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Motivation: understanding the mechanism of large dimensional machine learning

large learning
systems of size N

large dimensional data
x1, . . . , xn ∈ Rp

I Big Data era: exploit large n, p, N
I ImageNet dataset (http://www.image-net.org/):

in average p = 0.2 million pixels of in total n = 14
million high-resolution images

I counterintuitive phenomena different from
classical asymptotic statistics (p� n), e.g., the
“curse of dimensionality”

I complete change of understanding of many
algorithms

I Random Matrix Theory (RMT) provides the
tools!
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“Curse of dimensionality”: loss of relevance of Euclidean distance

I Binary Gaussian mixture classification x ∈ Rp:

C1 : x ∼ N (µ1, C1), versus C2 : x ∼ N (µ2, C2);

I Neyman-Pearson test: classification is possible only when [CLM18]

‖µ1 − µ2‖ ≥ C1, or ‖C1 −C2‖ ≥ C2 · p−1/2

for some constants C1, C2 > 0.
I In this non-trivial setting, for xi ∈ Ca, xj ∈ Cb:

max
1≤i 6=j≤n

{
1
p

xT
i xj

}
→ 0 and max

1≤i 6=j≤n

{
1
p
‖xi − xj‖2 − τ

}
→ 0

as n, p→ ∞ with n ∼ p for τ = 1
p tr(C1 + C2), regardless of the classes Ca, Cb! (In fact even for n = pm.)

1Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. “Classification asymptotics in the random matrix regime”. In: 2018 26th European Signal Processing Conference
(EUSIPCO). IEEE. 2018, pp. 1875–1879
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Loss of relevance of Euclidean distance in large dimensions: visual representation

O(
√

p)

O(1)

Figure: Visual representation of classification in (left) small and (right) large dimensions.

⇒ Direct consequence to various angle- and/or distance-based machine learning methods!
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System model: a random single-hidden-layer neural network

X ∈ Rp×n

σ

σ

σ

σ

σ

hidden-layer of N neurons

first layer weights W ∈ RN×pΣ ≡ σ(WX) ∈ RN×n

I Key object: 1
N ΣTΣ, correlation in the feature space, for random first-layer weights, e.g., Wij

i.i.d.∼ N (0, 1)
I 1

N ΣTΣ = 1
N ∑N

i=1 σ(XTwi)σ(wT
i X) for independent wi such that E[wi] = 0 and E[wiwT

i ] = Ip.
I Performance guarantee: e.g., in the infinite-neuron limit (N → ∞), depends on the expected kernel

matrix (and [LLC18] beyond the N � max(n, p) setting)

1
N

ΣTΣ→ K(X) ≡ Ew[σ(XTw)σ(wTX)] ∈ Rn×n

Question: compression by carefully choosing weights W and/or activation? σ(·), without affecting K?
2Cosme Louart, Zhenyu Liao, and Romain Couillet. “A Random Matrix Approach to Neural Networks”. In: The Annals of Applied Probability 28.2 (2018),
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Problem settings

I Question: what can we say on the expected kernel matrix of the two-layer NN model

K(X) ≡ Ew[σ(XTw)σ(wTX)] ∈ Rn×n

I and if yes, can we compress the NN by tuning weights W and/or activation? σ, without affecting K?

Data: K-class Gaussian mixture model (GMM)

Let x1, . . . , xn ∈ Rp be independently drawn (non-necessarily uniformly) from one of the K classes:

Ca :
√

pxi ∼ N (µa, Ca), a ∈ {1, . . . , K} (1)

Large dimensional asymptotics

As n, p→ ∞ with p/n→ c ∈ (0, ∞) and some additional growth-rate assumptions on the difference ‖µa − µb‖
and ‖Ca −Cb‖, a, b ∈ {1, . . . , K}.
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Main result and the proof

Theorem (Asymptotic equivalent for K, [ALC22])

For kernel matrix K = {E[σ(xT
i w)σ(wTxj)]}n

i,j=1 defined above, one has, as n, p→ ∞ that ‖K− K̃‖ → 0, for some
random matrix K̃ dependent of data X, of activation σ but only via the following scalars

d0 = E[σ2(
√

τz)]−E[σ(
√

τz)]2 − τE[σ′(
√

τz)]2, d1 = E[σ′(
√

τz)]2, d2 =
1
4

E[σ′′(
√

τz)]2

and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.

