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Big Model
of size N

Big Data
x1, . . . , xn ∈ Rp

∠ Big Data era: exploit large n, p,N
∠ counterintuitive phenomena different

from classical asymptotics statistics
∠ complete change of understanding of

many methods in statistics, machine
learning, signal processing, and
wireless communications

∠ Random Matrix Theory (RMT)
provides the tools!
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∠ Problem: estimate covariance C ∈ Rp×p from n data samples x1, . . . , xn with
xi ∼ N (0,C),

∠ Maximum likelihood sample covariance matrix with entry-wise convergence

Ĉ =
1
n

n∑
i=1

xixT
i ∈ Rp×p, [Ĉ]ij → [C]ij

almost surely as n → ∞: optimal for n ≫ p (or, for p “small”).

∠ In the regime n ∼ p, conventional wisdom breaks down: for C = Ip with n < p, Ĉ has
at least p− n zero eigenvalues:

∥Ĉ− C∥ ̸→ 0, n, p → ∞ ⇒ eigenvalue mismatch and not consistent!

∠ due to ∥A∥∞ ≤ ∥A∥ ≤ p∥A∥∞ for A ∈ Rp×p and ∥A∥∞ ≡ maxij |Aij|.
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Ĉ =
1
n

n∑
i=1

xixT
i ∈ Rp×p, [Ĉ]ij → [C]ij
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∥Ĉ− C∥ ̸→ 0, n, p → ∞ ⇒ eigenvalue mismatch and not consistent!

∠ due to ∥A∥∞ ≤ ∥A∥ ≤ p∥A∥∞ for A ∈ Rp×p and ∥A∥∞ ≡ maxij |Aij|.



Sample Covariance RMT for Telecom RMT for SP RMT for ML References ∠ 5/28

∠ Problem: estimate covariance C ∈ Rp×p from n data samples x1, . . . , xn with
xi ∼ N (0,C),

∠ Maximum likelihood sample covariance matrix with entry-wise convergence
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What about n = 100p? For C = Ip, as n, p → ∞with p/n → c ∈ (0,∞): MP law

µ(dx) = (1− c−1)+δ(x) + 1
2πcx

√
(x − E−)+(E+ − x)+dx

where E− = (1−
√
c)2, E+ = (1+

√
c)2 and (x)+ ≡ max(x, 0). Close match!
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Empirical eigenvalues of Ĉ

Figure: Eigenvalue distribution of Ĉ versus Marc̆enko-Pastur law, p = 500, n = 50 000.

∠ eigenvalues span on [E− = (1−
√
c)2,E+ = (1+

√
c)2].

∠ for n = 100p, on a range of ±2
√
c = ±0.2 around the population eigenvalue 1.
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Marc̆enko-Pastur law
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Classical large-n asymptotic analysis mostly fails today

∠ large-n intuition, and many existing popular methods in biology, finance, signal
processing, telecommunication, and machine learning, must fail even with n = 100p!

∠ RMT as a flexible and powerful tool to understand and recreate these methods
∠ in essence, “increasing complexity of the system models employed in above fields

demand low complexity analysis”
∠ in the remainder, how RMT can be applied to assess

○␣ telecommunication: code division multiple access (CDMA) technology
○␣ signal processing: generalized likelihood ratio test (GLRT)
○␣ machine learning: principle component analysis (PCA), kernel spectral clustering
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Application to telecom: performance analysis of CDMA via RMT

∠ CDMA in 3G succeeded the TDMA tech in 2G, for which users are successively
allocated an exclusive amount of time to exchange data with the APs

∠ major issue: at the same time a very strict maximal number of users could be accepted
by a given AP, regardless of the users’ requests in terms of quality of service

∠ CDMA: to increase the max number of users, and to dynamically balancing the
quality of service offered to each terminal
○␣ each user is allocated a (long) spreading code orthogonal to the other users’ codes
○␣ so that all users can simultaneously receive data while experiencing a limited
amount of interference from concurrent communications, due to code orthogonality

○␣ codes not fully orthogonal, more users served, more interference and then less
quality of service; but at no time is a user rejected for lack of available resource

∠ Question: how to evaluate the capacity (max achievable transmission data rate) of
CDMA network? (which clearly depends on pre-coding strategy)
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Orthogonal CDMA versus TDMA

For orthogonal CDMA, assume:
∠ frequency flat channel conditions for all users; and
∠ channel stability over a large number of successive symbol periods;
then the rates achieved in the up-link are maximal when the orthogonal codes are as long
as the number of users n, with system capacity given by

