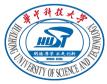
Random Matrix Methods for Machine Learning: "Lossless" Compression of Large Neural Networks CSML 2022

Zhenyu Liao

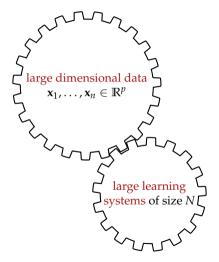
School of Electronic Information and Communications, HUST

August 22, 2022



Outline

- Compression of single-hidden-layer neural networks
- "Lossless" compression of fully-connected deep nets



- **Big Data** era: exploit large *n*, *p*, *N*
- ImageNet dataset (http://www.image-net.org/): in average p = 0.2 million pixels of in total n = 14 million high-resolution images
- counterintuitive phenomena, e.g., the "curse of dimensionality"
- complete change of understanding of many algorithms
- <u>RMT</u> provides the tools!

"Curse of dimensionality": loss of relevance of Euclidean distance

Binary Gaussian mixture classification $\mathbf{x} \in \mathbb{R}^p$:

$$C_1$$
: $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_1, \mathbf{C}_1)$, versus C_2 : $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_2, \mathbf{C}_2)$;

Neyman-Pearson test: classification is possible only when [CLM18]

$$\|\mu_1 - \mu_2\| \ge C_1$$
, or $\|\mathbf{C}_1 - \mathbf{C}_2\| \ge C_2 \cdot p^{-1/2}$

for some constants $C_1, C_2 > 0$.

▶ In this non-trivial setting, for $\mathbf{x}_i \in C_a, \mathbf{x}_j \in C_b$:

$$\max_{1 \leq i \neq j \leq n} \left\{ \frac{1}{p} \| \mathbf{x}_i - \mathbf{x}_j \|^2 - \tau \right\} \rightarrow 0$$

as $n, p \to \infty$ (i.e., $n \sim p$), for $\tau = \frac{2}{p}$ tr \mathbf{C}° with $\mathbf{C}^{\circ} \equiv \frac{1}{2}(\mathbf{C}_1 + \mathbf{C}_2)$, regardless of the classes $\mathcal{C}_a, \mathcal{C}_b$!

► In fact, $\|\mathbf{x}_i\|^2/p \simeq \|\mathbf{x}_i\|^2/p \simeq \tau/2$, and $\mathbf{x}_i^\mathsf{T}\mathbf{x}_j/p \simeq 0$! i.e., $\mathbf{x}_i \perp \mathbf{x}_j$ approximately for *p* large!

¹Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. "Classification asymptotics in the random matrix regime". In: 2018 26th European Signal Processing Conference (EUSIPCO). IEEE. 2018, pp. 1875–1879

Loss of relevance of Euclidean distance in large dimensions: visual representation

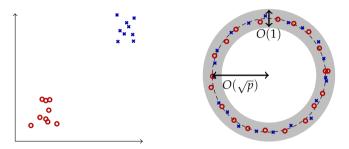


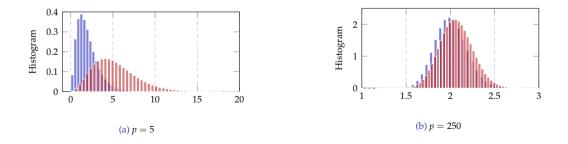
Figure: Visual representation of classification in (left) small and (right) large dimensions.

 \Rightarrow Direct consequence to various distance-based machine learning methods (e.g., kernel-based classification)!

Non-trivial high dimensional classification

High dimensional regime with *n*, *p* both large, a **dual** phenomenon:

- (i) data points not pairwise classifiable: Euclidean distance between any two data points $\mathbf{x}_i \in C_a$ and $\mathbf{x}_j \in C_b$ approximately constant $\approx \tau$ independent of their classes C_a, C_b
 - data pairs *neither close nor far* from each other for *n*, *p* large!
- (ii) classification remains possible by exploiting the spectral information of large Euclidean distance matrix $\mathbf{E} = \{ \|\mathbf{x}_i \mathbf{x}_j\|^2 / p\}_{i,j=1}^n$, thanks to a collective behavior of all data belonging to same (and large) classes.



