Random Matrix Theory for Modern Machine Learning:

 New Intuitions, Improved Methods, and Beyond: Part 4
Short Course @ Institut de Mathématiques de Toulouse, France

Zhenyu Liao

School of Electronic Information and Communications Huazhong University of Science and Technology

July 4th, 2024

Outline

(1) Linearization of Nonlinear Models

- Taylor expansion
- Orthogonal polynomial
(2) Nonlinear ML models via linearization: Kernel Methods in the Proportional Regime
- LLN-type distance-based kernel via Taylor expansion
- CLT-type inner-product kernel via orthogonal polynomial

Two ways to linearize nonlinear models

Example (Nonlinear objects in two scaling regimes)

Let $\mathbf{x} \in \mathbb{R}^{n}$ be a random vector so that $\sqrt{n} \mathbf{x}$ has i.i.d. standard Gaussian entries with zero mean and unit variance, and $\mathbf{y} \in \mathbb{R}^{n}$ be a deterministic vector of unit norm $\|\mathbf{y}\|=1$; and consider the following two families of nonlinear objects of interest with a nonlinear function f acting on different regimes:
(i) LLN regime: $f\left(\|\mathbf{x}\|^{2}\right)$ and $f\left(\mathbf{x}^{\top} \mathbf{y}\right)$; and
(ii) CLT regime: $f\left(\sqrt{n}\left(\|\mathbf{x}\|^{2}-1\right)\right)$ and $f\left(\sqrt{n} \cdot \mathbf{x}^{\top} \mathbf{y}\right)$.

The two regimes follow from the two well-known convergence results:
(i) law of large numbers (LLN): $\|\mathbf{x}\|^{2} \rightarrow \mathbb{E}\left[\mathbf{x}^{\top} \mathbf{x}\right]=1$ and $\mathbf{x}^{\top} \mathbf{y} \rightarrow \mathbb{E}\left[\mathbf{x}^{\top} \mathbf{y}\right]=0$ almost surely as $n \rightarrow \infty$; and
(ii) central limit theorem (CLT): $\sqrt{n}\left(\|\mathbf{x}\|^{2}-1\right) \rightarrow \mathcal{N}(0,2)$ and $\sqrt{n} \cdot \mathbf{x}^{\top} \mathbf{y} \rightarrow \mathcal{N}(0,1)$ in law as $n \rightarrow \infty$.

$$
\begin{equation*}
\|\mathbf{x}\|^{2} \simeq 1+\mathcal{N}(0,2) / \sqrt{n}, \quad \mathbf{x}^{\top} \mathbf{y} \simeq 0+\mathcal{N}(0,1) / \sqrt{n} \tag{1}
\end{equation*}
$$

for n large.

Numerical illustration

Figure: Illustrations of random variables in LLN (left) and CLT (right) regime, with $n=500$.

Two different linearization techniques

LLN regime $f\left(\|\mathbf{x}\|^{2}\right)$ and $f\left(\mathbf{x}^{\top} \mathbf{y}\right)$ versus CLT regime $f\left(\sqrt{n}\left(\|\mathbf{x}\|^{2}-1\right)\right)$ and $f\left(\sqrt{n} \cdot \mathbf{x}^{\top} \mathbf{y}\right)$ two "scalings" are different:

- for objects in the LLN regime, the nonlinear function f applies on a close-to-deterministic quantity, in the sense that $\|\mathbf{x}\|^{2}=1+O\left(n^{-1 / 2}\right)$ and $\mathbf{x}^{\top} \mathbf{y}=0+O\left(n^{-1 / 2}\right)$ with high probability for n large, due to the dominant LLN behavior; and
- for objects in the CLT regime, the nonlinear f applies on a normally distributed random variable (as a consequence of the CLT) that is not close to a deterministic quantity
- two different linearization approaches-via Taylor expansion and via orthogonal polynomial

Table: Comparison between two different linearization approaches.

Scaling law	LLN type	CLT type
Object of interest	$f(x)$ for (almost) deterministic	$f(x)$ for random x, e.g., $x \sim \mathcal{N}(0,1)$
Linearization technique	Taylor expansion	Orthogonal polynomial
Smoothness of f	Locally smooth f	Possibly non-smooth f

Taylor expansion

- Taylor expansion: local linearization of a smooth nonlinear function

Theorem (Taylor's theorem)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function that is at least k times continuously differentiable in a neighborhood of a given point $\tau \in \mathbb{R}$. Then, there exists a function $h_{k}: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f(x)=f(\tau)+f^{\prime}(x-\tau)+\frac{f^{\prime \prime}(\tau)}{2}(x-\tau)^{2}+\ldots+\frac{f^{(k)}(\tau)}{k!}(x-\tau)^{k}+h_{k}(x)(x-\tau)^{k} \tag{2}
\end{equation*}
$$

with $\lim _{x \rightarrow \tau} h_{k}(x)=0$ so that $h_{k}(x)(x-\tau)^{k}=o\left(|x-\tau|^{k}\right)$ as $x \rightarrow \tau$.

