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Motivation: understanding the mechanism of large dimensional machine learning

large learning
systems of size N

large dimensional data
x1, . . . , xn ∈ Rp

I Big Data era: exploit large n, p, N
I ImageNet dataset (http://www.image-net.org/):

in average p = 0.2 million pixels of in total n = 14
million high-resolution images

I counterintuitive phenomena, e.g., the “curse of
dimensionality”

I complete change of understanding of many
algorithms

I RMT provides the tools!
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“Curse of dimensionality”: loss of relevance of Euclidean distance

I Binary Gaussian mixture classification x ∈ Rp:

C1 : x ∼ N (µ1, C1), versus C2 : x ∼ N (µ2, C2);

I Neyman-Pearson test: classification is possible only when [CLM18]

‖µ1 − µ2‖ ≥ C1, or ‖C1 −C2‖ ≥ C2 · p−1/2

for some constants C1, C2 > 0.
I In this non-trivial setting, for xi ∈ Ca, xj ∈ Cb:

max
1≤i 6=j≤n

{
1
p
‖xi − xj‖2 − τ

}
→ 0

as n, p→ ∞ (i.e., n ∼ p), for τ = 2
p tr C◦ with C◦ ≡ 1

2 (C1 + C2), regardless of the classes Ca, Cb!

I In fact, ‖xi‖2/p ' ‖xi‖2/p ' τ/2, and xT
i xj/p ' 0! i.e., xi ⊥ xj approximately for p large!

1Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. “Classification asymptotics in the random matrix regime”. In: 2018 26th European Signal Processing Conference
(EUSIPCO). IEEE. 2018, pp. 1875–1879
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Loss of relevance of Euclidean distance in large dimensions: visual representation

O(
√

p)

O(1)

Figure: Visual representation of classification in (left) small and (right) large dimensions.

⇒ Direct consequence to various distance-based machine learning methods (e.g., kernel-based classification)!
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Non-trivial high dimensional classification

High dimensional regime with n, p both large, a dual phenomenon:
(i) data points not pairwise classifiable: Euclidean distance between any two data points xi ∈ Ca and xj ∈ Cb

approximately constant ≈ τ independent of their classes Ca, Cb
− data pairs neither close nor far from each other for n, p large!

(ii) classification remains possible by exploiting the spectral information of large Euclidean distance matrix
E = {‖xi − xj‖2/p}n

i,j=1, thanks to a collective behavior of all data belonging to same (and large) classes.
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Figure: Euclidean distance matrices E, the histogram of the entries of E, and the second top eigenvectors v2, for small (left,
p = 5) and large (right, p = 250) dimensional data X = [x1, . . . , xn] ∈ Rp×n with x1, . . . , xn/2 ∈ C1 and xn/2+1, . . . , xn ∈ C2 for
n = 5 000.

⇒ This is spectral clustering that behaves different for p small versus large!
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System model: a single-hidden-layer neural network with random weights

X ∈ Rp×n

σ

σ

σ

σ

σ

hidden-layer of N neurons

first layer weights W ∈ RN×pΣ ≡ σ(WX) ∈ RN×n

I Key object: 1
N ΣTΣ, correlation in the feature space, for random weights: Wij

i.i.d.∼ N (0, 1)
I 1

N ΣTΣ = 1
N ∑N

i=1 σ(XTwi)σ(wT
i X) for independent wi ∼ N (0, Ip).

I Performance guarantee in the infinite-neuron limit (N → ∞), convergence to the expected kernel matrix

1
N

ΣTΣ→ K(X) ≡ Ew∼N (0,Ip)[σ(X
Tw)σ(wTX)] ∈ Rn×n

Question: can we compress the network by carefully choosing the weights W and/or activation? σ(·),
without changing the underlying kernel K?
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Problem settings

Data: K-class Gaussian mixture model (GMM)

Let x1, . . . , xn ∈ Rp be independently drawn (non-necessarily uniformly) from one of the K classes:

Ca :
√

pxi ∼ N (µa, Ca), a ∈ {1, . . . , K} (1)

Large dimensional asymptotics

As n, p→ ∞ with p/n→ c ∈ (0, ∞) and some additional growth-rate assumptions on the difference ‖µa − µb‖
and ‖Ca −Cb‖, a, b ∈ {1, . . . , K}, as n, p→ ∞.

