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Context
Baseline scenario: x1, . . . , xn ∈ Rp (or Cp) i.i.d. with E[x1] = 0, E[x1xT

1 ] = Cp:
I If x1 ∼ N (0, Cp), ML estimator for Cp is the sample covariance matrix (SCM)

Ĉp =
1
n

n∑
i=1

xix
T
i .

I If n→∞, then, strong law of large numbers

Ĉp
a.s.−→ Cp.

or equivalently, in spectral norm∥∥Ĉp − Cp∥∥ a.s.−→ 0.

Random Matrix Regime
I No longer valid if p, n→∞ with p/n→ c ∈ (0,∞),∥∥Ĉp − Cp∥∥ 6→ 0.

I For practical p, n with p ' n, leads to dramatically wrong conclusions
I Even for n = 100× p.
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The Large Dimensional Fallacies

Setting: xi ∈ Rp i.i.d., x1 ∼ CN (0, Ip)
I assume p = p(n) such that p/n→ c > 1
I then, joint point-wise convergence

max
1≤i,j≤p

∣∣∣[Ĉp − Ip]
ij

∣∣∣ = max
1≤i,j≤p

∣∣∣ 1
n
Xj,·X

T
i,· − δij

∣∣∣ a.s.−→ 0.

I however, eigenvalue mismatch

0 = λ1(Ĉp) = . . . = λp−n(Ĉp) ≤ λp−n+1(Ĉp) ≤ . . . ≤ λp(Ĉp)

1 = λ1(Ip) = . . . = λp−n(Ip) = λp−n+1(Ĉp) = . . . = λp(Ip)

⇒ no convergence in spectral norm.
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The Marc̆enko–Pastur law
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Figure: Histogram of the eigenvalues of Ĉp for c = 1/4, Cp = Ip.
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The Marc̆enko–Pastur law

Definition (Empirical Spectral Distribution)
Empirical spectral distribution (e.s.d.) µp of Hermitian matrix Ap ∈ Rp×p is

µp =
1
p

p∑
i=1

δλi(Ap).

Theorem (Marc̆enko–Pastur Law [Marc̆enko,Pastur’67])
Xp ∈ Rp×n with i.i.d. zero mean, unit variance entries.
As p, n→∞ with p/n→ c ∈ (0,∞), e.s.d. µp of 1

n
XpXT

p satisfies

µp
a.s.−→ µ(c)

in distribution (i.e.,
∫
f(t)µp(dt) a.s.−→

∫
f(t)µ(c)(dt) for all bounded continuous f),

where
I µc({0}) = max{0, 1− c−1}
I on (0,∞), µ(c) has continuous density fc supported on [(1−

√
c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x− (1−

√
c)2)((1 +

√
c)2 − x).
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The Marc̆enko–Pastur law
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Figure: Marc̆enko-Pastur law for different limit ratios c = limp→∞ p/n.
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The Stieltjes transform

Definition (Stieltjes Transform)
For µ real probability measure of support supp(µ), Stieltjes transform mµ defined, for
z ∈ C \ supp(µ), as

mµ(z) =
∫

1
t− z

µ(dt).

Property (Inverse Stieltjes Transform)
For a < b continuity points of µ,

µ([a, b]) = lim
ε↓0

1
π

∫ b

a

=[mµ(x+ ıε)]dx

Besides, if µ has a density f at x,

f(x) = lim
ε↓0

1
π
=[mµ(x+ ıε)].
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The Stieltjes transform

Property (Relation to e.s.d.)
If µ e.s.d. of Hermitian A ∈ Rp×p, (i.e., µ = 1

p

∑p

i=1 δλi(A))

mµ(z) =
1
p

tr (A− zIp)−1

Proof:

mµ(z) =
∫

µ(dt)
t− z

=
1
p

p∑
i=1

1
λi(A)− z

=
1
p

tr (diag{λi(A)} − zIp)−1

=
1
p

tr (A− zIp)−1 .

Fundamental object: the resolvent of A

QA(z) ≡ (A− zIp)−1.

12 / 153



Basics of Random Matrix Theory (Romain COUILLET)/The Stieltjes Transform Method 13/153

The Stieltjes transform

Property (Stieltjes transform of Gram matrices)
For X ∈ Cp×n, and
I µ e.s.d. of XXT

I µ̃ e.s.d. of XTX

Then

mµ(z) =
n

p
mµ̃(z)−

p− n
p

1
z
.

Proof:

mµ(z) =
1
p

p∑
i=1

1
λi(XXT)− z

=
1
p

n∑
i=1

1
λi(XTX)− z

+
1
p

(p− n)
1

0− z
.
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Resolvent Identity)
For A,B ∈ Rp×p invertible,

A−1 −B−1 = A−1(B −A)B−1.

Proof: Simply left-multiply by A and right-multiply by B on both sides.

Corollary
For t ∈ C, x ∈ Rp, A ∈ Rp×p, with A and A+ txxT invertible,

(A+ txxT)−1x =
A−1x

1 + txTA−1x
.

Proof Intuition: Left-multiply by (A+ tccT) on both sides.
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Rank-one perturbation)
For A,B ∈ Rp×p Hermitian nonnegative definite, e.s.d. µ of A, t > 0, x ∈ Rp,
z ∈ C \ supp(µ),∣∣∣1

p
trB
(
A+ txxT − zIp

)−1
−

1
p

trB (A− zIp)−1
∣∣∣ ≤ 1

p

‖B‖
dist(z, supp(µ))

In particular, as p→∞, if lim supp ‖B‖ <∞,

1
p

trB
(
A+ txxT − zIp

)−1
−

1
p

trB (A− zIp)−1 → 0.

Proof Intuition: Based on Weyl’s interlacing identity (eigenvalues of A and A+ txxT

are interlaced).
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The Stieltjes transform

Three fundamental lemmas in all proofs.

Lemma (Trace Lemma)
For
I x ∈ Rp with i.i.d. entries with zero mean, unit variance, finite 2k order moment,
I A ∈ Rp×p deterministic (or independent of x),

then

E

[∣∣∣1
p
xTAx−

1
p

trA
∣∣∣k] ≤ K ‖A‖p

pk/2
.

In particular, if lim supp ‖A‖ <∞, and x has entries with finite eighth-order moment,

1
p
xTAx−

1
p

trA a.s.−→ 0

(by Markov inequality and Borel Cantelli lemma).
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Proof of the Marc̆enko–Pastur law

Theorem (Marc̆enko–Pastur Law [Marc̆enko,Pastur’67])
Xp ∈ Rp×n with i.i.d. zero mean, unit variance entries.
As p, n→∞ with p/n→ c ∈ (0,∞), e.s.d. µp of 1

n
XpXT

p satisfies

µp
a.s.−→ µ(c)

weakly, where
I µ(c)({0}) = max{0, 1− c−1}
I on (0,∞), µ(c) has continuous density fc supported on [(1−

√
c)2, (1 +

√
c)2]

fc(x) =
1

2πcx

√
(x− (1−

√
c)2)((1 +

√
c)2 − x).
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Proof of the Marc̆enko–Pastur law

Stieltjes transform approach.

Proof
I With µp e.s.d. of 1

n
XpXT

p ,

mµp (z) =
1
p

tr
( 1
n
XpX

T
p − zIp

)−1
=

1
p

p∑
i=1

[( 1
n
XpX

T
p − zIp

)−1
]
ii

.

I Write

Xp =
[
yT

Yp−1

]
∈ Rp×n

so that, for =[z] > 0,( 1
n
XpX

T
p − zIp

)−1
=
(

1
n
yTy − z 1

n
yTYp−1

1
n
Yp−1y

1
n
Yp−1Y T

p−1 − zIp−1

)−1

.
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Proof of the Marc̆enko–Pastur law

Proof (continued)
I From block matrix inverse formula(

A B
C D

)−1
=
(

(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(A−BD−1C)−1CA−1 (D − CA−1B)−1

)
we have[( 1

n
XpX

T
p − zIp

)−1
]

11

=
1

−z − z 1
n
yT( 1

n
Y T
p−1Yp−1 − zIn)−1y

.

I By Trace Lemma, as p, n→∞[( 1
n
XpX

T
p − zIp

)−1
]

11

−
1

−z − z 1
n

tr ( 1
n
Y T
p−1Yp−1 − zIn)−1

a.s.−→ 0.
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Proof of the Marc̆enko–Pastur law

Proof (continued)
I By Rank-1 Perturbation Lemma (XT

pXp = Y T
p−1Yp−1 + yyT), as p, n→∞[( 1

n
XpX

T
p − zIp

)−1
]

11

−
1

−z − z 1
n

tr ( 1
n
XT
pXp − zIn)−1

a.s.−→ 0.

I Since 1
n

tr ( 1
n
XT
pXp − zIn)−1 = 1

n
tr ( 1

n
XpXT

p − zIp)−1 − n−p
n

1
z

,[( 1
n
XpX

T
p − zIp

)−1
]

11

−
1

1− p
n
− z − z 1

n
tr ( 1

n
XpXT

p − zIp)−1
a.s.−→ 0.

I Repeating for entries (2, 2), . . . , (p, p), and averaging, we get (for =[z] > 0)

mµp (z)−
1

1− p
n
− z − z p

n
mµp (z)

a.s.−→ 0.
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Proof of the Marc̆enko–Pastur law

Proof (continued)
I Then mµp (z) a.s.−→ m(z) solution to

m(z) =
1

1− c− z − czm(z)

i.e., (with branch of
√
f(z) such that m(z)→ 0 as |z| → ∞)

m(z) =
1− c
2cz

−
1
2c

+

√(
z − (1 +

√
c)2
) (
z − (1−

√
c)2
)

2cz
.

I Finally, by inverse Stieltjes Transform, for x > 0,

lim
ε↓0

1
π
=[m(x+ ıε)] =

√(
(1 +

√
c)2 − x

) (
x− (1−

√
c)2
)

2πcx
1{x∈[(1−

√
c)2,(1+

√
c)2]}.

And for x = 0,

lim
ε↓0

ıε=[m(ıε)] =
(
1− c−1

)
1{c>1}.
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Sample Covariance Matrices

Theorem (Sample Covariance Matrix Model [Silverstein,Bai’95])
Let Yp = C

1
2
p Xp ∈ Rp×n, with

I Cp ∈ Cp×p nonnegative definite with e.s.d. νp → ν weakly,
I Xp ∈ Cp×n has i.i.d. entries of zero mean and unit variance.

