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Two ways to linearize nonlinear models

Example (Nonlinear objects in two scaling regimes)

Let x ∈ Rn be a random vector so that
√

nx has i.i.d. standard Gaussian entries with zero mean and unit
variance, and y ∈ Rn be a deterministic vector of unit norm ∥y∥ = 1; and consider the following two families
of nonlinear objects of interest with a nonlinear function f acting on different regimes:

(i) LLN regime: f (∥x∥2) and f (xTy); and

(ii) CLT regime: f (
√

n(∥x∥2 − 1)) and f (
√

n · xTy).

The two regimes follow from the two well-known convergence results:

(i) law of large numbers (LLN): ∥x∥2 → E[xTx] = 1 and xTy → E[xTy] = 0 almost surely as n → ∞; and

(ii) central limit theorem (CLT):
√

n(∥x∥2 − 1) → N (0, 2) and
√

n · xTy → N (0, 1) in law as n → ∞.

∥x∥2 ≃ 1 +N (0, 2)/
√

n, xTy ≃ 0 +N (0, 1)/
√

n, (1)

for n large.
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Numerical illustration
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(a) LLN regime
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(b) CLT regime

Figure: Illustrations of random variables in LLN (left) and CLT (right) regime, with n = 500.
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Two different linearization techniques

LLN regime f (∥x∥2) and f (xTy) versus CLT regime f (
√

n(∥x∥2 − 1)) and f (
√

n · xTy)

two “scalings” are different:
▶ for objects in the LLN regime, the nonlinear function f applies on a close-to-deterministic quantity, in the

sense that ∥x∥2 = 1 + O(n−1/2) and xTy = 0 + O(n−1/2) with high probability for n large, due to the
dominant LLN behavior; and

▶ for objects in the CLT regime, the nonlinear f applies on a normally distributed random variable (as a
consequence of the CLT) that is not close to a deterministic quantity

▶ two different linearization approaches—via Taylor expansion and via orthogonal polynomial

Table: Comparison between two different linearization approaches.

Scaling law LLN type CLT type

Object of interest f (x) for (almost) deterministic
x = τ + o(1) f (x) for random x, e.g., x ∼ N (0, 1)

Linearization technique Taylor expansion Orthogonal polynomial

Smoothness of f Locally smooth f Possibly non-smooth f
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Taylor expansion

▶ Taylor expansion: local linearization of a smooth nonlinear function

Theorem (Taylor’s theorem)

Let f : R → R be a function that is at least k times continuously differentiable in a neighborhood of a given point τ ∈ R.
Then, there exists a function hk : R → R such that

f (x) = f (τ) + f ′(x − τ) +
f ′′(τ)

2
(x − τ)2 + . . . +

f (k)(τ)
k!

(x − τ)k + hk(x)(x − τ)k, (2)

with limx→τ hk(x) = 0 so that hk(x)(x − τ)k = o(|x − τ|k) as x → τ.

Working assumptions:

(i) the nonlinear function f under study should be smooth, at least in the neighborhood of the point τ of
interest, so that the derivatives f ′(τ), f ′′(τ), . . . make sense; and

(ii) the variable of interest x is sufficiently close to (or, concentrate around when being random) the point τ so
that the higher orders terms are neglectable
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Taylor expansion in the LLN regime

Proposition (Taylor expansion in the LLN regime)

For random variable x = ∥x∥2 with
√

nx ∈ Rn having i.i.d. standard Gaussian entries, in the LLN regime as in Item (i)
of Theorem 1, it follows from LLN and CLT that ∥x∥2 − 1 = O(n−1/2) with high probability for n large, so that one can
apply Theorem 2 to write

f (∥x∥2) = f (1) + f ′(1) (∥x∥2 − 1)︸ ︷︷ ︸
O(n−1/2)

+
1
2

f ′′(1) (∥x∥2 − 1)2︸ ︷︷ ︸
O(n−1)

+O(n−3/2), (3)

with high probability; and similarly

f (xTy) = f (0) + f ′(0) xTy︸︷︷︸
O(n−1/2)

+
1
2

f ′′(0) (xTy)2︸ ︷︷ ︸
O(n−1)

