)?, (1 4 1/c)?], even for n, p sufficiently large

Theorem (“No eigenvalue outside the support” in the absence of information, [BS98])

Let Xp—g be the information-plus-noise spiked model with A = 0, and random noise matrix Z € RP*" having
independent entries of zero mean, unit variance, and x-kurtosis, then as n,p — oo with p/n — ¢ € (0, 00), with
probability one, the empirical spectral measure px,_, of Xa—o, converges weakly to the Marcenko-Pastur law and

(i) if x < oo, then
Amin (Xa=0) = (1= V€)%, Amax (Xa—o) = (14 V) (14)
that is, no eigenvalue of Xa—g = L ZZT appears outside the limiting Marcenko-Pastur support; and
(ii) if k = oo, then

Amax (Xa=g) — oo. 15)
- T B T G



Eigenvalue characterization for the information-plus-noise spiked model

;
I Empirical eigenvalues I Empirical eigenvalues

Marcenko-Pastur law Marcenko-Pastur law

0.5 1 15 2

(a) Gaussian Z (b) Student-t Z with degree of freedom three

Figure: Eigenvalue distribution of sample covariance matrix %ZZT for Gaussian (left) and Student-t (right) Z, versus the
same limiting Marcenko-Pastur law, with p = 512 and n = 8p.

(i) in the Gaussian case (left), no eigenvalue outside the Marcenko-Pastur support; and
(ii) in the Student-t case (right), a few eigenvalues are observed to “leak” from the Maréenko-Pastur support,

even in the noise -only model with A = 0, in line with the “no eigenvalue outside the support” result
RMT4ML July 3rd, 2024 18 /61



Eigenvalue characterization for the information-plus-noise spiked model

Theorem (Information-plus-noise spiked eigenvalues, [BS06])

Let Z € IRP*" be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and let A € RP*"
be a deterministic matrix of rank r with ||A|| < Cy/n for some constants r,C > 0. Then, for X = A+ Z € RP*" and
%AAT =374 fiuiu;r the spectral decomposition of %AAT, one has, as n,p — o withp/n — ¢ € (0,00), that

1 o7 = 1+C+€i+%, 4> +\/c
() 2= (1+VeR=Ey, 42V =

almost surely, for Ai(%XXT) and (; the i" largest eigenvalue of the information-plus-noise spiked model %XXT in
Theorem 7 and of %AAT, respectively.

inho Baik and Jack W. Silverstein. “Eigenvalues of large sample covariance matrices of spiked population models”. In: Journal of
Multivariate Analysis 97.6 (2006), pp. 1382-1408
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Proof using the Linear Master Theorem

» it follows from Woodbury identity the following Deterministic Equivalent holds

1AAT 11, )_1
wAA L

Q) « Q(2), Q(Z)=< Tl

— 1+ (5(2) -1 -1 T
gl r——e (I,,—U((l—z—z&(z))L —|—Ir) U’ . (17)
> here, %AA-r =ULUT = i, f,-u,-u;r is the spectral decomposition of %AAT, for {£;}}_, the (non-zero)
eigenvalue, u; € R? the corresponding eigenvectors, and d(z) the unique valid Stieltjes transform
solution to the quadratic equation

26%(z) — (1 —c—2)8(z) + ¢ = 0. (18)

> To locate a possibly isolated eigenvalue of the information-plus-noise random matrix %XXT outside the
Maréenko-Pastur support, we are looking for z € R such that §(z) in Equation (18) is well defined (so that
itis “outside” the limiting bulk) but the Deterministic Equivalent Q(z) in Equation (17) is undefined (so
that z is an eigenvalue of %XXT).

» check that §(z) = z~! — 1 is not a solution to Equation (18), so that the denominator of Q(z) is not zero,
and the real z that we are looking for must satisfy

z(14+6(z)) =1+ 4;. (19)
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Proof using the Linear Master Theorem

Location of spiked eigenvalues: real z such that

2(1+6(z) =1+ 4; | (20)

> determine the condition under which this equation has a solution: for z € R the function
z0(z) = [ 5 u(dt) is increasing on its domain of definition and

li 1+46 =1++c 21
lm (s =14 Ve @

» admits a solution (that corresponds to an isolated eigenvalue) if and only if
6> e (22)

> Plugging back, this leads to the following explicit solution

z=1+Lli+c+—>(14+0)?| (23)

<
Ci
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Phase transition in spiked eigenvalues
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Figure: Phase transition behavior of the largest eigenvalue A; (XX /n) of the information-plus-noise model 1XXT, as a
function of ¢1, with X = A+Z, A = /Z1 - ui1]] for ||ug|| = 1, so that A;(AAT /n) = £y, for p = 512 and n = 1024.