As p, n→∞, p/n→ c ∈ (0,∞), µ̃p e.s.d. of 1
n
Y T
p Yp ∈ Rn×n satisfies

µ̃p
a.s.−→ µ̃

weakly, with mµ̃(z), =[z] > 0, unique solution with =[mµ̃(z)] > 0 of

mµ̃(z) =
(
−z + c

∫
t

1 + tmµ̃(z)
ν(dt)

)−1

.

Moreover, µ̃ is continuous on R+ and real analytic wherever positive.

Immediate corollary: For µp e.s.d. of 1
n
YpY T

p = 1
n

∑n

i=1 C
1
2
p xix

T
i C

1
2
p ,

µp
a.s.−→ µ

weakly, with µ̃ = cµ+ (1− c)δ0.
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Sample Covariance Matrices
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Figure: Histogram of the eigenvalues of 1
nYpY

T
p , n = 3000, p = 300, with Cp diagonal with

evenly weighted masses in (i) 1, 3, 7, (ii) 1, 3, 4.
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Further Models and Deterministic Equivalents

Sometimes, µp does not converge!
I if νp does not converge
I if p/n does not converge
I if eigenvectors of deterministic matrices play a role!

Deterministic equivalents: sequence µ̄p of deterministic measures, with

µp − µ̄p
a.s.−→ 0

or equivalently, deterministic sequence of mp with

mµp −mp
a.s.−→ 0.
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Further Models and Deterministic Equivalents

Theorem (Doubly-correlated i.i.d. matrices)
Let Bp = C

1
2
p XpTpX

T
pC

1
2
p , with e.s.d. µp, Xp ∈ Rp×n with i.i.d. entries of zero mean,

variance 1/n, Cp Hermitian nonnegative definite, Tp diagonal nonnegative,
lim supp max(‖Cp‖, ‖Tp‖) <∞. Denote c = p/n.
Then, as p, n→∞ with bounded ratio c, for z ∈ C \ R−,

mµp (z)−mp(z) a.s.−→ 0, mp(z) =
1
p

tr (−zIp + ēp(z)Cp)−1

with ē(z) unique solution in {z ∈ C+, ēp(z) ∈ C+} or {z ∈ R−, ēp(z) ∈ R+} of

ep(z) =
1
p

trCp (−zIp + ēp(z)Cp)−1

ēp(z) =
1
n

trTp (In + cep(z)Tp)−1 .
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Other Refined Sample Covariance Models

Side note on other models.
Similar results for multiple matrix models:

I Information-plus-noise: Yp = Ap +Xp, Ap deterministic
I Variance profile: Yp = Pp �Xp (entry-wise product)

I Per-column covariance: Yp = [y1, . . . , yn], yi = C
1
2
p,ixi

I etc.
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No Eigenvalue Outside the Support

Theorem (No Eigenvalue Outside the Support [Silverstein,Bai’98])
Let Yp = C

1
2
p Xp ∈ Rp×n, with

I Cp ∈ Rp×p nonnegative definite with e.s.d. νp → ν weakly,
I Xp ∈ Rp×n has i.i.d. entries of zero mean and unit variance,
I E[|Xp|4ij ] <∞,
I maxi dist(λi(Cp), supp(ν))→ 0.

Let µ̃ be the limiting e.s.d. of 1
n
Y T
p Yp as before. Let [a, b] ⊂ RT \ supp(ν̃). Then,{

λi

( 1
n
Y T
p Yp

)}n
i=1
∩ [a, b] = ∅

for all large n, almost surely.

In practice: This means that eigenvalues of 1
n
Y T
p Yp cannot be bound at macroscopic

distance from the bulk, for p, n large.
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Spiked Models

Breaking the rules. If we break
I Rule 1: Infinitely many eigenvalues may wander away from supp(µ).
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Spiked Models
If we break:
I Rule 2: Cp may create isolated eigenvalues in 1

n
YpY T

p , called spikes.
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0.2

0.4

0.6
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p
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µ

Figure: Eigenvalues of 1
nYpY

T
p , Cp = diag(1, . . . , 1︸ ︷︷ ︸

p−4

, 2, 3, 4, 5), p = 500, n = 2000.
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Spiked Models: The phase transition phenomenon
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T
p , Cp = diag(1, . . . , 1︸ ︷︷ ︸
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, 2, 3, 4, 5).
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Spiked Models

Theorem (Eigenvalues [Baik,Silverstein’06])
Let Yp = C

1
2
p Xp, with

I Xp with i.i.d. zero mean, unit variance, E[|Xp|4ij ] <∞.
I Cp = Ip + P , P = UΩUT, where, for K fixed,

Ω = diag (ω1, . . . , ωK) ∈ RK×K , with ω1 ≥ . . . ≥ ωK > 0.

Then, as p, n→∞, p/n→ c ∈ (0,∞), denoting λi = λi( 1
n
YpY T

p ),
I if ωm >

√
c,

λm
a.s.−→ 1 + ωm + c

1 + ωm

ωm
> (1 +

√
c)2

I if ωm ∈ (0,
√
c],

λm
a.s.−→ (1 +

√
c)2
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Spiked Models
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Figure: Eigenvalues of 1
nYpY

T
p , Cp = diag(1, . . . , 1︸ ︷︷ ︸

p−2

, 2, 3), p = 500, n = 1500.

33 / 153



Basics of Random Matrix Theory (Romain COUILLET)/Spiked Models 34/153

Spiked Models

Proof
I Two ingredients: Algebraic calculus + trace lemma
I Find eigenvalues away from eigenvalues of 1

n
XpXT

p :

0 = det
( 1
n
YpY

T
p − λIp

)
, Yp = C

1
2
p Xp

= det(Cp) det
( 1
n
XpX

T
p − λC−1

p

)
= det

( 1
n
XpX

T
p − λIp + λ(Ip − C−1

p )
)

= det
( 1
n
XpX

T
p − λIp

)
det
(
Ip + λ(Ip − C−1

p )
( 1
n
XpX

T
p − λIp

)−1
)
.

I Use low rank property: (Cp = Ip + P = Ip + UΩUT)

Ip − C−1
p = Ip − (Ip + UΩUT)−1 = U(IK + Ω−1)−1UT, Ω ∈ CK×K .

Hence

0 = det
( 1
n
XpX

T
p − λIp

)
det
(
Ip + λU(IK + Ω−1)−1UT

( 1
n
XpX

T
p − λIp

)−1
)
.
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Spiked Models

Proof (2)
I Sylverster’s identity (det(I +AB) = det(I +BA)),

0 = det
( 1
n
XpX

T
p − λIp

)
det
(
IK + λ(IK + Ω−1)−1UT

( 1
n
XpX

T
p − λIp

)−1
U

)
I No eigenvalue outside the support [Bai,Sil’98]: det( 1

n
XpXT

p − λIp) has no zero
beyond (1 +

√
c)2 for all large n a.s.

I Extension of Trace Lemma: for each z ∈ C \ supp(µ),

UT
( 1
n
XpX

T
p − zIp

)−1
U

a.s.−→ mµ(z)IK .

(Xp being “almost-unitarily invariant”, U made of “i.i.d.-like” random vectors)
I As a result, for all large n a.s.,

0 = det
(
IK + λ(IK + Ω−1)−1UT(

1
n
XpX

T
p − λIp)−1U

)
'

K∏
k=1

(
1 +

λ

1 + ω−1
k

mµ(λ)
)

=
K∏
k=1

(
1 +

ωk

1 + ωk
λmµ(λ)

)
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Spiked Models

Proof (3)
I Limiting solutions: zeros of

λmµ(λ) = −
1 + ωm

ωm
.

I Marc̆enko–Pastur law properties
(mµ(z) = (1− c− z − czmµ(z))−1):
I λ 7→ λmµ(λ) =

∫
λ
t−λµ(dt) maps

((1 +
√
c)2,∞) onto (− 1+

√
c√
c
, 0−)

I Solution only when ωm >
√
c:

λ = 1 + ωm + c
1 + ωm

ωm
.
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Spiked Models

Theorem (Eigenvectors [Paul’07])
Let Yp = C

1
2
p Xp, with

I Xp with i.i.d. zero mean, unit variance, finite fourth order moment entries
I Cp = Ip + P , P =

∑K

i=1 ωiuiu
T
i , ω1 > . . . > ωM > 0.

Then, as p, n→∞, p/n→ c ∈ (0,∞), for a, b ∈ Rp deterministic and ûi eigenvector
of λi( 1

n
YpY T

p ),

aTûiû
T
i b−

1− cω−2
i

1 + cω−1
i

aTuiu
T
i b · 1ωi>

√
c

a.s.−→ 0

In particular,

|ûT
i ui|

2 a.s.−→
1− cω−2

i

1 + cω−1
i

· 1ωi>
√
c.

Proof: Based on Cauchy integral + similar ingredients as eigenvalue proof

aTûiû
T
i b =

1
2πı

∮
Ci

aT
( 1
n
YpY

T
p − zIp

)−1
b dz

for Cm contour circling around λi only. 37 / 153
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Spiked Models
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Figure: Simulated versus limiting |ûT
1u1|2 for Yp = C

1
2
p Xp, Cp = Ip + ω1u1u

T
1 , p/n = 1/3,

varying ω1.
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Tracy–Widom Theorem

Theorem (Fluctuations of Eigenvalues [Baik,BenArous,Péché’05])
Let Yp = C

1
2
p Xp, with

I Xp with i.i.d. real or complex Gaussian zero mean, unit variance entries,
I Cp = Ip + P , P =

∑K

i=1 ωiuiu
T
i , ω1 > . . . > ωK > 0 (K ≥ 0).

