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Motivation: Deep Neural Networks in Double Asymptotic Regime

Big Data era: both high dimensional and massive amount of data
Understanding deep neural nets in the double asymptotic regime (random matrix regime):
often have far more network parameters than needed, but still generalize well
⇒ number of network parameters and number of data instances comparably large

Counterintuitive phenomenon in random matrix regime:

Classical Statistics Break Down in Random Matrix Regime
I Estimating covariance matrix of data X = [x1, . . . , xT ] ∈ Rp×T , xi ∼ N (0, Ip) of true covariance Ip.

I Classical sample covariance matrix: SCM = 1
T

∑T

i=1
xix

T
i = 1

T XX
T of rank at most T !

I In random matrix regime where T ∼ p, classical estimator breaks down!
⇒ For example if T < p, SCM will never be correct (with at least p− T zero eigenvalues)!

Apply (classical) RMT to neural network analysis: remaining difficulty in nonlinearity!
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Motivation: Nonlinearity in Random Matrix Theory

Objective: Random weights (untrained) neural networks, also called “random feature maps”.

data
vectors

X = [x1, . . . , xT ] ∈ Rp×T

feature
vectors

Σ = σ(WX) ∈ Rn×T

random W ∈ Rn×p

σ(·) entry-wise

Figure: Illustration of random feature maps

Sample Covariance Matrix of data X = [x1, . . . , xT ] ∈ Rp×T

SCM ≡
1
T
XXT.

SCM in feature space ⇒ feature Gram matrix G:

G ≡
1
T

ΣTΣ

with Σ = [σ(x1), . . . , σ(xT )] feature matrix of X.
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Motivation: RMT for random feature maps
Example:

data
vectors

X = [x1, . . . , xT ] ∈ Rp×T

feature
vectors

Σ = σ(WX) ∈ Rn×T

random W ∈ Rn×p

σ(·) entry-wise

Figure: Illustration of random feature maps

MSE of random weights ridge regression (also called extreme learning machines):

Etrain =
1
T
‖y − βTΣ‖2F =

γ2

T
yTQ2(−γ)y, Etest =

1
T̂
‖ŷ − βTΣ̂‖2F

with ridge regressor β ≡ 1
T

Σ (G+ γIT )−1 yT = 1
T

ΣQ(−γ)yT and regularization γ > 0. y
associated target of training data X and ŷ target of test data X̂.

⇒ G determines training and test performance via its resolvent

Q(z) ≡ (G− zIT )−1.

Key Issue
(Classical) quadratic form aTQ(z)b for nonlinear model Σ = σ(WX)!
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Handle nonlinearity in RMT: concentration of measure approach

Recall:
For σ(t) = t, G = 1

T
XTWTWX with random W : Sample Covariance Matrix Model. Proof

essentially based on trace lemma: w ∈ Rn of i.i.d. entries and A of bound norm,∣∣∣ 1
n
wTAw −

1
n

trA
∣∣∣ a.s.−→ 0.

Nonlinearity
However, here for nonlinear σ(·), similar to the proof of Marc̆enko-Pastur law:

Σ = σ(WX) =
[
σT
i

Σ−i

]
∈ Rn×T

with σi = σ(XTwi) ∈ RT , wi the i-th row of W . Rank-one perturbation:

Q =
( 1
T

ΣTΣ− zIT
)−1

=
( 1
T

ΣT
−iΣ−i +

1
T
σiσ

T
i − zIT

)−1

= Q−i −
Q−i

1
T
σiσ

T
i Q−i

1 + 1
T
σT
i Q−iσi

with Q−i ≡
(

1
T

ΣT
−iΣ−i − zIT

)−1 independent of σi!
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Handle nonlinearity in RMT: concentration of measure approach

Object under study 1
n
σ(wTX)Aσ(XTw): (compared to 1

n
wTAw)

loss of independence between entries
more elusive due to σ(·)

⇒ extend trace lemma to handle nonlinear case!

