
Understanding and Scaling Large and Deep Neural Networks
or “Random Matrix Theory for Extremely Large-Scale ML”

@ Shanghai Jiao Tong University

Zhenyu Liao

based on work of G. Yang at xAI, C. Pehlevan at Harvard, J. Pennington at Google, etc.

School of Electronic Information and Communications
Huazhong University of Science and Technology

October 13, 2024

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 1 / 15



Outline

1 Motivation: do we (still) need math and theory for modern ML?

2 Math theory for modern ML: a theoretical perspective

3 Math theory for modern ML: a practical perspective

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 2 / 15



Motivation: do we (still) need math and theory in modern ML?

▶ Math has helped a lot in the past: from Kepler’s laws of
planetary motion to Newton and calculus

▶ AI is doing great: there is a bit math (in defining problems
and computing), but hardly analytic

▶ for modern AI: intuition, data, and computation seem the
most important, NOT analytic math theory

▶ In this talk, convey that math theory is still important in the
design of large-scale ML models, with the example of
Random Matrix Theory (RMT) for large and deep neural
networks (DNNs)

Figure: Portrait of Newton at 46, 1689.

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 4 / 15



Scaling of sum of independent random variables: LLN and CLT

▶ Strong law of large numbers (LLN): for a sequence of i.i.d. random variables x1, . . . , xn with the same
expectation E[xi] = µ < ∞, we have

1
n

n

∑
i=1

xi → µ, (1)

almost surely as n → ∞.
▶ Central limit theorem (CLT): for a sequence of i.i.d. random variables x1, . . . , xn with the same

expectation E[xi] = µ and variance Var[xi] = σ2 < ∞, we have

√
n

(
1
n

n

∑
i=1

(xi − µ)

)
→ N (0, σ2), (2)

in distribution as n → ∞.

Consequences of LLN and CLT

For i.i.d. random variables x1, . . . , xn of zero mean and unit variance, e.g., xi ∼ N (0, 1), we have, for n large,
the following scaling laws for the sum 1

n ∑n
i=1 xi:

▶ 1
n ∑n

i=1 xi ≃ 0 by LLN; and

▶ 1√
n ∑n

i=1 xi = O(1) with high probability by CLT.

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 6 / 15



We have known this a bit in the context of DNN

▶ DNNs involve linear (i.e., weights) and nonlinear (i.e.,
activation) transformation

▶ Xavier initialization [GB10]: for sigmoid-type activation,
randomly initialize a weight matrix W ∈ RN×N having N
neurons as

[W]ij ∼ N (0, N−1). (3)

torch.nn.init.xavier_normal_

▶ He initialization [He+15]: for ReLU-type activation,
randomly initialize a weight matrix W ∈ RN×N having N
neurons as

[W]ij ∼ N (0, 2N−1). (4)

torch.nn.init.kaiming_normal_

▶ derivation based on forward propagation
▶ similar considerations for CNN, RNN, ResNet, etc.

Figure: Numerical results in [He+15] for
moderately deep NN.

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 7 / 15



Let us say more on the appropriate scaling of large and deep NNs

Setup and Notations:
▶ supervised training of an L-layer multi-layer perceptrons (MLP) with full batch gradient flow

▶ input data x1, . . . , xn ∈ Rp, denote pre-activation vectors h(ℓ)
i ∈ RN at layer ℓ ∈ {1, . . . , L} as

h(1)
i =

1
Na1

√
p

W(1)xi, h(ℓ)
i =

1
Naℓ

W(ℓ)σℓ

(
h(ℓ−1)

i

)
i ∈ {1, . . . , n} (5)

▶ scalar output fθ(xi) =
1

γNaL

(
w(L)

)T
σℓ

(
h(ℓ−1)

i

)
for trainable parameters θ = {W(1), . . . , w(L)}.

▶ for a training set {(xi, yi)}n
i=1, train the above DNN on the loss function L(θ) = 1

n ∑n
i=1 L(fθ(xi), yi), with

full-batch gradient flow

dθ

dt
= −η

∂L(θ)
∂θ

= η
1
n

n

∑
i=1

∆i
∂fθ(xi)

∂θ
, ∆i ≡ − ∂L(fθ(xi), yi)

∂fθ(xi)
, (6)

learning rate η = η0γ2N−c and feature learning parameter γ = γ0Nd for η0 = Θ(1) and γ0 = Θ(1)

▶ initialization scaling scheme: w(L)
i ∼ N (0, N−bL ), W(ℓ)

ij ∼ N (0, N−bℓ ) and W(1)
ij ∼ N (0, N−b1 )

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 8 / 15



Appropriate scaling of large and deep NNs

Settings:

▶ scaling of NN model: h(1)
i = 1

Na1
√

p W(1)xi, h(ℓ)
i = 1

Naℓ W(ℓ)σℓ

(
h(ℓ−1)

i

)
, fθ(xi) =

1
γNaL

(
w(L)

)T
σℓ

(
h(ℓ−1)

i

)
▶ initialization scaling: w(L)

i ∼ N (0, N−bL ), W(ℓ)
ij ∼ N (0, N−bℓ ), and W(1)

ij ∼ N (0, N−b1 )

▶ trained under full-batch gradient flow: dθ
dt = −η

∂L(θ)
∂θ = η 1

n ∑n
i=1 ∆i

∂fθ(xi)
∂θ of learning rate η = η0γ2N−c

and feature learning parameter γ = γ0Nd for η0 = Θ(1) and γ0 = Θ(1)

Objective: for large p, N, achieve appropriate scaling on (a, b, c, d) so that
1 pre-activations h(ℓ) have Θ(1) entries:

− computing the 1st and 2nd moments of h(1): E[h(1)
i ] = 0, E[h(1)

i (h(1)
j )T]kq = δkqN−(2a1+b1) · 1

p xT
i xj; then of h(ℓ)

− we get 2a1 + b1 = 1 and similarly 2aℓ + bℓ = 1, ℓ ∈ {1, . . . , L}
2 network prediction evolve in Θ(1) time:

− define feature/conjugate kernel as the Gram matrix at layer ℓ as Φ(ℓ) ∈ Rn×n, Φ(ℓ)
ij = 1

N σ(h(ℓ)
i )Tσ(h(ℓ)

j )

− under the condition of Θ(1) pre-activation, it can be shown that in the N → ∞ limit that the pre-activations are
Gaussian process of zero mean, and covariance given by the (expected) conjugate kernel

− for ∂tfθ(·) = Θ(1), we get 2a1 + c = 0 and 2aℓ + c = 1, ℓ ∈ {2, . . . , L}
− include classical “mean-field” parameterization (with c = 0, a1 = 0, and aℓ = 1/2) as special case

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 9 / 15



Appropriate scaling of large and deep NNs

Settings:

▶ scaling of NN model: h(1)
i = 1

Na1
√

p W(1)xi, h(ℓ)
i = 1

Naℓ W(ℓ)σℓ

(
h(ℓ−1)

i

)
, fθ(xi) =

1
γNaL

(
w(L)

)T
σℓ

(
h(ℓ−1)

i

)
▶ initialization scaling: w(L)

i ∼ N (0, N−bL ), W(ℓ)
ij ∼ N (0, N−bℓ ), and W(1)

ij ∼ N (0, N−b1 )

▶ trained under full-batch gradient flow: dθ
dt = −η

∂L(θ)
∂θ = η 1

n ∑n
i=1 ∆i

∂fθ(xi)
∂θ of learning rate η = η0γ2N−c

and feature learning parameter γ = γ0Nd for η0 = Θ(1) and γ0 = Θ(1)

Objective: for large p, N, achieve appropriate scaling on (a, b, c, d) so that
3 features evolve in Θ(1) time:

− by ∂th
(ℓ)
i = Θ(1) we have 2a1 + c − d + 1/2 = 0, recall that 2a1 + c = 0, this is d = 1/2, similarly

2aℓ + c − d − 1/2 = 0 so that d = 1/2
− in fact, any d < 1/2 leads to kernel behavior, and d = 0 the NTK parameterization

▶ if further demand raw learning rate η = Θ(1), then parameterization is unique:

d = 1/2, c = 1, aℓ = 0, bℓ = 1, a1 = −1/2, b1 = 1 (7)

▶ this is equivalent to the muP parameterization in [YH21]

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 10 / 15



What is good about this appropriate scaling

▶ well, things (e.g., DNN pre-activation, evolution of prediction and feature/pre-activation with respect to
time) do not scale with the network width N

▶ BTW, in the case of ResNet, a scaling scheme of a similar type can be obtained by considering the
infinitely deep L → ∞ limit [Bor+23]

▶ idea of maximal update parameterization (muP) for hyperparameter transfer in large models (G. Yang)
▶ in muP, “narrow” and wide neural networks share the same set of optimal hyperparameters, e.g.,

optimal learning rate (and decay), cross-entropy temperature, initialization scale, regularization, etc.
▶ one can tune the large model by just tuning a tiny version of it and copying over the hyperparameters

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 12 / 15



Some experiments on muP and µTransfer

Figure: Comparison µTransfer, which transfers tuned hyperparameters from a small proxy model, with directly tuning the
large target model, on IWSLT14 De-En, a machine translation dataset.

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 13 / 15



Take-away

Take-away messages:
▶ math/statistics tells a lot about how to scale things, like LLN and CLT
▶ rather elementary calculus allow to understand the proper scaling of large-scale DNN models: for now,

not widely known
▶ can be (arguably) applied to transfer optimal hyperparameter design for extremely large-scale models

References:
▶ Tuning GPT-3 on a Single GPU Tensor Programs V, blog by G. Yang. https://decentdescent.org/tp5.html

▶ Cengiz Pehlevan and Blake Bordelon, Lecture Notes on Infinite-Width Limits of Neural Networks, Princeton Machine Learning Theory
Summer School, 2023.

▶ Greg Yang and Edward J. Hu. “Tensor Programs IV: Feature Learning in Infinite-Width Neural Networks”. In: Proceedings of the 38th
International Conference on Machine Learning. PMLR, July 2021, pp. 11727–11737

Z. Liao (EIC, HUST) RMT4ML October 13, 2024 14 / 15

https://decentdescent.org/tp5.html


RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
▶ change of intuition from small to large dimensional learning paradigm!
▶ better understanding of existing methods: why they work if they do, and what the issue is if they do not
▶ improved novel methods with performance guarantee!

▶ book “Random Matrix Methods for Machine Learning”
▶ by Romain Couillet and Zhenyu Liao
▶ Cambridge University Press, 2022
▶ a pre-production version of the book and exercise

solutions at https://zhenyu-liao.github.io/book/
▶ MATLAB and Python codes to reproduce all figures at

https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?
Z. Liao (EIC, HUST) RMT4ML October 13, 2024 15 / 15

https://zhenyu-liao.github.io/book/
https://github.com/Zhenyu-LIAO/RMT4ML

	Motivation: do we (still) need math and theory for modern ML?
	Math theory for modern ML: a theoretical perspective
	Math theory for modern ML: a practical perspective