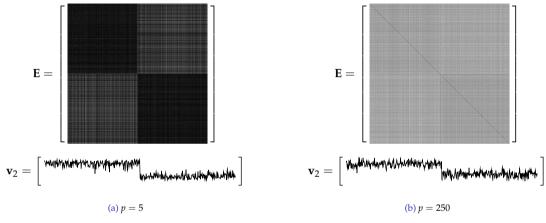
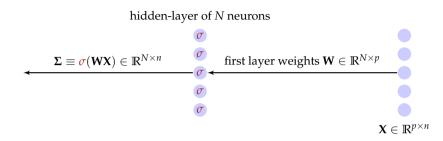


Figure: Euclidean distance matrices **E**, the histogram of the entries of **E**, and the second top eigenvectors \mathbf{v}_2 , for small (left, p = 5) and large (**right**, p = 250) dimensional data $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$ with $\mathbf{x}_1, \dots, \mathbf{x}_{n/2} \in C_1$ and $\mathbf{x}_{n/2+1}, \dots, \mathbf{x}_n \in C_2$ for $n = 5\,000$.

 \Rightarrow This is **spectral clustering** that behaves different for *p* small versus large!

RMT4Compress

System model: a single-hidden-layer neural network with random weights



Key object: ¹/_NΣ^TΣ, correlation in the feature space, for random weights: W_{ij} ^{i.i.d.} N(0,1)
 ¹/_NΣ^TΣ = ¹/_N Σ^N_{i=1} σ(X^Tw_i)σ(w^T_iX) for independent w_i ~ N(0, I_p).
 Performance guarantee in the infinite-neuron limit (N → ∞), convergence to the expected kernel matrix

$$\frac{1}{N}\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{\Sigma} \to \mathbf{K}(\mathbf{X}) \equiv \mathbb{E}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)}[\sigma(\mathbf{X}^{\mathsf{T}}\mathbf{w})\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{X})] \in \mathbb{R}^{n \times n}$$

Question: can we compress the network by carefully choosing the weights W and/or activation? $\sigma(\cdot)$, without changing the underlying kernel K?

Z. Liao (EIC, HUST)

RMT4Compress

Problem settings

Data: K-class Gaussian mixture model (GMM)

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p$ be independently drawn (non-necessarily uniformly) from one of the *K* classes:

$$\mathcal{C}_a: \sqrt{p}\mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}_a, \mathbf{C}_a), \quad a \in \{1, \dots, K\}$$
(1)

Large dimensional asymptotics

As $n, p \to \infty$ with $p/n \to c \in (0, \infty)$ and some additional growth-rate assumptions on the difference $\|\mu_a - \mu_b\|$ and $\|\mathbf{C}_a - \mathbf{C}_b\|$, $a, b \in \{1, \dots, K\}$, as $n, p \to \infty$.

Theorem (Asymptotic equivalent for K, [ALC22])

For kernel matrix $\mathbf{K} = \{\mathbb{E}[\sigma(\mathbf{x}_i^{\mathsf{T}}\mathbf{w})\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}_j)]\}_{i,j=1}^n$ defined above, one has, as $n, p \to \infty$ that $\|\mathbf{K} - \tilde{\mathbf{K}}\| \to 0$, for some random matrix $\tilde{\mathbf{K}}$ dependent of data \mathbf{X} , of activation σ but only via the following scalars

$$d_0 = \mathbb{E}[\sigma^2(\sqrt{\tau}z)] - \mathbb{E}[\sigma(\sqrt{\tau}z)]^2 - \tau \mathbb{E}[\sigma'(\sqrt{\tau}z)]^2, \quad d_1 = \mathbb{E}[\sigma'(\sqrt{\tau}z)]^2, \quad d_2 = \frac{1}{4}\mathbb{E}[\sigma''(\sqrt{\tau}z)]^2$$

and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.

Z. Liao (EIC, HUST)

Main result and the proof

Theorem (Asymptotic equivalent for K, [ALC22])

For kernel matrix $\mathbf{K} = \{\mathbb{E}[\sigma(\mathbf{x}_i^{\mathsf{T}}\mathbf{w})\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}_j)]\}_{i,j=1}^n$ defined above, one has, as $n, p \to \infty$ that $\|\mathbf{K} - \tilde{\mathbf{K}}\| \to 0$, for some random matrix $\tilde{\mathbf{K}}$ dependent of data \mathbf{X} , of activation σ but only via the following scalars

$$d_0 = \mathbb{E}[\sigma^2(\sqrt{\tau}z)] - \mathbb{E}[\sigma(\sqrt{\tau}z)]^2 - \tau \mathbb{E}[\sigma'(\sqrt{\tau}z)]^2, \quad d_1 = \mathbb{E}[\sigma'(\sqrt{\tau}z)]^2, \quad d_2 = \frac{1}{4}\mathbb{E}[\sigma''(\sqrt{\tau}z)]^2$$

and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.

