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Motivation: computationally efficient machine learning

» Big Data: number of data 7 and dimension p both large, thousands or millions

»> ImageNet dataset (http://wuw.image-net.org/): in average p = 0.2 million
pixels of in total n = 14 million high-resolution images

» Computational challenge: time and/or space complexity at least O(n?),
unaffordable for Internet of Things (IoT) low-power devices

> Idea: compress machine learning models (e.g., sketching, quantization or
binarization), with non-trivial performance-complexity trade-off

> Objective: theoretical understanding of performance-complexity trade-off,
optimal design, how they depend on data

» Example: unsupervised (kernel) spectral clustering
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http://www.image-net.org/

Reminder on kernel spectral clustering

Two-step clustering of 1 data points based on kernel matrix K = {f(x;,x;) }
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Reminder on kernel spectral clustering
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EM or k-means clustering.
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Computational challenge in spectral clustering

> kernel/similarity matrix K = {f(x;, x;) }Zj=1: pairwise comparison of n data points

retrieve the top eigenvectors of K € R"*" with e.g., power method: suffer from an
O(n?) complexity
» Idea: sparsifying, quantizing, and even binarizing: gain in both time and space!

> Key object: eigenspectrum of the “compressed” kernel matrix, in particular,
statistics of top eigenvectors!

Z.Liao (UC Be:

Sparse Quantized Spectral Clustering 5 /1%



System model

Data: two-class signal-plus-noise mixture

Let xq,...,X; € R” be independently drawn (non-necessarily uniformly) from:

Crixi~N(=pwTy), Coixi~N(+p1p). M
We have X = [x,...,X,]| = Z —|—va for Gaussian Z € RP*", y € RP and v € {+1}". )
Large dimensional asymptotics
Asn,p — cowith p/n — ¢ € (0,00) and signal-to-noise ratio (SNR) ||u||> — p > 0. )

Previous work:
» Dense Gram (kernel) matrix XTX, extensively studied in random matrix theory
> (limiting) eigenvalue distribution: the Marcenko-Pastur law [MP67]
» spiked model and phase transition of top eigenvalue-eigenvector [BBP05]

1Vladimir A Maréenko and Leonid Andreevich Pastur. “Distribution of eigenvalues for some sets of random matrices”. In:
Mathematics of the USSR-Sbornik 1.4 (1967), p. 457

2Jinho Baik, Gérard Ben Arous, and Sandrine Péché. “Phase transition of the largest eigenvalue for nonnull complex sample
covariance matrices”. In: The Annals of Probability 33.5 (2005), pp. 1643-1697
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“Compressed” spectral clustering: method

Compression as nonlinear transformation

Entry-wise nonlinear transformation of X' X:

K= {f(x?—xj/\/?)/\/ﬁ}i,jzl @
with
Sparsification: A) =t 1\t|>\/is

Quantization: fa(t) =22"M(t-2M72/V/25] +1/2) - Ly<vas + sign(#) - Ligs vas
Binarization: f3(t) = sign(t) - 1‘t‘>\/§s
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“Compressed” spectral clustering: performance analysis

Notations
For each f and ¢ ~ N (0,1), define the (generalized) moments

a9 =E[f(£)] =0, a1 =E[}f(2)], a=E[Ef(8)]/V2, v=E[f(&)]>a+d} 3

f a | v
f erfc(s) + 25e / /7T erfc(s) + 2se~5 [/
A R I e e
f3 V2T erfe(s)
with a, = 0, erf(x) \/> Joe 241, erfc(x) = 1 — erf(x) error/complementary error function.

Theorem (Limiting spectral measure)

Asn,p — cowithp/n — ¢ € (0,00), the empirical spectral measure wx = 1 Y1, o) of
K converges to a deterministic limit w, uniquely defined through its Stieltjes transform
m(z) = [(t —z)~w(dt) solution to

1 v—ay? a1%m(z)
T TaE e " ran@

4)
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“Compressed” spectral clustering: attention!

Theorem (Informative spike and a phase transition)

Foray > 0and ay = 0, similarly define F(x) = x* +2x3 + (1 - C—VZ) x? — 2¢cx — cand

m

Glx) = 2 (1+x) + 4 + =02 L gnd et 7y be the largest real solution to F(y) = 0. Then,
c x 8!

a 1+x
F(p)
A D >
A= A= Glo), p>7 , 1|\7Tv\2 Sa={ e P2 ®)
G(7), p<y m 0, p<7
asn,p — co withp/n — ¢ € (0,00), for SNR p = lim ||u||2. y
Remark (Spurious non-informative spikes)
If a # 0, then there may be up to two non-informative eigenvalues (with eigenvectors
containing only random noise) on the left or right of the main bulk. y
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“Compressed” spectral clustering: practical implications

Corollary (Performance of spectral clustering)

Leta; > 0,a, = 0, and C; = sign([V];) be the estimate of the underlying class C; of the datum
x;, with ¥Tv > 0 for ¥ the top eigenvector of K. Then, the misclassification rate satisfies

n

1 1
H;é(f;éc — = erfc( a/(2—2u))

asn,p — oo, for a the limit of eigenvector alignment 1|97 v/,

[¥Tv|?/n
Misclassification rate

0
0723456789
SNR p
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Experiments on real-world data
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Figure: Clustering performance (left and middle), proportion of nonzero entries and
computational time of the top eigenvector for f3 (right), on the MNIST dataset: digits (0,1) (left)
and (5,6) (middle and right) with n = 2048 and performance of the linear function in black.
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Figure: Clustering performance (left and middle), proportion of nonzero entries, and
computational time of the top eigenvector (right, in markers) of sparse f; and quantized f, with

M = 2, on the MNIST dataset.
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Experiments on real-world data
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Figure: Clustering performance of sparse fi, quantized f, (with M = 2) and binary f3 as a function
of the truncation threshold s on GoogLeNet features of the ImageNet datasets: (left) class “pizza”
versus “daisy” and (right) class “hamburger” versus “coffee”, for n = 1024 and performance of
the linear function in black. Results averaged over 10 runs.
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Conclusion and take-away message

Take-away message:

> theoretical analysis of performance-complexity trade-offs in computationally
efficient machine learning methods

» compare with [Zar+20]: non-uniform treatment significantly outperforms uniform
(sparsification) scheme

> spurious non-informative eigenvectors may appear if not properly done!
References:

» Zhenyu Liao, Romain Couillet, and Michael W. Mahoney. “Sparse Quantized
Spectral Clustering”. In: International Conference on Learning Representations. 2021.

talk at Poster Session 10, and https://zhenyu-1liao.github.io/ for more info!

Thank you!
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