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Motivation: computationally efficient machine learning

I Big Data: number of data n and dimension p both large, thousands or millions
I ImageNet dataset (http://www.image-net.org/): in average p = 0.2 million

pixels of in total n = 14 million high-resolution images
I Computational challenge: time and/or space complexity at least O(n2),

unaffordable for Internet of Things (IoT) low-power devices
I Idea: compress machine learning models (e.g., sketching, quantization or

binarization), with non-trivial performance-complexity trade-off
I Objective: theoretical understanding of performance-complexity trade-off,

optimal design, how they depend on data
I Example: unsupervised (kernel) spectral clustering
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Reminder on kernel spectral clustering

Two-step clustering of n data points based on kernel matrix K = {f (xi, xj)}n
i,j=1:

0 isolated eigenvalues

⇓ Top eigenvectors ⇓

Ei
ge

nv
.1

Ei
ge

nv
.2

Z. Liao (UC Berkeley) Sparse Quantized Spectral Clustering 3 / 13



Reminder on kernel spectral clustering
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EM or k-means clustering.
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Computational challenge in spectral clustering

I kernel/similarity matrix K = {f (xi, xj)}n
i,j=1: pairwise comparison of n data points

I retrieve the top eigenvectors of K ∈ Rn×n with e.g., power method: suffer from an
O(n2) complexity

I Idea: sparsifying, quantizing, and even binarizing: gain in both time and space!
I Key object: eigenspectrum of the “compressed” kernel matrix, in particular,

statistics of top eigenvectors!
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System model

Data: two-class signal-plus-noise mixture

Let x1, . . . , xn ∈ Rp be independently drawn (non-necessarily uniformly) from:

C1 : xi ∼ N (−µ, Ip), C2 : xi ∼ N (+µ, Ip). (1)

We have X = [x1, . . . , xn] = Z + µvT for Gaussian Z ∈ Rp×n, µ ∈ Rp and v ∈ {±1}n.

Large dimensional asymptotics

As n, p→ ∞ with p/n→ c ∈ (0, ∞) and signal-to-noise ratio (SNR) ‖µ‖2 → ρ ≥ 0.

Previous work:
I Dense Gram (kernel) matrix XTX, extensively studied in random matrix theory
I (limiting) eigenvalue distribution: the Marc̆enko-Pastur law [MP67]
I spiked model and phase transition of top eigenvalue-eigenvector [BBP05]

1Vladimir A Marčenko and Leonid Andreevich Pastur. “Distribution of eigenvalues for some sets of random matrices”. In:
Mathematics of the USSR-Sbornik 1.4 (1967), p. 457

2Jinho Baik, Gérard Ben Arous, and Sandrine Péché. “Phase transition of the largest eigenvalue for nonnull complex sample
covariance matrices”. In: The Annals of Probability 33.5 (2005), pp. 1643–1697
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“Compressed” spectral clustering: method

Compression as nonlinear transformation

Entry-wise nonlinear transformation of XTX:

K =
{

f (xT
i xj/
√

p)/
√

p
}n

i,j=1
(2)

with

Sparsification: f1(t) = t · 1|t|>√2s

Quantization: f2(t) = 22−M(bt · 2M−2/
√

2sc+ 1/2) · 1|t|≤√2s + sign(t) · 1|t|>√2s

Binarization: f3(t) = sign(t) · 1|t|>√2s
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Tuning parameters:
I truncation threshold s > 0
I number of information bits M

Z. Liao (UC Berkeley) Sparse Quantized Spectral Clustering 7 / 13



“Compressed” spectral clustering: performance analysis

Notations
For each f and ξ ∼ N (0, 1), define the (generalized) moments

a0 = E[f (ξ)] = 0, a1 = E[ξf (ξ)], a2 = E[ξ2f (ξ)]/
√

2, ν = E[f 2(ξ)] ≥ a2
1 + a2

2. (3)

f a1 ν

f1 erfc(s) + 2se−s2
/
√

π erfc(s) + 2se−s2
/
√

π

f2
√

2
π · 21−M(1 + e−s2

+ ∑2M−2−1
k=1 2e−

k2s2

4M−2 ) 1− 2M−1
4M−1 erf(s)−∑2M−2−1

k=1
k erf(ks·22−M)

22M−5

f3 e−s2√
2/π erfc(s)

with a2 = 0, erf(x) = 2√
π

∫ x
0 e−t2

dt, erfc(x) = 1− erf(x) error/complementary error function.