Theorem (Asymptotic equivalent for K, [ALC22])

For kernel matrix K = {E[σ(xT
i w)σ(wTxj)]}n

i,j=1 defined above, one has, as n, p→ ∞ that ‖K− K̃‖ → 0, for some
random matrix K̃ dependent of data X, of activation σ but only via the following scalars

d0 = E[σ2(
√

τz)]−E[σ(
√

τz)]2 − τE[σ′(
√

τz)]2, d1 = E[σ′(
√

τz)]2, d2 =
1
4

E[σ′′(
√

τz)]2

and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.
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Main result and the proof

Theorem (Asymptotic equivalent for K, [ALC22])

For kernel matrix K = {E[σ(xT
i w)σ(wTxj)]}n

i,j=1 defined above, one has, as n, p→ ∞ that ‖K− K̃‖ → 0, for some
random matrix K̃ dependent of data X, of activation σ but only via the following scalars

d0 = E[σ2(
√

τz)]−E[σ(
√

τz)]2 − τE[σ′(
√

τz)]2, d1 = E[σ′(
√

τz)]2, d2 =
1
4

E[σ′′(
√

τz)]2

and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.

Proof sketch:
I We are interested in the kernel matrix K, the (i, j) entry of which Kij = Ew[σ(xT

i w)σ(wTxj)].
I Conditioned on xi, xj, wTxi ≡ ‖xi‖ · ξi and wTxj are asymptotically Gaussian, but correlated!

I Gram-Schmidt to de-correlate wTxj =
xT

i xj

‖xi‖ ξi +

√
‖xj‖2 − (xT

i xj)2

‖xi‖2 ξj, for Gaussian ξj now independent of ξj

I Use the fact xT
i xj = O(p−1/2) and ‖xi‖2 ≈ τ/2 = O(1), Taylor-expand to “linearize” σ(·) to order o(n−1)

I Since ‖A‖2 ≤ n‖A‖∞, with ‖A‖∞ = maxij |Aij|, obtain spectral approximation K̃.
2Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. “Random matrices in service of ML footprint: ternary random features with no performance loss”. In:

International Conference on Learning Representations. 2022
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Practical consequence of the theory

According to theorem, allowed to choose arbitrary weights W and activation σ, without affecting K
asymptotically, under the following conditions:
I weights W have independent entries with zero mean and unit variance
I activation σ has the same few parameters as the original net

d0 = E[σ2(
√

τz)]−E[σ(
√

τz)]2 − τE[σ′(
√

τz)]2, d1 = E[σ′(
√

τz)]2, d2 =
1
4

E[σ′′(
√

τz)]2, (2)

In particular,
I sparse and binarized (e.g., Bernoulli distributed) weights W instead of dense Gaussian weights

[W]ij = 0 with proba ε ∈ [0, 1), [W]ij = ±(1− ε)−1/2 each with proba 1/2− ε/2, (3)

I sparse quantized (e.g., binarized) activation σ shares the same d0, d1, and d2
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Numerical results
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Figure: Test mean square errors of ridge regression on quantized single-hidden-layer random nets for different numbers of
features N ∈ {5.102, 103, 5.103, 104, 5.104}, using LP-RFF, Nyström approximation, versus the proposed approach, on the
Census dataset, with n = 16 000 training samples, ntest = 2 000 test samples, and data dimension p = 119.
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Fully-connected deep neural networks with random weights

I everyone cares more about (i) deep neural networks and (ii) have non-random weights
I with some additional efforts, theory extends to fully-connected deep neural networks of depth L,

f (x) =
1√
dL

wTσL

(
1√

dL−1
WLσL−1

(
. . .

1√
d2

σ2

(
1√
d1

W2σ1(W1x)
)))

, (4)

again for random W1, . . . , WL and activations σ1(·), . . . , σL(·).

Theorem (Asymptotic equivalents for conjugate kernels, informal)

Under the same condition, define output features of layer ` ∈ {1, . . . , L}, as

Σ` =
1√
d`

σ`

(
1√
d`−1

W`σ`−1

(
. . .