Proof sketch:

- We are interested in the kernel matrix **K**, the (i, j) entry of which $\mathbf{K}_{ij} = \mathbb{E}_{\mathbf{w}}[\sigma(\mathbf{x}_i^{\mathsf{T}}\mathbf{w})\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}_j)]$.
- ► Conditioned on $\mathbf{x}_i, \mathbf{x}_j, \mathbf{w}^\mathsf{T} \mathbf{x}_i \equiv ||\mathbf{x}_i|| \cdot \xi_i$ and $\mathbf{w}^\mathsf{T} \mathbf{x}_j$ are asymptotically Gaussian, but correlated!
- Gram-Schmidt to de-correlate $\mathbf{w}^{\mathsf{T}}\mathbf{x}_j = \frac{\mathbf{x}_i^{\mathsf{T}}\mathbf{x}_j}{\|\mathbf{x}_i\|}\xi_i + \sqrt{\|\mathbf{x}_j\|^2 \frac{(\mathbf{x}_i^{\mathsf{T}}\mathbf{x}_j)^2}{\|\mathbf{x}_i\|^2}}\xi_j$, for Gaussian ξ_j now independent of ξ_j
- Use the fact $\mathbf{x}_i^\mathsf{T}\mathbf{x}_j = O(p^{-1/2})$ and $\|\mathbf{x}_i\|^2 \approx \tau/2 = O(1)$, Taylor-expand to "linearize" $\sigma(\cdot)$ to order $o(n^{-1})$
- Since $\|\mathbf{A}\|_2 \leq n \|\mathbf{A}\|_{\infty}$, with $\|\mathbf{A}\|_{\infty} = \max_{ij} |\mathbf{A}_{ij}|$, obtain **spectral** approximation $\mathbf{\tilde{K}}$.

²Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. "Random matrices in service of ML footprint: ternary random features with no performance loss". In: International Conference on Learning Representations. 2022

Practical consequence of the theory

According to theorem, allowed to choose arbitrary weights **W** and activation σ , without affecting **K** asymptotically, under the following conditions:

- weights **W** have independent entries with zero mean and unit variance
- activation σ has the same few parameters as the original net

$$d_{0} = \mathbb{E}[\sigma^{2}(\sqrt{\tau}z)] - \mathbb{E}[\sigma(\sqrt{\tau}z)]^{2} - \tau \mathbb{E}[\sigma'(\sqrt{\tau}z)]^{2}, \quad d_{1} = \mathbb{E}[\sigma'(\sqrt{\tau}z)]^{2}, \quad d_{2} = \frac{1}{4}\mathbb{E}[\sigma''(\sqrt{\tau}z)]^{2}, \quad (2)$$

In particular,

> sparse and binarized (e.g., Bernoulli distributed) weights W instead of dense Gaussian weights

 $[\mathbf{W}]_{ij} = 0$ with proba $\varepsilon \in [0, 1)$, $[\mathbf{W}]_{ij} = \pm (1 - \varepsilon)^{-1/2}$ each with proba $1/2 - \varepsilon/2$, (3)

sparse quantized (e.g., binarized) activation σ shares the same d_0 , d_1 , and d_2

Numerical results

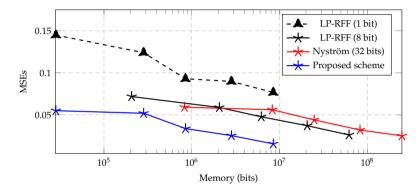


Figure: Test mean square errors of ridge regression on quantized single-hidden-layer random nets for different numbers of features $N \in \{5.10^2, 10^3, 5.10^3, 10^4, 5.10^4\}$, using LP-RFF, Nyström approximation, versus the proposed approach, on the Census dataset, with $n = 16\,000$ training samples, $n_{\text{test}} = 2\,000$ test samples, and data dimension p = 119.

Fully-connected deep neural networks with random weights

everyone cares more about (i) deep neural networks and (ii) have non-random weights
 with some additional efforts, theory extends to fully-connected deep neural networks of depth L,

$$f(\mathbf{x}) = \frac{1}{\sqrt{d_L}} \mathbf{w}^\mathsf{T} \sigma_L \left(\frac{1}{\sqrt{d_{L-1}}} \mathbf{W}_L \sigma_{L-1} \left(\dots \frac{1}{\sqrt{d_2}} \sigma_2 \left(\frac{1}{\sqrt{d_1}} \mathbf{W}_2 \sigma_1(\mathbf{W}_1 \mathbf{x}) \right) \right) \right), \tag{4}$$

again for random $\mathbf{W}_1, \ldots, \mathbf{W}_L$ and activations $\sigma_1(\cdot), \ldots, \sigma_L(\cdot)$.