+O(n−3/2), (4)

again as a consequence of
√

n · xTy d−→ N (0, 1) in distribution as n → ∞, where the orders O(n−ℓ) hold with high
probability for n large.
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Smoothness assumption

▶ smoothness assumption in Taylor theorem can be relaxed
▶ for a non-smooth nonlinear f , can evaluate expected behavior E[f (x)] of f (x), for random x
▶ while the function f may not be differentiable everywhere (and in particular, in the neighborhood x = τ

of interest), it can still have almost everywhere weak derivative f ′ such that∫
f ′(t)µ(dt) = E[f ′(x)] < ∞, (5)

exists, for random variable x having law µ.
▶ concrete example in the case of standard Gaussian x, known in the literature as the Stein’s lemma.

Lemma (Stein’s lemma)

For standard Gaussian random variable x ∼ N (0, 1), we have that

E[f ′(x)] = E[xf (x)], (6)

as long as the right-hand-side term is finite.
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Concentration assumption

▶ “closeness” or “concentration” assumption, this is a more intrinsic limitation of the Taylor expansion
approach

▶ assess only the local behavior of the nonlinear function f (x) around some x = τ

▶ otherwise, higher-orders terms cannot be ignored (at least with high probability)
▶ in the CLT regime f (

√
n(∥x∥2 − 1)) and f (

√
n · xTy), f is applied on (asymptotically) Gaussian random

variables that, in particular, do not “concentrate” around any deterministic quantity

we discuss next alternative orthogonal polynomial approach that allows one to characterize the behavior of
the nonlinear function E[f (x)] of random variable x that, in particular, does not strongly concentrate around a
point of interest τ, as in the case of CLT regime
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Motivation for orthogonal polynomial

▶ nonlinear function f applied on a Gaussian random variable x ∼ N (0, 1) cannot be linearized using
Taylor expansion technique

▶ orthogonal polynomial approach can be used to “linearize” E[f (x)] for random and non-concentrated x,
say x ∼ N (0, 1)

▶ a functional perspective: For a random variable x of some law µ, the expectation E[f (x)] of the nonlinear
transformation f (x) for some nonlinear function f writes

E[f (x)] =
∫

f (t)µ(dt), (7)

for some f living in some space of functions (or, some infinite-dimensional functional space)
▶ Euclidean space: canonical vectors e1, . . . , en form an orthonormal basis of Rn, so that any vector x living

in the Euclidean space Rn can be decomposed as

x =
n

∑
i=1

(xTei)ei =
n

∑
i=1

xiei, (8)

with the inner product xTei = xi the ith coordinate of x
▶ a decomposition of f living in some space of functions exists: such f can be decomposed into the sum of

“orthonormal” basis functions weighted by the projection of f onto these basis functions
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Orthogonal polynomial

Definition (Orthogonal polynomial)

For a probability measure µ, define the inner product

⟨f , g⟩ ≡
∫

f (x)g(x)µ(dx) = E[f (x)g(x)], (9)

for x ∼ µ, we say {Pℓ(x), ℓ ≥ 0} is a family of orthogonal polynomial with respect to such inner product,
obtained by the Gram-Schmidt procedure on the monomials {1, x, x2, . . .}, with P0(x) = 1, Pℓ is a polynomial
function of degree ℓ and satisfies 〈

Pℓ1 , Pℓ2

〉
= E[Pℓ1 (x)Pℓ2 (x)] = δℓ1=ℓ2 . (10)

▶ if the family of orthogonal polynomial {Pℓ(x)}∞
ℓ=0 forms a orthonormal basis of L2(µ), the set of

square-integrable functions with respect to ⟨·, ·⟩, any function f ∈ L2(µ) can be formally expanded f

f (x) ∼ ∑∞
ℓ=0 aℓPℓ(x), aℓ =

∫
f (x)Pℓ(x)µ(dx) (11)

where “f ∼ ∑∞
l=0 aℓPℓ” denotes that ∥f − ∑L

ℓ=0 aℓPℓ∥µ → 0 as L → ∞ with ∥f∥2
µ = ⟨f , f ⟩, or equivalently∫ (

f (x)− ∑L
ℓ=0 aℓPℓ(x)