Theorem (Limiting spectral measure)

As n, p→ ∞ with p/n→ c ∈ (0, ∞), the empirical spectral measure ωK = 1
n ∑n

i=1 δλi(K) of
K converges to a deterministic limit ω, uniquely defined through its Stieltjes transform
m(z) =

∫
(t− z)−1ω(dt) solution to

z = − 1
m(z)

− ν− a1
2

c
m(z)− a1

2m(z)
c + a1m(z)

. (4)
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“Compressed” spectral clustering: attention!

Theorem (Informative spike and a phase transition)

For a1 > 0 and a2 = 0, similarly define F(x) = x4 + 2x3 +
(

1− cν
a1

2

)
x2 − 2cx− c and

G(x) = a1
c (1 + x) + a1

x + ν−a1
2

a1

1
1+x and let γ be the largest real solution to F(γ) = 0. Then,

λ̂→ λ =

{
G(ρ), ρ > γ

G(γ), ρ ≤ γ
,

1
n
|v̂Tv|2 → α =

{ F(ρ)
ρ(1+ρ)3 , ρ > γ

0, ρ ≤ γ
(5)

as n, p→ ∞ with p/n→ c ∈ (0, ∞), for SNR ρ = lim ‖µ‖2.

Remark (Spurious non-informative spikes)

If a2 6= 0, then there may be up to two non-informative eigenvalues (with eigenvectors
containing only random noise) on the left or right of the main bulk.

−10 0 10
−10 0 10−10 0 10

−0.02
0

0.02

−0.02
0

0.02

Z. Liao (UC Berkeley) Sparse Quantized Spectral Clustering 9 / 13



“Compressed” spectral clustering: practical implications

Corollary (Performance of spectral clustering)

Let a1 > 0, a2 = 0, and Ĉi = sign([v̂]i) be the estimate of the underlying class Ci of the datum
xi, with v̂Tv ≥ 0 for v̂ the top eigenvector of K. Then, the misclassification rate satisfies

1
n

n

∑
i=1

δĈi 6=Ci
→ 1

2
erfc(

√
α/(2− 2α))

as n, p→ ∞, for α the limit of eigenvector alignment 1
n |v̂Tv|2.
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Experiments on real-world data
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Figure: Clustering performance (left and middle), proportion of nonzero entries and
computational time of the top eigenvector for f3 (right), on the MNIST dataset: digits (0, 1) (left)
and (5, 6) (middle and right) with n = 2 048 and performance of the linear function in black.
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Figure: Clustering performance (left and middle), proportion of nonzero entries, and
computational time of the top eigenvector (right, in markers) of sparse f1 and quantized f2 with
M = 2, on the MNIST dataset.

Z. Liao (UC Berkeley) Sparse Quantized Spectral Clustering 11 / 13



Experiments on real-world data
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Figure: Clustering performance of sparse f1, quantized f2 (with M = 2) and binary f3 as a function
of the truncation threshold s on GoogLeNet features of the ImageNet datasets: (left) class “pizza”
versus “daisy” and (right) class “hamburger” versus “coffee”, for n = 1 024 and performance of
the linear function in black. Results averaged over 10 runs.
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Conclusion and take-away message

Take-away message:
I theoretical analysis of performance-complexity trade-offs in computationally

efficient machine learning methods
I compare with [Zar+20]: non-uniform treatment significantly outperforms uniform

(sparsification) scheme
I spurious non-informative eigenvectors may appear if not properly done!

References:
I Zhenyu Liao, Romain Couillet, and Michael W. Mahoney. “Sparse Quantized

Spectral Clustering”. In: International Conference on Learning Representations. 2021.

talk at Poster Session 10, and https://zhenyu-liao.github.io/ for more info!

Thank you!
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