Phase transition: depending on “signal strength” {1 = || LAAT||,
(i) if 41 < /c: largest eigenvalue of %XXT asymptotically the same as %ZZT and independent of ¢4

(ii) if £1 > +/c: larger than that of %ZZT, and increases as ¢1 becomes large
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Eigenvector characterization for the information-plus-noise spiked model

Theorem (Information-plus-noise spiked eigenvectors, [Pau07])

In the setting of Theorem 9, assume that the eigenvalues ¢; of %AAT are all distinct and satisfy ¢4 > ... > £, > 0, and
let @y, ..., @, be the eigenvectors associated with the r largest eigenvalues A (1XXT) > ... > A, (1XXT) of the
information-plus-noise model %XXT. Then, for a,b € IR? deterministic vectors of unit norm,
1=c6?  TuuT , :
alo;6/b — 5 = { e T2 Ui b, ti> Ve

0, 4 < Ve

almost surely as n,p — oo with p/n — ¢ € (0,0), for u; the eigenvector associated with ¢; of %AAT. In particular,
taking a = b = u; leads to

(24)

lt? ) :
(0 w)? =y =<4 Tl ti> Ve (25)
0/ Kl S \/E’

v

2Debashis Paul. “Asymptotics of Sample Eigenstructure for a Large Dimensional Spiked Covariance Model”. In: Statistica Sinica 17.4
(2007), pp. 1617-1642
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Proof using the Linear Master Theorem
> consider the i eigenvalue ¢; of %AAT that satisfies ¢; > /c above the phase transition threshold
» by Cauchy’s integral formula
. 1 —1
alaab=—-— jé al (ExxT - zlp) bdz (26)
1",\1,

for I'y, a positively oriented contour enclosing only the it" eigenvalue of )\,-(%XXT)
> according to Theorem 9, this converges almost surely to A; = 1+c+{; + & asn,p — o0
» by our Linear Master Theorem

—1 -1
T (%XXT _ le) b 1103 7 (Ip —U ((1 —z—z8(z))L 1,) UT) b

T 1—z—26(2)
1+5() 1, 1+6@) ¢ aTujulb
- e 3 -
1—z—126(z) 1—2—2(5(2)].:11+(1—z—z§(z))€j
with LAAT = ULUT =y, ;uu] the spectral decomposition of LAAT, and 4(z) unique solution to
26%(z) — (1 —c—2)8(z) + ¢ = 0. (27)
14+4(z)

Tz&(z)aTb has no pole outside the Mar&enko-Pastur support (i.e., the denominator 1 — z — z4(z) # 0).
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Proof using the Linear Master Theorem

» we further deduce that

1 ?{ 1+ 4(z) aTuiu;-rb

TAa AT
a ;i b~ _—
i 271 Jry, 1—2—20(z) 1+ (1 — 2 — z8(2))¢; !

dz, (28)

which has a pole satisfying 1 + (1 —z — Z(S(z))ﬁfl = 0 and corresponds to spike location z = A; above
> one can evaluate the above expression by residue calculus at z = A; as

anTh - lim E-A)0+oE)
z=A (1 =2 —26(z)) + (1 —z—26(2))2¢;
1+6(A;) T T
= _ D aTaub,
Lot + A0 (R T
by L'Hopital’s rule, where we denote &' (z) the derivative of (z) with respect to z, given by

1y~ 0(2)(1+6(2))
5(2)71—c—z—225(z)'

T

alaab~al

(29)

1—cl;2
> Thisis|a'a;64]b — — -a'uub.
1+cf;
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Figure: Phase transition behavior of the eigenvector projection (4, u;
eigenvalue of the information-plus-noise model 1XXT, as a function of £1, with X = A + Z, A = /fyui 1] for |uy|| =1, 0
that A1 (AAT /n) = £y, for different values of p,n with n = 2p.
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)2 of the top eigenvector #; associated with the largest

(i) empirical transitions for p = 256, 1024 not sharp, u-lrﬁl > 0 even below threshold ¢; < +/c;
(ii) become closer to the limiting theoretical one as the dimensions 1, p grow large
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The additive spiked model

Definition (Additive spiked model)
We say a symmetric random matrix X € RP*? follows an additive spiked model if
X=B+ %ZZT, (30)

for some deterministic symmetric matrix B € RP*? and random matrix Z € RP*" with [E[Z] = 0.