Corth(σ
2) =

1
n
log det

(
In +

1
σ2WGGHWH

)
, (1)

with noise power σ2, W ∈ Cn×n the orthogonal CDMA codes (W unitary), and
G ≡ diag{gi}ni=1 represents channel gains of the users. Note that

Corth(σ
2) =

1
n
log det

(
In +

1
σ2GGH

)
=

1
n

n∑
i=1

log

(
1+ |gi|2

σ2

)
= CTDMA(σ

2). (2)

This justifies the equivalence between TDMA and orthogonal CDMA rate performance.
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Random versus orthogonal CDMA

When it comes to (pseudo-)random CDMA with (random i.i.d. codes), under the same
conditions, we have

Crand(σ
2) =

1
n
log det

(
In +

1
σ2XGGHXH

)
, (3)

for X ∈ Cn×n the users’ random codes.
Question: Crand as a function of gains G and (distribution of) codes X?
∠ (first?) answered by Shami, Tse, and Verdú in [5, 6];
∠ however capacity expressions not realistically achievable in practice, due to

complicated and nonlinear processing algorithms;
∠ if only linear pre-coders and/or decoders are used, optimal solution:

○␣ Tse and Hanly in [4] for frequency flat channels;
○␣ Evans and Tse in [2] for frequency selective channels;
○␣ Li and Verdú [3] for reduced-rank LMMSE decoders, etc.
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Signal sensing using multi-dimensional sensor arrays

Motivation:
∠ Shannon made us realize that, to achieve high rate of information transfer, increasing

the transmission bandwidth is largely preferred over increasing the power
∠ high rate communications with finite power budget, need frequency multiplexing
∠ cognitive radio: to communicate not by exploiting the over-used frequency domain,

or by exploiting the over-used space domain, but by exploiting so-called spectrum
holes, jointly in time, space, and frequency

As such, a cognitive radio network (also called a secondary network)
∠ can help reuse the resources in a licensed (first) network
∠ but require constant awareness of the operations taking place in the licensed networks
∠ for example, via signal sensing/detection
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Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let X = [x1, . . . , xn] ∈ Rp×n with i.i.d. columns xi ∈ Rp received by array of
p sensors, signal decision as the following binary hypothesis test:

X =

{
σZ, H0
asT + σZ, H1

where Z = [z1, . . . , zn] ∈ Rp×n, zi ∼ N (0, Ip), a ∈ Rp deterministic of unit norm ∥a∥ = 1,
signal s = [s1, . . . , sn]T ∈ Rn with si i.i.d. random, and σ > 0. Denote c = p/n > 0.
∠ observation of either zero-mean Gaussian noise σzi of power σ2, or deterministic

information vector a modulated by an added scalar (random) signal si (e.g., ±1).
∠ If a, σ, and statistics of si are known, the decision-optimal Neyman-Pearson () test:

P(X | H1)

P(X | H0)

H1
≷
H0

α (4)

for some α > 0 controlling the Type I and II error rates.
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Hypothesis testing via GLRT

However,
∠ in practice, we do not know σ, nor the information vector a ∈ Rp (to be recovered)
∠ in the case of a fully unknown, one may resort to a generalized likelihood ratio test

(GLRT) defined as
supσ,a P(X | σ, a,H1)

supσ,a P(X | σ,H0)

H1
≷
H0

α.

∠ Gaussian noise and signal si, GLRT has an explicit expression as a monotonous
increasing function of ∥XXT∥/ tr(XXT), test equivalent to, for some known f ,

Tp ≡
∥∥XXT

∥∥
tr (XXT)

H1
≷
H0

f (α).

∠ to evaluate the power of GLRT above, we need to assess the max and mean
eigenvalues of SCM 1

nXX
T
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Hypothesis testing in a signal-plus-noise model via GLRT

To set a maximum false alarm rate (or Type I error) of r > 0 for large n, p, according to
RMT, one must choose a threshold f (α) for Tp:

P(Tp ≥ f (α)) = r ⇔ µTW1([Ap,+∞)) = r, Ap = (f (α)− (1+
√
c)2)(1+

√
c)−

4
3 c

1
6n

2
3 (5)

with µTW1 the Tracy-Widom distribution in RMT.