Lemma (Concentration of Quadratic Forms)
w ∈ Rn of i.i.d. standard Gaussian entries and σ(·) λσ-Lipschitz continuous. For ‖A‖ ≤ 1 and X
of bounded norm,

P

(∣∣∣ 1
T
σ(wTX)Aσ(XTw)−

1
T

tr ΦA
∣∣∣ > t

)
≤ Ce−cnmin(t,t2)

for some C, c > 0 and Φ ≡ Ew
[
σ(XTw)σ(wTX)

]
(function of data X).
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Performance evaluation of random feature-based ridge regression

Theorem (Asymptotic Training Performance)
W ∼ N (0, In) and σ(·) λσ-Lipschitz continuous and X of bounded norm. Then, as
n, p, T →∞, p/n→ cp ∈ (0,∞) and T/n→ cT ∈ (0,∞),

Etrain − Ētrain
a.s.−→ 0

where Ētrain = γ2

T
yTQ̄

[ 1
n

tr Q̄ΨQ̄
1− 1

n
tr Ψ2Q̄2 + IT

]
Q̄y and Q̄ = (Ψ + γIT )−1, Ψ ≡ n

T
Φ

1+δ with δ the

unique solution of δ = 1
T

tr ΦQ̄ and Φ ≡ Ew
[
σ(XTw)σ(wTX)

]
.

Several remarks:
(asymptotic) training performance only depends on (the training data X via) the key
averaged kernel matrix Φ and the dimension of problem
similar results can be obtained for test performance
⇒ remains to compute Φ on function of X
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Computation of averaged kernel Φ

To evaluate the training and test performance, it remains to compute Φ for different σ:

Φ(X) = Ew
[
σ(XTw)σ(wTX)

]
the (i, j)-th entry of which given by

Φi,j = (2π)−
p
2

∫
Rp
σ(wTxi)σ(wTxj)dw

=
1

2π

∫
R2
σ(w̃Tx̃i)σ(w̃Tx̃j)e−

1
2 ‖w̃‖

2
dw̃ (projection on span(xi, xj)).

Example: for σ(t) = max(t, 0) = ReLU(t),

Φi,j =
1

2π

∫
S

σ(w̃Tx̃i)σ(w̃Tx̃j)e−
1
2 ‖w̃‖

2
dw̃ =

1
2π
‖xi‖‖xj‖

(√
1− ∠2 + ∠ · arccos(−∠)

)
with S = min(w̃Tx̃i, w̃Tx̃j) > 0, ∠ ≡ xT

i xj
‖xi‖‖xj‖

.
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Results of Φ for commonly used σ(·)

Table: Φi,j for commonly used σ(·), ∠ ≡
xT
i
xj

‖xi‖‖xj‖
.

σ(t) Φi,j

t xT
i xj

max(t, 0) 1
2π ‖xi‖‖xj‖

(
∠ · arccos(−∠) +

√
1− ∠2

)
|t| 2

π
‖xi‖‖xj‖

(
∠ · arcsin(∠) +

√
1− ∠2

)
ς+ max(t, 0)+
ς−max(−t, 0)

1
2 (ς2

+ + ς2
−)xT

i xj +
‖xi‖‖xj‖

2π (ς+ + ς−)2
(√

1− ∠2 − ∠ · arccos(∠)
)

1t>0 1
2 −

1
2π arccos(∠)

sign(t) 2
π

arcsin(∠)

ς2t
2 + ς1t + ς0 ς2

2

(
2(xT

i xj)
2 + ‖xi‖2‖xj‖2

)
+ ς2

1x
T
i xj + ς2ς0

(
‖xi‖2 + ‖xj‖2

)
+ ς2

0

cos(t) exp
(
− 1

2

(
‖xi‖2 + ‖xj‖2

))
cosh(xT

i xj)

sin(t) exp
(
− 1

2

(
‖xi‖2 + ‖xj‖2

))
sinh(xT

i xj)

erf(t) 2
π

arcsin
( 2xT

i
xj√

(1+2‖xi‖2)(1+2‖xj‖2)

)
exp(− t

2
2 ) 1√

(1+‖xi‖2)(1+‖xj‖2)−(xT
i
xj)2

⇒ (Still) highly nonlinear function of data X!
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Numerical validations
Performance of random feature-based ridge regression:

10−4 10−3 10−2 10−1 100 101 102

10−1

100

σ(t) = max(t, 0)

σ(t) = erf(t)

σ(t) = t

γ

M
SE

Etrain (Theory)
Etest (Theory)

Etrain (Simulation)
Etest (Simulation)

Figure: Performance for MNIST data (number 7 and 9), n = 512, T = T̂ = 1024, p = 784.