» useful (and low rank) information B buried by random symmetric noise matrix %ZZT

> of interest in low-rank approximation of noise matrices for data science applications of, e.g.,
recommendation system or LoRA technique in Large Language Models (LLMs) [Hu+21]

3Edward J. Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In: International Conference on Learning Representations.
Oct. 2021
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Eigenvalue characterization for the information-plus-noise spiked model

» recall from “no eigenvalue outside the support” that in the absence of the additive term B = 0 and
sub-gaussian Z, no eigenvalue of %ZZT is outside the Marcenko-Pastur support

Theorem (Additive spiked eigenvalues, [BGN11])

Let Z € RP*"™ be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and let B € IRP*P
be a symmetric deterministic matrix of rank r with ||B|| < C for some constants r,C > 0. Then, for additive spiked
model X = B + %ZZT € RP*? in Theorem 11 with symmetric B = Y_; {;au] the spectral decomposition of B, one
has, as n,p — oo with p/n — ¢ € (0,0), that

- {1+£i+ﬁ, 4> c+ /e 31)

MOZA=\ 040l <t v

almost surely, for A;(X) and ¢; the i largest eigenvalue of the additive spiked model X and of B, respectively.

4Florent Benaych-Georges and Raj Rao Nadakuditi. “The eigenvalues and eigenvectors of finite, low rank perturbations of large random
matrices”. In: Advances in Mathematics 227.1 (2011), pp. 494-521
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Proof using the Linear Master Theorem

> to locate a possibly isolated eigenvalue of X outside the (limiting) Marc¢enko-Pastur support (of the

eigenvalues of %ZZT), look for z € R solution to the following determinant equation

1 1
0 = det (B +-227 - zlp) — det (EZZT = zlp) -det (1, + Q(z)ULUT ).

(32)

» Here, Q(z) = (%ZZT — zI,) L is the resolvent of %ZZT, and B = ULUT is the spectral decomposition of

B, with U = [uy,...,w,] € RP*" and L = diag{/;}]_,

> looking for z € R outside the main bulk, so that Q(z) is well defined and detQ~1(z) # 0,

0 = det (1,, + Q(z)ULUT> & 0= det (L + LUTQ(z)U) ,

» apply the Linear Master Theorem to approximate

UTQ(z2)U~UTQ(2)U = m(2)1,,

with m(z) the unique Stieltjes transform solution to the Maréenko-Pastur equation,

0 = det (Ip + Q(z)ULUT) & 0 = det(I, + m(z)L) ©

Z.Liao (EIC, HUST) RMT4ML
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Proof using the Linear Master Theorem

Spiked eigenvalues z € R such that | m(z) = —El._l .

> Since m(z) = [ @ is an increasing function of z on its domain of definition and

lim m(z) = — ! ,
2 (14/e)? ct/e
the equation m(z) = —Z;l admits a solution if and only if
4 >c+/e,
with explicit solution (and therefore the spike location)
z:1+€i+£iic > (14 e)%
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Comparison of spiked eigenvalues for information-plus-noise versus additive model

»> for information-plus-noise spiked model X = 1 (A +Z)(A+2Z)T:

MO0 R =Ter b §, > Ve =0 (AAT); 9)
i
> for additive spiked model B + 1ZZT:
- c
)\,-(X)—w\i:l—l—f,-—l—ﬁ, ¢ >c+ e, ;= Ai(B); (40)
—

> connected via the “change-of-variable” A;(AAT /n) + ¢ ~ A;(B) with c = p/n, in the sense that:

(i) the phase transition condition is A;(AAT /n) > \/c for the information-plus-noise model and
Ai(B) > ¢+ +/c for the additive model; and

(ii) above phase transition, the isolated eigenvalues of the information-plus-noise model are given by
1+c+A;(AAT/n) +c/A;(AAT /n), while those of the additive model are given by
1+ A;{(B) +c/ (Ai(B) —c).
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Eigenvector characterization for the information-plus-noise spiked model

Theorem (Additive spiked eigenvectors, [BGN11])
In the setting of Theorem 12, assume that the eigenvalues {; of B are all distinct and satisfy ¢ > ... > £, > 0, and let

a1, ..., 0, be the eigenvectors associated with the r largest eigenvalues A1(X) > ... > A.(X) of the additive model
X=B+ %ZZT. Then, as n,p — o withp/n — c € (0,),

l— € fsctoe
alu)? = (bi—c)?” ™t 41
(ul ul) - { 0, b <c+ \ﬁ (41)

almost surely, for u; the eigenvector associated with the eigenvalue ¢; of B.