Then, as p, n→∞, p/n→ c < 1,
I If ω1 <

√
c (or K = 0),

p
2
3
λ1 − (1 +

√
c)2

(1 +
√
c)

4
3 c

1
2

L−→ T, (real or complex Tracy–Widom law)

I If ω1 >
√
c,(

(1 + ω1)2

c
−

(1 + ω1)2

ω2
1

) 1
2

p
1
2

[
λ1 −

(
1 + ω1 + c

1 + ω1

ω1

)]
L−→ N (0, 1).
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Tracy–Widom Theorem
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Figure: Distribution of p
2
3 c−

1
2 (1 +

√
c)−

4
3
[
λ1( 1

nXpX
T
p )− (1 +

√
c)2
]

versus real
Tracy–Widom (T ), p = 500, n = 1500.
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Other Spiked Models

Similar results for multiple matrix models:

I Yp = 1
n
XXT + P , P deterministic and low rank

I Yp = 1
n
XT(I + P )X

I Yp = 1
n

(X + P )T(X + P )
I Yp = 1

n
TXT(I + P )XT

I etc.
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The Semi-circle law

Theorem
Let Xn ∈ Rn×n Hermitian with e.s.d. µn such that 1√

n
[Xn]i>j are i.i.d. with zero

mean and unit variance. Then, as n→∞,

µn
a.s.−→ µ

with µ(dt) = 1
2π

√
(4− t2)+dt. In particular, mµ satisfies

mµ(z) =
1

−z −mµ(z)
.
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The Semi-circle law
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Figure: Histogram of the eigenvalues of Wigner matrices and the semi-circle law, for n = 500

44 / 153



Basics of Random Matrix Theory (Romain COUILLET)/Other Common Random Matrix Models 45/153

The Circular law

Theorem
Let Xn ∈ Cn×n with e.s.d. µn be such that 1√

n
[Xn]ij are i.i.d. entries with zero mean

and unit variance. Then, as n→∞,

µn
a.s.−→ µ

with µ a complex-supported measure with µ(dz) = 1
2π δ|z|≤1dz.
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The Circular law
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Figure: Eigenvalues of Xn with i.i.d. standard Gaussian entries, for n = 500.
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From classical applications...

Large range of applications:
I Wireless communications: capacity of large communication channels H ∈ Cp×n,

optimal precoding in mu-MIMO, power allocation in large networks, sensing in
cognitive radios, etc.

I Array processing: improved MUSIC methods for large arrays (p ∼ n), optimal
beamforming (MVDR), detection filters (ANMF), etc.

I Statistical finance: portfolio optimization (Markowitz, GMVP) for large portfolios
and short time windows.

I Brain signal processing: EEG covariance estimation on short windows.

Any application where p ∼ n “rather large”
(convergence speed in up to O(n) and not O(

√
n) as usual!)

BUT mostly linear settings...

49 / 153



Basics of Random Matrix Theory (Romain COUILLET)/Applications 50/153

... to machine learning!

Specificities in statistical and machine learning:
I Matrix of non-linear entries: kernel matrices K = {κ(xi, xj)}ni,j=1, activation

functions in neural nets xl+1 = σ(Wxl), non-linear features, etc.
I Often non-explicit solutions: robust statistics (fixed-point matrices), SVM margin

constraints, logistic regression, etc.

CENTRAL ISSUE: Given that basic sample covariance matrices are not consistent for
large n, p, what happens to machine learning methods?
I we will see that small-dimensional intuitions dramatically fail
I some classical and widely-used algorithms become ineffective
I BUT random matrix theory provides a renewed understanding.

TUTORIAL: first answers to understand, improve, and change paradigm.
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Reminder on Spectral Clustering Methods

Context: Two-step classification of n objects based on similarity A ∈ Rn×n:

0 spikes

⇓ Eigenvectors ⇓
(in practice, shuffled)

Ei
ge

nv
.1

Ei
ge

nv
.2
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Reminder on Spectral Clustering Methods

Ei
ge

nv
.1

Ei
ge

nv
.2

⇓ `-dimensional representation ⇓
(shuffling no longer matters)

Eigenvector 1

Ei
ge

nv
ec

to
r

2

⇓
EM or k-means clustering.
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Kernel Spectral Clustering
Problem Statement
I Dataset x1, . . . , xn ∈ Rp
I Objective: “cluster” data in k similarity classes C1, . . . , Ck.

I Kernel spectral clustering based on kernel matrix

K = {κ(xi, xj)}ni,j=1

I Usually, κ(x, y) = f(xTy) or κ(x, y) = f(‖x− y‖2)
I Refinements:

I instead of K, use D −K, In −D−1K, In −D−
1
2 KD−

1
2 , etc.

I several steps algorithms: Ng–Jordan–Weiss, Shi–Malik, etc.

Intuition (from small dimensions)

I K essentially low rank with class structure in eigenvectors.
I Ng–Weiss–Jordan key remark: D−

1
2KD−

1
2 (D

1
2 ja) ' D

1
2 ja (ja canonical

vector of Ca)
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Kernel Spectral Clustering
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Figure: Leading four eigenvectors of D−
1
2 KD−

1
2 for MNIST data, RBF kernel

(f(t) = exp(−t2/2)).

I Important Remark: eigenvectors informative BUT far from D
1
2 ja!
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Model and Assumptions
Gaussian mixture model:
I x1, . . . , xn ∈ Rp,
I k classes C1, . . . , Ck,
I x1, . . . , xn1 ∈ C1, . . . , xn−nk+1, . . . , xn ∈ Ck,
I xi ∼ N (µgi , Cgi ).

Assumption (Growth Rate)
As n→∞,

1. Data scaling: p
n
→ c0 ∈ (0,∞), na

n
→ ca ∈ (0, 1),

2. Mean scaling: with µ◦ ,
∑k

a=1
na
n
µa and µ◦a , µa − µ◦, then ‖µ◦a‖ = O(1)

3. Covariance scaling: with C◦ ,
∑k

a=1
na
n
Ca and C◦a , Ca − C◦, then

‖Ca‖ = O(1), trC◦a = O(√p), trC◦aC◦b = O(p)

For 2 classes, this is

‖µ1 − µ2‖ = O(1), tr (C1 − C2) = O(√p), ‖Ci‖ = O(1), tr ([C1 − C2]2) = O(p).

Remark: [Neyman–Pearson optimality]
I x ∼ N (±µ, Ip) (known µ) decidable iif ‖µ‖ ≥ O(1).
I x ∼ N (0, (1± ε)Ip) (known ε) decidable iif ‖ε‖ ≥ O(p−

1
2 ).
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Model and Assumptions

Kernel Matrix:
I Kernel matrix of interest:

K =
{
f

(1
p
‖xi − xj‖2

)}n
i,j=1

for some sufficiently smooth nonnegative f (f( 1
p
xT
i xj) simpler).

I We study the normalized Laplacian:

L = nD−
1
2

(
K −

ddT

dT1n

)
D−

1
2

with d = K1n, D = diag(d).
(more stable both theoretically and in practice)
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Random Matrix Equivalent

I Key Remark: Under growth rate assumptions,

max
1≤i 6=j≤n

{∣∣∣1
p
‖xi − xj‖2 − τ

∣∣∣} a.s.−→ 0.

where τ = 1
p

trC◦.
⇒ Suggests that (up to diagonal) K ' f(τ)1n1T

n!

I In fact, information hidden in low order fluctuations! from “matrix-wise” Taylor
expansion of K:

K = f(τ)1n1T
n︸ ︷︷ ︸

O‖·‖(n)

+
√
nK1︸ ︷︷ ︸

low rank, O‖·‖(
√
n)

+ K2︸︷︷︸
informative terms, O‖·‖(1)

Clearly not the (small dimension) expected behavior.
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Random Matrix Equivalent

Theorem (Random Matrix Equivalent [Couillet, Benaych’2015])
As n, p→∞,

∥∥L− L̂∥∥ a.s.−→ 0, where

L = nD−
1
2

(
K −

ddT

dT1n

)
D−

1
2 , avec Kij = f

(1
p
‖xi − xj‖2

)
L̂ = −2

f ′(τ)
f(τ)

[1
p
PWTWP +

1
p
JBJT + ∗

]
et W = [w1, . . . , wn] ∈ Rp×n (xi = µa + wi), P = In − 1

n
1n1T

n,

J = [j1, . . . , jk], jT
a = (0 . . . 0, 1na , 0, . . . , 0)

B = MTM +
(5f ′(τ)

8f(τ)
−
f ′′(τ)
2f ′(τ)

)
ttT −

f ′′(τ)
f ′(τ)

T + ∗.

Recall M = [µ◦1, . . . , µ◦k], t = [ 1√
p

trC◦1 , . . . ,
1√
p

trC◦k ]T, T =
{

1
p

trC◦aC◦b
}k
a,b=1

.

Fundamental conclusions:
I asymptotic kernel impact only through f ′(τ) and f ′′(τ), that’s all!
I spectral clustering reads MTM , ttT and T , that’s all!
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Isolated eigenvalues: Gaussian inputs

0 1 2 3 4

Eigenvalues of L

0 1 2 3 4

Eigenvalues of L̂

Figure: Eigenvalues of L and L̂, k = 3, p = 2048, n = 512, c1 = c2 = 1/4, c3 = 1/2,
[µa]j = 4δaj , Ca = (1 + 2(a− 1)/√p)Ip, f(x) = exp(−x/2).
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Theoretical Findings versus MNIST
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0.15

0.2
Eigenvalues of L

Eigenvalues of L̂ as if Gaussian model

Figure: Eigenvalues of L (red) and (equivalent Gaussian model) L̂ (white), MNIST data, p = 784,
n = 192.
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Theoretical Findings versus MNIST

Figure: Leading four eigenvectors of D−
1
2 KD−

1
2 for MNIST data (red) and theoretical findings

(blue).
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Theoretical Findings versus MNIST
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Figure: 2D representation of eigenvectors of L, for the MNIST dataset. Theoretical means and 1-
and 2-standard deviations in blue. Class 1 in red, Class 2 in black, Class 3 in green.
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The surprising f ′(τ) = 0 case
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Figure: Polynomial kernel with f(τ) = 4, f ′′(τ) = 2, xi ∈ N (0, Ca), with C1 = Ip,
[C2]i,j = .4|i−j|, c0 = 1

4 .

I Trivial classification when t = 0, M = 0 and ‖T‖ = O(1).
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Position of the Problem

Problem: Cluster large data x1, . . . , xn ∈ Rp based on “spanned subspaces”.

Method:
I Still assume x1, . . . , xn belong to k classes C1, . . . , Ck.
I Zero-mean Gaussian model for the data: for xi ∈ Ck,

xi ∼ N (0, Ck).

I Performance of L = nD−
1
2

(
K − 1n1T

n

1T
nD1n

)
D−

1
2 , with

K =
{
f
(
‖x̄i − x̄j‖2

)}
1≤i,j≤n

, x̄ =
x

‖x‖

in the regime n, p→∞.
(alternatively, we can ask 1

p
trCi = 1 for all 1 ≤ i ≤ k)
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Model and Reminders
Assumption 1 [Classes]. Vectors x1, . . . , xn ∈ Rp i.i.d. from k-class Gaussian mixture,
with xi ∈ Ck ⇔ xi ∼ N (0, Ck) (sorted by class for simplicity).

