Random Matrix Theory for Modern Machine Learning: New Intuitions, Improved Methods, and Beyond: Part 4 Short Course @ Institut de Mathématiques de Toulouse, France

Zhenyu Liao

School of Electronic Information and Communications Huazhong University of Science and Technology

July 4th, 2024

Outline

- Linearization of Nonlinear Models
 - Taylor expansion
 - Orthogonal polynomial

2 Nonlinear ML models via linearization: Kernel Methods in the Proportional Regime

- LLN-type distance-based kernel via Taylor expansion
- CLT-type inner-product kernel via orthogonal polynomial

Example (Nonlinear objects in two scaling regimes)

Let $\mathbf{x} \in \mathbb{R}^n$ be a random vector so that $\sqrt{n}\mathbf{x}$ has i.i.d. standard Gaussian entries with zero mean and unit variance, and $\mathbf{y} \in \mathbb{R}^n$ be a deterministic vector of unit norm $\|\mathbf{y}\| = 1$; and consider the following two families of nonlinear objects of interest with a nonlinear function f acting on different regimes:

- (i) **LLN regime**: $f(||\mathbf{x}||^2)$ and $f(\mathbf{x}^{\mathsf{T}}\mathbf{y})$; and
- (ii) **CLT regime**: $f(\sqrt{n}(||\mathbf{x}||^2 1))$ and $f(\sqrt{n} \cdot \mathbf{x}^{\mathsf{T}}\mathbf{y})$.

The two regimes follow from the two well-known convergence results:

- (i) law of large numbers (LLN): $\|\mathbf{x}\|^2 \to \mathbb{E}[\mathbf{x}^\mathsf{T}\mathbf{x}] = 1$ and $\mathbf{x}^\mathsf{T}\mathbf{y} \to \mathbb{E}[\mathbf{x}^\mathsf{T}\mathbf{y}] = 0$ almost surely as $n \to \infty$; and
- (ii) central limit theorem (CLT): $\sqrt{n}(||\mathbf{x}||^2 1) \rightarrow \mathcal{N}(0, 2)$ and $\sqrt{n} \cdot \mathbf{x}^{\mathsf{T}} \mathbf{y} \rightarrow \mathcal{N}(0, 1)$ in law as $n \rightarrow \infty$.

$$|\mathbf{x}||^2 \simeq 1 + \mathcal{N}(0,2)/\sqrt{n}, \quad \mathbf{x}^{\mathsf{T}}\mathbf{y} \simeq 0 + \mathcal{N}(0,1)/\sqrt{n},$$
 (1)

for *n* large.

Numerical illustration

Figure: Illustrations of random variables in LLN (left) and CLT (right) regime, with n = 500.

Two different linearization techniques

LLN regime $f(||\mathbf{x}||^2)$ and $f(\mathbf{x}^{\mathsf{T}}\mathbf{y})$ versus **CLT regime** $f(\sqrt{n}(||\mathbf{x}||^2 - 1))$ and $f(\sqrt{n} \cdot \mathbf{x}^{\mathsf{T}}\mathbf{y})$

two "scalings" are different:

- ► for objects in the LLN regime, the nonlinear function *f* applies on a close-to-deterministic quantity, in the sense that $\|\mathbf{x}\|^2 = 1 + O(n^{-1/2})$ and $\mathbf{x}^T \mathbf{y} = 0 + O(n^{-1/2})$ with high probability for *n* large, due to the dominant LLN behavior; and
- for objects in the CLT regime, the nonlinear *f* applies on a normally distributed random variable (as a consequence of the CLT) that is not close to a deterministic quantity
- two different linearization approaches—via Taylor expansion and via orthogonal polynomial

Scaling law	LLN type	CLT type	
Object of interest	$f(x)$ for (almost) deterministic $x = \tau + o(1)$	$f(x)$ for random x , e.g., $x \sim \mathcal{N}(0, 1)$	
Linearization technique	Taylor expansion	Orthogonal polynomial	
Smoothness of f	Locally smooth f	Possibly non-smooth f	

Table: Comparison between two different linearization approaches.

6/40

Taylor expansion

► Taylor expansion: local linearization of a smooth nonlinear function

Theorem (Taylor's theorem)

Let $f : \mathbb{R} \to \mathbb{R}$ *be a function that is at least k times continuously differentiable in a neighborhood of a given point* $\tau \in \mathbb{R}$ *. Then, there exists a function* $h_k : \mathbb{R} \to \mathbb{R}$ *such that*

$$f(x) = f(\tau) + f'(x-\tau) + \frac{f''(\tau)}{2}(x-\tau)^2 + \dots + \frac{f^{(k)}(\tau)}{k!}(x-\tau)^k + h_k(x)(x-\tau)^k,$$
(2)

with $\lim_{x\to\tau} h_k(x) = 0$ so that $h_k(x)(x-\tau)^k = o(|x-\tau|^k)$ as $x \to \tau$.