SFlorent Benaych-Georges and Raj Rao Nadakuditi. “The eigenvalues and eigenvectors of finite, low rank perturbations of large random
matrices”. In: Advances in Mathematics 227.1 (2011), pp. 494-521
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Proof using the Linear Master Theorem

> follow the same line of arguments as in the proof of information-plus-noise spiked model
» write, for a,b € IR? of unit norm,

-1
aTaalb = _ZLm f a” (B + %ZZT - zl,,) bdz, (42)
Ty

for Ty, a positively oriented contour enclosing only the it" eigenvalue of X = B + %ZZT (that admits the
almost sure limit A; = 1+ ; + 7<)

> letB=ULU' = Yiq Eiuiu;r be the spectral decomposition of B, then
-1
T <%zzT —zl, + ULUT) b=a'Q(z)b—-a'Q(z)U(L'+UTQ(z)U)'UTQ(z)b,

with Q(z) = (1ZZT —z1,)~!
» applying the Deterministic Equivalent result Q(z) <+ m(z)I,

1 -1 -1
T (EzzT — I, + ULUT) b~ m(z)a"b — m?(z)a’U (m(z)lr +L 1) U,

with m(z) unique solution to
zem?(z) — (1 —c—z)m(z) + 1 =0. (43)
> the first term m(z)a' b has no pole outside the Maréenko-Pastur support
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Proof using the Linear Master Theorem

> So 2 Ty
1 m<(z)-a'uu'b
alaab~ — ()—il’dz. (44)
2ty m(z)+ ¢ ;
> This has a pole satisfying m(z) = —¢; ! and corresponds to spike locationatz = A; = 1+ ¢; + puars
characterized in Theorem 12.

> evaluate this expression by the residue calculus atz = A; as

»
Ta AT Ty, m () T ¢
Wb ~ u'b- = wbll-——m0np ], 45
b =un by Tt (g ey )

with m’(z) the derivative of m(z) with respect to z satisfying

m?(z)
cm?(z)
(1+em(z2))?

m'(z) =
1—

(46)

> Plugging in we conclude the proof.
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Take-away of this section

» a Master Theorem: Deterministic Equivalent for resolvent for affine-transformed SCM model X = A + CZ

» information-plus-noise spiked model X = %(A +Z)(A +Z)T: phase transition in spiked eigenvalues
and eigenvectors

> additive spiked model B + %ZZT: phase transition in spiked eigenvalues and eigenvectors

Table: Roadmap of linear ML models considered.

ML Problem Classical Regime Proportional Regime
Low rank approximation X smooth decay of sharp transition of
of info-| lusI:—)EoisematrixX X = Xll2/|IXl2 = (1 + )~ X = Xll2/|[X||2at £ = ¢ + /e
p Proposition 1 Item (i) Proposition 1 Item (ii)
Classification of binary pairwise ~ spectral approach  pairwise < spectral approach
Gaussian mixtures of distance in means Ay Proposition 2 Item (i) Proposition 2 Item (ii)
bias = 0 and monotonic bias and

Linear least squares
regression risk as n 1

variance « n~! non-monotonic variance

Proposition 3 Item (i) Proposition 3 Item (ii)
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Low-rank approximation
Definition (Rank-one matrix recovery)
Taking B = fuu' in Theorem 11 of the additive spiked model, we have
X = fuu" + %ZZT € RP*P, (47)

for u € R? some deterministic signal of unit norm, i.e., |jul| =1, ¢ > 0 the informative “signal strength,” and
Z € RP*" arandom “noise” matrix having i.i.d. entries of zero mean and unit variance.