Proof outline:
I We are interested in the kernel matrix K, the (i, j) entry of which Kij = Ew[σ(xT

i w)σ(wTxj)].
I Conditioned on xi, xj, wTxi ≡ ‖xi‖ · ξi and wTxj are asymptotically Gaussian, but correlated!

I Gram-Schmidt to de-correlate wTxj =
xT

i xj

‖xi‖ ξi +

√
‖xj‖2 − (xT

i xj)2

‖xi‖2 ξj, for Gaussian ξj now independent of ξj

I Use the fact xT
i xj = O(p−1/2) and ‖xi‖2 ≈ τ/2 = O(1), Taylor-expand to “linearize” σ(·) to order o(n−1)

I Since ‖A‖2 ≤ n‖A‖∞, with ‖A‖∞ = maxij |Aij|, obtain spectral approximation K̃.
3Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. “Random matrices in service of ML footprint: ternary random features with no performance loss”. In:

International Conference on Learning Representations. 2022

Z. Liao (EIC, HUST) RMT4Compression January 18, 2023 11 / 21



Practical consequence of the theory

According to theorem, allowed to choose arbitrary weights W and activation σ, without affecting K
asymptotically, under the following conditions:
I weights W have independent entries with zero mean and unit variance
I activation σ has the same few parameters as the original net

d0 = E[σ2(
√

τz)]−E[σ(
√

τz)]2 − τE[σ′(
√

τz)]2, d1 = E[σ′(
√

τz)]2, d2 =
1
4

E[σ′′(
√

τz)]2, (2)

In particular,
I sparse and binarized (e.g., Bernoulli distributed) weights W instead of dense Gaussian weights
I sparse quantized (e.g., binarized) activation σ shares the same d0, d1, and d2
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Numerical results
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Figure: Test mean square errors of ridge regression on quantized single-hidden-layer random nets for different numbers of
features N ∈ {5.102, 103, 5.103, 104, 5.104}, using LP-RFF, Nyström approximation, versus the proposed approach, on the
Census dataset, with n = 16 000 training samples, ntest = 2 000 test samples, and data dimension p = 119.
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Fully-connected deep neural networks with random weights

I everyone cares more about (i) deep neural networks and (ii) have non-random weights
I with some additional efforts, theory extends to fully-connected deep neural networks of depth L,

f (x) =
1√
dL

wTσL

(
1√

dL−1
WLσL−1

(
. . .

1√
d2

σ2

(
1√
d1

W2σ1(W1x)
)))

, (3)

again for random W1, . . . , WL and activations σ1(·), . . . , σL(·).

Theorem (Asymptotic equivalents for conjugate kernels, informal)

Under the same condition, define output features of layer ` ∈ {1, . . . , L}, as

Σ` =
1√
d`

σ`

(
1√
d`−1

W`σ`−1

(
. . .

1√
d2

σ2

(
1√
d1

W2σ1(W1X)
)))

. (4)

we have for the Conjugate Kernel KCK,` at layer ` defined as

KCK,` = E[ΣT
` Σ`] ∈ Rn×n, (5)

that ‖KCK,` − K̃CK,`‖ → 0, some random matrix K̃CK,` dependent of data, of activation σ` but only via a few
parameters, and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.
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Theorem (Asymptotic equivalents for CK matrices, formal)

Let τ0, τ1, . . . , τL ≥ 0 be a sequence of non-negative numbers satisfying the following recursion:

τ` =
√

E[σ2
` (τ`−1ξ)], ξ ∼ N (0, 1), ` ∈ {1, . . . , L}. (6)

Further assume that the activation functions σ`(·)s are “centered,” such that E[σ`(τ`−1ξ)] = 0. Then, for the CK
matrix KCK,` of layer ` ∈ {1, . . . , L} defined in (5), as n, p→ ∞, one has that:

‖KCK,` − K̃CK,`‖ → 0, K̃CK,` ≡ α`,1XTX + VA`V
T + (τ2

` − τ2
0 α`,1 − τ4

0 α`,3)In, (7)

almost surely, with V = [J/
√

p, ψ] ∈ Rn×(K+1), A` =

[
α`,2ttT + α`,3T α`,2t

α`,2tT α`,2

]
∈ R(K+1)×(K+1), for class label

vectors J = [j1, . . . , jK] ∈ Rn×K, “second-order” data fluctuation vector ψ ∈ Rn, second-order data statistics
t = {tr C◦a /