⇒ Theoretical performance understanding and fast tuning of hyperparameter γ!Z. Liao (CentraleSupélec) Recent Advances in RMT for NN 28/July/2018, SJTU, Shanghai 13 / 46



Dig deeper into the averaged kernel Φ

For random feature maps:
if deterministic data: performance determined by Φ(X) and problem dimension
if data following certain distribution (statistical information+random fluctuation):
⇒ what is the impact of nonlinearities on information extraction?

Data Model
Consider data from a K-class Gaussian mixture model:

xi ∈ Ca ⇔ xi = µa/
√
p+ ωi

with ωi ∼ N (0, Ca/p), a = 1, . . . ,K of statistical mean µa and covariance Ca.

Non-trivial Classification [Neyman-Pearson Minimal]
For p large, we have ‖µa − µb‖ = O(1), ‖Ca‖ = O(1) and tr(Ca − Cb)/

√
p = O(1).

⇒ how different nonlinearities influence statistical information contained in Φ (and thus G)?
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Counterintuitive phenomenon for high dimensional data

Classification high dimensional Gaussian mixtures:

Non-trivial Classification [Neyman-Pearson Minimal]
For p large, we have ‖µa − µb‖ = O(1), ‖Ca‖ = O(1) and tr(Ca − Cb)/

√
p = O(1).

As a consequence,

‖xi‖2 = ‖ωi‖2︸ ︷︷ ︸
O(1)

+ ‖µa‖2/p+ 2µT
aωi/

√
p︸ ︷︷ ︸

O(p−1)

= trCa/p︸ ︷︷ ︸
O(1)

+ ‖ωi‖2 − trCa/p︸ ︷︷ ︸
O(p−1/2)

+ ‖µa‖2/p+ 2µT
aωi/

√
p︸ ︷︷ ︸

O(p−1)

if relaxed, classification too easy: it suffices to compare the norm ‖xi‖2 and ‖xj‖2!
in fact reveals a more intrinsic property of high dimensional data:

Curse of dimensionality: little difference in Euclidean distance between pairs!

Denote C◦ =
∑K

i=1
Ti
T
Ca and Ca = C◦a + C◦ for a = 1, . . . ,K.

Then ‖xi‖2 = τ +O(p−1/2) with τ ≡ tr(C◦)/p, ‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − xT
i xj ≈ 2τ :

⇒ Almost constant distance no matter from the same or different classes!
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Counterintuitive phenomenon for high dimensional data

Why things are still working? ⇒ statistical information are hidden in smaller order terms!

⇒ ‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − xT
i xj ≈ 2τ + ωT

i ωj︸︷︷︸
O(p−1/2)

+µT
aµb/p+ µT

aωj/
√
p+ µT

bωi/
√
p︸ ︷︷ ︸

O(p−1)

Small entry-wise 6= small in matrix form (in operator norm): repeated in p× p large matrix
⇒ spectral clustering works!

Moreover, “concentration” brings simplifications: for Φi,j = Ew σ(wTxi)σ(wTxj) and ReLU,

Φi,j =
1

2π
‖xi‖‖xj‖

(
∠ arccos (−∠) +

√
1− ∠2

)
with ∠ ≡ xT

i xj
‖xi‖‖xj‖

. “Concentration”: ∠ = 0
τ2 + information terms (µa, Ca)!

“Blessing” of Dimensionality
High dimensional “concentration” ⇒ Taylor expansion to linearize Φ!
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Dig deeper into the average kernel matrix Φ

Asymptotic Equivalent of Φ
For all σ(·) listed in the table above, we
have, as n ∼ p ∼ T →∞,

‖Φ− Φ̃‖ → 0

almost surely, with

Φ̃ ≡ d1

(
Ω +M

JT
√
p

)T(
Ω +M

JT
√
p

)
+ d2UBU

T + d0IT

and U ≡
[
J√
p
, φ
]
, B ≡

[
ttT + 2S t

tT 1

]
.