)2
µ(dx) = E

[(
f (x)− ∑L

ℓ=0 aℓPℓ(x)
)2

]
→ 0.
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Hermite polynomial

Theorem (Hermite polynomial decomposition)

For x ∈ R, the ℓth order normalized Hermite polynomial, denoted Pℓ(x), is given by given by

P0(x) = 1, and Pℓ(x) =
(−1)ℓ√

ℓ!
e

x2
2

dℓ

dxℓ

(
e−

x2
2

)
, for ℓ ≥ 1. (12)

and the family of (normalized) Hermite polynomials
(i) being orthogonal polynomials and (as the name implies) are orthonormal with respect the standard Gaussian

measure, in the sense that
∫

Pm(x)Pn(x)µ(dx) = δnm, for µ(dx) = 1√
2π

e−
x2
2 dx the standard Gaussian measure

(ii) form an orthonormal basis of the Hilbert space (denoted L2(µ)) consist of all square-integrable functions with
respect to the inner product ⟨f , g⟩ ≡

∫
f (x)g(x)µ(dx), and that one can formally expand any f ∈ L2(µ) as

f (ξ) ∼ ∑∞
ℓ=0 aℓ,f Pℓ(ξ), aℓ,f =

∫
f (x)Pℓ(x)µ(dx) = E[f (ξ)Pℓ(x)], (13)

for standard Gaussian random variable ξ ∼ N (0, 1). We have

a0,f = Eξ∼N (0,1)[f (ξ)], a1,f = E[ξf (ξ)],
√

2a2,f = E[ξ2f (ξ)]− a0,f , νf = E[f 2(ξ)] = ∑
ℓ=0

a2
ℓ,f . (14)
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Illustration of Hermite polynomial
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Figure: Illustration of the first four Hermite polynomials as in Theorem 5 (left) and of the first- and second-order Hermite
polynomial (P1 and P2) weighted by the Gaussian mixture µ(dx) = exp(−x2/2)/

√
2π (right).
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Different scalings, Taylor expansion versus orthogonal polynomial

For random vector x ∈ Rn such that
√

nx has i.i.d. standard Gaussian entries and deterministic y ∈ Rn of unit
norm ∥y∥2 = 1, xTy ∼ N (0, n−1) so that

ξLLN ≡ xTy ≃ 0 + O(n−1/2), ξCLT ≡
√

n · xTy ∼ N (0, 1). (15)

We are interested in the behavior of f (ξLLN) and f (ξCLT):

(i) in the LLN regime: by Taylor expansion that any pair of smooth function f , g with f (0) = g(0) satisfies

f (ξLLN) = g(ξLLN) + O(n−1/2), (16)

with high probability for n large, so that the two random variables f (ξLLN) and g(ξLLN) are close as long
as the two nonlinear functions f and g coincide at 0; and

(ii) in the CLT regime: by Hermite polynomial decomposition that for f , g having the same zeroth-order

Hermite coefficient a0 = E[f (ξ)] = E[g(ξ)] with ξ ∼ N (0, 1),

E[f (ξCLT)] = E[g(ξCLT)]. (17)

▶ while this is by no means surprising (by definition), orthogonal polynomials applies other nonlinear
forms beyond the simple expectation E[f (ξ)], to nonlinear random matrix model
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Example: behaviors of tanh in two scaling regimes

Example (Nonlinear behaviors of tanh in two scaling regimes)

The function f (t) = tanh(t) is “close” to different quadratic functions in different regimes of interest:

(i) in the LLN regime, we have tanh(ξLLN) ≃ g(ξLLN) (so in particular E[tanh(ξLLN)] ≃ E[g(ξLLN)]) with
g(t) = t2/4 as a consequence of tanh(x) = g(x) = 0; and

(ii) in the CLT regime, we have E[tanh(ξLLN)] = E[g(ξLLN)] in expectation with now g(x) = x2 − 1 as a
consequence of the fact that their zeroth-order Hermite a0 = 0.
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Figure: Different behavior of nonlinear f (ξLLN) and f (ξCLT) for f (t) = tanh(t) in the LLN and CLT regime, with n = 500. We
have in particular tanh(ξLLN) ≃ g(ξLLN) in the LLN regime and E[tanh(ξCLT)] = E[g(ξCLT)] in the CLT regime with
different g.
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Take-away of this section