Assumption 2a [Growth Rates]. As n→∞, for each a ∈ {1, . . . , k},
1. n

p
→ c0 ∈ (0,∞)

2. na
n
→ ca ∈ (0,∞)

3. 1
p

trCa = 1 and trC◦aC◦b = O(p), with C◦a = Ca − C◦, C◦ =
∑k

b=1 cbCb.

Theorem (Corollary of Previous Section)
Let f smooth with f ′(2) 6= 0. Then, under Assumptions 2a,

L = nD−
1
2

(
K −

1n1T
n

1T
nD1n

)
D−

1
2 , with K =

{
f
(
‖x̄i − x̄j‖2

)}n
i,j=1

(x̄ = x/‖x‖)

exhibits phase transition phenomenon, i.e., leading eigenvectors of L asymptotically
contain structural information about C1, . . . , Ck if and only if

T =
{1
p

trC◦aC◦b
}k
a,b=1

has sufficiently large eigenvalues (here M = 0, t = 0).
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The case f ′(2) = 0

Assumption 2b [Growth Rates]. As n→∞, for each a ∈ {1, . . . , k},
1. n

p
→ c0 ∈ (0,∞)

2. na
n
→ ca ∈ (0,∞)

3. 1
p

trCa = 1 and trC◦aC◦b = O(p)trC◦aC◦b = O(√p), with C◦a = Ca − C◦,

C◦ =
∑k

b=1 cbCb.
(in this regime, previous kernels clearly fail)
Remark: [Neyman–Pearson optimality]
I if Ci = Ip ± E with ‖E‖ → 0, detectability iif 1

p
tr (C1 − C2)2 ≥ O(p−

1
2 ).

Theorem (Random Equivalent for f ′(2) = 0)
Let f be smooth with f ′(2) = 0 and

L ≡ √p
f(2)

2f ′′(2)

[
L−

f(0)− f(2)
f(2)

P

]
, P = In −

1
n

1n1T
n.

Then, under Assumptions 2b,

L = PΦP +
{

1
√
p

tr (C◦aC◦b )
1na1T

nb

p

}k
a,b=1

+ o‖·‖(1)

where Φij = δi 6=j
√
p
[
(xT
i xj)

2 − E[(xT
i xj)

2]
]

.
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The case f ′(2) = 0

−2 −1.5 −1 −0.5 0
0

1

2

3

λ1(L)

λ2(L)

Eigenvalues of L

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, c1 = c2 = 1/4, c3 = 1/2,
Ci ∝ Ip + (p/8)−

5
4 WiW

T
i , Wi ∈ Rp×(p/8) of i.i.d. N (0, 1) entries, f(t) = exp(−(t− 2)2).

⇒ No longer a Marcenko–Pastur like bulk, but rather a semi-circle bulk!
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The case f ′(2) = 0

72 / 153



Applications to Machine Learning (Xiaoyi MAI)/Kernel Spectral Clustering: The case f′(τ) = 0 73/153

The case f ′(2) = 0

Roadmap. We now need to:
I study the spectrum of Φ
I study the isolated eigenvalues of L (and the phase transition)
I retrieve information from the eigenvectors.

Theorem (Semi-circle law for Φ)
Let µn = 1

n

∑n

i=1 δλi(L). Then, under Assumption 2b,

µn
a.s.−→ µ

with µ the semi-circle distribution

µ(dt) =
1

2πc0ω2

√
(4c0ω2 − t2)+dt, ω = lim

p→∞

√
2

1
p

tr (C◦)2.
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The case f ′(2) = 0
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λ2(L)

Eigenvalues of L

Semi-circle law

Figure: Eigenvalues of L, p = 1000, n = 2000, k = 3, c1 = c2 = 1/4, c3 = 1/2,
Ci ∝ Ip + (p/8)−

5
4 WiW

T
i , Wi ∈ Rp×(p/8) of i.i.d. N (0, 1) entries, f(t) = exp(−(t− 2)2).
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The case f ′(2) = 0

Denote now

T ≡ lim
p→∞

{√
cacb
√
p

trC◦aC◦b

}k
a,b=1

.

Theorem (Isolated Eigenvalues)
Let ν1 ≥ . . . ≥ νk eigenvalues of T . Then, if √c0|νi| > ω, L has an isolated
eigenvalue λi satisfying

λi
a.s.−→ ρi ≡ c0νi +

ω2

νi
.
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The case f ′(2) = 0

Theorem (Isolated Eigenvectors)
For each isolated eigenpair (λi, ui) of L corresponding to (νi, vi) of T , write

ui =
k∑
a=1

αai
ja√
na

+ σai w
a
i

with ja = [0T
n1 , . . . , 1

T
na , . . . , 0

T
nk

]T, (wai )Tja = 0, supp(wai ) = supp(ja), ‖wai ‖ = 1.
Then, under Assumptions 1–2b,

αai α
b
i

a.s.−→
(

1−
1
c0

ω2

ν2
i

)
[vivT

i ]ab

(σai )2 a.s.−→
ca

c0

ω2

ν2
i

and the fluctuations of ui, uj , i 6= j, are asymptotically uncorrelated.
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The case f ′(2) = 0
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Figure: Leading two eigenvectors of L (or equivalently of L) versus deterministic approximations of
αai ± σ

a
i .
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The case f ′(2) = 0
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Figure: Leading two eigenvectors of L (or equivalently of L) versus deterministic approximations of
αai ± σ

a
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Application: Multiple-source Subspace Clustering

Setting.
I p dimensional vector observations.
I n data sources.
I E[xi] = 0, E[xixT

i ] = Ca.

I T independent observations x(1)
i , . . . , x

(T )
i for source i.

Objective. Cluster sources based on spanned subspace.

Applications examples. Massive MIMO scheduling / EEG classification / etc.

Algorithm.

1. Build kernel matrix K, then L, based on nT vectors x(1)
1 , . . . , x

(T )
n (as if nT

values to cluster).
2. Extract dominant isolated eigenvectors u1, . . . , uκ

3. For each i, create ũi = 1
T

(In ⊗ 1T
T )ui, i.e., average eigenvectors along time.

4. Perform k-class clustering on vectors ũ1, . . . , ũκ.
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Application Example: Massive MIMO UE Clustering
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Figure: Massive MIMO application: Leading two eigenvectors before (left figure) and after (right
figure) T -averaging. Setting: p = 400, n = 40, T = 10, k = 3, c1 = c3 = 1/4, c2 = 1/2,
angular spread model with angles −π/30± π/20, 0± π/20, and π/30± π/20. Kernel function
f(t) = exp(−(t− 2)2).
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Application Example: Massive MIMO UE Clustering
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Figure: Overlap for different T , using the k-means or EM starting from actual centroid solutions
(oracle) or randomly.
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Application Example: Massive MIMO UE Clustering
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Figure: Overlap for optimal kernel f(t) (here f(t) = exp(−(t− 2)2)) and Gaussian kernel
f(t) = exp(−t2), for different T , using the k-means or EM.
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Outline

Basics of Random Matrix Theory (Romain COUILLET)
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models
Applications

Applications to Machine Learning (Xiaoyi MAI)
Reminder on Spectral Clustering Methods
Kernel Spectral Clustering
Kernel Spectral Clustering: The case f ′(τ) = 0
Kernel Spectral Clustering: The case f ′(τ) = α√

p

Semi-supervised Learning
Improved Semi-supervised Learning

Applications to Random Projections and Neural Networks (Zhenyu LIAO)
Random Projections-based Ridge Regression
Random Projections-based Spectral Clustering
Random Matrix Analysis for Learning Dynamics of Neural Networks

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
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Optimal growth rates and optimal kernels

Conclusion of previous analyses:
I kernel f( 1

p
‖xi − xj‖2) with f ′(τ) 6= 0:

I optimal in ‖µ◦a‖ = O(1), 1
p trC◦a = O(p−

1
2 )

I suboptimal in 1
p trC◦aC

◦
b = O(1)

−→ Model type: Marc̆enko–Pastur + spikes.

I kernel f( 1
p
‖xi − xj‖2) with f ′(τ) = 0:

I suboptimal in ‖µ◦a‖ � O(1) (kills the means)
I suboptimal in 1

p trC◦aC
◦
b = O(p−

1
2 )

−→ Model type: smaller order semi-circle law + spikes.

Jointly optimal solution:
I evenly weighing Marc̆enko–Pastur and semi-circle laws
I the “α-β” kernel:

f ′(τ) =
α
√
p
,

1
2
f ′′(τ) = β.
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New assumption setting

I We consider now an improved growth rate setting.

Assumption (Optimal Growth Rate)
As n→∞,

1. Data scaling: p
n
→ c0 ∈ (0,∞), na

n
→ ca ∈ (0, 1),

2. Mean scaling: with µ◦ ,
∑k

a=1
na
n
µa and µ◦a , µa − µ◦, then ‖µ◦a‖ = O(1)

3. Covariance scaling: with C◦ ,
∑k

a=1
na
n
Ca and C◦a , Ca − C◦, then

‖Ca‖ = O(1), trC◦a = O(√p), trC◦aC◦b = O(√p).

Kernel:
I For technical simplicity, we consider

K̃ = PKP = P

{
f

(1
p

(x◦)T(x◦j )
)}n

i,j=1
P , P = In −

1
n

1n1T
n.

i.e., τ replaced by 0.
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Main Results

Theorem
As n→∞, ∥∥√p (PKP +

(
f(0) + τf ′(0)

)
P
)
− K̂
∥∥ a.s.−→ 0

with, for α = √pf ′(0) = O(1) and β = 1
2f
′′(0) = O(1),

K̂ = αPWTWP + βPΦP + UAUT

A =
[
αMTM + βT αIk

αIk 0

]
U =

[
J
√
p
, PWTM

]
Φ
√
p

=
{

((ω◦i )Tω◦j )2δi 6=j
}n
i,j=1

−
{ tr (CaCb)

p2 1na1T
nb

}k
a,b=1

.