√
p}K

a=1 ∈ RK and T = {tr CaCb/p}K
a,b=1 ∈ RK×K, as well as non-negative α`,1, α`,2, α`,3 satisfying

α`,1 = E[σ′`(τ`−1ξ)]2α`−1,1, α`,2 = E[σ′`(τ`−1ξ)]2α`−1,2 +
1
4

E[σ′′` (τ`−1ξ)]2α2
`−1,4, (8)

α`,3 = E[σ′`(τ`−1ξ)]2α`−1,3 +
1
2

E[σ′′` (τ`−1ξ)]2α2
`−1,1. (9)

with α`,4 = E
[
(σ′`(τ`−1ξ))2 + σ`(τ`−1ξ)σ′′` (τ`−1ξ)

]
α`−1,4 for ξ ∼ N (0, 1).
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Deep compression of fully-connected deep nets via NTK

I used for compression of fully-connected deep nets, but with random weights only, who cares?
I Our approach: from random to trained nets via Neural Tangent Kernel (NTK) theory [JGH18]:
I for (i) sufficiently wide nets (ii) trained with gradient descent of sufficiently small step size, NTK is

determined at random initialization and remains unchanged during training

Proof outline of NTK

− conditioned on (xi, yi)
n
i=1, train NN by minimizing `(θ) = 1

2 ∑n
i=1 (f (θ, xi)− yi)

2, θ ≡ {w, WL, · · · , W1};

− gradient descent with sufficiently small step size leads to gradient flow dynamics: dθ(t)
dt = −∇`(θ(t));

− the dynamics of the output vector u(t) ∈ Rn with ui =
df (θ(t),xi)

dt given by

du(t)
dt

= −K̂NTK(t) (u(t)− y) , y = [y1, . . . , yn]
T, [K̂NTK(t)]i,j = 〈

∂f (θ, xi)

∂θ
,

∂f (θ, xj)

∂θ
〉 (10)

− then, step (1): convergence of the random NTK to its expectation K̂NTK(t = 0)→ KNTK ≡ E[K̂NTK(t = 0)] , and step
(2): stability of the NTK during training K̂NTK(t) ' K̂NTK(t = 0) ' KNTK for t > 0.

I with some additional efforts, understand the behavior of NTK matrices KNTK
I use the theory for DNN compression!

4Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel: Convergence and generalization in neural networks”. In: Advances in neural
information processing systems. 2018, pp. 8571–8580
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Figure: Test accuracies of compressed nets on MNIST (top) and CIFAR10 (bottom) datasets. Blue represent the proposed
approach with different sparsity levels, purple represent the heuristic sparsification approach by uniformly zeroing out 80%
of the weights, green represent the heuristic quantization approach using the binary activation σ(t) = 1t<−1 + 1t>1 , red
represent the original network, brown represent the proposed compression approach without activation quantization, and
orange represent magnitude-based pruning. Memory varies due to the change of layer width of the network.
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Conclusion and take-away message

Take-away message:
I theoretical analysis of single-hidden-layer NN with random weights
I extension to fully-connected deep nets and to NTK
I to propose DNN compression approach with theoretical guarantee!

Future work and open problems:
I deep learning theory beyond the NTK regime? more challenging due to optimization and complicated

dependent structure therein;
I RMT for more structured data, e.g., structured random graph (dense and sparse), with application in

computer science
I RMT+OPT: RMT and high-dimensional statistics for optimization beyond worst-case scenario

References:
I Hafiz Tiomoko Ali, Zhenyu Liao, and Romain Couillet. “Random matrices in service of ML footprint:

ternary random features with no performance loss”. In: International Conference on Learning
Representations. 2022

I Lingyu Gu et al. “”Lossless” Compression of Deep Neural Networks: A High-dimensional Neural
Tangent Kernel Approach”. In: Advances in Neural Information Processing Systems. 2022
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RMT for machine learning: from theory to practice

Random matrix theory (RMT) for machine learning:
I change of intuition from small to large dimensional learning paradigm!
I better understanding of existing methods: why they work if they do, and what the issue is if they do not
I improved novel methods with performance guarantee!

I Random Matrix Methods for Machine Learning,
Cambridge University Press, 2022

I by Romain Couillet and Zhenyu Liao
I a pre-production version of the book and exercise

solutions at https://zhenyu-liao.github.io/book/
I MATLAB and Python codes to reproduce all figures at

https://github.com/Zhenyu-LIAO/RMT4ML

Thank you! Q & A?
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