»> known from Eckart-Young-Mirsky theorem that the “best” low-rank approximation of a given matrix X,
measured by any unitarily invariant matrix norm (including the Frobenius and the spectral /operator
norm) is given by retaining the top singular/eigenvalue decomposition

> letX = Z A;(X)6;4], be the eigenvalue-eigenvector decomposition of a symmetric and nonnegative
definite matrlx X € RP*P, with A1(X) > ... > A,(X) > 0listed in a non-increasing order. Then, for
k < rank(X), the solution to
k
X, = argmin |[X —X|| = Y Ai(X) yagal, (48)
rank(X)=k i=1

for any unitarily invariant norm || - ||.
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> evaluate the relative spectral norm error || X — X||2/||X||2 of rank-one approximation under rank-one

matrix recovery model, for input X € R” drawn from additive spiked model, and X = A1 (X)@1@] the

optimal rank-one approximation of X given by its top eigenvalue-eigenvector pair (A1(X), fi1).
Proposition (Relative spectral error of low-rank approximation)

Let X € IRP*" be an additive spiked random matrix, for Z having i.i.d. sub-gaussian entries of zero mean and unit

variance, and let X = A1(X)a14] the optimal rank-one approximation of X given by its top eigenvalue-eigenvector pair
(A1 (X),@1). Then, one has,

(i) in the classical regime, for p fixed and n — oo that
X =Xl 1
0 b= ——, 49
”XHZ fn>>p( ) 1+7¢ ( )
almost surely; and

(ii) in the proportional regime, as n,p — oo withp/n — ¢ € (0,00) that

— X (1++/c)?
HX XHZ %anp(KIC):{ 1+£+ﬁ’ €>C+\/E

(50)
112 1, £<c++/c

almost surely.
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Numerical results

1@2 i o 1024 1*66&56‘“%&26000%“‘ 50550 |
\ n= S
A, 00,
0 A n=2048 a0 o,
-3
. 08| ‘g\Q S LS SRR | 25 %og,
g “a
5 0.8 - By
3] &,
2 A
3 o o n=1024 ™
=== fup(lc=1/2)
04 06 A n=2048 -
’ === fup(lie=1/4)
T T l
0 0 05 1 15 2
¢ ‘
@p=4 (b)p =512

» sharp phase transition of the relative error as the signal strength ¢ increases
» for p large and fixed, transition thresholds in ¢ are different for different values of 1, and they become
smaller as the dimension # increases from 1024 to 2048
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Proof in the classical regime

> evoking the LLN, one has
X = E[X] =1, + fuu’, (51)
almost surely as n — oo for p fixed
» in the classical n >> p regime, X is close, in both a max and a spectral norm sense, to its expectation

E[X] =1, + fuu”, and the eigenvalues A;(X) of X, when arranged in a non-increasing order, are
(asymptotically and approximately) given by

X2 &AL (X) =14 £> A(X) = ... = Ap(X) = 1. (52)

» for n >> p that
X=Xl _ A2(E[X]) _ 1

HXHZ - /\1(]E[X]) - 1+7¢ E.f”>>l’(€)~ (53)

The approximation “~” can be replaced by an almost sure convergence in the limit of n — oo for p fixed
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Proof in the proportional regime

In the proportional n ~ p regime:

(i) by Maréenko-Pastur law, in the absence of information signal tuu’ (ie., ¢ =0), the eigenvalues of X have
a Marcenko-Pastur shape;

(ii) by Theorem 12, in the presence of the rank-one informative signal fuu' in Equation (47), that depending
the “signal strength” |[fuu” ||, = ¢ > 0, the largest eigenvalue of X establishes a phase transition behavior
and is no longer a smooth function of ¢ (as opposed to its classical counterpart in Item (i) of Proposition 1)

For additive spiked model, one has

[ 1Hl+ 5, E>ct/C
D e S i 64
almost surely as 1, p — co with p/n — ¢ € (0,00). Since || X — X||, = A5(X) and
A (ZZT /n) < Ay(X) < A(ZZT /n) (Weyl’s inequality), one has also
X=Xz = (1+ Ve)?, (55)

almost surely, so that by Slutsky’s Theorem, one has H)ﬁ;i(z”z = fu~p(L,€).
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Gaussian Mixture Model classification

Definition (Gaussian Mixture Model, GMM)

We say x € IR follows a two-class (C; and C;) Gaussian Mixture Model if it is drawn from one of the two
multivariate Gaussian distribution, that is

Crix~ Ny L), Coix~ N L), Ap=p—py,  |Apll=0(1). (56)

Proposition (Fundamental limits of GMM classification: pairwise versus spectral approach)
For Gaussian mixture classification between N (py,1y) and N (uy, 1), with Ap = py — py, one has, for some constant
C > 0 independent of p,