Working assumptions:

- (i) the nonlinear function f under study should be smooth, at least in the neighborhood of the point τ of interest, so that the derivatives $f'(\tau), f''(\tau), \ldots$ make sense; and
- (ii) the variable of interest x is sufficiently close to (or, concentrate around when being random) the point τ so that the higher orders terms are **neglectable**

Taylor expansion in the LLN regime

Proposition (Taylor expansion in the LLN regime)

For random variable $x = \|\mathbf{x}\|^2$ with $\sqrt{n}\mathbf{x} \in \mathbb{R}^n$ having i.i.d. standard Gaussian entries, in the LLN regime as in Item (i) of Theorem 1, it follows from LLN and CLT that $\|\mathbf{x}\|^2 - 1 = O(n^{-1/2})$ with high probability for n large, so that one can apply Theorem 2 to write

$$f(\|\mathbf{x}\|^2) = f(1) + f'(1) \underbrace{(\|\mathbf{x}\|^2 - 1)}_{O(n^{-1/2})} + \frac{1}{2} f''(1) \underbrace{(\|\mathbf{x}\|^2 - 1)^2}_{O(n^{-1})} + O(n^{-3/2}), \tag{3}$$

with high probability; and similarly

$$f(\mathbf{x}^{\mathsf{T}}\mathbf{y}) = f(0) + f'(0) \underbrace{\mathbf{x}^{\mathsf{T}}\mathbf{y}}_{O(n^{-1/2})} + \frac{1}{2}f''(0) \underbrace{(\mathbf{x}^{\mathsf{T}}\mathbf{y})^{2}}_{O(n^{-1})} + O(n^{-3/2}),$$
(4)

again as a consequence of $\sqrt{n} \cdot \mathbf{x}^{\mathsf{T}} \mathbf{y} \xrightarrow{d} \mathcal{N}(0,1)$ in distribution as $n \to \infty$, where the orders $O(n^{-\ell})$ hold with high probability for n large.

Smoothness assumption

- smoothness assumption in Taylor theorem can be relaxed
- ▶ for a non-smooth nonlinear *f*, can evaluate *expected* behavior $\mathbb{E}[f(x)]$ of f(x), for random *x*
- while the function *f* may not be differentiable everywhere (and in particular, in the neighborhood $x = \tau$ of interest), it can still have almost everywhere **weak derivative** *f*' such that

$$\int f'(t)\mu(dt) = \mathbb{E}[f'(x)] < \infty,$$
(5)

exists, for random variable *x* having law μ .

concrete example in the case of standard Gaussian x, known in the literature as the Stein's lemma.

Lemma (Stein's lemma)

For standard Gaussian random variable $x \sim \mathcal{N}(0, 1)$, we have that

$$\mathbb{E}[f'(x)] = \mathbb{E}[xf(x)],$$

as long as the right-hand-side term is finite.

(6)

- "closeness" or "concentration" assumption, this is a more intrinsic limitation of the Taylor expansion approach
- signal assess only the local behavior of the nonlinear function f(x) around some $x = \tau$
- otherwise, higher-orders terms cannot be ignored (at least with high probability)
- ▶ in the CLT regime $f(\sqrt{n}(||\mathbf{x}||^2 1))$ and $f(\sqrt{n} \cdot \mathbf{x}^T \mathbf{y})$, *f* is applied on (asymptotically) Gaussian random variables that, in particular, do not "concentrate" around any deterministic quantity

we discuss next alternative **orthogonal polynomial** approach that allows one to characterize the behavior of the nonlinear function $\mathbb{E}[f(x)]$ of random variable *x* that, in particular, does not strongly concentrate around a point of interest τ , as in the case of CLT regime

Motivation for orthogonal polynomial

- ▶ nonlinear function *f* applied on a Gaussian random variable $x \sim \mathcal{N}(0, 1)$ cannot be linearized using Taylor expansion technique
- orthogonal polynomial approach can be used to "linearize" $\mathbb{E}[f(x)]$ for random and non-concentrated x, say $x \sim \mathcal{N}(0, 1)$
- a functional perspective: For a random variable *x* of some law μ , the expectation $\mathbb{E}[f(x)]$ of the nonlinear transformation f(x) for some nonlinear function *f* writes

$$\mathbb{E}[f(x)] = \int f(t)\mu(dt),$$
(7)

for some *f* living in some space of functions (or, some infinite-dimensional functional space)

Euclidean space: canonical vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$ form an orthonormal basis of \mathbb{R}^n , so that any vector \mathbf{x} living in the Euclidean space \mathbb{R}^n can be decomposed as

$$\mathbf{x} = \sum_{i=1}^{n} (\mathbf{x}^{\mathsf{T}} \mathbf{e}_i) \mathbf{e}_i = \sum_{i=1}^{n} x_i \mathbf{e}_i,$$
(8)

with the inner product $\mathbf{x}^{\mathsf{T}} \mathbf{e}_i = x_i$ the *i*th coordinate of \mathbf{x}

a decomposition of *f* living in some space of functions exists: such *f* can be decomposed into the sum of "orthonormal" basis functions weighted by the projection of *f* onto these basis functions

Orthogonal polynomial

Definition (Orthogonal polynomial)