Role of α, β:
I Weighs Marc̆enko–Pastur versus semi-circle parts.
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Limiting eigenvalue distribution

Theorem (Eigenvalues Bulk)
As p→∞,

νn ,
1
n

n∑
i=1

δλi(K̂)
a.s.−→ ν

with ν having Stieltjes transform m(z) solution of

1
m(z)

= −z +
α

p
trC◦

(
Ik +

αm(z)
c0

C◦
)−1

−
2β2

c0
ω2m(z)

where ω = limp→∞
1
p

tr (C◦)2.
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Limiting eigenvalue distribution

Figure: Eigenvalues of K (up to recentering) versus limiting law, p = 2048, n = 4096, k = 2,
n1 = n2, µi = 3δi, f(x) = 1

2β
(
x+ 1√

p
α
β

)2
. (Top left): α = 8, β = 1, (Top right):

α = 4, β = 3, (Bottom left): α = 3, β = 4, (Bottom right): α = 1, β = 8.
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Asymptotic performances: MNIST

I MNIST is “means-dominant” but not that much!
Datasets ‖µ◦1 − µ◦2‖

2 1√
p

tr (C1 −C2)2 1
ptr (C1 −C2)2

MNIST (digits 1, 7) 613 1990 71.1
MNIST (digits 3, 6) 441 1119 39.9
MNIST (digits 3, 8) 212 652 23.5
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Digits 3, 8

Figure: Spectral clustering of the MNIST database for varying α
β .
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Asymptotic performances: EEG data

I EEG data are “variance-dominant”

Datasets ‖µ◦1 − µ◦2‖
2 1√

p
tr (C1 −C2)2 1

ptr (C1 −C2)2

EEG (sets A,E) 2.4 10.9 1.1
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Figure: Spectral clustering of the EEG database for varying α
β .
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Outline

Basics of Random Matrix Theory (Romain COUILLET)
Motivation: Large Sample Covariance Matrices
The Stieltjes Transform Method
Spiked Models
Other Common Random Matrix Models
Applications

Applications to Machine Learning (Xiaoyi MAI)
Reminder on Spectral Clustering Methods
Kernel Spectral Clustering
Kernel Spectral Clustering: The case f ′(τ) = 0
Kernel Spectral Clustering: The case f ′(τ) = α√

p

Semi-supervised Learning
Improved Semi-supervised Learning

Applications to Random Projections and Neural Networks (Zhenyu LIAO)
Random Projections-based Ridge Regression
Random Projections-based Spectral Clustering
Random Matrix Analysis for Learning Dynamics of Neural Networks

Take-away Messages, Summary of Results and Perspectives (Romain COUILLET)
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Laplacian Regularization
Context: Similar to clustering:
I Classify x1, . . . , xn ∈ Rp in K classes, with n[l] labelled (n[l]k in class Ck) and
n[u] unlabelled data (n[u]k in class Ck).

I Problem statement: give scores Fia (di = [K1n]i)

F = argminF∈Rn×k
k∑
a=1

∑
i,j

Kij(Fiadαi − Fjad
α
j )2

such that Fia = δ{xi∈Ca}, for all labelled xi.

I Solution: for F[u] ∈ Rn[u]×k, F[l] ∈ Rn[l]×k scores of unlabelled/labelled data,

F[u] =
(
L

(α)
[uu]

)−1
L

(α)
[ul]F[l]

where

L(α) = I −D−1−αKDα =

[
L

(α)
[ll] L

(α)
[lu]

L
(α)
[ul] L

(α)
[uu]

]
with D = diag {K1n}.

I Three common choices of α:
I α = 0: Standard Laplacian Regularization
I α = −1/2: Symmetric Normalized Laplacian Regularization
I α = −1: Random Walk Normalized Laplacian Regularization
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The finite-dimensional intuition: What we expect

Figure: Typical expected performance output
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MNIST Data Example
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[F(u)]·,2 (Ones)

[F(u)]·,3 (Twos)

Figure: Vectors [F (u)]·,a, a = 1, 2, 3, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, nl/n = 1/16, Gaussian kernel.
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MNIST Data Example
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Figure: Performance as a function of α, for 3-class MNIST data (zeros, ones, twos), n = 192,
p = 784, nl/n = 1/16, Gaussian kernel.
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MNIST Data Example
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Figure: Centered Vectors [F◦(u)]·,a = [F(u) − 1
kF(u)1k1T

k]·,a, 3-class MNIST data (zeros, ones,
twos), α = −1, n = 192, p = 784, nl/n = 1/16, Gaussian kernel.
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Motivation

Empirical observations:
I Troubling flat classification scores!

I Only random walk normalized Laplacian regularization (α = −1) works!.

Analysis to understand:
I Consider binary classification for simplicity of notations (easy to generalize to

‘one-versus-all’ case), and define

fi = Fi2 − Fi1

Then xi is classified in C1 if fi negative, otherwise xi in C2.

I Assume n[l]k/p→ c[l]k ∈ (0, 1) and n[u]k/p→ c[u]k ∈ (0, 1). c[l] =
∑

k
c[l]k,

c[u] =
∑

k
c[u]k. Under the previous Gaussian mixture data model.
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Main Results

We can show that, for xi unlabelled,

fi = c0(c[l]2 − c[l]1) + o(1)

Consequence: All fi have the same sign if c[l]2 6= c[l]1.
Amendment: Use a normalized labelling y[l] (−1/c[l]1 for C1, −1/c[l]2 for C2).

⇓

fi = η(1 + α)(t2 − t1) + o(1/√p)

Consequence: All fi have the same sign if t2 6= t1.
Amendment: Take α = −1 + β√

p
, β = O(1).
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Main Results

⇓

fi = gi + o(1/p)

where gi ∼ N (mk, σ2
k) for xi ∈ Ck with

mk =
c[l] − c[l]k

c[l]
(−1)k

[
−

2f ′(τ)
pf(τ)

‖∆µ‖2 +
f ′′(τ)
pf(τ)

∆t+
2f ′′(τ)
pf(τ)

tr∆C2
]

+ (−1)kβ
n

nl

f ′(τ)
pf(τ)

∆t

σ2
k =

2trC2
k

p

(
f ′(τ)2

pf(τ)2 −
f ′′(τ)
pf(τ)

)2

∆t2 +
4f ′(τ)2

p2f(τ)2

[
∆µTCk∆µ+

2∑
a=1

trCkCa/c[l]a

]
where ∆µ = µ2 − µ1, ∆t = t2 − t1, ∆C = C2 − C1.
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Performance: Theoretical versus Empirical
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Figure: Theoretical and empirical accuracy as a function of α for 2-class MNIST data (top: digits
(0,1), middle: digits (1,7), bottom: digits (8,9)), n = 1024, p = 784, n[l]/n = 1/16,
n[u]1 = n[u]2, Gaussian kernel. Averaged over 50 iterations.
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Main Results

⇓

fi = gi + o(1/p)

where gi ∼ N (mk, σ2
k) for xi ∈ Ck with

mk =
c[l] − c[l]k

c[l]
(−1)k

[
−

2f ′(τ)
pf(τ)

‖∆µ‖2 +
f ′′(τ)
pf(τ)

∆t+
2f ′′(τ)
pf(τ)

tr∆C2
]

+ (−1)kβ
n

nl

f ′(τ)
pf(τ)

∆t

σ2
k =

2trC2
k

p

(
f ′(τ)2

pf(τ)2 −
f ′′(τ)
pf(τ)

)2

∆t2 +
4f ′(τ)2

p2f(τ)2

[
∆µTCk∆µ+

2∑
a=1

trCkCa/c[l]a

]
where ∆µ = µ2 − µ1, ∆t = t2 − t1, ∆C = C2 − C1.

mk, σ2
k independent of c[u]

Consequence: Learning dominated by labelled data with negligible contribution from
unlabelled data. Not actual semi-supervised learning!
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MNIST Data Example
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Figure: Classification accuracy as a function of n[u] with fixed n[l] for 2-class MNIST data (8,9),
Gaussian kernel. Optimal average results over 200 iterations.
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Main Results

⇓

fi = gi + o(1/p)

where gi ∼ N (mk, σ2
k) for xi ∈ Ck with

mk =
c[l] − c[l]k

c[l]
(−1)k

[
−

2f ′(τ)
pf(τ)

‖∆µ‖2 +
f ′′(τ)
pf(τ)

∆t+
2f ′′(τ)
pf(τ)

tr∆C2
]

+ (−1)kβ
n

nl

f ′(τ)
pf(τ)

∆t

σ2
k =

2trC2
k

p

(
f ′(τ)2

pf(τ)2 −
f ′′(τ)
pf(τ)

)2

∆t2 +
4f ′(τ)2

p2f(τ)2

[
∆µTCk∆µ+

2∑
a=1

trCkCa/c[l]a

]
where ∆µ = µ2 − µ1, ∆t = t2 − t1, ∆C = C2 − C1.

mk, σ2
k independent of c[u]

Consequence: Learning only from labelled data, not actual semi-supervised learning!
Amendment: No direct solution, motivating the proposition of centered kernel
regularization, presented in the following section.
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Resurrecting SSL by centering

Link between scores flatness and non-expressive unlabelled data:
I The optimization solution same as stationary point of label propagation:

f[u] ← L
(α)
[uu]f[u] + L

(α)
[ul]y[l]

with y[l] composed of −1 and 1 for respectively labelled data in C1 and in C2.
I negligible contribution of L[uu]f[u] if f[u] flat.

Cause of flat scores: In high dimensional regime, Kij ' f(τ) for all i 6= j, i.e.,

(E{Ka1a2} − E{Ka1b1})/|E{Ka1a2}||E{Ka1b1}| ' ε/f(τ)2 = o(1)

where xa1 , xa2 ∈ Ca and xb1 ∈ Cb for a 6= b ∈ {1, 2}.
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Resurrecting SSL by centering

Solution:
I “Recenter” K to kill flattening, i.e., use

K̃ = PKP , P = In −
1
n

1n1T
n.

The recentering imposes E{K̂a1a2}+ E{K̂a1b1} = 0 (in the case of balanced
datasets).

I Since E{K̂a1a2} − E{K̂a1b1} = E{Ka1a2} − E{Ka1b1} = ε,
E{K̂a1a2} = −E{K̂a1b1} = ε/2.

I Hence,

(E{K̂a1a2} − E{K̂a1b1})/|E{K̂a1a2}||E{K̂a1b1}| = 4 = O(1)

⇓

Non flat scores!
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Centered Kernel Regularization

Method:
I Same loss function as Laplacian regularization, but with centered similarities K̃ij .
I Optimization problem:

min
f

n∑
i,j=1

K̃ij |fi − fj |2

s.t. ‖f[u]‖ = t

with f[l] = y[l].