Working assumptions:

(i) the nonlinear function f under study should be smooth, at least in the neighborhood of the point τ of interest, so that the derivatives $f^{\prime}(\tau), f^{\prime \prime}(\tau), \ldots$ make sense; and
(ii) the variable of interest x is sufficiently close to (or, concentrate around when being random) the point τ so that the higher orders terms are neglectable

Taylor expansion in the LLN regime

Proposition (Taylor expansion in the LLN regime)

For random variable $x=\|\mathbf{x}\|^{2}$ with $\sqrt{n} \mathbf{x} \in \mathbb{R}^{n}$ having i.i.d. standard Gaussian entries, in the LLN regime as in Item (i) of Theorem 1, it follows from LLN and CLT that $\|\mathbf{x}\|^{2}-1=O\left(n^{-1 / 2}\right)$ with high probability for n large, so that one can apply Theorem 2 to write

$$
\begin{equation*}
f\left(\|\mathbf{x}\|^{2}\right)=f(1)+f^{\prime}(1) \underbrace{\left(\|\mathbf{x}\|^{2}-1\right)}_{O\left(n^{-1 / 2}\right)}+\frac{1}{2} f^{\prime \prime}(1) \underbrace{\left(\|\mathbf{x}\|^{2}-1\right)^{2}}_{O\left(n^{-1}\right)}+O\left(n^{-3 / 2}\right) \tag{3}
\end{equation*}
$$

with high probability; and similarly

$$
\begin{equation*}
f\left(\mathbf{x}^{\top} \mathbf{y}\right)=f(0)+f^{\prime}(0) \underbrace{\mathbf{x}^{\top} \mathbf{y}}_{O\left(n^{-1 / 2}\right)}+\frac{1}{2} f^{\prime \prime}(0) \underbrace{\left(\mathbf{x}^{\top} \mathbf{y}\right)^{2}}_{O\left(n^{-1}\right)}+O\left(n^{-3 / 2}\right) \tag{4}
\end{equation*}
$$

again as a consequence of $\sqrt{n} \cdot \mathbf{x}^{\top} \mathbf{y} \xrightarrow{d} \mathcal{N}(0,1)$ in distribution as $n \rightarrow \infty$, where the orders $O\left(n^{-\ell}\right)$ hold with high probability for n large.

Smoothness assumption

- smoothness assumption in Taylor theorem can be relaxed
- for a non-smooth nonlinear f, can evaluate expected behavior $\mathbb{E}[f(x)]$ of $f(x)$, for random x
- while the function f may not be differentiable everywhere (and in particular, in the neighborhood $x=\tau$ of interest), it can still have almost everywhere weak derivative f^{\prime} such that

$$
\begin{equation*}
\int f^{\prime}(t) \mu(d t)=\mathbb{E}\left[f^{\prime}(x)\right]<\infty \tag{5}
\end{equation*}
$$

exists, for random variable x having law μ.

- concrete example in the case of standard Gaussian x, known in the literature as the Stein's lemma.

Lemma (Stein's lemma)

For standard Gaussian random variable $x \sim \mathcal{N}(0,1)$, we have that

$$
\begin{equation*}
\mathbb{E}\left[f^{\prime}(x)\right]=\mathbb{E}[x f(x)] \tag{6}
\end{equation*}
$$

as long as the right-hand-side term is finite.

Concentration assumption

- "closeness" or "concentration" assumption, this is a more intrinsic limitation of the Taylor expansion approach
- assess only the local behavior of the nonlinear function $f(x)$ around some $x=\tau$
- otherwise, higher-orders terms cannot be ignored (at least with high probability)
- in the CLT regime $f\left(\sqrt{n}\left(\|\mathbf{x}\|^{2}-1\right)\right)$ and $f\left(\sqrt{n} \cdot \mathbf{x}^{\top} \mathbf{y}\right), f$ is applied on (asymptotically) Gaussian random variables that, in particular, do not "concentrate" around any deterministic quantity
we discuss next alternative orthogonal polynomial approach that allows one to characterize the behavior of the nonlinear function $\mathbb{E}[f(x)]$ of random variable x that, in particular, does not strongly concentrate around a point of interest τ, as in the case of CLT regime

Motivation for orthogonal polynomial

- nonlinear function f applied on a Gaussian random variable $x \sim \mathcal{N}(0,1)$ cannot be linearized using Taylor expansion technique
- orthogonal polynomial approach can be used to "linearize" $\mathbb{E}[f(x)]$ for random and non-concentrated x, say $x \sim \mathcal{N}(0,1)$
- a functional perspective: For a random variable x of some law μ, the expectation $\mathbb{E}[f(x)]$ of the nonlinear transformation $f(x)$ for some nonlinear function f writes

$$
\begin{equation*}
\mathbb{E}[f(x)]=\int f(t) \mu(d t), \tag{7}
\end{equation*}
$$

for some f living in some space of functions (or, some infinite-dimensional functional space)

- Euclidean space: canonical vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ form an orthonormal basis of \mathbb{R}^{n}, so that any vector \mathbf{x} living in the Euclidean space \mathbb{R}^{n} can be decomposed as

$$
\begin{equation*}
\mathbf{x}=\sum_{i=1}^{n}\left(\mathbf{x}^{\top} \mathbf{e}_{i}\right) \mathbf{e}_{i}=\sum_{i=1}^{n} x_{i} \mathbf{e}_{i} \tag{8}
\end{equation*}
$$

with the inner product $\mathbf{x}^{\top} \mathbf{e}_{i}=x_{i}$ the i th coordinate of \mathbf{x}

- a decomposition of f living in some space of functions exists: such f can be decomposed into the sum of "orthonormal" basis functions weighted by the projection of f onto these basis functions

Orthogonal polynomial

Definition (Orthogonal polynomial)

For a probability measure μ, define the inner product

$$
\begin{equation*}
\langle f, g\rangle \equiv \int f(x) g(x) \mu(d x)=\mathbb{E}[f(x) g(x)] \tag{9}
\end{equation*}
$$

for $x \sim \mu$, we say $\left\{P_{\ell}(x), \ell \geq 0\right\}$ is a family of orthogonal polynomial with respect to such inner product, obtained by the Gram-Schmidt procedure on the monomials $\left\{1, x, x^{2}, \ldots\right\}$, with $P_{0}(x)=1, P_{\ell}$ is a polynomial function of degree ℓ and satisfies

$$
\begin{equation*}
\left\langle P_{\ell_{1}}, P_{\ell_{2}}\right\rangle=\mathbb{E}\left[P_{\ell_{1}}(x) P_{\ell_{2}}(x)\right]=\delta_{\ell_{1}=\ell_{2}} \tag{10}
\end{equation*}
$$