▶ two linearization techniques to linearize nonlinear objects

1 Taylor expansion: for smooth and concentrated objects (e.g., in the LLN regime)
2 Orthogonal polynomial approach: for non-smooth and non-concentrated objects (e.g., in the CLT regime)

▶ example: tanh(ξ) for ξ = ξLLN or ξCLT leads to different linearizations
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Kernel matrices and their linearization

Kernel matrices: for data vectors x1, . . . , xn ∈ Rp, K = {κ(xi, xj)}i,j=1 for some κ : Rp × Rp → R describe the
“similarity” between data vectors.

Table: Commonly used kernels and the corresponding linearization techniques.

Family of kernel Commonly used examples Regime Linearization technique

LLN-type distance-based kernel
κ(xi, xj) = f (∥xi − xj∥2/p)

Gaussian exp
(
−∥xi − xj∥2/(2σ2p)

)
Laplacian exp

(
−∥xi − xj∥/(σ

√
p)
)

for some σ > 0
as well as Matérn kernel

LLN Taylor expansion

LLN-type inner-product kernel Polynomial (xT
i xj/p)d for some d ≥ 1

Sigmoid tanh(βxT
i xj/p) for some β > 0

LLN Taylor expansion

CLT-type inner-product kernel Polynomial (xT
i xj/

√
p)d for some d ≥ 1

Sigmoid tanh(βxT
i xj/

√
p) for some β > 0

CLT Orthogonal polynomial
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LLN-type distance-based kernel: setup

▶ non-trivial classification of binary GMM (C1 : x ∼ N (µ1, C1) versus C2 : x ∼ N (µ2, C2))

∥∆µ∥ = ∥µ1 − µ2∥ = Θ(1), ∥∆C∥2 = ∥C1 − C2∥2 = Θ(p−1/2), (18)
▶ data vectors x1, . . . , xn ∈ Rp extracted from a few-class (say two-class) mixture model tend to be (in the

first order, and as a consequence of the LNNs) at roughly equal Euclidean distance from one another,
irrespective of their corresponding class. Roughly said, in this non-trivial setting, we have

max
1≤i ̸=j≤n

{
1
p
∥xi − xj∥2 − τ

}
→ 0 (19)

holds for some constant τ > 0 as n, p → ∞, independently of the classes, and thus of the distributions
(being the same or different) of xi and xj.

Definition (LLN-type shift-invariant kernel)

For n data vectors x1, . . . , xn ∈ Rp of dimension p, we say, for smooth nonlinear kernel function f : R → R that

[K]ij = f
(
∥xi − xj∥2/p

)
∈ Rn×n, (20)

is a shift-invariant kernel matrix of the data X = [x1, . . . , xn] ∈ Rp×n. In particular, one gets the popular
Gaussian kernel with f (t) = exp(−t/2).
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LLN-type distance-based kernel matrices via Taylor expansion

Theorem (LLN-type shift-invariant kernel matrices via Taylor expansion, [CBG16])

Consider the non-trivial GMM classification, let f : R → R be at least three-times differentiable in a neighborhood of
τ = 2 tr C◦/p = tr(C1 + C2)/p. For a shift-invariant kernel matrix K, and K̃ defined below, as p, n → ∞ with
p/n → c ∈ (0, ∞) we have that ∥K − K̃∥2 = O(n−1/2). Here, K̃ is defined as

K̃ =
(
f (τ)− τf ′(τ)

)
1n1T

n︸ ︷︷ ︸
zeroth order

+f ′(τ) E︸︷︷︸
first order

+
f ′′(τ)

2

ψ21T
n + 1n(ψ

2)T + 2ψψT︸ ︷︷ ︸
second order



+
f ′′(τ)

2

 2
√

p
{(ψi + ψj)(ta + tb)}i ̸=j +

1
p

J
(
{(ta + tb)

2}2
a,b=1 + 4T

)
JT︸ ︷︷ ︸

second order

+
(
f (0)− f (τ) + τf ′(τ)

)
In,

where we denote E ∈ Rn×n the (linear) Euclidean distance matrix.
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▶ random vector ψ = {ψi}n
i=1 ∈ Rn as,