(i) based on a pairwise (Euclidean) distance comparison approach, one is able to separate binary Gaussian mixtures
satisfying || Ap|| > Cp'/4; and

(ii) based on an eigenspectral approach, one is able to separate a closer distance of ||Ap|| > C, which is, up to a constant
factor, the minimum distance possible.

v
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Illustration

Pairwise Impossible

Spectral Impossible

\4

1/4

p

[Ap]

Figure: Illustration of different regimes in separating a binary GMM based on the distance in means ||Ay||, with k > 0, for
both pairwise and spectral approaches.
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Proof in the classical regime

> classification of the binary Gaussian mixture

Ci1:N(p, L) versus  Co: N (uy, 1), (57)

» for two distinct data vectors x; and Xj, i # j, belonging to class C; and Cp, a,b € {1,2}, we have
x; = p, +2; € Cyand Xj =, +2; € Cy, for standard Gaussian z;,Zj ~ N(0, Ip). Then, their (normalized)
Euclidean distance is given by

1 1
plXi =l = pl#a =My +2i = z|?, (58)

which is also the (i, /) entry of the Euclidean distance matrix E = {||x; — ]-||2 /p}

n
ij=1"
> so
1 1 1 2
EHXi — x| = ;;Hli —zj|]* + ];Hﬂu — >+ ;;(Va —m) " (z; —2)
= —|lzi||*+ =|lzi||* — =z, z; + = ||», — +—(p, — z;,—Z;). 59)
p\l il pl\ 1l %% p\lﬂa #yll p(ﬂa my) (zi —2))

Z.Liao (EIC, HUST) RMT4ML July 3rd, 2024 47 /61
y



Proof in the classical regime

> in expectation, we have %]E [Hx,- — ]'||2} =2+ %Hyu — m||%, for i # j, where we used the fact that
Elz]z]/p = tr(Elzz[])/p =1;
1 1
Var | =] = Var |1 (82-+20, )2
4 1
= pﬁIE [(I”a - ‘ub)TAZAzT(”a - ”b) + (ﬂa - ”b)TAZAZTAZ] + ;? Var[HAsz]
8 8 16
= = ppl D < 2
pz o=y p p
for Az = z; — z; ~ N'(0,21) and ||, — || < /P
> to ensure that the pairwise approach works, one must have that the distances between data points x;, Xj
from the same Gaussian (with a = b) are, with non-trivial probability, smaller than those from different
Gaussian (with a # b). This requires that
244 /Cp7t <2+ |l ap|?/p £/ Cp! (60)

and therefore

|Apl| > C'p*/4, (61)

for some C,C’ > 0 independent of p.
T ity 2, A Y



Proof in the proportional regime

> consider the more challenging setting of ||Au|| = ©(1) in the proportional regime, that classification
remains doable via an eigenspectral approach on Euclidean distance matrix E = {||x; — ]-||2 / p}?]‘:l

> for ||Aul| = ©(1) and n, p both large, it follows from the expansion in Equation (59) that

2
*sz Xl =2+ + ¢ — v z} Hlla mll* + ;;(lla —m) " (zi — z)) (62)
O(p=1/?) Oo(p~1)

where we denote ¥; = |z;|?/p — 1 with E[y;] = 0 and Var[¢;] = 2/p.

» in matrix form,

0

2
E=2-1,1) + 917 + 1,97 - =277 + J{
S g2

HA”” }] + O — diag(+) (63)

where we denote J = [j1  j2] € R"2 for j, € R" the label vector of class C, such that [j,]; = dx.cc,,
¢ € R" a random vector containing ¢; as its i-th entry, ® = {2(u, — p,) " (z; — z;) /p}?].zl, and we use the
notation X — diag(-) to remove the diagonal of a given matrix X.
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Proof in the proportional regime

0 apl?