Theorem (Asymptotic equivalents for conjugate kernels, informal) Under the same condition, define output features of layer $\ell \in \{1, ..., L\}$, as

$$\boldsymbol{\Sigma}_{\ell} = \frac{1}{\sqrt{d_{\ell}}} \sigma_{\ell} \left(\frac{1}{\sqrt{d_{\ell-1}}} \mathbf{W}_{\ell} \sigma_{\ell-1} \left(\dots \frac{1}{\sqrt{d_2}} \sigma_2 \left(\frac{1}{\sqrt{d_1}} \mathbf{W}_2 \sigma_1(\mathbf{W}_1 \mathbf{X}) \right) \right) \right).$$

we have for the Conjugate Kernel $K_{CK,\ell}$ at layer ℓ defined as

$$\mathbf{K}_{\mathrm{CK},\ell} = \mathbb{E}[\boldsymbol{\Sigma}_{\ell}^{\mathsf{T}} \boldsymbol{\Sigma}_{\ell}] \in \mathbb{R}^{n \times n},\tag{6}$$

that $\|\mathbf{K}_{CK,\ell} - \tilde{\mathbf{K}}_{CK,\ell}\| \to 0$, some random matrix $\tilde{\mathbf{K}}_{CK,\ell}$ dependent of data, of activation σ_{ℓ} but only via a few parameters, and independent of the distribution of \mathbf{W} , as long as of normalized to have zero mean and unit variance.

(5)

Theorem (Asymptotic equivalents for CK matrices, formal)

Let $\tau_0, \tau_1, \ldots, \tau_L \ge 0$ *be a sequence of non-negative numbers satisfying the following recursion:*

$$\tau_{\ell} = \sqrt{\mathbb{E}[\sigma_{\ell}^2(\tau_{\ell-1}\xi)]}, \quad \xi \sim \mathcal{N}(0,1), \quad \ell \in \{1,\dots,L\}.$$

$$\tag{7}$$

Further assume that the activation functions $\sigma_{\ell}(\cdot)$ s are "centered," such that $\mathbb{E}[\sigma_{\ell}(\tau_{\ell-1}\xi)] = 0$. Then, for the CK matrix $\mathbf{K}_{CK,\ell}$ of layer $\ell \in \{1, \ldots, L\}$ defined in (6), as $n, p \to \infty$, one has that:

$$\|\mathbf{K}_{\mathrm{CK},\ell} - \tilde{\mathbf{K}}_{\mathrm{CK},\ell}\| \to 0, \quad \tilde{\mathbf{K}}_{\mathrm{CK},\ell} \equiv \alpha_{\ell,1} \mathbf{X}^{\mathsf{T}} \mathbf{X} + \mathbf{V} \mathbf{A}_{\ell} \mathbf{V}^{\mathsf{T}} + (\tau_{\ell}^{2} - \tau_{0}^{2} \alpha_{\ell,1}^{2} - \tau_{0}^{4} \alpha_{\ell,3}^{2}) \mathbf{I}_{n},$$
(8)

almost surely, with $\mathbf{V} = [\mathbf{J}/\sqrt{p}, \boldsymbol{\psi}] \in \mathbb{R}^{n \times (K+1)}, \mathbf{A}_{\ell} = \begin{bmatrix} \alpha_{\ell,2} \mathbf{t} \mathbf{t}^{\mathsf{T}} + \alpha_{\ell,3} \mathbf{T} & \alpha_{\ell,2} \mathbf{t} \\ \alpha_{\ell,2} \mathbf{t}^{\mathsf{T}} & \alpha_{\ell,2} \end{bmatrix} \in \mathbb{R}^{(K+1) \times (K+1)}, \text{ for class label vectors } \mathbf{J} = [\mathbf{j}_1, \dots, \mathbf{j}_K] \in \mathbb{R}^{n \times K}, \text{ "second-order" data fluctuation vector } \boldsymbol{\psi} \in \mathbb{R}^n, \text{ second-order data statistics } \mathbf{t} = \{ \operatorname{tr} \mathbf{C}_a^{\circ}/\sqrt{p} \}_{a=1}^K \in \mathbb{R}^K \text{ and } \mathbf{T} = \{ \operatorname{tr} \mathbf{C}_a \mathbf{C}_b / p \}_{a,b=1}^K \in \mathbb{R}^{K \times K}, \text{ as well as non-negative } \alpha_{\ell,1}, \alpha_{\ell,2}, \alpha_{\ell,3} \text{ satisfying } \}$