I Solution obtained by the Lagrange multipliers method (α being the Lagrange
multiplier):

f[u] = (αI − K̃[uu])−1K̃[ul]y[l] (1)

with α determined by α > ‖K̃[uu]‖ and ‖f[u]‖ = t.
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MNIST Data Example

0 50 100 150 200 250
0.5

0.6

0.7

0.8

n[l] or n[u]

Ac
cu

ra
cy

Laplacian, n[l] = 8
Laplacian, n[l] = 16
Centered, n[l] = 8
Centered, n[l] = 16

Figure: Classification accuracy as a function of n[u] with fixed n[l] for 2-class MNIST data (8,9),
Gaussian kernel. Optimal average results over 200 iterations.
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Theoretical results
Effective learning from labelled and unlabelled data
I m1 < 0 and m2 > 0 for all α. (recall that mk = E{fi}, σ2

k = Var{fi} with
xi ∈ Ck)

I σ2
k

m2
k

= sk +
γ[u]k
c[u]

+
h(γ[l]k)
c[l]

where sk, γ[u]k and γ[l]k upper-bounded positive
values dependent of α.

I γ[u]k is a decreasing function of γ[l]k which has a minimal value of zero. γ[l]k can
also achieve zero, buy only for a sufficiently large c[u].

Formula for special cases
I Setting: xi ∼ N (±µ, Ip), with balanced data for each class.
I Formula:

σ2
1

m2
1

=
σ2

2
m2

2
=
(

1−
g2

‖µ‖4c[u]

)−1(
1
‖µ‖2

+
g2

‖µ‖4c[u]
+

(1− g)2

‖µ‖4c[l]

)
where g(α) ∈ (0, q) with q = min{1,

√
‖µ‖4c[u]}.

I Optimal performance of Laplacian regularization (random walk normalized
Laplacian):

σ2
1

m2
1

=
σ2

2
m2

2
=

1
‖µ‖2

+
1

‖µ‖4c[l]
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Performance as a function of n[u], n[l]

20 40 60 80 100

0.6

0.8

1

‖µ‖ = 1/2

‖µ‖ = 1

‖µ‖ = 3/2

c[u]/c[l] (blue), c[l]/c[u] (black)

Figure: Correct classification rate, at optimal α, as a function of (i) n[u] for fixed p/n[l] = 5 (blue)
and (ii) n[l] for fixed p/n[u] = 5 (black); c1 = c2 = 1

2 ; different values for ‖µ‖. Comparison to
optimal Neyman–Pearson performance for known µ (in red).

110 / 153



Applications to Machine Learning (Xiaoyi MAI)/Improved Semi-supervised Learning 111/153

SSL: the road from supervised to unsupervised

α+ 3 3.5 4 4.5 5
0.59

0.6

0.61

0.62

α

3 3.5 4 4.5 5

0.75

0.8

0.85

α

Figure: Theory (solid) versus practice (dashed; from right to left: n = 400, 1000, 4000): correct
classification probability as a function of α for c[u] = 9

10 , c0 = 1
2 , c1 = 1

2 , and left: ‖µ‖ = 0.75
(below phase transition); right: ‖µ‖ = 1.25 (above phase transition). Different values of n.
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Experimental evidence: MNIST

Digits (0,8) (2,7) (6,9)
n[u] = 100

Centered kernel 89.5±3.6 89.5±3.4 85.3±5.9
Iterated centered kernel 89.5±3.6 89.5±3.4 85.3±5.9

Laplacian 75.5±5.6 74.2±5.8 70.0±5.5
Iterated Laplacian 87.2±4.7 86.0±5.2 81.4±6.8

Manifold 88.0±4.7 88.4±3.9 82.8±6.5
n[u] = 500

Centered kernel 91.7±1.3 92.2±1.3 91.6±2.2
Iterated centered kernel 91.8±1.4 92.2±1.3 92.0±2.1

Laplacian 75.6±4.1 74.4±4.0 69.5±3.7
Iterated Laplacian 91.6±1.5 91.9±1.4 90.6±2.7

Manifold 90.7±2.1 91.2±1.9 90.1±3.7

Table: Comparison of classification accuracy (%) on MNIST datasets with n[l] = 10. Computed
over 1000 random iterations for n[u] = 100 and 500 for n[u] = 500.
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Experimental evidence: Traffic signs (HOG features)

Class ID (2,7) (9,10) (11,18)
n[u] = 100

Centered kernel 79.0±10.4 77.5±9.2 78.5±7.1
Iterated centered kernel 85.3±5.9 89.2±5.6 90.1±6.7

Laplacian 73.8±9.8 77.3±9.5 78.6±7.2
Iterated Laplacian 83.7±7.2 88.0±6.8 87.1±8.8

Manifold 77.6±8.9 81.4±10.4 82.3±10.8
n[u] = 500

Centered kernel 82.5±4.0 82.6±6.4 79.2±18.0
Iterated centered kernel 84.4±4.2 88.9±5.7 95.8±3.2

Laplacian 72.7±8.9 77.6±8.3 79.1±6.3
Iterated Laplacian 82.7±5.7 88.1±7.4 92.4±6.7

Manifold 77.4±5.9 83.5±10.4 89.3±9.2

Table: Comparison of classification accuracy (%) on German Traffic Sign datasets with n[l] = 10.
Computed over 1000 random iterations for n[u] = 100 and 500 for n[u] = 500.
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Motivation: Feature extraction in machine learning

Learning = Representation + Evaluation + Optimization.1

Features: representation of the data that contains crucial information for the given task.

Various methods for feature extraction:
I feature selection by hand (expert system)
I feature learned via backpropagation
I random projections/random feature maps:

I simple, fast and tractable theoretical analysis
I early stage of gradient-based methods (with random initialization)
I remaining difficulty: handle the nonlinearity!

How to study and understand these features? ⇒ Sample Covariance Matrix

SCM ≡
1
T
XXT

of data X = [x1, . . . , xT ] ∈ Rp×T . SCM in feature space ⇒ feature Gram matrix G:

G ≡
1
T

ΣTΣ

with Σ = [σ(x1), . . . , σ(xT )] feature matrix of X.
1Domingos, Pedro. “A few useful things to know about machine learning.” Communications of the ACM 55.10

(2012): 78-87.
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Motivation: RMT for random feature maps
Recall: G determines training and test performance via its resolvent

Q(z) ≡ (G− zIT )−1.

Example:

data
vectors

X = [x1, . . . , xT ] ∈ Rp×T

feature
vectors

Σ = σ(WX) ∈ Rn×T

random W ∈ Rn×p

σ(·) entry-wise

Figure: Illustration of random feature maps

MSE of random feature-based ridge regression (also called extreme learning machines):

Etrain =
1
T
‖y − βTΣ‖2F =

γ2

T
yTQ2(−γ)y, Etest =

1
T̂
‖ŷ − βTΣ̂‖2F

with ridge regressor β ≡ 1
T

Σ (G+ γIT )−1 yT = 1
T

ΣQ(−γ)yT and regularization
γ > 0. y associated target of training data X and ŷ target of test data X̂.

Key Issue

(Classical) quadratic form aTQ(z)b for nonlinear model Σ = σ(WX)!
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Handle nonlinearity in RMT: concentration of measure approach

Recall:
For σ(t) = t, G = 1

T
XTWTWX with random W : Sample Covariance Matrix Model.

Proof essentially based on trace lemma: w ∈ Rn of i.i.d. entries and A of bound norm,∣∣∣ 1
n
wTAw −

1
n

trA
∣∣∣ a.s.−→ 0.

Nonlinearity
However, here for nonlinear σ(·), similar to the proof of Marc̆enko-Pastur law:

Σ = σ(WX) =
[
σT
i

Σ−i

]
∈ Rn×T

with σi = σ(XTwi) ∈ RT , wi the i-th row of W . Rank-one perturbation:

Q =
( 1
T

ΣTΣ− zIT
)−1

=
( 1
T

ΣT
−iΣ−i +

1
T
σiσ

T
i − zIT

)−1

= Q−i −
Q−i

1
T
σiσ

T
i Q−i

1 + 1
T
σT
i Q−iσi

with Q−i ≡
(

1
T

ΣT
−iΣ−i − zIT

)−1 independent of σi!
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Handle nonlinearity in RMT: concentration of measure approach

Object under study 1
n
σ(wTX)Aσ(XTw): (compared to 1

n
wTAw)

I loss of independence between entries
I more elusive due to σ(·)

⇒ extend trace lemma to handle nonlinear case!

Lemma (Concentration of Quadratic Forms)
w ∈ Rn of i.i.d. standard Gaussian entries and σ(·) λσ-Lipschitz continuous. For
‖A‖ ≤ 1 and X of bounded norm,

P

(∣∣∣ 1
T
σ(wTX)Aσ(XTw)−

1
T

tr ΦA
∣∣∣ > t

)
≤ Ce−cnmin(t,t2)

for some C, c > 0 and Φ ≡ Ew
[
σ(XTw)σ(wTX)

]
(function of data X).
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Performance evaluation of random feature-based ridge regression

Theorem (Asymptotic Training Performance)
W ∼ N (0, In) and σ(·) λσ-Lipschitz continuous and X of bounded norm. Then, as
n, p, T →∞, p/n→ cp ∈ (0,∞) and T/n→ cT ∈ (0,∞),

Etrain − Ētrain
a.s.−→ 0

where Ētrain = γ2

T
yTQ̄

[ 1
n

tr Q̄ΨQ̄
1− 1

n
tr Ψ2Q̄2 + IT

]
Q̄y and Q̄ = (Ψ + γIT )−1, Ψ ≡ n

T
Φ

1+δ

with δ the unique solution of δ = 1
T

tr ΦQ̄ and Φ ≡ Ew
[
σ(XTw)σ(wTX)

]
.

Several remarks:
I (asymptotic) training performance only depends on (the training data X via) the

key averaged kernel matrix Φ and the dimension of problem
I similar results can be obtained for test performance
I ⇒ remains to compute Φ on function of X
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Computation of averaged kernel Φ

To evaluate the training and test performance, it remains to compute Φ for different σ:

Φ(X) = Ew
[
σ(XTw)σ(wTX)

]
the (i, j)-th entry of which given by

Φi,j = (2π)−
p
2

∫
Rp
σ(wTxi)σ(wTxj)dw

=
1

2π

∫
R2
σ(w̃Tx̃i)σ(w̃Tx̃j)e−

1
2 ‖w̃‖

2
dw̃ (projection on span(xi, xj)).