- if the family of orthogonal polynomial $\left\{P_{\ell}(x)\right\}_{\ell=0}^{\infty}$ forms a orthonormal basis of $L^{2}(\mu)$, the set of square-integrable functions with respect to $\langle\cdot, \cdot\rangle$, any function $f \in L^{2}(\mu)$ can be formally expanded f

$$
\begin{equation*}
f(x) \sim \sum_{\ell=0}^{\infty} a_{\ell} P_{\ell}(x), \quad a_{\ell}=\int f(x) P_{\ell}(x) \mu(d x) \tag{11}
\end{equation*}
$$

where " $f \sim \sum_{l=0}^{\infty} a_{\ell} P_{\ell}$ " denotes that $\left\|f-\sum_{\ell=0}^{L} a_{\ell} P_{\ell}\right\|_{\mu} \rightarrow 0$ as $L \rightarrow \infty$ with $\|f\|_{\mu}^{2}=\langle f, f\rangle$, or equivalently $\int\left(f(x)-\sum_{\ell=0}^{L} a_{\ell} P_{\ell}(x)\right)^{2} \mu(d x)=\mathbb{E}\left[\left(f(x)-\sum_{\ell=0}^{L} a_{\ell} P_{\ell}(x)\right)^{2}\right] \rightarrow 0$.

Hermite polynomial

Theorem (Hermite polynomial decomposition)

For $x \in \mathbb{R}$, the $\ell^{\text {th }}$ order normalized Hermite polynomial, denoted $P_{\ell}(x)$, is given by given by

$$
\begin{equation*}
P_{0}(x)=1, \text { and } P_{\ell}(x)=\frac{(-1)^{\ell}}{\sqrt{\ell!}} e^{\frac{x^{2}}{2}} \frac{d^{\ell}}{d x^{\ell}}\left(e^{-\frac{x^{2}}{2}}\right), \text { for } \ell \geq 1 \tag{12}
\end{equation*}
$$

and the family of (normalized) Hermite polynomials
(i) being orthogonal polynomials and (as the name implies) are orthonormal with respect the standard Gaussian measure, in the sense that $\int P_{m}(x) P_{n}(x) \mu(d x)=\delta_{n m}$, for $\mu(d x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x$ the standard Gaussian measure
(ii) form an orthonormal basis of the Hilbert space (denoted $\left.L^{2}(\mu)\right)$ consist of all square-integrable functions with respect to the inner product $\langle f, g\rangle \equiv \int f(x) g(x) \mu(d x)$, and that one can formally expand any $f \in L^{2}(\mu)$ as

$$
\begin{equation*}
f(\xi) \sim \sum_{\ell=0}^{\infty} a_{\ell, f} P_{\ell}(\xi), \quad a_{\ell, f}=\int f(x) P_{\ell}(x) \mu(d x)=\mathbb{E}\left[f(\xi) P_{\ell}(x)\right] \tag{13}
\end{equation*}
$$

for standard Gaussian random variable $\xi \sim \mathcal{N}(0,1)$. We have

$$
\begin{equation*}
a_{0, f}=\mathbb{E}_{\xi \sim \mathcal{N}(0,1)}[f(\xi)], \quad a_{1, f}=\mathbb{E}[\xi f(\xi)], \quad \sqrt{2} a_{2, f}=\mathbb{E}\left[\xi^{2} f(\xi)\right]-a_{0, f}, \quad v_{f}=\mathbb{E}\left[f^{2}(\xi)\right]=\sum_{\ell=0} a_{\ell, f}^{2} \tag{14}
\end{equation*}
$$

Illustration of Hermite polynomial

Figure: Illustration of the first four Hermite polynomials as in Theorem 5 (left) and of the first- and second-order Hermite polynomial (P_{1} and P_{2}) weighted by the Gaussian mixture $\mu(d x)=\exp \left(-x^{2} / 2\right) / \sqrt{2 \pi}$ (right).

Different scalings, Taylor expansion versus orthogonal polynomial

For random vector $\mathbf{x} \in \mathbb{R}^{n}$ such that $\sqrt{n} \mathbf{x}$ has i.i.d. standard Gaussian entries and deterministic $\mathbf{y} \in \mathbb{R}^{n}$ of unit norm $\|\mathbf{y}\|_{2}=1, \mathbf{x}^{\boldsymbol{\top}} \mathbf{y} \sim \mathcal{N}\left(0, n^{-1}\right)$ so that

$$
\begin{equation*}
\xi_{\mathrm{LLN}} \equiv \mathbf{x}^{\top} \mathbf{y} \simeq 0+O\left(n^{-1 / 2}\right), \quad \xi_{\mathrm{CLT}} \equiv \sqrt{n} \cdot \mathbf{x}^{\top} \mathbf{y} \sim \mathcal{N}(0,1) . \tag{15}
\end{equation*}
$$