$$\alpha_{\ell,1} = \mathbb{E}[\sigma_{\ell}'(\tau_{\ell-1}\xi)]^2 \alpha_{\ell-1,1}, \quad \alpha_{\ell,2} = \mathbb{E}[\sigma_{\ell}'(\tau_{\ell-1}\xi)]^2 \alpha_{\ell-1,2} + \frac{1}{4} \mathbb{E}[\sigma_{\ell}''(\tau_{\ell-1}\xi)]^2 \alpha_{\ell-1,4}^2, \tag{9}$$

$$\boldsymbol{\alpha}_{\ell,3} = \mathbb{E}[\sigma_{\ell}'(\tau_{\ell-1}\xi)]^2 \boldsymbol{\alpha}_{\ell-1,3} + \frac{1}{2} \mathbb{E}[\sigma_{\ell}''(\tau_{\ell-1}\xi)]^2 \boldsymbol{\alpha}_{\ell-1,1}^2.$$
(10)

with
$$\alpha_{\ell,4} = \mathbb{E}\left[(\sigma_{\ell}'(\tau_{\ell-1}\xi))^2 + \sigma_{\ell}(\tau_{\ell-1}\xi)\sigma_{\ell}''(\tau_{\ell-1}\xi)\right]\alpha_{\ell-1,4}$$
 for $\xi \sim \mathcal{N}(0,1)$.
Z. Liao (EIC, HUST)
RMT4Compress

August 22, 2022 18 / 23

- used for compression of fully-connected deep nets, but with random weights only, who cares?
- Our approach: from random to trained nets via Neural Tangent Kernel (NTK) theory [JGH18]:
- ▶ for (i) sufficiently wide nets (ii) trained with gradient descent of sufficiently small step size
- NTK is determined at random initialization and remains unchanged during training
- ▶ with some additional efforts, we understand the behavior of NTK matrices K_{NTK,ℓ}, using our understanding on K_{CK,ℓ}
- we can use the theory for DNN compression!

³Arthur Jacot, Franck Gabriel, and Clément Hongler. "Neural tangent kernel: Convergence and generalization in neural networks". In: Advances in neural information processing systems. 2018, pp. 8571–8580

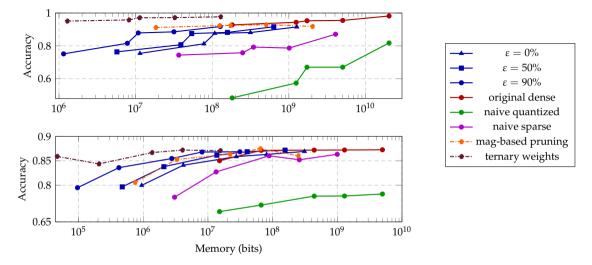


Figure: Test accuracy of classification on MNIST (top) and CIFAR10 (bottom) datasets. Blue: proposed NTK-LC approach with different levels of sparsity $\varepsilon \in \{0\%, 50\%, 90\%\}$, purple: heuristic sparsification approach by uniformly zeroing out 80% of the weights, green: heuristic quantization approach with binary activation $\sigma(t) = 1_{t<-1} + 1_{t>1}$, red: original network, orange: NTK-LC *without* activation quantization, and brown: magnitude-based pruning with same sparsity level as orange. Memory varies due to the change of layer width of the network.

Conclusion and take-away message

Take-away message:

- ▶ theoretical analysis of single-hidden-layer NN with random weights
- extension to fully-connected deep nets and to NTK
- to propose DNN compression approach with theoretical guarantee!

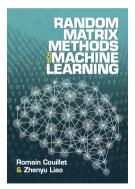
References:

- Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. "Random matrices in service of ML footprint: ternary random features with no performance loss". In: International Conference on Learning Representations. 2022
- Lingyu Gu, Yongqi Du, Yuan Zhang, Di Xie, Shiliang Pu, Robert C. Qiu, Zhenyu Liao. "Lossless Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach". (Submitted to) *Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS)*. 2022.

RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:

- change of intuition from small to large dimensional learning paradigm!
- **better understanding** of existing methods: why they work if they do, and what the issue is if they do not
- improved novel methods with performance guarantee!



- Upcoming book "Random Matrix Methods for Machine Learning"
- by Romain Couillet and Zhenyu Liao
- Cambridge University Press, 2022
- a pre-production version of the book and exercise solutions at https://zhenyu-liao.github.io/book/
- MATLAB and Python codes to reproduce all figures at https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?