For a probability measure μ , define the inner product

$$\langle f,g \rangle \equiv \int f(x)g(x)\mu(dx) = \mathbb{E}[f(x)g(x)],$$
(9)

for $x \sim \mu$, we say $\{P_{\ell}(x), \ell \geq 0\}$ is a family of orthogonal polynomial with respect to such inner product, obtained by the Gram-Schmidt procedure on the monomials $\{1, x, x^2, ...\}$, with $P_0(x) = 1$, P_{ℓ} is a polynomial function of degree ℓ and satisfies

$$\langle P_{\ell_1}, P_{\ell_2} \rangle = \mathbb{E}[P_{\ell_1}(x)P_{\ell_2}(x)] = \delta_{\ell_1 = \ell_2}.$$
 (10)

▶ if the family of orthogonal polynomial $\{P_{\ell}(x)\}_{\ell=0}^{\infty}$ forms a orthonormal basis of $L^{2}(\mu)$, the set of square-integrable functions with respect to $\langle \cdot, \cdot \rangle$, any function $f \in L^{2}(\mu)$ can be formally expanded f

$$f(x) \sim \sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}(x), \quad a_{\ell} = \int f(x) P_{\ell}(x) \mu(dx)$$
 (11)

where " $f \sim \sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}$ " denotes that $||f - \sum_{\ell=0}^{L} a_{\ell} P_{\ell}||_{\mu} \to 0$ as $L \to \infty$ with $||f||_{\mu}^{2} = \langle f, f \rangle$, or equivalently $\int \left(f(x) - \sum_{\ell=0}^{L} a_{\ell} P_{\ell}(x) \right)^{2} \mu(dx) = \mathbb{E} \left[\left(f(x) - \sum_{\ell=0}^{L} a_{\ell} P_{\ell}(x) \right)^{2} \right] \to 0.$

Hermite polynomial

Theorem (Hermite polynomial decomposition)

For $x \in \mathbb{R}$, the ℓ^{th} order normalized Hermite polynomial, denoted $P_{\ell}(x)$, is given by given by

$$P_0(x) = 1, \text{ and } P_\ell(x) = \frac{(-1)^\ell}{\sqrt{\ell!}} e^{\frac{x^2}{2}} \frac{d^\ell}{dx^\ell} \left(e^{-\frac{x^2}{2}} \right), \text{ for } \ell \ge 1.$$
(12)

and the family of (normalized) Hermite polynomials

- (i) being orthogonal polynomials and (as the name implies) are orthonormal with respect the standard Gaussian measure, in the sense that $\int P_m(x)P_n(x)\mu(dx) = \delta_{nm}$, for $\mu(dx) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx$ the standard Gaussian measure
- (ii) form an orthonormal basis of the Hilbert space (denoted $L^2(\mu)$) consist of all square-integrable functions with respect to the inner product $\langle f,g \rangle \equiv \int f(x)g(x)\mu(dx)$, and that one can formally expand any $f \in L^2(\mu)$ as

$$f(\xi) \sim \sum_{\ell=0}^{\infty} a_{\ell f} P_{\ell}(\xi), \quad a_{\ell f} = \int f(x) P_{\ell}(x) \mu(dx) = \mathbb{E}[f(\xi) P_{\ell}(x)], \tag{13}$$

for standard Gaussian random variable $\xi \sim \mathcal{N}(0, 1)$. We have

$$a_{0,f} = \mathbb{E}_{\xi \sim \mathcal{N}(0,1)}[f(\xi)], \quad a_{1,f} = \mathbb{E}[\xi f(\xi)], \quad \sqrt{2}a_{2,f} = \mathbb{E}[\xi^2 f(\xi)] - a_{0,f}, \quad \nu_f = \mathbb{E}[f^2(\xi)] = \sum_{\ell=0}^{\infty} a_{\ell,f}^2.$$
(14)

Illustration of Hermite polynomial

Figure: Illustration of the first four Hermite polynomials as in Theorem 5 (left) and of the first- and second-order Hermite polynomial (P_1 and P_2) weighted by the Gaussian mixture $\mu(dx) = \exp(-x^2/2)/\sqrt{2\pi}$ (right).

Different scalings, Taylor expansion versus orthogonal polynomial

For random vector $\mathbf{x} \in \mathbb{R}^n$ such that $\sqrt{n}\mathbf{x}$ has i.i.d. standard Gaussian entries and deterministic $\mathbf{y} \in \mathbb{R}^n$ of unit norm $\|\mathbf{y}\|_2 = 1$, $\mathbf{x}^\mathsf{T}\mathbf{y} \sim \mathcal{N}(0, n^{-1})$ so that

$$\xi_{\text{LLN}} \equiv \mathbf{x}^{\mathsf{T}} \mathbf{y} \simeq 0 + O(n^{-1/2}), \quad \xi_{\text{CLT}} \equiv \sqrt{n} \cdot \mathbf{x}^{\mathsf{T}} \mathbf{y} \sim \mathcal{N}(0, 1).$$
(15)

We are interested in the behavior of $f(\xi_{LLN})$ and $f(\xi_{CLT})$:

(i) in the LLN regime: by Taylor expansion that any pair of smooth function f, g with |f(0) = g(0)| satisfies

$$f(\xi_{\text{LLN}}) = g(\xi_{\text{LLN}}) + O(n^{-1/2}),$$
 (16)

with high probability for *n* large, so that the two random variables $f(\xi_{LLN})$ and $g(\xi_{LLN})$ are close as long as the two nonlinear functions *f* and *g* coincide at 0; and