We are interested in the behavior of $f\left(\xi_{\mathrm{LLN}}\right)$ and $f\left(\xi_{\mathrm{CLT}}\right)$:
(i) in the LLN regime: by Taylor expansion that any pair of smooth function f, g with $f(0)=g(0)$ satisfies

$$
\begin{equation*}
f\left(\xi_{\mathrm{LLN}}\right)=g\left(\xi_{\mathrm{LLN}}\right)+O\left(n^{-1 / 2}\right), \tag{16}
\end{equation*}
$$

with high probability for n large, so that the two random variables $f\left(\xi_{\mathrm{LLN}}\right)$ and $g\left(\xi_{\mathrm{LLN}}\right)$ are close as long as the two nonlinear functions f and g coincide at 0 ; and
(ii) in the CLT regime: by Hermite polynomial decomposition that for f, g having the same zeroth-order Hermite coefficient $a_{0}=\mathbb{E}[f(\xi)]=\mathbb{E}[g(\xi)]$ with $\xi \sim \mathcal{N}(0,1)$,

$$
\begin{equation*}
\mathbb{E}\left[f\left(\xi_{\text {CLT }}\right)\right]=\mathbb{E}\left[g\left(\xi_{\text {CLT }}\right)\right] . \tag{17}
\end{equation*}
$$

- while this is by no means surprising (by definition), orthogonal polynomials applies other nonlinear forms beyond the simple expectation $\mathbb{E}[f(\xi)]$, to nonlinear random matrix model

Example: behaviors of tanh in two scaling regimes

Example (Nonlinear behaviors of tanh in two scaling regimes)

The function $f(t)=\tanh (t)$ is "close" to different quadratic functions in different regimes of interest:
(i) in the LLN regime, we have $\tanh \left(\xi_{\text {LLN }}\right) \simeq g\left(\xi_{\text {LLN }}\right)$ (so in particular $\left.\mathbb{E}\left[\tanh \left(\xi_{\text {LLN }}\right)\right] \simeq \mathbb{E}\left[g\left(\xi_{\text {LLN }}\right)\right]\right)$ with $g(t)=t^{2} / 4$ as a consequence of $\tanh (x)=g(x)=0$; and
(ii) in the CLT regime, we have $\mathbb{E}\left[\tanh \left(\xi_{\text {LLN }}\right)\right]=\mathbb{E}\left[g\left(\xi_{\text {LLN }}\right)\right]$ in expectation with now $g(x)=x^{2}-1$ as a consequence of the fact that their zeroth-order Hermite $a_{0}=0$.

Figure: Different behavior of nonlinear $f\left(\xi_{\text {LLN }}\right)$ and $f\left(\xi_{\text {CLT }}\right)$ for $f(t)=\tanh (t)$ in the LLN and CLT regime, with $n=500$. We have in particular $\tanh \left(\xi_{\text {LLN }}\right) \simeq g\left(\xi_{\text {LLN }}\right)$ in the LLN regime and $\mathbb{E}\left[\tanh \left(\xi_{\mathrm{CLT}}\right)\right]=\mathbb{E}\left[g\left(\xi_{\mathrm{CLT}}\right)\right]$ in the CLT regime with different g.

- two linearization techniques to linearize nonlinear objects
(1) Taylor expansion: for smooth and concentrated objects (e.g., in the LLN regime)
(2) Orthogonal polynomial approach: for non-smooth and non-concentrated objects (e.g., in the CLT regime)
- example: $\tanh (\xi)$ for $\xi=\xi_{\text {LLN }}$ or $\xi_{\text {CLT }}$ leads to different linearizations

Kernel matrices and their linearization

Kernel matrices: for data vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}, \mathbf{K}=\left\{\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right\}_{i, j=1}$ for some $\kappa: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ describe the "similarity" between data vectors.

Table: Commonly used kernels and the corresponding linearization techniques.

Family of kernel	Commonly used examples	Regime	Linearization technique						
LLN-type distance-based kernel $\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=f\left(\left\\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\\|^{2} / p\right)$	Gaussian $\exp \left(-\left\\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\\|^{2} /\left(2 \sigma^{2} p\right)\right)$ Laplacian $\exp \left(-\left\\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\\| /(\sigma \sqrt{p})\right)$ for some $\sigma>0$	LLN	Taylor expansion						
LLN-type inner-product kernel	Polynomial $\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} / p\right)^{d}$ for some $d \geq 1$ Sigmoid tanh $\left(\beta \mathbf{x}_{i}^{\top} \mathbf{x}_{j} / p\right)$ for some $\beta>0$	LLN	Taylor expansion						
CLT-type inner-product kernel	Polynomial $\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} / \sqrt{p}\right)^{d}$ for some $d \geq 1$ Sigmoid $\tanh \left(\beta \mathbf{x}_{i}^{\top} \mathbf{x}_{j} / \sqrt{p}\right)$ for some $\beta>0$	CLT	Orthogonal polynomial						

LLN-type distance-based kernel: setup

- non-trivial classification of binary $\operatorname{GMM}\left(\mathcal{C}_{1}: \mathbf{x} \sim \mathcal{N}\left(\boldsymbol{\mu}_{1}, \mathrm{C}_{1}\right)\right.$ versus $\left.\mathcal{C}_{2}: \mathbf{x} \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}, \mathrm{C}_{2}\right)\right)$

$$
\begin{equation*}
\|\Delta \mu\|=\left\|\mu_{1}-\mu_{2}\right\|=\Theta(1), \quad\|\Delta \mathbf{C}\|_{2}=\left\|\mathbf{C}_{1}-\mathbf{C}_{2}\right\|_{2}=\Theta\left(p^{-1 / 2}\right), \tag{18}
\end{equation*}
$$

- data vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$ extracted from a few-class (say two-class) mixture model tend to be (in the first order, and as a consequence of the LNNs) at roughly equal Euclidean distance from one another, irrespective of their corresponding class. Roughly said, in this non-trivial setting, we have

$$
\begin{equation*}
\max _{1 \leq i \neq j \leq n}\left\{\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}-\tau\right\} \rightarrow 0 \tag{19}
\end{equation*}
$$

holds for some constant $\tau>0$ as $n, p \rightarrow \infty$, independently of the classes, and thus of the distributions (being the same or different) of \mathbf{x}_{i} and \mathbf{x}_{j}.