Example: for σ(t) = max(t, 0) = ReLU(t),

Φi,j =
1

2π

∫
S

σ(w̃Tx̃i)σ(w̃Tx̃j)e−
1
2 ‖w̃‖

2
dw̃ =

1
2π
‖xi‖‖xj‖

(√
1− ∠2 + ∠ · arccos(−∠)

)
with S = min(w̃Tx̃i, w̃Tx̃j) > 0, ∠ ≡ xT

i xj
‖xi‖‖xj‖

.
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Results of Φ for commonly used σ(·)

Table: Φi,j for commonly used σ(·), ∠ ≡
xT
i
xj

‖xi‖‖xj‖
.

σ(t) Φi,j

t xT
i xj

max(t, 0) 1
2π ‖xi‖‖xj‖

(
∠ · arccos(−∠) +

√
1− ∠2

)
|t| 2

π
‖xi‖‖xj‖

(
∠ · arcsin(∠) +

√
1− ∠2

)
ς+ max(t, 0)+
ς−max(−t, 0)

1
2 (ς2

+ + ς2
−)xT

i xj +
‖xi‖‖xj‖

2π (ς+ + ς−)2
(√

1− ∠2 − ∠ · arccos(∠)
)

1t>0 1
2 −

1
2π arccos(∠)

sign(t) 2
π

arcsin(∠)

ς2t
2 + ς1t + ς0 ς2

2

(
2(xT

i xj)
2 + ‖xi‖2‖xj‖2

)
+ ς2

1x
T
i xj + ς2ς0

(
‖xi‖2 + ‖xj‖2

)
+ ς2

0

cos(t) exp
(
− 1

2

(
‖xi‖2 + ‖xj‖2

))
cosh(xT

i xj)

sin(t) exp
(
− 1

2

(
‖xi‖2 + ‖xj‖2

))
sinh(xT

i xj)

erf(t) 2
π

arcsin
( 2xT

i
xj√

(1+2‖xi‖2)(1+2‖xj‖2)

)
exp(− t

2
2 ) 1√

(1+‖xi‖2)(1+‖xj‖2)−(xT
i
xj)2

⇒ (Still) highly nonlinear function of data X!
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Numerical validations
Performance of random feature-based ridge regression:

10−4 10−3 10−2 10−1 100 101 102

10−1

100

σ(t) = max(t, 0)

σ(t) = erf(t)

σ(t) = t

γ

M
SE

Etrain (Theory)
Etest (Theory)

Etrain (Simulation)
Etest (Simulation)

Figure: Performance for MNIST data (number 7 and 9), n = 512, T = T̂ = 1024, p = 784.

⇒ Theoretical performance understanding and fast tuning of hyperparameter γ!
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Dig deeper into the averaged kernel Φ

For random feature maps:
I if deterministic data: performance determined by Φ(X) and problem dimension
I if data following certain distribution (statistical information+random fluctuation):
⇒ what is the impact of nonlinearities on information extraction?

Data Model (same as for kernel clustering)
Consider data drawn from a K-class Gaussian mixture model (GMM):

xi ∈ Ca ⇔ xi =
µa
√
p

+ ωi

with ωi ∼ N (0, 1
p
Ca), a = 1, . . . ,K of statistical means µa ∈ Rp and covariance

Ca ∈ Rp×p. Class Ca has cardinality Ta. For T →∞, we have
I p/T → c0 ∈ (0,∞)
I Ta/T → ca ∈ (0, 1)
I let µ◦ ≡

∑K

i=1
Ti
T
µi and µ◦a ≡ µa − µ◦, then ‖µ◦a‖ = O(1)

I let C◦ ≡
∑K

i=1
Ti
T
Ci and C◦a ≡ Ca − c◦, then ‖Ca‖ = O(1), trC◦a/

√
p = O(1).

⇒ how different nonlinearities influence statistical information in Φ (and thus G)?
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Analysis of (averaged) kernel matrix Φ (revisit)
Similar to the analysis of kernel matrix K ≡ f

(
1
p
‖xi − xj‖2

)
, for σ(t) = ReLU(t),

Φi,j =
1

2π
‖xi‖‖xj‖

(
∠(xi, xj) arccos(−∠(xi, xj)) +

√
1− ∠2(xi, xj)

)
with ∠(xi, xj) ≡

xT
i xj

‖xi‖‖xj‖
. To understand Φ:

I Taylor-expand nonlinear functions of xi, xj to get entry-wise approximation of Φi,j
I assembling in matrix form with careful control on operator norm

Theorem (Asymptotic Equivalent of Φ)
For all σ(·) listed, we have, as T →∞,

‖Φ− Φ̃‖ a.s.−→ 0

with

Φ̃ = d1

(
Ω +M

JT
√
p

)T(
Ω +M

JT
√
p

)
+ d2UBU

T + d0IT

and U = [ J√
p
, φ], B =

[
ttT + 2S t

tT 1

]
, where J = [j1, . . . , jK ], ja canonical vector of

class Ca (for clustering), weighted by two key parameters d1, d2 and
I Ω, φ random fluctuations of data

I M = [µ◦1, . . . , µ◦K ] containing differences in means, t =
{

1√
p

trC◦a
}K
a=1

and

S =
{

1
p

trCaCb
}K
a,b=1

differences in traces and shapes of covariances.
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Consequence

Table: Coefficients di in Φ̃ for different σ(·).

σ(t) d1 d2

t 1 0

max(t, 0) 1
4

1
8πτ

|t| 0 1
2πτ

ς+ max(t, 0)+
ς−max(−t, 0)

1
4 (ς+ − ς−)2 1

8τπ (ς+ + ς−)2

1t>0 1
2πτ 0

sign(t) 2
πτ

0

ς2t
2 + ς1t + ς0 ς2

1 ς2
2

cos(t) 0 e−τ
4

sin(t) e−τ 0

erf(t) 4
π

1
2τ+1 0

exp(− t
2
2 ) 0 1

4(τ+1)3

A natural classification of σ(·):
I mean-oriented, d1 6= 0, d2 = 0: t,

1t>0, sign(t), sin(t) and erf(t)
⇒separate with differences in
means M ;

I covariance-oriented, d1 = 0,
d2 6= 0: |t|, cos(t) and
exp(−t2/2)
⇒track differences in covariances
t, S;

I balanced, both d1, d2 6= 0:
I ReLU function max(t, 0),
I Leaky ReLU function
ς+ max(t, 0) + ς−max(−t, 0),

I quadratic function
ς2t

2 + ς1t+ ς0.
⇒make use of both statistics!

Not freely tunable as in the case of spectral clustering or SSL!
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Numerical validations: Gaussian data
Example: Gaussian mixture data of four classes: N (µ1, C1), N (µ1, C2), N (µ2, C1)
and N (µ2, C2) with Leaky ReLU function ς+ max(t, 0) + ς−max(−t, 0).
Case 1: ς+ = −ς− = 1 (equivalent to σ(t) = |t|)

Eigenvector 1

C1 C2 C3 C4

Eigenvector 2

C1 C2 C3 C4

Case 2: ς+ = ς− = 1 (equivalent to linear map σ(t) = t)

Eigenvector 1

C1 C2 C3 C4

Eigenvector 2

C1 C2 C3 C4
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Numerical validations: Gaussian data

Case 3: ς+ = 1, ς− = 0 (the ReLU function)

Eigenvector 1

C1 C2 C3 C4

Eigenvector 2

C1 C2 C3 C4

Eigenvector 1

Ei
ge

nv
ec

to
r

2
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Numerical validations: real datasets

Table: Empirical estimation of differences in means and covariances of MNIST and EEG datasets.

‖MTM‖ ‖ttT + 2S‖

MNIST data 172.4 86.0
EEG data 1.2 182.7

Table: Clustering accuracies on MNIST dataset.

σ(t) T = 64 T = 128

mean-
oriented

t 88.94% 87.30%
1t>0 82.94% 85.56%

sign(t) 83.34% 85.22%
sin(t) 87.81% 87.50%
erf(t) 87.28% 86.59%

cov-
oriented

|t| 60.41% 57.81%
cos(t) 59.56% 57.72%

exp(− t
2
2 ) 60.44% 58.67%

balanced ReLU(t) 85.72% 82.27%

Table: Clustering accuracies on EEG dataset.

σ(t) T = 64 T = 128

mean-
oriented

t 70.31% 69.58%
1t>0 65.87% 63.47%

sign(t) 64.63% 63.03%
sin(t) 70.34% 68.22%
erf(t) 70.59% 67.70%

cov-
oriented

|t| 99.69% 99.50%
cos(t) 99.38% 99.36%

exp(− t
2
2 ) 99.81% 99.77%

balanced ReLU(t) 87.91% 90.97%
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Numerical validations: real datasets

Leading eigenvector for MNIST data
Simulation: mean/std for MNIST data

Theory: mean/std for Gaussian data

C1 C2

Leading eigenvector for EEG data
Simulation: mean/std for EEG data

Theory: mean/std for Gaussian data

C1 C2

Figure: Leading eigenvector of Φ for the MNIST (top) and EEG (bottom) with Gaussian mixture
data (of same statistics) with a width of ±1 standard deviations.
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Summary: random feature maps

Summary for random feature maps:
I concentration of measure helps extend trace lemma to nonlinear case
⇒ asymptotic training/test performance of random feature-based ridge regression

I “concentration” of high dimensional data helps understand the key averaged kernel
matrix Φ ⇒ random feature-based spectral clustering

Take-away messages:
I fast tuning of hyperparameters
I nonlinearities into three attributes: means-, covariance-oriented and “balanced”
I optimize the choice of nonlinearity as a function of data for quadratic and LReLU

(similar to the “α-β” kernel!)

⇒ What happens if weights W are not i.i.d. but depend on data
(in the case of backpropagation)?
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About neural networks and deep learning:
I Some known facts:

I trained with backpropagation (gradient-based method)
I highly over-parameterized, but some still generalize remarkably well

I and some (more) mysteries:
I how do neural networks learn from training data? what kind of features are learned?
I how they generalize on unseen data of similar nature? why they do not over-fit?
I can the network performance be guaranteed or . . . even predicted?