(ii) in the CLT regime: by Hermite polynomial decomposition that for *f*, *g* having the same zeroth-order Hermite coefficient $a_0 = \mathbb{E}[f(\xi)] = \mathbb{E}[g(\xi)]$ with $\xi \sim \mathcal{N}(0, 1)$,

$$\mathbb{E}[f(\xi_{\text{CLT}})] = \mathbb{E}[g(\xi_{\text{CLT}})].$$
(17)

while this is by no means surprising (by definition), orthogonal polynomials applies other nonlinear forms beyond the simple expectation E[f(ξ)], to nonlinear random matrix model

Example (Nonlinear behaviors of tanh in two scaling regimes)

The function f(t) = tanh(t) is "close" to *different* quadratic functions in *different* regimes of interest:

- (i) in the LLN regime, we have $tanh(\xi_{LLN}) \simeq g(\xi_{LLN})$ (so in particular $\mathbb{E}[tanh(\xi_{LLN})] \simeq \mathbb{E}[g(\xi_{LLN})]$) with $g(t) = t^2/4$ as a consequence of tanh(x) = g(x) = 0; and
- (ii) in the CLT regime, we have $\mathbb{E}[\tanh(\xi_{LLN})] = \mathbb{E}[g(\xi_{LLN})]$ in expectation with now $g(x) = x^2 1$ as a consequence of the fact that their zeroth-order Hermite $a_0 = 0$.

Figure: Different behavior of nonlinear $f(\xi_{LLN})$ and $f(\xi_{CLT})$ for $f(t) = \tanh(t)$ in the LLN and CLT regime, with n = 500. We have in particular $\tanh(\xi_{LLN}) \simeq g(\xi_{LLN})$ in the LLN regime and $\mathbb{E}[\tanh(\xi_{CLT})] = \mathbb{E}[g(\xi_{CLT})]$ in the CLT regime with *different* g.

- two linearization techniques to linearize nonlinear objects
- Taylor expansion: for smooth *and* concentrated objects (e.g., in the LLN regime)
- ③ Orthogonal polynomial approach: for non-smooth *and* non-concentrated objects (e.g., in the CLT regime)
- example: $tanh(\xi)$ for $\xi = \xi_{LLN}$ or ξ_{CLT} leads to **different** linearizations

Kernel matrices and their linearization

Kernel matrices: for data vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$, $\mathbf{K} = {\kappa(\mathbf{x}_i, \mathbf{x}_j)}_{i,j=1}$ for some $\kappa \colon \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ describe the "similarity" between data vectors.

Family of kernel	Commonly used examples	Regime	Linearization technique
LLN-type distance-based kernel $\kappa(\mathbf{x}_i, \mathbf{x}_j) = f(\mathbf{x}_i - \mathbf{x}_j ^2/p)$	$\begin{array}{l} \text{Gaussian} \exp\left(-\ \mathbf{x}_i - \mathbf{x}_j\ ^2 / (2\sigma^2 p)\right) \\ \text{Laplacian} \exp\left(-\ \mathbf{x}_i - \mathbf{x}_j\ / (\sigma \sqrt{p})\right) \\ \text{for some } \sigma > 0 \\ \text{as well as Matérn kernel} \end{array}$	LLN	Taylor expansion
LLN-type inner-product kernel	Polynomial $(\mathbf{x}_i^{T} \mathbf{x}_j / p)^d$ for some $d \ge 1$ Sigmoid $\tanh(\beta \mathbf{x}_i^{T} \mathbf{x}_j / p)$ for some $\beta > 0$	LLN	Taylor expansion
CLT-type inner-product kernel	Polynomial $(\mathbf{x}_i^{T} \mathbf{x}_j / \sqrt{p})^d$ for some $d \ge 1$ Sigmoid $\tanh(\beta \mathbf{x}_i^{T} \mathbf{x}_j / \sqrt{p})$ for some $\beta > 0$	CLT	Orthogonal polynomial

Table: Commonly used kernels and the corresponding linearization techniques.

LLN-type distance-based kernel: setup

▶ non-trivial classification of binary GMM (C_1 : $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_1, \mathbf{C}_1)$ versus C_2 : $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_2, \mathbf{C}_2)$)

$$\|\Delta \boldsymbol{\mu}\| = \|\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2\| = \Theta(1), \quad \|\Delta \mathbf{C}\|_2 = \|\mathbf{C}_1 - \mathbf{C}_2\|_2 = \Theta(p^{-1/2}), \tag{18}$$

▶ data vectors $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^p$ extracted from a few-class (say two-class) mixture model tend to be (in the first order, and as a consequence of the LNNs) at roughly equal Euclidean distance from one another, irrespective of their corresponding class. Roughly said, in this non-trivial setting, we have

$$\max_{\leq i \neq j \leq n} \left\{ \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right\} \to 0$$
(19)

holds for some constant $\tau > 0$ as $n, p \to \infty$, independently of the classes, and thus of the distributions (being the same or different) of \mathbf{x}_i and \mathbf{x}_j .