ψi ≡ zT
i Cazi/p − tr Ca/p, for xi = µa + C

1
2
a zi ∼ N (µa, Ca), a ∈ {1, 2}, (21)

▶ random matrix Z = [z1, . . . , zn] ∈ Rp×n with zi ∼ N (0, Ip), and

J ≡
[
j1, . . . jK

]
∈ Rn×2, (22)

▶ and

t ≡ {ta}2
a=1 =

{
1
√

p
tr C◦

a

}2

a=1
∈ R2, T = {Tab}2

a,b=1 =

{
1
p

tr CaCb

}2

a,b=1
∈ R2×2, (23)

with ja ∈ Rn the canonical vector of class Ca, that is, [ja]i = δxi∈Ca ; and t, T functions of the data
covariances C1, C2.
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Proof

▶ expansion of “normalized” Euclidean distance:

1
p
∥xi − xj∥2 =

2
p

tr C◦︸ ︷︷ ︸
≡τ=O(1)

+ψi + ψj +
1
p

tr(C◦
a + C◦

b )−
2
p

zT
i C

1
2
a C

1
2
b zj︸ ︷︷ ︸

O(p−1/2)

+
1
p
∥µa − µb∥

2 +
2
p
(µa − µb)

T(C
1
2
a zi − C

1
2
b zj)︸ ︷︷ ︸

O(p−1)

, (24)

with C◦ ≡ 1
2 (C1 + C2) the centered covariance and C◦

a ≡ Ca − C◦ so that ∥C◦
a∥2 = 1

2∥∆C∥2 = O(p−1/2),
as well as ψi ≡ zT

i Cazi/p − tr Ca/p = O(p−1/2).
▶ Taylor-expanding [K]ij = f (∥xi − xj∥2/p) around f (τ) that

[K]ij = f
(

1
p
∥xi − xj∥2

)
= f (τ)︸︷︷︸

≡K0=O(1)

+ f ′(τ)
(

1
p
∥xi − xj∥2 − τ

)
︸ ︷︷ ︸

≡K1=O(p−1/2)

+
1
2

f ′′(τ)
(

1
p
∥xi − xj∥2 − τ

)2

︸ ︷︷ ︸
≡K2=O(p−1)

+O(p−3/2)︸ ︷︷ ︸
≡K3

, (25)
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Proof

▶ by ∥A∥2 ≤ n∥A∥∞ for matrix A ∈ Rn×n, we know that the higher-order terms O(p−3/2), when put in
matrix form, are of spectral norm order O(n−1/2) and thus vanish asymptotically as n, p → ∞.

(i) the leading order term is K0 = f (τ) = O(1) and, as in the case of Euclidean distance matrix in the linear
case, does not depend on the data xi, xj (or their classes); and

(ii) the second-order term K1 is proportional to f ′(τ), of order O(p−1/2), is the same as in the linear
Euclidean distance matrix E with f (t) = t; and

(iii) the third-order term K2 is proportional to f ′′(τ), of order O(p−1), contains quadratic function of
∥xi − xj∥2/p and therefore crucially differs from the linear f (t) = t scenario.

▶ the (i, j) entry of the nonlinear kernel matrix K takes a similar form as the linear Euclidean distance
matrix E (with f (t) = t), but with a few additional and nonlinear terms collected in K2 that are
proportional to f ′′(τ).

Additional nonlinear terms: only the terms of order O(n−1/2) in 1
p∥xi − xj∥2 − τ will remain after taking the

square, that is (
1
p
∥xi − xj∥2 − τ

)2
=

(
ψi + ψj +

1
p

tr(C◦
a + C◦

b )−
2
p

zT
i C

1
2
a C

1
2
b zj

)2
+ O(n−3/2) (26)
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Proof

This, in matrix form (with i ̸= j for the moment),{(
1
p
∥xi − xj∥2 − τ

)2
}

i ̸=j

=

{(
ψi + ψj +

1
p

tr(C◦
a + C◦

b )

)2
+ 4

(
1
p

zT
i C

1
2
a C

1
2
b zj

)2
}

i ̸=j

−
{

4
p

zT
i C

1
2
a C

1
2
b zj

(
ψi + ψj +

1
p

tr(C◦
a + C◦

b )