Definition (LLN-type shift-invariant kernel)

For n data vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$ of dimension p, we say, for smooth nonlinear kernel function $f: \mathbb{R} \rightarrow \mathbb{R}$ that

$$
\begin{equation*}
[\mathbf{K}]_{i j}=f\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / p\right) \in \mathbb{R}^{n \times n}, \tag{20}
\end{equation*}
$$

is a shift-invariant kernel matrix of the data $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$. In particular, one gets the popular Gaussian kernel with $f(t)=\exp (-t / 2)$.

LLN-type distance-based kernel matrices via Taylor expansion

Theorem (LLN-type shift-invariant kernel matrices via Taylor expansion, [CBG16])

Consider the non-trivial GMM classification, let $f: \mathbb{R} \rightarrow \mathbb{R}$ be at least three-times differentiable in a neighborhood of $\tau=2 \operatorname{tr} \mathbf{C}^{\circ} / p=\operatorname{tr}\left(\mathbf{C}_{1}+\mathbf{C}_{2}\right) / p$. For a shift-invariant kernel matrix \mathbf{K}, and $\tilde{\mathbf{K}}$ defined below, as $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$ we have that $\|\mathbf{K}-\tilde{\mathbf{K}}\|_{2}=O\left(n^{-1 / 2}\right)$. Here, $\tilde{\mathbf{K}}$ is defined as

$$
\begin{aligned}
\tilde{\mathbf{K}} & =\left(f(\tau)-\tau f^{\prime}(\tau)\right) \underbrace{\mathbf{1}_{n} \mathbf{1}_{n}^{\top}}_{\text {zeroth order }}+f^{\prime}(\tau) \underbrace{\mathbf{E}}_{\text {first order }}+\frac{f^{\prime \prime}(\tau)}{2}(\underbrace{\boldsymbol{\psi}^{2} \mathbf{1}_{n}^{\top}+\mathbf{1}_{n}\left(\boldsymbol{\psi}^{2}\right)^{\top}+2 \boldsymbol{\psi} \boldsymbol{\psi}^{\top}}_{\text {second order }}) \\
& +\frac{f^{\prime \prime}(\tau)}{2}(\underbrace{\frac{2}{\sqrt{p}}\left\{\left(\psi_{i}+\psi_{j}\right)\left(t_{a}+t_{b}\right)\right\}_{i \neq j}+\frac{1}{p} \mathbf{J}\left(\left\{\left(t_{a}+t_{b}\right)^{2}\right\}_{a, b=1}^{2}+4 \mathbf{T}\right) \mathbf{J}^{\top}}_{\text {second order }})+\left(f(0)-f(\tau)+\tau f^{\prime}(\tau)\right) \mathbf{I}_{n},
\end{aligned}
$$

where we denote $\mathbf{E} \in \mathbb{R}^{n \times n}$ the (linear) Euclidean distance matrix.

- random vector $\boldsymbol{\psi}=\left\{\psi_{i}\right\}_{i=1}^{n} \in \mathbb{R}^{n}$ as,

$$
\begin{equation*}
\psi_{i} \equiv \mathbf{z}_{i}^{\top} \mathbf{C}_{a} \mathbf{z}_{i} / p-\operatorname{tr} \mathbf{C}_{a} / p, \quad \text { for } \quad \mathbf{x}_{i}=\boldsymbol{\mu}_{a}+\mathbf{C}_{a}^{\frac{1}{2}} \mathbf{z}_{i} \sim \mathcal{N}\left(\boldsymbol{\mu}_{a}, \mathbf{C}_{a}\right), \quad a \in\{1,2\} \tag{21}
\end{equation*}
$$

- random matrix $\mathbf{Z}=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right] \in \mathbb{R}^{p \times n}$ with $\mathbf{z}_{i} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{p}\right)$, and

$$
\begin{equation*}
\mathbf{J} \equiv\left[\mathbf{j}_{1}, \ldots \mathbf{j}_{K}\right] \in \mathbb{R}^{n \times 2} \tag{22}
\end{equation*}
$$

- and

$$
\begin{equation*}
\mathbf{t} \equiv\left\{t_{a}\right\}_{a=1}^{2}=\left\{\frac{1}{\sqrt{p}} \operatorname{tr} \mathbf{C}_{a}^{\circ}\right\}_{a=1}^{2} \in \mathbb{R}^{2}, \quad \mathbf{T}=\left\{T_{a b}\right\}_{a, b=1}^{2}=\left\{\frac{1}{p} \operatorname{tr} \mathbf{C}_{a} \mathbf{C}_{b}\right\}_{a, b=1}^{2} \in \mathbb{R}^{2 \times 2} \tag{23}
\end{equation*}
$$

with $\mathbf{j}_{a} \in \mathbb{R}^{n}$ the canonical vector of class \mathcal{C}_{a}, that is, $\left[\mathbf{j}_{a}\right]_{i}=\delta_{\mathbf{x}_{i} \in \mathcal{C}_{a}}$; and \mathbf{t}, \mathbf{T} functions of the data covariances $\mathbf{C}_{1}, \mathbf{C}_{2}$.