Definition (LLN-type shift-invariant kernel)

For *n* data vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ of dimension *p*, we say, for *smooth* nonlinear *kernel function* $f : \mathbb{R} \to \mathbb{R}$ that

$$[\mathbf{K}]_{ij} = f\left(\|\mathbf{x}_i - \mathbf{x}_j\|^2 / p\right) \in \mathbb{R}^{n \times n},\tag{20}$$

is a *shift-invariant* kernel matrix of the data $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$. In particular, one gets the popular Gaussian kernel with $f(t) = \exp(-t/2)$.

LLN-type distance-based kernel matrices via Taylor expansion

Theorem (LLN-type shift-invariant kernel matrices via Taylor expansion, [CBG16])

Consider the non-trivial GMM classification, let $f : \mathbb{R} \to \mathbb{R}$ be at least three-times differentiable in a neighborhood of $\tau = 2 \operatorname{tr} \mathbb{C}^{\circ}/p = \operatorname{tr}(\mathbb{C}_1 + \mathbb{C}_2)/p$. For a shift-invariant kernel matrix \mathbf{K} , and $\tilde{\mathbf{K}}$ defined below, as $p, n \to \infty$ with $p/n \to c \in (0, \infty)$ we have that $\|\mathbf{K} - \tilde{\mathbf{K}}\|_2 = O(n^{-1/2})$. Here, $\tilde{\mathbf{K}}$ is defined as

$$\begin{split} \tilde{\mathbf{K}} &= \left(f(\tau) - \tau f'(\tau)\right) \underbrace{\mathbf{1}_{n} \mathbf{1}_{n}^{\mathsf{T}}}_{\text{zeroth order}} + f'(\tau) \underbrace{\mathbf{E}}_{\text{first order}} + \frac{f''(\tau)}{2} \left(\underbrace{\boldsymbol{\psi}^{2} \mathbf{1}_{n}^{\mathsf{T}} + \mathbf{1}_{n} (\boldsymbol{\psi}^{2})^{\mathsf{T}} + 2\boldsymbol{\psi} \boldsymbol{\psi}^{\mathsf{T}}}_{\text{second order}}\right) \\ &+ \frac{f''(\tau)}{2} \left(\underbrace{\frac{2}{\sqrt{p}} \left\{ (\psi_{i} + \psi_{j}) (t_{a} + t_{b}) \right\}_{i \neq j} + \frac{1}{p} \mathbf{J} \left(\left\{ (t_{a} + t_{b})^{2} \right\}_{a, b = 1}^{2} + 4\mathbf{T} \right) \mathbf{J}^{\mathsf{T}}}_{\text{second order}} \right) + \left(f(0) - f(\tau) + \tau f'(\tau)\right) \mathbf{I}_{n}, \end{split}$$

where we denote $\mathbf{E} \in \mathbb{R}^{n \times n}$ the (linear) Euclidean distance matrix.

• random vector $\boldsymbol{\psi} = \{\psi_i\}_{i=1}^n \in \mathbb{R}^n$ as,

$$\psi_i \equiv \mathbf{z}_i^{\mathsf{T}} \mathbf{C}_a \mathbf{z}_i / p - \operatorname{tr} \mathbf{C}_a / p, \quad \text{for} \quad \mathbf{x}_i = \boldsymbol{\mu}_a + \mathbf{C}_a^{\frac{1}{2}} \mathbf{z}_i \sim \mathcal{N}(\boldsymbol{\mu}_a, \mathbf{C}_a), \quad a \in \{1, 2\},$$
(21)

▶ random matrix $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_n] \in \mathbb{R}^{p \times n}$ with $\mathbf{z}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, and

$$\mathbf{J} \equiv \begin{bmatrix} \mathbf{j}_1, \dots \mathbf{j}_K \end{bmatrix} \in \mathbb{R}^{n \times 2},\tag{22}$$

and

$$\mathbf{t} \equiv \{t_a\}_{a=1}^2 = \left\{\frac{1}{\sqrt{p}} \operatorname{tr} \mathbf{C}_a^\circ\right\}_{a=1}^2 \in \mathbb{R}^2, \quad \mathbf{T} = \{T_{ab}\}_{a,b=1}^2 = \left\{\frac{1}{p} \operatorname{tr} \mathbf{C}_a \mathbf{C}_b\right\}_{a,b=1}^2 \in \mathbb{R}^{2 \times 2},$$
(23)

with $\mathbf{j}_a \in \mathbb{R}^n$ the canonical vector of class C_a , that is, $[\mathbf{j}_a]_i = \delta_{\mathbf{x}_i \in C_a}$; and \mathbf{t}, \mathbf{T} functions of the data covariances $\mathbf{C}_1, \mathbf{C}_2$.