)}
i ̸=j

+ O∥·∥(n
−1/2)

= ψ21T
n + 1n(ψ

2)T + 2ψψT +
2
√

p
{(ψi + ψj)(ta + tb)}i ̸=j

+
1
p

J
(
{(ta + tb)

2}2
a,b=1 + 4T

)
JT + O∥·∥(n

−1/2), (27)

where we denote ψ2 ≡ {ψ2
i }

n
i=1 ∈ Rn, O∥·∥(n

−1/2) for matrices of spectral norm (∥ · ∥) order O(n−1/2), and{(
1
p

zT
i C

1
2
a C

1
2
b zj

)2
}

i ̸=j

=

{
E

(
1
p

zT
i C

1
2
a C

1
2
b zj

)2
}

i ̸=j

+ O∥·∥(n
−1/2)

=

{
1
p2 tr CaCb

}
i ̸=j

+ O∥·∥(n
−1/2) ≡ 1

p
JTJT + O∥·∥(n

−1/2), (28)

Z. Liao (EIC, HUST) RMT4ML July 4th, 2024 29 / 40



Discussions

▶ “linearizes” the nonlinear kernel matrix K for smooth kernel function f , and see both linear terms E (K0
and K1) and higher-order nonlinear terms K2 in the linearization K̃

(i) it follows from the derivations in Equation (27) and Equation (28) that the higher-order nonlinear terms
in K̃ are approximately (in a spectral norm sense) of low rank, for n, p large; and

(ii) as a consequence, the eigenspectrum of K̃ (and thus of K by Theorem 8) is like that of the Euclidean
distance matrix E, scaled by f ′(τ), and with a few additional spiked eigenvalues due to the higher-order
nonlinear terms in K2.

Theorem (Limiting spectrum of shift-invariant kernel matrices)

Under the same assumptions and notations of Theorem 8, we have, for C1 = C2 = Ip, f ′(τ) ̸= 0, and as p, n → ∞ with
p/n → c ∈ (0, ∞), that the empirical spectral measure of the shift-invariant kernel matrix K converges weakly and
almost surely to the rescaled and shifted Marc̆enko–Pastur law −2f ′(τ)µMP,c−1 + κ, κ = f (0)− f (τ) + τf ′(τ), which
is the law of −2f ′(τ)x + κ for x following a Marc̆enko–Pastur distribution with parameter c−1, i.e., x ∼ µMP,c−1 .
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Numerical results

▶ f1(t) = exp(−t/2), that corresponds to the Gaussian kernel matrix
▶ versus f2(t) = at2 + bt + c, that corresponds to the polynomial kernel matrix, where the parameters a, b,

and c are chosen such that

a =
1
8

exp(−τ/2), b = −1
2

exp(−τ/2)− τ

4
exp(−τ/2), c = exp(−τ/2)− aτ2 − bτ. (29)

▶ the two functions share the same values of f (τ), f ′(τ), f ′′(τ), i.e., they have the same local behavior per
Taylor expansion

−2 0 τ 4 6

0

1

2

Figure: Different kernel function f1(t) = exp(−t/2) versus polynomial f2(t) given in Equation (29), with similar local
behavior around τ = 2.
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Numerical results
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(b) MNIST data (number 0 versus 1)
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CLT-type inner-product kernel matrix: setup

Definition (CLT-type inner-product kernel)

Let x1, . . . , xn ∈ Rp be n data vectors of dimension p, and let f : R → R be a possibly non-smooth nonlinear
kernel function (that is square integrable to standard Gaussian measure). Then, we say that

[K]ij =

{
f (xT

i xj/
√

p)/
√

p for i ̸= j
0 for i = j

(30)

is a CLT-type inner-product kernel matrix for i.i.d. xi ∼ N (0, Ip). In this case, we denote, as in
Equation Equation (14), the Hermite coefficients of f as

a0 = E[f (ξ)], a1 = E[ξf (ξ)], ν = E[f 2(ξ)], (31)

for ξ ∼ N (0, 1). Without loss of generality, we assume the nonlinear kernel function f is “centered” with
respect to standard Gaussian measure with a0 = 0 (which can be achieved by studying f̃ (x) = f (x)− E[f (ξ)]).
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Limiting spectrum of CLT-type inner-product kernel matrices