Proof

- expansion of "normalized" Euclidean distance:

$$
\begin{align*}
\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} & =\underbrace{\frac{2}{p} \operatorname{tr} \mathbf{C}^{\circ}}_{\equiv \tau=O(1)}+\underbrace{\psi_{i}+\psi_{j}+\frac{1}{p} \operatorname{tr}\left(\mathbf{C}_{a}^{\circ}+\mathbf{C}_{b}^{\circ}\right)-\frac{2}{p} \mathbf{z}_{i}^{\top} \mathbf{C}_{a}^{\frac{1}{2}} \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j}}_{O\left(p^{-1 / 2}\right)} \\
& +\underbrace{\frac{1}{p}\left\|\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right\|^{2}+\frac{2}{p}\left(\boldsymbol{\mu}_{a}-\boldsymbol{\mu}_{b}\right)^{\top}\left(\mathbf{C}_{a}^{\frac{1}{2}} \mathbf{z}_{i}-\mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j}\right)}_{O\left(p^{-1}\right)} \tag{24}
\end{align*}
$$

with $\mathbf{C}^{\circ} \equiv \frac{1}{2}\left(\mathbf{C}_{1}+\mathbf{C}_{2}\right)$ the centered covariance and $\mathbf{C}_{a}^{\circ} \equiv \mathbf{C}_{a}-\mathbf{C}^{\circ}$ so that $\left\|\mathbf{C}_{a}^{\circ}\right\|_{2}=\frac{1}{2}\|\Delta \mathbf{C}\|_{2}=O\left(p^{-1 / 2}\right)$, as well as $\psi_{i} \equiv \mathbf{z}_{i}^{\top} \mathbf{C}_{a} \mathbf{z}_{i} / p-\operatorname{tr} \mathbf{C}_{a} / p=O\left(p^{-1 / 2}\right)$.

- Taylor-expanding $[\mathbf{K}]_{i j}=f\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / p\right)$ around $f(\tau)$ that

$$
\begin{align*}
& {[\mathbf{K}]_{i j}=f\left(\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}\right)} \\
& =\underbrace{f(\tau)}_{\equiv K_{0}=O(1)}+\underbrace{f^{\prime}(\tau)\left(\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}-\tau\right)}_{\equiv K_{1}=O\left(p^{-1 / 2}\right)}+\underbrace{\frac{1}{2} f^{\prime \prime}(\tau)\left(\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}-\tau\right)^{2}}_{\equiv K_{2}=O\left(p^{-1}\right)}+\underbrace{O\left(p^{-3 / 2}\right)}_{\equiv K_{3}}, \tag{25}
\end{align*}
$$

Proof

- by $\|\mathbf{A}\|_{2} \leq n\|\mathbf{A}\|_{\infty}$ for matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we know that the higher-order terms $O\left(p^{-3 / 2}\right)$, when put in matrix form, are of spectral norm order $O\left(n^{-1 / 2}\right)$ and thus vanish asymptotically as $n, p \rightarrow \infty$.
(i) the leading order term is $K_{0}=f(\tau)=O(1)$ and, as in the case of Euclidean distance matrix in the linear case, does not depend on the data $\mathbf{x}_{i}, \mathbf{x}_{j}$ (or their classes); and
(ii) the second-order term K_{1} is proportional to $f^{\prime}(\tau)$, of order $O\left(p^{-1 / 2}\right)$, is the same as in the linear Euclidean distance matrix \mathbf{E} with $f(t)=t$; and
(iii) the third-order term K_{2} is proportional to $f^{\prime \prime}(\tau)$, of order $O\left(p^{-1}\right)$, contains quadratic function of $\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / p$ and therefore crucially differs from the linear $f(t)=t$ scenario.
- the (i, j) entry of the nonlinear kernel matrix \mathbf{K} takes a similar form as the linear Euclidean distance matrix \mathbf{E} (with $f(t)=t$), but with a few additional and nonlinear terms collected in K_{2} that are proportional to $f^{\prime \prime}(\tau)$.
Additional nonlinear terms: only the terms of order $O\left(n^{-1 / 2}\right)$ in $\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}-\tau$ will remain after taking the square, that is

$$
\begin{equation*}
\left(\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}-\tau\right)^{2}=\left(\psi_{i}+\psi_{j}+\frac{1}{p} \operatorname{tr}\left(\mathbf{C}_{a}^{\circ}+\mathbf{C}_{b}^{\circ}\right)-\frac{2}{p} \mathbf{z}_{i}^{\top} \mathbf{C}_{a}^{\frac{1}{2}} \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j}\right)^{2}+O\left(n^{-3 / 2}\right) \tag{26}
\end{equation*}
$$

Proof

This, in matrix form (with $i \neq j$ for the moment),

$$
\begin{align*}
\left\{\left(\frac{1}{p}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}-\tau\right)^{2}\right\}_{i \neq j} & =\left\{\left(\psi_{i}+\psi_{j}+\frac{1}{p} \operatorname{tr}\left(\mathbf{C}_{a}^{\circ}+\mathbf{C}_{b}^{\circ}\right)\right)^{2}+4\left(\frac{1}{p} \mathbf{z}_{i}^{\top} \mathbf{C}_{a}^{\frac{1}{2}} \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j}\right)^{2}\right\}_{i \neq j} \\
& -\left\{\frac{4}{p} \mathbf{z}_{i}^{\top} \mathbf{C}_{a}^{\frac{1}{2}} \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j}\left(\psi_{i}+\psi_{j}+\frac{1}{p} \operatorname{tr}\left(\mathbf{C}_{a}^{\circ}+\mathbf{C}_{b}^{\circ}\right)\right)\right\}_{i \neq j}+O_{\|\cdot\|}\left(n^{-1 / 2}\right) \\
& =\boldsymbol{\psi}^{2} \mathbf{1}_{n}^{\top}+\mathbf{1}_{n}\left(\boldsymbol{\psi}^{2}\right)^{\top}+2 \boldsymbol{\psi} \boldsymbol{\psi}^{\top}+\frac{2}{\sqrt{p}}\left\{\left(\psi_{i}+\psi_{j}\right)\left(t_{a}+t_{b}\right)\right\}_{i \neq j} \\
& +\frac{1}{p} \mathbf{J}\left(\left\{\left(t_{a}+t_{b}\right)^{2}\right\}_{a, b=1}^{2}+4 \mathbf{T}\right) \mathbf{J}^{\top}+O_{\|\cdot\|}\left(n^{-1 / 2}\right) \tag{27}
\end{align*}
$$