Proof

expansion of "normalized" Euclidean distance:

$$\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} = \underbrace{\frac{2}{p} \operatorname{tr} \mathbf{C}^{\circ}}_{\equiv \tau = O(1)} + \underbrace{\psi_{i} + \psi_{j} + \frac{1}{p} \operatorname{tr} (\mathbf{C}_{a}^{\circ} + \mathbf{C}_{b}^{\circ}) - \frac{2}{p} \mathbf{z}_{i}^{\mathsf{T}} \mathbf{C}_{a}^{\frac{1}{2}} \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j}}_{O(p^{-1/2})} \\ + \underbrace{\frac{1}{p} \|\boldsymbol{\mu}_{a} - \boldsymbol{\mu}_{b}\|^{2} + \frac{2}{p} (\boldsymbol{\mu}_{a} - \boldsymbol{\mu}_{b})^{\mathsf{T}} (\mathbf{C}_{a}^{\frac{1}{2}} \mathbf{z}_{i} - \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j})}_{O(p^{-1})},$$
(24)

with $\mathbf{C}^{\circ} \equiv \frac{1}{2}(\mathbf{C}_1 + \mathbf{C}_2)$ the centered covariance and $\mathbf{C}_a^{\circ} \equiv \mathbf{C}_a - \mathbf{C}^{\circ}$ so that $\|\mathbf{C}_a^{\circ}\|_2 = \frac{1}{2}\|\Delta\mathbf{C}\|_2 = O(p^{-1/2})$, as well as $\psi_i \equiv \mathbf{z}_i^{\mathsf{T}} \mathbf{C}_a \mathbf{z}_i / p - \operatorname{tr} \mathbf{C}_a / p = O(p^{-1/2})$. Taylor-expanding $[\mathbf{K}]_{ii} = f(\|\mathbf{x}_i - \mathbf{x}_i\|^2 / p)$ around $f(\tau)$ that

$$[\mathbf{K}]_{ij} = f\left(\frac{1}{p} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2}\right)$$

= $\underbrace{f(\tau)}_{\equiv K_{0} = O(1)} + \underbrace{f'(\tau)\left(\frac{1}{p} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} - \tau\right)}_{\equiv K_{1} = O(p^{-1/2})} + \underbrace{\frac{1}{2}f''(\tau)\left(\frac{1}{p} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} - \tau\right)^{2}}_{\equiv K_{2} = O(p^{-1})} + \underbrace{O(p^{-3/2})}_{\equiv K_{3}},$ (25)

Proof

- ▶ by $\|\mathbf{A}\|_2 \leq n \|\mathbf{A}\|_\infty$ for matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we know that the higher-order terms $O(p^{-3/2})$, when put in matrix form, are of spectral norm order $O(n^{-1/2})$ and thus vanish asymptotically as $n, p \to \infty$.
- (i) the leading order term is $K_0 = f(\tau) = O(1)$ and, as in the case of Euclidean distance matrix in the linear case, does not depend on the data $\mathbf{x}_i, \mathbf{x}_j$ (or their classes); and
- (ii) the second-order term K_1 is proportional to $f'(\tau)$, of order $O(p^{-1/2})$, is the same as in the linear Euclidean distance matrix **E** with f(t) = t; and
- (iii) the third-order term K_2 is proportional to $f''(\tau)$, of order $O(p^{-1})$, contains quadratic function of $\|\mathbf{x}_i \mathbf{x}_i\|^2 / p$ and therefore crucially differs from the linear f(t) = t scenario.
 - the (i, j) entry of the nonlinear kernel matrix **K** takes a similar form as the linear Euclidean distance matrix **E** (with f(t) = t), but with a few additional and nonlinear terms collected in K_2 that are proportional to $f''(\tau)$.

Additional nonlinear terms: only the terms of order $O(n^{-1/2})$ in $\frac{1}{p} ||\mathbf{x}_i - \mathbf{x}_j||^2 - \tau$ will remain after taking the square, that is

$$\left(\frac{1}{p}\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} - \tau\right)^{2} = \left(\psi_{i} + \psi_{j} + \frac{1}{p}\operatorname{tr}(\mathbf{C}_{a}^{\circ} + \mathbf{C}_{b}^{\circ}) - \frac{2}{p}\mathbf{z}_{i}^{\mathsf{T}}\mathbf{C}_{a}^{\frac{1}{2}}\mathbf{C}_{b}^{\frac{1}{2}}\mathbf{z}_{j}\right)^{2} + O(n^{-3/2})$$
(26)

Proof

This, in matrix form (with $i \neq j$ for the moment),

$$\left\{ \left(\frac{1}{p} \| \mathbf{x}_{i} - \mathbf{x}_{j} \|^{2} - \tau \right)^{2} \right\}_{i \neq j} = \left\{ \left(\psi_{i} + \psi_{j} + \frac{1}{p} \operatorname{tr}(\mathbf{C}_{a}^{\circ} + \mathbf{C}_{b}^{\circ}) \right)^{2} + 4 \left(\frac{1}{p} \mathbf{z}_{i}^{\mathsf{T}} \mathbf{C}_{a}^{\frac{1}{2}} \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j} \right)^{2} \right\}_{i \neq j} - \left\{ \frac{4}{p} \mathbf{z}_{i}^{\mathsf{T}} \mathbf{C}_{a}^{\frac{1}{2}} \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j} \left(\psi_{i} + \psi_{j} + \frac{1}{p} \operatorname{tr}(\mathbf{C}_{a}^{\circ} + \mathbf{C}_{b}^{\circ}) \right) \right\}_{i \neq j} + O_{\|\cdot\|} (n^{-1/2}) \\ = \psi^{2} \mathbf{1}_{n}^{\mathsf{T}} + \mathbf{1}_{n} (\psi^{2})^{\mathsf{T}} + 2\psi\psi^{\mathsf{T}} + \frac{2}{\sqrt{p}} \{ (\psi_{i} + \psi_{j})(t_{a} + t_{b}) \}_{i \neq j} \\ + \frac{1}{p} \mathbf{J} \left(\{ (t_{a} + t_{b})^{2} \}_{a,b=1}^{2} + 4\mathbf{T} \right) \mathbf{J}^{\mathsf{T}} + O_{\|\cdot\|} (n^{-1/2}), \quad (27) \right\}_{a \neq b}$$