Table: Coefficients di in Φ̃ for different σ(·).

σ(t) d1 d2

t 1 0

max(t, 0) 1
4

1
8πτ

|t| 0 1
2πτ

ς+ max(t, 0)+
ς−max(−t, 0)

1
4 (ς+ − ς−)2 1

8τπ (ς+ + ς−)2

1t>0 1
2πτ 0

sign(t) 2
πτ

0

ς2t
2 + ς1t + ς0 ς2

1 ς2
2

cos(t) 0 e−τ
4

sin(t) e−τ 0

erf(t) 4
π

1
2τ+1 0

exp(− t
2
2 ) 0 1

4(τ+1)3

With J ≡ [j1, . . . , jK ], ja canonical vector of Ca: (ja)i = δxi∈Ca (for clustering), weighted by
Ω, φ random fluctuations of data.
M ≡ [µ1, . . . , µK ], t ≡

{
trC◦a/

√
p
}K
a=1

, S ≡ {tr(CaCb)/p}Ka,b=1 statistical information
from data distribution.
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Consequence

Table: Coefficients di in Φ̃ for different σ(·).

σ(t) d1 d2

t 1 0

max(t, 0) 1
4

1
8πτ

|t| 0 1
2πτ

ς+ max(t, 0)+
ς−max(−t, 0)

1
4 (ς+ − ς−)2 1

8τπ (ς+ + ς−)2

1t>0 1
2πτ 0

sign(t) 2
πτ

0

ς2t
2 + ς1t + ς0 ς2

1 ς2
2

cos(t) 0 e−τ
4

sin(t) e−τ 0

erf(t) 4
π

1
2τ+1 0

exp(− t
2
2 ) 0 1

4(τ+1)3

A natural classification of σ(·):
mean-oriented, d1 6= 0, d2 = 0: t,
1t>0, sign(t), sin(t) and erf(t)
⇒separate with differences in means
M ;
covariance-oriented, d1 = 0, d2 6= 0:
|t|, cos(t) and exp(−t2/2)
⇒track differences in covariances t, S;
balanced, both d1, d2 6= 0:

I ReLU function max(t, 0),
I Leaky ReLU function
ς+ max(t, 0) + ς−max(−t, 0),

I quadratic function ς2t
2 + ς1t+ ς0.

⇒make use of both statistics!

Not freely tunable as in the case of spectral clustering or SSL!
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Numerical Validations: Gaussian Data
Example: Gaussian mixture data of four classes: N (µ1, C1), N (µ1, C2), N (µ2, C1) and
N (µ2, C2) with Leaky ReLU function ς+ max(t, 0) + ς−max(−t, 0).
Case 1: ς+ = ς− = 1 (equivalent to linear map σ(t) = t)

Eigenvector 1

C1 C2 C3 C4

Eigenvector 2

C1 C2 C3 C4

Case 2: ς+ = −ς− = 1 (equivalent to σ(t) = |t|)

Eigenvector 1

C1 C2 C3 C4

Eigenvector 2

C1 C2 C3 C4
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Numerical Validations: Gaussian Data

Case 3: ς+ = 1, ς− = 0 (the ReLU function)

Eigenvector 1

C1 C2 C3 C4

Eigenvector 2

C1 C2 C3 C4

Eigenvector 1

Ei
ge

nv
ec

to
r

2
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Numerical validations: real datasets

Figure: The MNIST image database.

time

Figure: The epileptic EEG datasets.1

Reproducibility: codes available at https://github.com/Zhenyu-LIAO/RMT4RFM.
1http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html.
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Numerical validations: real datasets

Table: Empirical estimation of differences in means and covariances of MNIST and EEG datasets.

‖MTM‖ ‖ttT + 2S‖

MNIST data 172.4 86.0
EEG data 1.2 182.7

Table: Clustering accuracies on MNIST dataset.

σ(t) T = 64 T = 128

mean-
oriented

t 88.94% 87.30%
1t>0 82.94% 85.56%

sign(t) 83.34% 85.22%
sin(t) 87.81% 87.50%
erf(t) 87.28% 86.59%

cov-
oriented

|t| 60.41% 57.81%
cos(t) 59.56% 57.72%

exp(− t
2
2 ) 60.44% 58.67%

balanced ReLU(t) 85.72% 82.27%

Table: Clustering accuracies on EEG dataset.

