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Motivation: do we (still) need math and theory in modern ML?

▶ Math has helped a lot in the past: from Kepler’s laws of
planetary motion to Newton and calculus

▶ AI is doing great: there is a bit math (in defining problems
and computing), but hardly analytic

▶ for modern AI: intuition, data, and computation seem the
most important, NOT analytic math theory

▶ In this talk, convey that math theory is still important in the
design of large-scale ML models, with the example of
Random Matrix Theory (RMT) for large and deep neural
networks (DNNs)

Figure: Portrait of Newton at 46, 1689.
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Scaling of sum of independent random variables: LLN and CLT

▶ Strong law of large numbers (LLN): for a sequence of i.i.d. random variables x1, . . . , xn with the same
expectation E[xi] = µ < ∞, we have

1
n

n

∑
i=1

xi → µ, (1)

almost surely as n → ∞.
▶ Central limit theorem (CLT): for a sequence of i.i.d. random variables x1, . . . , xn with the same

expectation E[xi] = µ and variance Var[xi] = σ2 < ∞, we have

√
n

(
1
n

n

∑
i=1

(xi − µ)

)
→ N (0, σ2), (2)

in distribution as n → ∞.

Consequences of LLN and CLT

For i.i.d. random variables x1, . . . , xn of zero mean and unit variance, e.g., xi ∼ N (0, 1), we have, for n large,
the following scaling laws for the sum 1

n ∑n
i=1 xi:

▶ 1
n ∑n

i=1 xi ≃ 0 by LLN; and

▶ 1√
n ∑n

i=1 xi = O(1) with high probability by CLT.
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We have known this a bit in the context of DNN

▶ DNNs involve linear (i.e., weights) and nonlinear (i.e.,
activation) transformation

▶ Xavier initialization [GB10]: for sigmoid-type activation,
randomly initialize a weight matrix W ∈ RN×N having N
neurons as

[W]ij ∼ N (0, N−1). (3)

torch.nn.init.xavier_normal_

▶ He initialization [He+15]: for ReLU-type activation,
randomly initialize a weight matrix W ∈ RN×N having N
neurons as

[W]ij ∼ N (0, 2N−1). (4)

torch.nn.init.kaiming_normal_

▶ derivation based on forward propagation
▶ similar considerations for CNN, RNN, ResNet, etc.

Figure: Numerical results in [He+15] for
moderately deep NN.
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Let us say more on the appropriate scaling of large and deep NNs

Setup and Notations:
▶ supervised training of an L-layer multi-layer perceptrons (MLP) with full batch gradient flow

▶ input data x1, . . . , xn ∈ Rp, denote pre-activation vectors h(ℓ)
i ∈ RN at layer ℓ ∈ {1, . . . , L} as

h(1)
i =

1
Na1

√
p

W(1)xi, h(ℓ)
i =

1
Naℓ

W(ℓ)σℓ

(
h(ℓ−1)

i

)
i ∈ {1, . . . , n} (5)

▶ scalar output fθ(xi) =
1

γNaL

(
w(L)

)T
σℓ

(
h(ℓ−1)

i

)
for trainable parameters θ = {W(1), . . . , w(L)}.

▶ for a training set {(xi, yi)}n
i=1, train the above DNN on the loss function L(θ) = 1

n ∑n
i=1 L(fθ(xi), yi), with

full-batch gradient flow

dθ

dt
= −η

∂L(θ)
∂θ

= η
1
n

n

∑
i=1

∆i
∂fθ(xi)

∂θ
, ∆i ≡ − ∂L(fθ(xi), yi)

∂fθ(xi)
, (6)

learning rate η = η0γ2N−c and feature learning parameter γ = γ0Nd for η0 = Θ(1) and γ0 = Θ(1)

▶ initialization scaling scheme: w(L)
i ∼ N (0, N−bL ), W(ℓ)

ij ∼ N (0, N−bℓ ) and W(1)
ij ∼ N (0, N−b1 )
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Appropriate scaling of large and deep NNs

Settings:

▶ scaling of NN model: h(1)
i = 1

Na1
√

p W(1)xi, h(ℓ)
i = 1

Naℓ W(ℓ)σℓ

(
h(ℓ−1)

i

)
, fθ(xi) =

1
γNaL

(
w(L)

)T
σℓ

(
h(ℓ−1)

i

)
▶ initialization scaling: w(L)

i ∼ N (0, N−bL ), W(ℓ)
ij ∼ N (0, N−bℓ ), and W(1)

ij ∼ N (0, N−b1 )

▶ trained under full-batch gradient flow: dθ
dt = −η

∂L(θ)
∂θ = η 1

n ∑n
i=1 ∆i

∂fθ(xi)
∂θ of learning rate η = η0γ2N−c

and feature learning parameter γ = γ0Nd for η0 = Θ(1) and γ0 = Θ(1)

Objective: for large p, N, achieve appropriate scaling on (a, b, c, d) so that
1 pre-activations h(ℓ) have Θ(1) entries:

− computing the 1st and 2nd moments of h(1): E[h(1)
i ] = 0, E[h(1)

i (h(1)
j )T]kq = δkqN−(2a1+b1) · 1

p xT
i xj; then of h(ℓ)

− we get 2a1 + b1 = 1 and similarly 2aℓ + bℓ = 1, ℓ ∈ {1, . . . , L}
2 network prediction evolve in Θ(1) time:

− define feature/conjugate kernel as the Gram matrix at layer ℓ as Φ(ℓ) ∈ Rn×n, Φ(ℓ)
ij = 1

N σ(h(ℓ)
i )Tσ(h(ℓ)

j )

− under the condition of Θ(1) pre-activation, it can be shown that in the N → ∞ limit that the pre-activations are
Gaussian process of zero mean, and covariance given by the (expected) conjugate kernel

− for ∂tfθ(·) = Θ(1), we get 2a1 + c = 0 and 2aℓ + c = 1, ℓ ∈ {2, . . . , L}
− include classical “mean-field” parameterization (with c = 0, a1 = 0, and aℓ = 1/2) as special case
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Appropriate scaling of large and deep NNs

Settings:

▶ scaling of NN model: h(1)
i = 1

Na1
√

p W(1)xi, h(ℓ)
i = 1

Naℓ W(ℓ)σℓ

(
h(ℓ−1)

i

)
, fθ(xi) =

1
γNaL

(
w(L)

)T
σℓ

(
h(ℓ−1)

i

)
▶ initialization scaling: w(L)

i ∼ N (0, N−bL ), W(ℓ)
ij ∼ N (0, N−bℓ ), and W(1)

ij ∼ N (0, N−b1 )

▶ trained under full-batch gradient flow: dθ
dt = −η

∂L(θ)
∂θ = η 1

n ∑n
i=1 ∆i

∂fθ(xi)
∂θ of learning rate η = η0γ2N−c

and feature learning parameter γ = γ0Nd for η0 = Θ(1) and γ0 = Θ(1)

Objective: for large p, N, achieve appropriate scaling on (a, b, c, d) so that
3 features evolve in Θ(1) time:

− by ∂th
(ℓ)
i = Θ(1) we have 2a1 + c − d + 1/2 = 0, recall that 2a1 + c = 0, this is d = 1/2, similarly

2aℓ + c − d − 1/2 = 0 so that d = 1/2
− in fact, any d < 1/2 leads to kernel behavior, and d = 0 the NTK parameterization

▶ if further demand raw learning rate η = Θ(1), then parameterization is unique:

d = 1/2, c = 1, aℓ = 0, bℓ = 1, a1 = −1/2, b1 = 1 (7)

▶ this is equivalent to the muP parameterization in [YH21]

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 10 / 15



What is good about this appropriate scaling

▶ well, things (e.g., DNN pre-activation, evolution of prediction and feature/pre-activation with respect to
time) do not scale with the network width N

▶ BTW, in the case of ResNet, a scaling scheme of a similar type can be obtained by considering the
infinitely deep L → ∞ limit [Bor+23]

▶ idea of maximal update parameterization (muP) for hyperparameter transfer in large models (G. Yang)
▶ in muP, “narrow” and wide neural networks share the same set of optimal hyperparameters, e.g.,

optimal learning rate (and decay), cross-entropy temperature, initialization scale, regularization, etc.
▶ one can tune the large model by just tuning a tiny version of it and copying over the hyperparameters
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Some experiments on muP and µTransfer

Figure: Comparison µTransfer, which transfers tuned hyperparameters from a small proxy model, with directly tuning the
large target model, on IWSLT14 De-En, a machine translation dataset.
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Take-away

Take-away messages:
▶ math/statistics tells a lot about how to scale things, like LLN and CLT
▶ rather elementary calculus allow to understand the proper scaling of large-scale DNN models: for now,

not widely known
▶ can be (arguably) applied to transfer optimal hyperparameter design for extremely large-scale models

References:
▶ Tuning GPT-3 on a Single GPU Tensor Programs V, blog by G. Yang. https://decentdescent.org/tp5.html

▶ Cengiz Pehlevan and Blake Bordelon, Lecture Notes on Infinite-Width Limits of Neural Networks, Princeton Machine Learning Theory
Summer School, 2023.

▶ Greg Yang and Edward J. Hu. “Tensor Programs IV: Feature Learning in Infinite-Width Neural Networks”. In: Proceedings of the 38th
International Conference on Machine Learning. PMLR, July 2021, pp. 11727–11737
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RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
▶ change of intuition from small to large dimensional learning paradigm!
▶ better understanding of existing methods: why they work if they do, and what the issue is if they do not
▶ improved novel methods with performance guarantee!

▶ book “Random Matrix Methods for Machine Learning”
▶ by Romain Couillet and Zhenyu Liao
▶ Cambridge University Press, 2022
▶ a pre-production version of the book and exercise

solutions at https://zhenyu-liao.github.io/book/
▶ MATLAB and Python codes to reproduce all figures at

https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?
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