where we denote $\psi^{2} \equiv\left\{\psi_{i}^{2}\right\}_{i=1}^{n} \in \mathbb{R}^{n}, O_{\|\cdot\|}\left(n^{-1 / 2}\right)$ for matrices of spectral norm $(\|\cdot\|)$ order $O\left(n^{-1 / 2}\right)$, and

$$
\begin{align*}
\left\{\left(\frac{1}{p} \mathbf{z}_{i}^{\top} \mathbf{C}_{a}^{\frac{1}{2}} \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j}\right)^{2}\right\}_{i \neq j} & =\left\{\mathbb{E}\left(\frac{1}{p} \mathbf{z}_{i}^{\top} \mathbf{C}_{a}^{\frac{1}{2}} \mathbf{C}_{b}^{\frac{1}{2}} \mathbf{z}_{j}\right)^{2}\right\}_{i \neq j}+O_{\|\cdot\|}\left(n^{-1 / 2}\right) \\
& =\left\{\frac{1}{p^{2}} \operatorname{tr} \mathbf{C}_{a} \mathbf{C}_{b}\right\}_{i \neq j}+O_{\|\cdot\|}\left(n^{-1 / 2}\right) \equiv \frac{1}{p} \mathbf{J} \mathbf{T} \mathbf{J}^{\top}+O_{\|\cdot\|}\left(n^{-1 / 2}\right) \tag{28}
\end{align*}
$$

Discussions

- "linearizes" the nonlinear kernel matrix \mathbf{K} for smooth kernel function f, and see both linear terms \mathbf{E} (K_{0} and K_{1}) and higher-order nonlinear terms K_{2} in the linearization $\check{\mathbf{K}}$
(i) it follows from the derivations in Equation (27) and Equation (28) that the higher-order nonlinear terms in $\tilde{\mathbf{K}}$ are approximately (in a spectral norm sense) of low rank, for n, p large; and
(ii) as a consequence, the eigenspectrum of $\tilde{\mathbf{K}}$ (and thus of \mathbf{K} by Theorem 8) is like that of the Euclidean distance matrix \mathbf{E}, scaled by $f^{\prime}(\tau)$, and with a few additional spiked eigenvalues due to the higher-order nonlinear terms in K_{2}.

Theorem (Limiting spectrum of shift-invariant kernel matrices)

Under the same assumptions and notations of Theorem 8 , we have, for $\mathbf{C}_{1}=\mathbf{C}_{2}=\mathbf{I}_{p}, f^{\prime}(\tau) \neq 0$, and as $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, that the empirical spectral measure of the shift-invariant kernel matrix \mathbf{K} converges weakly and almost surely to the rescaled and shifted Marčenko-Pastur law - $2 f^{\prime}(\tau) \mu_{\mathrm{MP}, c^{-1}}+\kappa, \kappa=f(0)-f(\tau)+\tau f^{\prime}(\tau)$, which is the law of $-2 f^{\prime}(\tau) x+\kappa$ for x following a Marčenko-Pastur distribution with parameter c^{-1}, i.e., $x \sim \mu_{\mathrm{MP}, c^{-1}}$.

Numerical results

- $f_{1}(t)=\exp (-t / 2)$, that corresponds to the Gaussian kernel matrix
- versus $f_{2}(t)=a t^{2}+b t+c$, that corresponds to the polynomial kernel matrix, where the parameters a, b, and c are chosen such that

$$
\begin{equation*}
a=\frac{1}{8} \exp (-\tau / 2), \quad b=-\frac{1}{2} \exp (-\tau / 2)-\frac{\tau}{4} \exp (-\tau / 2), \quad c=\exp (-\tau / 2)-a \tau^{2}-b \tau \tag{29}
\end{equation*}
$$

- the two functions share the same values of $f(\tau), f^{\prime}(\tau), f^{\prime \prime}(\tau)$, i.e., they have the same local behavior per Taylor expansion

Figure: Different kernel function $f_{1}(t)=\exp (-t / 2)$ versus polynomial $f_{2}(t)$ given in Equation (29), with similar local behavior around $\tau=2$.

Numerical results

(a) Gaussian mixture data

(b) MNIST data (number 0 versus 1)

CLT-type inner-product kernel matrix: setup

Definition (CLT-type inner-product kernel)

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$ be n data vectors of dimension p, and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a possibly non-smooth nonlinear kernel function (that is square integrable to standard Gaussian measure). Then, we say that

$$
[\mathbf{K}]_{i j}= \begin{cases}f\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} / \sqrt{p}\right) / \sqrt{p} & \text { for } i \neq j \tag{30}\\ 0 & \text { for } i=j\end{cases}
$$

is a CLT-type inner-product kernel matrix for i.i.d. $\mathbf{x}_{i} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{p}\right)$. In this case, we denote, as in Equation Equation (14), the Hermite coefficients of f as

$$
\begin{equation*}
a_{0}=\mathbb{E}[f(\xi)], \quad a_{1}=\mathbb{E}[\xi f(\xi)], \quad v=\mathbb{E}\left[f^{2}(\xi)\right] \tag{31}
\end{equation*}
$$

for $\xi \sim \mathcal{N}(0,1)$. Without loss of generality, we assume the nonlinear kernel function f is "centered" with respect to standard Gaussian measure with $a_{0}=0$ (which can be achieved by studying $\tilde{f}(x)=f(x)-\mathbb{E}[f(\xi)]$).