σ(t) T = 64 T = 128

mean-
oriented

t 70.31% 69.58%
1t>0 65.87% 63.47%

sign(t) 64.63% 63.03%
sin(t) 70.34% 68.22%
erf(t) 70.59% 67.70%

cov-
oriented

|t| 99.69% 99.50%
cos(t) 99.38% 99.36%

exp(− t
2
2 ) 99.81% 99.77%

balanced ReLU(t) 87.91% 90.97%
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Numerical Validations: Real Datasets

Leading eigenvector for MNIST data
Simulation: mean/std for MNIST data

Theory: mean/std for Gaussian data

C1 C2

Leading eigenvector for EEG data
Simulation: mean/std for EEG data

Theory: mean/std for Gaussian data

C1 C2

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture data (of same
statistics) with a width of ±1 standard deviations.
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Summary: random feature maps

Summary for random feature maps:
concentration of measure helps extend trace lemma to nonlinear case
⇒ asymptotic training/test performance of random feature-based ridge regression
“concentration” of high dimensional data helps understand the key averaged kernel matrix Φ
⇒ random feature-based spectral clustering

Take-away messages:
fast tuning of hyperparameters
nonlinearities into three attributes: means-, covariance-oriented and “balanced”
optimize the choice of nonlinearity as a function of data for quadratic and LReLU

⇒ What happens if weights W are not i.i.d. but depend on data
(in the case of backpropagation)?
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Motivation: learning dynamics of neural networks

About neural networks and deep learning:
Some known facts:

I trained with backpropagation (gradient-based method)
I highly over-parameterized, but some still generalize remarkably well

and some (more) mysteries:
I how do neural networks learn from training data? what kind of features are learned?
I how they generalize on unseen data of similar nature? why they do not over-fit?
I can the network performance be guaranteed or . . . even predicted?

⇒ The learning dynamics of neural networks!

With RMT:

A general framework for studying learning dynamics of a single-layer network!

In particular, under the appropriate double asymptotic regime: number of network parameters and
number of data instances comparably large!

As a consequence, more insights on:
(random) initialization of training
overfitting in neural networks
(explicit or implicit) regularization: early stopping, l2-penalization
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Problem setup
Toy model of binary classification:

Gaussian Mixture Data
Consider data xi drawn from a two-class Gaussian mixture model: for a = 1, 2

xi ∈ Ca ⇔ xi = (−1)aµ+ ωi

with ωi of i.i.d. N (0, 1) entries, label yi = −1 for C1 and +1 for C2.

Objective: Learning Dynamics
Gradient descent on loss L(w) = 1

2n‖y
T − wTX‖2 with X = [x1, . . . , xn]. For small learning

rate α, with continuous-time approximation:

dw(t)
dt

= −α
∂L(w)
∂w

=
α

n
X
(
y −XTw(t)

)
of explicit solution w(t) = e−

αt
n
XXT

w0 +
(
Ip − e−

αt
n
XXT

)
(XXT)−1Xy if XXT invertible

and w0 the initialization.

To evaluate the learning dynamics:
depends only on the projection of eigenvector weighted by exp(−αtλ) of associated
eigenvalue λ
functional of sample covariance matrix 1

n
XXT (again): RMT is the answer!
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Problem setup

Objective: Generalization Performance
Generalization performance for a new datum x̂: P (w(t)Tx̂ > 0 | x̂ ∈ C1), or
P (w(t)Tx̂ < 0 | x̂ ∈ C2). Since x̂ Gaussian and independent of w(t):

w(t)Tx̂ ∼ N (±w(t)Tµ, ‖w(t)‖2)

for w(t) = e−
αt
n
XXT

w0 +
(
Ip − e−

αt
n
XXT

)
(XXT)−1Xy.