Theorem (Limiting spectrum of CLT-type inner-product kernel matrices, [CS13; DV13])

Let p, n → ∞ with p/n → c ∈ (0, ∞) and assume f : R → R is square-integrable with respect to standard Gaussian
measure with a0 = Eξ∼N (0,1)[f (ξ)] = 0. Then, the empirical spectral measure of the inner-product kernel matrix K
defined in Theorem 10 converges weakly and almost surely to a probability measure µ defined by its Stieltjes transform
m(z), as the unique solution to

− 1
m(z)

= z +
a2

1m(z)
c + a1m(z)

+
ν − a2

1
c

m(z), (32)

for a1, ν the Hermite coefficients of f defined in Equation (31).

Theorem (A matrix version of asymptotic equivalent linear model)

Under the same settings above, when the limiting spectral measure is considered, the inner-product random kernel
matrix K admits the following asymptotic equivalent linear model,

K ≡ f (XTX/
√

p)/
√

p − diag(·) ↔ K̃f = a1XTX/p +
√

ν − a2
1 · Z/

√
p − diag(·), (33)

where we use A − diag(A) to get a matrix with zeros on its diagonal, and with its non-diagonal entries same as A.
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Remark

▶ As a consequence of the form of m(z), the limiting spectral measure µ of K is the free additive
convolution (denoted as ‘⊞’, see [VDN92; Bia98] for an introduction) between the Marc̆enko–Pastur law
(denoted µMP,c of shape parameter c = lim p/n) and the so-called Wigner semicircle law (denoted µSC) as

µ = a1(µMP,c−1 − 1)⊞
√
(ν − a2

1)c
−1µSC, (34)

where a1(µMP,c−1 − 1) is the law of a1(x − 1) for x ∼ µMP,c−1 and
√
(ν − a2

1)c
−1µSC the law of√

(ν − a2
1)c

−1 · x for x ∼ µSC.

▶ intuitively, the Marc̆enko–Pastur law characterizes the linear part (a1x) of the nonlinear kernel function
f (x), while the higher-order “purely” nonlinear part f (x)− a1x contributes to the semicircle law.

▶ these two contributions are asymptotically “independent” so that the resulting limiting spectrum is the
free additive convolution of each component.
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Numerical results
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(a) f1(t) = tanh(t)
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(b) quadratic f2(t) = 0.1171(t2 − 1) + 0.6057t

Figure: Eigenvalues of inner-product kernel matrices K defined in Equation (30) for different nonlinear kernel functions f1
and f2, versus the limiting law given in Theorem 11, for p = 512, n = 2 048, f1(t) = tanh(t) versus quadratic f2(t) that share
the same parameters of a1 and ν.
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Numerical results
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Figure: Different kernel function f1(t) = tanh(t) versus polynomial f2(t) = 0.1171(t2 − 1) + 0.6057t that lead to
asymptotically similar kernel eigenspectral behavior. In particular, this figure is to be compared with Figure 4, where we
observe a (Taylor-expansion) concentration point in the latter. Here, the two nonlinear functions f1 and f2 are not locally
close (e.g., in the sense of Taylor expansion), but only share the same Hermite coefficients a1 and ν.
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Take-away messages of this section

▶ linearization of nonlinear kernel matrices K

1 LLN-type nonlinear kernel matrices: Taylor expansion
2 CLT-type nonlinear kernel matrices: Orthogonal polynomial

▶ local versus global perspective of the non-linearity
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RMT for Machine Learning!

Random matrix theory (RMT) for machine learning:
▶ change of intuition from small to large dimensional learning paradigm!
▶ better understanding of existing methods: why they work if they do, and what the issue is if they do not
▶ improved novel methods with performance guarantee!

▶ book “Random Matrix Methods for Machine Learning”
▶ by Romain Couillet and Zhenyu Liao
▶ Cambridge University Press, 2022
▶ a pre-production version of the book and exercise

solutions at https://zhenyu-liao.github.io/book/
▶ MATLAB and Python codes to reproduce all figures at

https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?
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