where we denote $\psi^2 \equiv \{\psi_i^2\}_{i=1}^n \in \mathbb{R}^n$, $O_{\|\cdot\|}(n^{-1/2})$ for matrices of spectral norm ($\|\cdot\|$) order $O(n^{-1/2})$, and

$$\left\{ \left(\frac{1}{p} \mathbf{z}_{i}^{\mathsf{T}} \mathbf{C}_{a}^{\frac{1}{2}} \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j} \right)^{2} \right\}_{i \neq j} = \left\{ \mathbb{E} \left(\frac{1}{p} \mathbf{z}_{i}^{\mathsf{T}} \mathbf{C}_{a}^{\frac{1}{2}} \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j} \right)^{2} \right\}_{i \neq j} + O_{\parallel \cdot \parallel} (n^{-1/2}) \\
= \left\{ \frac{1}{p^{2}} \operatorname{tr} \mathbf{C}_{a} \mathbf{C}_{b} \right\}_{i \neq j} + O_{\parallel \cdot \parallel} (n^{-1/2}) \equiv \frac{1}{p} \mathbf{J} \mathbf{T} \mathbf{J}^{\mathsf{T}} + O_{\parallel \cdot \parallel} (n^{-1/2}), \quad (28)$$

Discussions

- "linearizes" the nonlinear kernel matrix **K** for smooth kernel function *f*, and see both linear terms **E** (K_0 and K_1) and higher-order nonlinear terms K_2 in the linearization $\tilde{\mathbf{K}}$
- (i) it follows from the derivations in Equation (27) and Equation (28) that the higher-order nonlinear terms in $\tilde{\mathbf{K}}$ are approximately (in a spectral norm sense) of low rank, for *n*, *p* large; and
- (ii) as a consequence, the eigenspectrum of $\hat{\mathbf{K}}$ (and thus of \mathbf{K} by Theorem 8) is like that of the Euclidean distance matrix \mathbf{E} , scaled by $f'(\tau)$, and with a few additional spiked eigenvalues due to the higher-order nonlinear terms in K_2 .

Theorem (Limiting spectrum of shift-invariant kernel matrices)

Under the same assumptions and notations of Theorem 8, we have, for $C_1 = C_2 = I_p$, $f'(\tau) \neq 0$, and as $p, n \to \infty$ with $p/n \to c \in (0, \infty)$, that the empirical spectral measure of the shift-invariant kernel matrix \mathbf{K} converges weakly and almost surely to the rescaled and shifted Marčenko–Pastur law $-2f'(\tau)\mu_{\mathrm{MP},c^{-1}} + \kappa$, $\kappa = f(0) - f(\tau) + \tau f'(\tau)$, which is the law of $-2f'(\tau)x + \kappa$ for x following a Marčenko–Pastur distribution with parameter c^{-1} , i.e., $x \sim \mu_{\mathrm{MP},c^{-1}}$.

Numerical results

• $f_1(t) = \exp(-t/2)$, that corresponds to the Gaussian kernel matrix

• versus $f_2(t) = at^2 + bt + c$, that corresponds to the polynomial kernel matrix, where the parameters *a*, *b*, and *c* are chosen such that

$$a = \frac{1}{8}\exp(-\tau/2), \quad b = -\frac{1}{2}\exp(-\tau/2) - \frac{\tau}{4}\exp(-\tau/2), \quad c = \exp(-\tau/2) - a\tau^2 - b\tau.$$
(29)

• the two functions share the same values of $f(\tau)$, $f'(\tau)$, $f''(\tau)$, i.e., they have the same local behavior per Taylor expansion

Figure: Different kernel function $f_1(t) = \exp(-t/2)$ versus polynomial $f_2(t)$ given in Equation (29), with similar local behavior around $\tau = 2$.

Numerical results

(a) Gaussian mixture data

(b) MNIST data (number 0 versus 1)

Definition (CLT-type inner-product kernel)

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ be *n* data vectors of dimension *p*, and let $f : \mathbb{R} \to \mathbb{R}$ be a possibly *non-smooth* nonlinear *kernel function* (that is square integrable to standard Gaussian measure). Then, we say that

$$[\mathbf{K}]_{ij} = \begin{cases} f(\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} & \text{for } i \neq j \\ 0 & \text{for } i = j \end{cases}$$
(30)

is a CLT-type inner-product kernel matrix for i.i.d. $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$. In this case, we denote, as in Equation Equation (14), the Hermite coefficients of f as

$$a_0 = \mathbb{E}[f(\xi)], \quad a_1 = \mathbb{E}[\xi f(\xi)], \quad \nu = \mathbb{E}[f^2(\xi)], \tag{31}$$

for $\xi \sim \mathcal{N}(0, 1)$. Without loss of generality, we assume the nonlinear kernel function f is "centered" with respect to standard Gaussian measure with $a_0 = 0$ (which can be achieved by studying $\tilde{f}(x) = f(x) - \mathbb{E}[f(\xi)]$).