With RMT:
although X random: w(t)Tµ and ‖w(t)‖2 have asymptotically deterministic behavior (only
depends on data statistics and problem dimension):
⇒ the technique of deterministic equivalent
Cauchy’s integral formula to express the functional exp(·) via contour integration

⇒ Network performance at any time is in fact deterministic and predictable!
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Proposed analysis framework

Resolvent and deterministic equivalents
Consider an n× n Hermitian random matrix M . Define its resolvent QM (z), for z ∈ C not
eigenvalue of M

QM (z) = (M − zIn)−1 .

For a family of M , define a so-called deterministic equivalent Q̄M of QM : a deterministic matrix
so that as n→∞,

1
n

trAQM − 1
n

trAQ̄M
a.s.−→ 0

aT
(
QM − Q̄M

)
b

a.s.−→ 0

with A, a, b of bounded norm (operator and Euclidean).

⇒ Study Q̄M instead of the random QM for n large!
However, for more sophisticated functionals of M (than 1

n
trAQM and aTQM b):

Cauchy’s integral formula
Example: for f(M) = aTeM bdz,

f(M) = −
1

2πi

∮
γ

exp(z)aTQM (z)bdz ≈ −
1

2πi

∮
γ

exp(z)aTQ̄M (z)bdz.

with γ a positively oriented path circling around all the eigenvalues of M .
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Generalization performance
To evaluate generalization performance: w(t)Tx̂ ∼ N (±w(t)Tµ, ‖w(t)‖2) with
w(t) = e−

αt
n
XXT

w0 +
(
Ip − e−

αt
n
XXT)

(XXT)−1Xy.

Cauchy’s integral formula: for w(t)Tµ:

µTw(t) = −
1

2πi

∮
γ

µT
( 1
n
XXT − zIp

)−1 (
ft(z)w0 +

1− ft(z)
z

1
n
Xy

)
dz

with ft(x) ≡ exp(−αtx). Since X = −µjT
1 + µjT

2 + Ω = µyT + Ω, with
Ω ≡

[
ω1, . . . , ωn

]
∈ Rp×n of i.i.d. N (0, 1) entries and ja ∈ Rn the canonical vectors of

class Ca, With Woodbury’s identity,( 1
n
XXT − zIp

)−1
= Q(z)−Q(z)

[
µ 1

n
Ωy
]

[
µTQ(z)µ 1 + 1

n
µTQ(z)Ωy

1 + 1
n
µTQ(z)Ωy −1 + 1

n
yTΩTQ(z) 1

n
Ωy

]−1 [
µT

1
n
yTΩT

]
Q(z)

where Q(z) =
(

1
n

ΩΩT − zIp
)−1 and its deterministic equivalent:

Q(z)↔ Q̄(z) = m(z)Ip

with m(z) given by Marc̆enko-Pastur equation m(z) = 1−c−z
2cz +

√
(1−c−z)2−4cz

2cz .
“replace” the random Q(z) by its deterministic equivalent Q̄(z) = m(z)Ip.
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Main result

Theorem (Generalization Performance)
Let p/n→ c ∈ (0,∞) and the initialization w0 be a random vector with i.i.d. entries of zero
mean, variance σ2/p and finite fourth moment. Then, as n→∞,

P (w(t)Tx̂ > 0 | x̂ ∈ C1)−Q
( E
√

V

)
a.s.−→ 0,

P (w(t)Tx̂ < 0 | x̂ ∈ C2)−Q
( E
√

V

)
a.s.−→ 0

with the Q-function: Q(x) ≡ 1√
2π

exp(−u2/2)du and

E ≡ −
1

2πi

∮
γ

1− ft(z)
z

‖µ‖2m(z) dz
(‖µ‖2 + c)m(z) + 1

V ≡
1

2πi

∮
γ

[ 1
z2 (1− ft(z))2

(‖µ‖2 + c)m(z) + 1
− σ2f2

t (z)m(z)
]
dz.

γ a closed positively oriented path containing all eigenvalues of 1
n
XXT and origin.

Contour integration: hard to understand/interpret ⇒ can we further simplify?
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Simplification: “break” the contour integration

0 1 2 3 4

Eigenvalues of 1
n
XXT

Marc̆enko–Pastur distribution
Theory: λs

0 1 2 3 4

Eigenvalues of 1
n
XXT

Marc̆enko–Pastur distribution
Theory: λs

Figure: Eigenvalue distribution of 1
nXX

T for
µ = [1.5; 0p−1], p = 512, n = 1 024.