2 1
E=2 1,17 + 91} +1 T—szz+—J{
b L a0

} JT +© — diag(") (64)
> alow-rank non-informative matrix 2 - 1,1} + ¢1,) + 1,9 T of spectral norm of order O(n)
> asample covariance-type random matrix 2Z"Z/p for Z € RP*" having i.i.d. standard Gaussian entries,
the spectrum of which follows a Marcenko-Pastur shape (and is of order O(1))
0 1ap?
[ap] 0
of interest for classification) and the statistical difference (in means) Ay, also of spectral norm order O(1)

» alow-rank informative matrix %] { } JT + © that depends on the label vector ji,j, € R" (so

(i) while in the critical regime || Au|| = ©(1), data vectors x;, x; are pairwise indistinguishable based on their
Euclidean distance, due to the dominant order of the random z;rz]- /p = O(p~1/?) over the informative
term ||p, — p,||2/p = ©(p~!) in Equation (62);

(ii) they can still be “clustered” into two classes with a spectral approach based on the global observation of

the large Euclidean distance matrix E, since the sample covariance-type random matrix and the low-rank
informative matrix are both of spectral norm order O(1), and thus comparable for n, p large.
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Numerical results

0.75

Classification accuracy

l[Ap]

Figure: Phase transition behavior of the classification accuracy using the sign of the second top eigenvector v, of the
Euclidean distance matrix E, as a function of the statistical difference || Ag|| in the non-trivial ||Au|| = @(1) regime, for
p =512,n =4p,and C; = C; = I,,. Results averaged over 10 independent runs.

“More refined” sharp phase transition, the second dominant eigenvector v; of E:

(i) for n,p fixed and large, when || Ap|| below threshold, v, does not contain data class information, the
clustering/ classification based on sign(v,) random guess

(ii) above the phase transition threshold, the eigenvector v, contains data class information j,, and the
classification accuracy increases as || Apu|| and/or n/p becomes large.
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Noisy linear model

Consider a given set of data {(x;, y;) }!"_; of size n, composed of the (random) input data x; € IR” and its
corresponding output target y; € IR, drawn from the following noisy linear model.

Definition (Noisy linear model)
We say a data-target pair (x,iy) € RP x R follows a noisy linear model if it satisfies

y= ﬁ;rx +e€ (65)

for some deterministic (ground-truth) vector B, € R¥, and random variable € € R independent of x € R?,
with E[e] = 0 and Var[e] = 2.

> aim to find a regressor B € IR” that best describes the linear relation y; &~ ' x;, by minimizing the
ridge-regularized mean squared error (MSE)

=

LB) =,

1
o 2 i BTx)? +71Bl* = ;HXTﬁ —yI* +~1Bl? (66)

Il
—_

fory = [y,... ,yn]T €R", X =[xq,...,X] € RP*", and some regularization penalty v > 0
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Out-of-sample prediction risk

> unique solution given by
-1 -1
B, = (XXT+m1,) Xy =X (XX+n1L) 'y, 7>0 67)
» in the 7 = 0 setting, the minimum ¢, norm least squares solution
+ +
Bo=(XT) Xy =x(X"X) 'y, (68)
where (A)T denotes the Moore-Penrose pseudoinverse, also “ridgeless” least squares solution.
> “statistical quality” of B, as a function of dimensions 7, p, noise level 02, and the regularization y
> evaluating the out-of-sample prediction risk (or simply, risk)
Rx(B) = E[(B"x — B/%)* | X] = (E[B | X] -~ B,)TC(E[B | X] — B,) +tr (Cov[B | X]C) (69)
=Bx(B) =Vx(B)

for an independent test data point. We denote E[x;x]] = C, and Bx(B), Vx(B) the bias as well as
variance of the solution .
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Risk of linear ridge regression

Proposition (Risk of linear ridge regression)

Let X € IRP*" be a random data matrix having i.i.d. sub-gaussian entries of zero mean and unit variance (so that
C =1p). Then, under the linear model and for the out-of-sample prediction risk Rx of the linear ridge regressor B., given
in Equation (67), one has Rx(B.,) = Bx(B.,) + Vx(B,,) and

(i) in the classical regime, for p fixed and n — oo that

7\ 2 p_o’
Bx(B,) — (m) B =0, Vx(B,)— 7 {A+7)2 —0, (70)
; _ PlBIP+EA2,
almost surely, so that Rx(B.,) — Rusp(7) = 0, with Rysp(7) = AT
(ii) in the proportional regime, as n,p — oo withp/n — ¢ € (0,1) U (1, 00) that
Bx(B,) = VIB.IPm (=7) = 0, Vx(B,) — o*c (m(=y) — ym'(=7)) =0, (71)
almost surely, with m'(—y) = % by differentiating the Marcenko-Pastur equation
Rx(B,) = Runp(7) = 0, with  Runp(7) = o2em(—7) +ym' (=) (Pe=[B.I2) . @2
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Numerical results
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Figure: Out-of-sample risk Rx(B,,) = Bx(B,,) + Vx(B,) of the ridge regression solution B, defined in Equation (67) as a
function of the dimension ratio n/p, for fixed p = 512, || B, || = 1, and different regularization penalty v = 1072 and