⇒ The learning dynamics of neural networks!

With RMT:

A general framework for studying learning dynamics of a single-layer network!

In particular, under the appropriate double asymptotic regime: number of network
parameters and number of data instances comparably large!

As a consequence, more insights on:
I (random) initialization of training
I overfitting in neural networks
I (explicit or implicit) regularization: early stopping, l2-penalization
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A toy model of binary classification:

Gaussian Mixture Data
Consider data xi drawn from a two-class Gaussian mixture model: for a = 1, 2

xi ∈ Ca ⇔ xi = (−1)aµ+ ωi

with ωi of i.i.d. N (0, 1) entries, label yi = −1 for C1 and +1 for C2.

Objective: Learning Dynamics
Gradient descent on loss L(w) = 1

2n‖y
T − wTX‖2 with X = [x1, . . . , xn]. For small

learning rate α, with continuous-time approximation:

dw(t)
dt

= −α
∂L(w)
∂w

=
α

n
X
(
y −XTw(t)

)
of explicit solution w(t) = e−

αt
n
XXT

w0 +
(
Ip − e−

αt
n
XXT

)
(XXT)−1Xy if XXT

invertible and w0 the initialization.

To evaluate the learning dynamics:
I depends only on the projection of eigenvector weighted by exp(−αtλ) of

associated eigenvalue λ
I functional of sample covariance matrix 1

n
XXT (again): RMT is the answer!
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Objective: Generalization Performance
Generalization performance for a new datum x̂: P (w(t)Tx̂ > 0 | x̂ ∈ C1), or
P (w(t)Tx̂ < 0 | x̂ ∈ C2). Since x̂ Gaussian and independent of w(t):

w(t)Tx̂ ∼ N (±w(t)Tµ, ‖w(t)‖2)

for w(t) = e−
αt
n
XXT

w0 +
(
Ip − e−

αt
n
XXT

)
(XXT)−1Xy.

With RMT:
I although X random: w(t)Tµ and ‖w(t)‖2 have asymptotically deterministic

behavior (only depends on data statistics and problem dimension):
⇒ the technique of deterministic equivalent

I Cauchy’s integral formula to express the functional exp(·) via contour integration

⇒ Network performance at any time is in fact deterministic and predictable!
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Resolvent and deterministic equivalents
Consider an n× n Hermitian random matrix M . Define its resolvent QM (z), for z ∈ C
not eigenvalue of M

QM (z) = (M − zIn)−1 .

For a family of M , define a so-called deterministic equivalent Q̄M of QM : a
deterministic matrix so that as n→∞,
I 1

n
trAQM − 1

n
trAQ̄M

a.s.−→ 0

I aT
(
QM − Q̄M

)
b

a.s.−→ 0

with A, a, b of bounded norm (operator and Euclidean).

⇒ Study Q̄M instead of the random QM for n large!

However, for more sophisticated functionals of M (than 1
n

trAQM and aTQM b):

Cauchy’s integral formula
Example: for f(M) = aTeM bdz,

f(M) = −
1

2πi

∮
γ

exp(z)aTQM (z)bdz ≈ −
1

2πi

∮
γ

exp(z)aTQ̄M (z)bdz.

with γ a positively oriented path circling around all the eigenvalues of M .
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To evaluate generalization performance: w(t)Tx̂ ∼ N (±w(t)Tµ, ‖w(t)‖2) with
w(t) = e−

αt
n
XXT

w0 +
(
Ip − e−

αt
n
XXT)

(XXT)−1Xy.

I Cauchy’s integral formula: for w(t)Tµ:

µTw(t) = −
1

2πi

∮
γ

µT
( 1
n
XXT − zIp

)−1 (
ft(z)w0 +

1− ft(z)
z

1
n
Xy

)
dz

with ft(x) ≡ exp(−αtx). Since X = −µjT
1 + µjT

2 + Ω = µyT + Ω, with
Ω ≡

[
ω1, . . . , ωn

]
∈ Rp×n of i.i.d. N (0, 1) entries and ja ∈ Rn the canonical

vectors of class Ca, With Woodbury’s identity,( 1
n
XXT − zIp

)−1
= Q(z)−Q(z)

[
µ 1

n
Ωy
]

[
µTQ(z)µ 1 + 1

n
µTQ(z)Ωy

1 + 1
n
µTQ(z)Ωy −1 + 1

n
yTΩTQ(z) 1

n
Ωy

]−1 [
µT

1
n
yTΩT

]
Q(z)

where Q(z) =
(

1
n

ΩΩT − zIp
)−1 and its deterministic equivalent:

Q(z)↔ Q̄(z) = m(z)Ip

with m(z) given by Marc̆enko-Pastur equation m(z) = 1−c−z
2cz +

√
(1−c−z)2−4cz

2cz .
I “replace” the random Q(z) by its deterministic equivalent Q̄(z) = m(z)Ip.
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Theorem (Generalization Performance)
Let p/n→ c ∈ (0,∞) and the initialization w0 be a random vector with i.i.d. entries of
zero mean, variance σ2/p and finite fourth moment. Then, as n→∞,

P (w(t)Tx̂ > 0 | x̂ ∈ C1)−Q
( E
√

V

)
a.s.−→ 0,

P (w(t)Tx̂ < 0 | x̂ ∈ C2)−Q
( E
√

V

)
a.s.−→ 0

with the Q-function: Q(x) ≡ 1√
2π

exp(−u2/2)du and

E ≡ −
1

2πi

∮
γ

1− ft(z)
z

‖µ‖2m(z) dz
(‖µ‖2 + c)m(z) + 1

V ≡
1

2πi

∮
γ

[ 1
z2 (1− ft(z))2

(‖µ‖2 + c)m(z) + 1
− σ2f2

t (z)m(z)
]
dz.

γ a closed positively oriented path containing all eigenvalues of 1
n
XXT and origin.

Contour integration: hard to understand/interpret ⇒ can we further simplify?
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0 1 2 3 4

Eigenvalues of 1
n
XXT

Marc̆enko–Pastur distribution
Theory: λs

0 1 2 3 4

Eigenvalues of 1
n
XXT

Marc̆enko–Pastur distribution
Theory: λs

Figure: Eigenvalue distribution of 1
nXX

T for
µ = [1.5; 0p−1], p = 512, n = 1 024.

2 4

−1

1

γb γs

ε

ε ε

<(z)

=(z)
Eigenvalues of 1

n
XXT

Integration path γ

Figure: Eigenvalue distribution of 1
nXX

T for
µ = [1.5; 0p−1], p = 512, n = 1 024.

Two types of eigenvalues:
I “main bulk” ([λ−, λ+]): sum of real integrals
I isolated eigenvalue (λs): residue theorem.
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Computation of λs (Spike model)
I find λ eigenvalue of 1

n
XXT outside [λ−, λ+] (i.e., not eigenvalue of 1

n
ΩΩT),

det
( 1
n
XXT − λIp

)
= 0

⇔ det
(

1
n

ΩΩT − λIp +
[
µ 1

n
Ωy
] [1 1

1 0

][
µT

1
n
yTΩT

])
= 0

⇔ det
(
I2 +

[
1 1
1 0

][
µT

1
n
yTΩT

]
Q(λ)

[
µ 1

n
Ωy
])

= 0

⇔ 1 + (‖µ‖2 + c)m(λ) + o(1) = 0

141 / 153



Applications to Random Projections and Neural Networks (Zhenyu LIAO)/Random Matrix Analysis for Learning Dynamics of Neural Networks
142/153Discussions

(Simplified) generalization performance

E =
∫

1− ft(x)
x

η(dx), V =
‖µ‖2 + c

‖µ‖2

∫
(1− ft(x))2µ(dx)

x2 + σ2
∫

f2
t (x)ν(dx)

with Marc̆enko–Pastur distribution ν(dx) ≡
√

(x−λ−)+(λ+−x)+

2πcx dx+
(
1− 1

c

)+
δ(x)

with λ− ≡ (1−
√
c)2, λ+ ≡ (1 +

√
c)2, λs = c+ 1 + ‖µ‖2 + c/‖µ‖2 and the measure

η(dx) ≡

√
(x− λ−)+(λ+ − x)+

2π(λs − x)
dx+

(‖µ‖4 − c)+

‖µ‖2
δλs (x).

Some remarks:
I η(dx): continuous distribution [λ−, λ+] (p− 1 eigenvalues) + Dirac measure at
λs (one single eigenvalue): contains comparable information!

I
∫
η(dx) = ‖µ‖2, together with Cauchy Schwarz inequality:

E2 ≤
∫ (1−ft(x))2

x2 dµ(x) ·
∫
dµ(x) ≤ ‖µ‖4

‖µ‖2+cV, with equality if and only if the
(initialization) variance σ2 = 0: ⇒ Performance drop due to large σ2!

I How much we over-fit? As t→∞, performance drop by
√

1−min(c, c−1)
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Figure: Optimal performance and stopping
time as functions of σ2 with c = 1/2,
‖µ‖2 = 4 and α = 0.01.
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Figure: Training and generalization performance for MNIST
data (number 1 and 7) with n = p = 784, c1 = c2 = 1/2,
α = 0.01 and σ2 = 0.1. Results averaged over 100 runs.
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Take-away messages:
I RMT framework to understand and predict learning dynamics:

Cauchy’s integral formula + technique of deterministic equivalent
I easily extended to more elaborate data models: e.g., Gaussian mixture model with

different means and covariances
I a byproduct: choose the initialization variance σ2 even smaller (than classical

normalization of 1/p)!
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Take-away messages

I Asymptotic “concentration effect” for large n, p ⇒ simplification in analyses and
models.

I Non-trivial phase transition phenomena (ability to detect, estimate) when
p, n→∞.

I Access to limiting performances and not only bounds! ⇒ hyperparameter
optimization, algorithm improvement.

I Complete intuitive change ⇒ opens way to renewed methods.

I Strong coincidence with real datasets ⇒ easy link between theory and practice.
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Perspectives and Open Problems

I Neural nets: loss landscape, gradient descent dynamics and deep learning!
I Generalized linear models
I More general problems from convex optimization (often of implicit solution)
I More difficult: problem raised from non-convex optimization problems
I Transfer learning, active learning, generative networks (GAN)
I Robust statistics in machine learning
I . . .
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Summary of Results and Perspectives I
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Summary of Results and Perspectives I
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The End

Thank you.
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