1 2 3 4 5

−1

1

γb γs

ε

ε ε

<(z)

=(z)
Eigenvalues of 1

n
XXT

Integration path γ

Figure: Eigenvalue distribution of 1
nXX

T for
µ = [1.5; 0p−1], p = 512, n = 1 024.

Two types of eigenvalues:
“main bulk” ([λ−, λ+]): sum of real integrals
isolated eigenvalue (λs): residue theorem.
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Localization of isolated eigenvalue

Computation of λs (Spike model)
find λ eigenvalue of 1

n
XXT outside [λ−, λ+] (i.e., not eigenvalue of 1

n
ΩΩT),

det
( 1
n
XXT − λIp

)
= 0

⇔ det
(

1
n

ΩΩT − λIp +
[
µ 1

n
Ωy
] [1 1

1 0

][
µT

1
n
yTΩT

])
= 0

⇔ det
(
I2 +

[
1 1
1 0

][
µT

1
n
yTΩT

]
Q(λ)

[
µ 1

n
Ωy
])

= 0

⇔ 1 + (‖µ‖2 + c)m(λ) + o(1) = 0
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Discussions

(Simplified) generalization performance

E =
∫

1− ft(x)
x

η(dx), V =
‖µ‖2 + c

‖µ‖2

∫
(1− ft(x))2µ(dx)

x2 + σ2
∫

f2
t (x)ν(dx)

with Marc̆enko–Pastur distribution ν(dx) ≡
√

(x−λ−)+(λ+−x)+

2πcx dx+
(
1− 1

c

)+
δ(x) with

λ− ≡ (1−
√
c)2, λ+ ≡ (1 +

√
c)2, λs = c+ 1 + ‖µ‖2 + c/‖µ‖2 and the measure

η(dx) ≡

√
(x− λ−)+(λ+ − x)+

2π(λs − x)
dx+

(‖µ‖4 − c)+

‖µ‖2
δλs (x).

Some remarks:
η(dx): continuous distribution [λ−, λ+] (p− 1 eigenvalues) + Dirac measure at λs (one
single eigenvalue): contains comparable information!∫
η(dx) = ‖µ‖2, together with Cauchy Schwarz inequality:

E2 ≤
∫ (1−ft(x))2

x2 dµ(x) ·
∫
dµ(x) ≤ ‖µ‖4

‖µ‖2+cV, with equality if and only if the
(initialization) variance σ2 = 0: ⇒ Performance drop due to large σ2!

How much we over-fit? As t→∞, performance drop by
√

1−min(c, c−1)
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Numerical validations
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Figure: Optimal performance and stopping time
as functions of σ2 with c = 1/2, ‖µ‖2 = 4 and
α = 0.01.
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Figure: Training and generalization performance for MNIST data
(number 1 and 7) with n = p = 784, c1 = c2 = 1/2, α = 0.01
and σ2 = 0.1. Results averaged over 100 runs.
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Summary: RMT for network learning dynamics

Take-away messages:
RMT framework to understand and predict learning dynamics:

Cauchy’s integral formula + technique of deterministic equivalent
easily extended to more elaborate data models: e.g., Gaussian mixture model with different
means and covariances
byproduct: take initialization variance σ2 even smaller (than classical 1/p)!
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Take-away messages

Asymptotic “concentration effect” for large n, p ⇒ simplification in analyses and models.

Non-trivial phase transition phenomena (ability to detect, estimate) when p, n→∞.

Access to limiting performances and not only bounds! ⇒ hyperparameter optimization,
algorithm improvement.

Complete intuitive change ⇒ opens way to renewed methods.

Strong coincidence with real datasets ⇒ easy link between theory and practice.
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Perspectives and Open Problems

Neural nets: loss landscape, gradient descent dynamics and deep learning!
Generalized linear models
More general problems from convex optimization (often of implicit solution)
More difficult: problem raised from non-convex optimization problems
Transfer learning, active learning, generative networks (GAN)
Robust statistics in machine learning
. . .
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The End

Figure: Related topic on ZhiHu: https://zhuanlan.zhihu.com/RandomMatrixTheory.

Thank you.
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