Limiting spectrum of CLT-type inner-product kernel matrices

Theorem (Limiting spectrum of CLT-type inner-product kernel matrices, [CS13; DV13])

Let $p, n \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$ and assume $f: \mathbb{R} \rightarrow \mathbb{R}$ is square-integrable with respect to standard Gaussian measure with $a_{0}=\mathbb{E}_{\xi \sim \mathcal{N}(0,1)}[f(\xi)]=0$. Then, the empirical spectral measure of the inner-product kernel matrix \mathbf{K} defined in Theorem 10 converges weakly and almost surely to a probability measure μ defined by its Stieltjes transform $m(z)$, as the unique solution to

$$
\begin{equation*}
-\frac{1}{m(z)}=z+\frac{a_{1}^{2} m(z)}{c+a_{1} m(z)}+\frac{v-a_{1}^{2}}{c} m(z) \tag{32}
\end{equation*}
$$

for a_{1}, v the Hermite coefficients of f defined in Equation (31).

Theorem (A matrix version of asymptotic equivalent linear model)

Under the same settings above, when the limiting spectral measure is considered, the inner-product random kernel matrix \mathbf{K} admits the following asymptotic equivalent linear model,

$$
\begin{equation*}
\mathbf{K} \equiv f\left(\mathbf{X}^{\top} \mathbf{X} / \sqrt{p}\right) / \sqrt{p}-\operatorname{diag}(\cdot) \leftrightarrow \tilde{\mathbf{K}}_{f}=a_{1} \mathbf{X}^{\top} \mathbf{X} / p+\sqrt{v-a_{1}^{2}} \cdot \mathbf{Z} / \sqrt{p}-\operatorname{diag}(\cdot) \tag{33}
\end{equation*}
$$

where we use $\mathbf{A}-\operatorname{diag}(\mathbf{A})$ to get a matrix with zeros on its diagonal, and with its non-diagonal entries same as \mathbf{A}.

Remark

- As a consequence of the form of $m(z)$, the limiting spectral measure μ of \mathbf{K} is the free additive convolution (denoted as ' \boxplus ', see [VDN92; Bia98] for an introduction) between the Marčenko-Pastur law (denoted $\mu_{\mathrm{MP}, c}$ of shape parameter $c=\lim p / n$) and the so-called Wigner semicircle law (denoted μ_{SC}) as

$$
\begin{equation*}
\mu=a_{1}\left(\mu_{\mathrm{MP}, c^{-1}}-1\right) \boxplus \sqrt{\left(v-a_{1}^{2}\right) c^{-1}} \mu_{\mathrm{SC}} \tag{34}
\end{equation*}
$$

where $a_{1}\left(\mu_{\mathrm{MP}, c^{-1}}-1\right)$ is the law of $a_{1}(x-1)$ for $x \sim \mu_{\mathrm{MP}, c^{-1}}$ and $\sqrt{\left(v-a_{1}^{2}\right) c^{-1}} \mu_{\mathrm{SC}}$ the law of $\sqrt{\left(v-a_{1}^{2}\right) c^{-1}} \cdot x$ for $x \sim \mu_{\mathrm{SC}}$.

- intuitively, the Marčenko-Pastur law characterizes the linear part $\left(a_{1} x\right)$ of the nonlinear kernel function $f(x)$, while the higher-order "purely" nonlinear part $f(x)-a_{1} x$ contributes to the semicircle law.
- these two contributions are asymptotically "independent" so that the resulting limiting spectrum is the free additive convolution of each component.

Numerical results

Figure: Eigenvalues of inner-product kernel matrices \mathbf{K} defined in Equation (30) for different nonlinear kernel functions f_{1} and f_{2}, versus the limiting law given in Theorem 11, for $p=512, n=2048, f_{1}(t)=\tanh (t)$ versus quadratic $f_{2}(t)$ that share the same parameters of a_{1} and v.

Numerical results

Figure: Different kernel function $f_{1}(t)=\tanh (t)$ versus polynomial $f_{2}(t)=0.1171\left(t^{2}-1\right)+0.6057 t$ that lead to asymptotically similar kernel eigenspectral behavior. In particular, this figure is to be compared with Figure 4, where we observe a (Taylor-expansion) concentration point in the latter. Here, the two nonlinear functions f_{1} and f_{2} are not locally close (e.g., in the sense of Taylor expansion), but only share the same Hermite coefficients a_{1} and v.

Take-away messages of this section

- linearization of nonlinear kernel matrices \mathbf{K}
(1) LLN-type nonlinear kernel matrices: Taylor expansion
(2) CLT-type nonlinear kernel matrices: Orthogonal polynomial
- local versus global perspective of the non-linearity

RMT for Machine Learning!

Random matrix theory (RMT) for machine learning:

- change of intuition from small to large dimensional learning paradigm!
- better understanding of existing methods: why they work if they do, and what the issue is if they do not
- improved novel methods with performance guarantee!

- book "Random Matrix Methods for Machine Learning"
- by Romain Couillet and Zhenyu Liao
- Cambridge University Press, 2022
- a pre-production version of the book and exercise solutions at https://zhenyu-liao.github.io/book/
- MATLAB and Python codes to reproduce all figures at https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q \& A?