Limiting spectrum of CLT-type inner-product kernel matrices

Theorem (Limiting spectrum of CLT-type inner-product kernel matrices, [CS13; DV13])

Let $p, n \to \infty$ with $p/n \to c \in (0, \infty)$ and assume $f: \mathbb{R} \to \mathbb{R}$ is square-integrable with respect to standard Gaussian measure with $a_0 = \mathbb{E}_{\xi \sim \mathcal{N}(0,1)}[f(\xi)] = 0$. Then, the empirical spectral measure of the inner-product kernel matrix **K** defined in Theorem 10 converges weakly and almost surely to a probability measure μ defined by its Stieltjes transform m(z), as the unique solution to

$$-\frac{1}{m(z)} = z + \frac{a_1^2 m(z)}{c + a_1 m(z)} + \frac{\nu - a_1^2}{c} m(z),$$
(32)

for a_1 , v the Hermite coefficients of f defined in Equation (31).

Theorem (A matrix version of asymptotic equivalent linear model)

Under the same settings above, when the limiting spectral measure is considered, the inner-product random kernel matrix \mathbf{K} admits the following asymptotic equivalent linear model,

$$\mathbf{K} \equiv f(\mathbf{X}^{\mathsf{T}}\mathbf{X}/\sqrt{p})/\sqrt{p} - \operatorname{diag}(\cdot) \leftrightarrow \tilde{\mathbf{K}}_{f} = a_{1}\mathbf{X}^{\mathsf{T}}\mathbf{X}/p + \sqrt{\nu - a_{1}^{2}} \cdot \mathbf{Z}/\sqrt{p} - \operatorname{diag}(\cdot),$$
(33)

where we use $\mathbf{A} - \operatorname{diag}(\mathbf{A})$ to get a matrix with zeros on its diagonal, and with its non-diagonal entries same as \mathbf{A} .

Remark

As a consequence of the form of *m*(*z*), the limiting spectral measure µ of K is the free additive convolution (denoted as '⊞', see [VDN92; Bia98] for an introduction) between the Marčenko–Pastur law (denoted µ_{MP,c} of shape parameter *c* = lim *p*/*n*) and the so-called Wigner semicircle law (denoted µ_{SC}) as

$$\mu = a_1(\mu_{\mathrm{MP},c^{-1}} - 1) \boxplus \sqrt{(\nu - a_1^2)c^{-1}}\mu_{\mathrm{SC}},\tag{34}$$

where
$$a_1(\mu_{\text{MP},c^{-1}}-1)$$
 is the law of $a_1(x-1)$ for $x \sim \mu_{\text{MP},c^{-1}}$ and $\sqrt{(\nu - a_1^2)c^{-1}\mu_{\text{SC}}}$ the law of $\sqrt{(\nu - a_1^2)c^{-1}} \cdot x$ for $x \sim \mu_{\text{SC}}$.

- ▶ intuitively, the Marčenko–Pastur law characterizes the linear part (a_1x) of the nonlinear kernel function f(x), while the higher-order "purely" nonlinear part $f(x) a_1x$ contributes to the semicircle law.
- these two contributions are asymptotically "independent" so that the resulting limiting spectrum is the free additive convolution of each component.

Numerical results

Figure: Eigenvalues of inner-product kernel matrices **K** defined in Equation (30) for different nonlinear kernel functions f_1 and f_2 , versus the limiting law given in Theorem 11, for p = 512, n = 2.048, $f_1(t) = \tanh(t)$ versus quadratic $f_2(t)$ that share the same parameters of a_1 and v.

Numerical results

Figure: Different kernel function $f_1(t) = \tanh(t)$ versus polynomial $f_2(t) = 0.1171(t^2 - 1) + 0.6057t$ that lead to asymptotically similar kernel eigenspectral behavior. In particular, this figure is to be compared with Figure 4, where we observe a (Taylor-expansion) concentration point in the latter. Here, the two nonlinear functions f_1 and f_2 are *not* locally close (e.g., in the sense of Taylor expansion), but only share the same Hermite coefficients a_1 and v.

- linearization of nonlinear kernel matrices K
- LLN-type nonlinear kernel matrices: Taylor expansion
- Octave CLT-type nonlinear kernel matrices: Orthogonal polynomial
- local versus global perspective of the non-linearity

RMT for Machine Learning!

Random matrix theory (RMT) for machine learning:

- change of intuition from small to large dimensional learning paradigm!
- **better understanding** of existing methods: why they work if they do, and what the issue is if they do not
- improved novel methods with performance guarantee!

- book "Random Matrix Methods for Machine Learning"
- ▶ by Romain Couillet and Zhenyu Liao
- Cambridge University Press, 2022
- a pre-production version of the book and exercise solutions at https://zhenyu-liao.github.io/book/
- MATLAB and Python codes to reproduce all figures at https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?