1√
d2

σ2

(
1√
d1

W2σ1(W1X)
)))

. (5)

we have for the Conjugate Kernel KCK,` at layer ` defined as

KCK,` = E[ΣT
` Σ`] ∈ Rn×n, (6)

that ‖KCK,` − K̃CK,`‖ → 0, some random matrix K̃CK,` dependent of data, of activation σ` but only via a few
parameters, and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.
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Theorem (Asymptotic equivalents for CK matrices, formal)

Let τ0, τ1, . . . , τL ≥ 0 be a sequence of non-negative numbers satisfying the following recursion:

τ` =
√

E[σ2
` (τ`−1ξ)], ξ ∼ N (0, 1), ` ∈ {1, . . . , L}. (7)

Further assume that the activation functions σ`(·)s are “centered,” such that E[σ`(τ`−1ξ)] = 0. Then, for the CK
matrix KCK,` of layer ` ∈ {1, . . . , L} defined in (6), as n, p→ ∞, one has that:

‖KCK,` − K̃CK,`‖ → 0, K̃CK,` ≡ α`,1XTX + VA`V
T + (τ2

` − τ2
0 α`,1 − τ4

0 α`,3)In, (8)

almost surely, with V = [J/
√

p, ψ] ∈ Rn×(K+1), A` =

[
α`,2ttT + α`,3T α`,2t

α`,2tT α`,2

]
∈ R(K+1)×(K+1), for class label

vectors J = [j1, . . . , jK] ∈ Rn×K, “second-order” data fluctuation vector ψ ∈ Rn, second-order data statistics
t = {tr C◦a /

√
p}K

a=1 ∈ RK and T = {tr CaCb/p}K
a,b=1 ∈ RK×K, as well as non-negative α`,1, α`,2, α`,3 satisfying

α`,1 = E[σ′`(τ`−1ξ)]2α`−1,1, α`,2 = E[σ′`(τ`−1ξ)]2α`−1,2 +
1
4

E[σ′′` (τ`−1ξ)]2α2
`−1,4, (9)

α`,3 = E[σ′`(τ`−1ξ)]2α`−1,3 +
1
2

E[σ′′` (τ`−1ξ)]2α2
`−1,1. (10)

with α`,4 = E
[
(σ′`(τ`−1ξ))2 + σ`(τ`−1ξ)σ′′` (τ`−1ξ)

]
α`−1,4 for ξ ∼ N (0, 1).
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Deep compression of fully-connected deep nets via NTK

I used for compression of fully-connected deep nets, but with random weights only, who cares?
I Our approach: from random to trained nets via Neural Tangent Kernel (NTK) theory [JGH18]:
I for (i) sufficiently wide nets (ii) trained with gradient descent of sufficiently small step size
I NTK is determined at random initialization and remains unchanged during training
I with some additional efforts, we understand the behavior of NTK matrices KNTK,`, using our

understanding on KCK,`
I we can use the theory for DNN compression!

3Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel: Convergence and generalization in neural networks”. In: Advances in neural
information processing systems. 2018, pp. 8571–8580
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Figure: Test accuracy of classification on MNIST (top) and CIFAR10 (bottom) datasets. Blue: proposed NTK-LC approach
with different levels of sparsity ε ∈ {0%, 50%, 90%}, purple: heuristic sparsification approach by uniformly zeroing out 80%
of the weights, green: heuristic quantization approach with binary activation σ(t) = 1t<−1 + 1t>1 , red: original network,
orange: NTK-LC without activation quantization, and brown: magnitude-based pruning with same sparsity level as orange.
Memory varies due to the change of layer width of the network.
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Conclusion and take-away message

Take-away message:
I theoretical analysis of single-hidden-layer NN with random weights
I extension to fully-connected deep nets and to NTK
I to propose DNN compression approach with theoretical guarantee!

References:
I Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. “Random matrices in service of ML footprint:

ternary random features with no performance loss”. In: International Conference on Learning
Representations. 2022

I Lingyu Gu, Yongqi Du, Yuan Zhang, Di Xie, Shiliang Pu, Robert C. Qiu, Zhenyu Liao. “Lossless
Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach”.
(Submitted to) Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS). 2022.
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RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
I change of intuition from small to large dimensional learning paradigm!
I better understanding of existing methods: why they work if they do, and what the issue is if they do not
I improved novel methods with performance guarantee!

I Upcoming book “Random Matrix Methods for Machine
Learning”

I by Romain Couillet and Zhenyu Liao
I Cambridge University Press, 2022
I a pre-production version of the book and exercise

solutions at https://zhenyu-liao.github.io/book/
I MATLAB and Python codes to reproduce all figures at

https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?
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