i =105, Gaussian x ~ N Oilii and € ~ N (0,02 = 0.1).
RMT4ML
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Remark

for relatively small regularization v = 10> and as the sample size 1 increases, that the total risk Ry ( B,):
@ first decreases and then increases as 1 approaches the input dimension p in the under-determined n < p
regime; and
@ reaches a singular “peak point” at n = p with a large risk; and
@ decreases again monotonically as n continues to increase, in the over-determined n > p regime.

@ This phenomenon is largely alleviated, yet still visible, for larger regularization of y = 1072, and is
referred to as the “double descent” test curve.
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Proof in the classical regime

> denote Q(—7) = (C+ 71,) ! the resolvent of the (un-centered) sample covariance matrix C = %XXT
and Q(y = 0) = lim, o Q(—7) = C*.
> we can write
2

Bx(B,) = BT (1, - Q(-1O) C (1, ~Q(-NO) B, Vx(B,) = T & (Q(-1)€Q(-7)C).  (73)
> fory > 0,onehasI, — Q(—7)C =T, — Q(—7)(C+ I, — 71,) = ¥Q(—7), so that

9BLQ(—1)B.
—P R R, (74)

Vx(B,) = o (%trQ(fv) - %ter(—Iy)) _ 2 (% rQ(—7) +

Bx(B,) = 1Bl Q*(—7)B. =

7y atrQ(—)
n o7y ’

where we used the fact that C = I, and 9Q(—7) /9y = —Q?(—7).
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Proof in the classical regime

» by LLN, we have, in the classical regime for fixed p and as n — oo that cCC= I, and therefore

I
- CH+qL,) 1= 2. 76
Q(—7) = (C+11) T+ (76)
» we have that
3 I8, 7\’
29 * _ 2
2(p_1 po 1 \_p
Vx(By) >0 (n1+7+7 noyl+y) n(l+7)?
» in the ridgeless setting with 7 = 0
o 2P
Bx(By) =0, VX(lgo):gtr(Q(’Y:O)C)%‘T n (77)
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Proof in the proportional regime

» it follows from our Linear Master Theorem that

Bx(B,) = —22018, 1220 — 2y o (),

o7

Vx(By) = B () =l (<)),

with m/(z) = — % the derivative of the Stlelt]es transform m(z)
> in the ridgeless setting as y — 0, one has m( ) — = > Oonly if ¢ < 1and lim,_,g m(7) undefined

otherwise, but satisfying lim,,_,g ym(7y) = > 0, in the under-determined regime with n < p.

Bx(B,) = 0, Vx(ﬁo) — ot forc<1 (78)

2 1 2 1 1
Bx(By) — Bl lfz =0, Vx(By) =0 ,forc>1 (79)

> Note: for c > 1, Vx(B,) more involved, as one cannot take the hmlt v — 0. Instead,

2 -1
o . - ~ 1
Vx(B,) = = tr (Q(-1XTCXQ(-7)), Q=) = (;xTX + m) : (80)
which is more convenient to work with in the ¢ > 1 regime.
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Take-away messages of this section

Table: Roadmap of linear ML models considered.

ML Problem Classical Regime Proportional Regime
R smooth decay of sharp transition of
info-plus-noi ; IX = Xll2/[IX]l2 = (1+ 6 X =X]2/|X[2at € = c+ /e
of info-plus-noise matrix X Proposition 1 Item (i) Proposition 1 Item (ii)
Classification of binary pairwise ~ spectral approach  pairwise < spectral approach
Gaussian mixtures of distance in means Au Proposition 2 Item (i) Proposition 2 Item (ii)
. bias = 0 and monotonic bias and
Linear least squares . 1 . .
variance « 1 non-monotonic variance

regression risk asn Proposition 3 Item (i) Proposition 3 Item (ii)

» Linear Master Theorem provides a unified analysis framework to
» low rank approximation: phase transition in spiked eigenvalue

> classification: phase transition in spiked eigenvector

> linear least squares: double descent as phase transition in resolvent

Thank you! Q & A?
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