2.4 (1+
√
c)2 2.60
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Empirical false alarm rate

1− TW1(Ap) defined in (5)

Figure: Comparison between empirical false alarm rates and 1− TW1(Ap) for Ap of the form in (5), as a function of the
threshold f (α) ∈ [(1+

√
c)2 − 5n−2/3, (1+

√
c)2 + 5n−2/3], for p = 256, n = 1 024 and σ = 1.
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“Curse of dimensionality”: loss of relevance of Euclidean distance

∠ Binary Gaussian mixture classification x ∈ Rp:
C1 : x ∼ N (µ1,C1), versus C2 : x ∼ N (µ2,C2);

∠ Neyman-Pearson test: classification is possible only when[a]

∥µ1 − µ2∥ ≥ Cµ, or ∥C1 − C2∥ ≥ CC · p−1/2

for some constants Cµ,CC > 0.
∠ In this non-trivial setting, for xi ∈ Ca, xj ∈ Cb:

max
1≤i ̸=j≤n

{
1
p
∥xi − xj∥2 −

2
p
trC◦

}
a.s.−−→ 0

as n, p → ∞ (i.e., n ∼ p), for C◦ ≡ 1
2(C1 + C2), regardless of the classes Ca, Cb!

[a] Couillet, Liao and Mai “Classification asymptotics in the random matrix regime” (2018).
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Loss of relevance of Euclidean distance: visual representation

O(
√p)

O(1)

Figure: Visual representation of classification in (left) small and (right) large dimensions.

⇒ Direct consequence to various distance-based machine learning methods
(e.g., kernel spectral clustering)!
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Reminder on kernel spectral clustering

Two-step classification of n data points with distance kernel K ≡ {f (∥xi − xj∥2/p)}ni,j=1:

0 isolated eigenvalues

⇓ Top eigenvectors ⇓
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Reminder on kernel spectral clustering

⇓ K-dimensional representation ⇓

Eig. 1

Ei
g.

2

⇓
EM or k-means clustering
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Cluster Gaussian data x1, . . . , xn ∈ Rp into C1 or C2, with second top eigenvectors v2 of
heat kernel Kij = exp(−∥xi − xj∥2/2p), small and large dimensional data.

(a) p = 5, n = 500

K =




v2 =

[ ]

(b) p = 250, n = 500

K =




v2 =

[ ]
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heat kernel Kij = exp(−∥xi − xj∥2/2p), small and large dimensional data.
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Kernel matrices for large dimensional real-world data

(a) MNIST

K =




v2 =

[ ]

(b) Fashion-MNIST

K =




v2 =

[ ]



Sample Covariance RMT for Telecom RMT for SP RMT for ML References ∠ 23/28

Kernel matrices for large dimensional real-world data

(a) MNIST

K =




v2 =

[ ]

(b) Fashion-MNIST

K =




v2 =

[ ]



Sample Covariance RMT for Telecom RMT for SP RMT for ML References ∠ 24/28

A RMT viewpoint of large kernel matrices

∠ “local” linearization of nonlinear kernel matrices in large dimensions, e.g., Gaussian
kernel matrix Kij = exp(−∥xi − xj∥2/2p) with C1 = C2 = Ip (e.g., C1 : xi = µ1 + zi
versus C2 : xj = µ2 + zj) so that

∥xi−xj∥2/p
a.s.−−→ 2, and K = exp

(
−2
2

)(
1n1T

n +
1
p
ZTZ

)
+g(∥µ1−µ2∥)

1
p
jjT+∗+o∥·∥(1)

with Gaussian Z = [z1, . . . , zn] ∈ Rp×n and class-information j = [1n/2;−1n/2],
∠ accumulated effect of small “hidden” statistical information (∥µ1 − µ2∥ in this case)
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A RMT viewpoint of large kernel matrices

Therefore
∠ entry-wise:

Kij = exp(−1)
(
1+ 1

p
zT
i zj︸ ︷︷ ︸

O(p−1/2)

)
± 1

p
g(∥µ1 − µ2∥)︸ ︷︷ ︸

O(p−1)

+∗, so that 1
p
g(∥µ1 − µ2∥) ≪

1
p
zT
i zj,

∠ spectrum-wise:
○␣ ∥K − exp(−1)1n1T

n ∥ ̸→ 0;
○␣ ∥1

pZ
TZ∥ = O(1) and ∥g(∥µ1 − µ2∥)1p jj

T∥ = O(1)!
∠ Same phenomenon as the sample covariance example: [Ĉ− C]ij → 0 ̸⇒ ∥Ĉ− C∥ → 0!

⇒ With RMT, we understand kernel spectral clustering for large dimensional data!
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Some more numerical results
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(a) MNIST
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Thank you! And some more information

∠ Find more information in the monograph “RandomMatrix Methods for Machine
Learning” with Cambridge University Press

∠ with online book draft https://zhenyu-liao.github.io/pdf/RMT4ML.pdf
∠ with online code https://github.com/Zhenyu-LIAO/RMT4ML!
∠ and exercise solution https://zhenyu-liao.github.io/pdf/RMT4ML_solution.pdf

Thank you! Q & A?

https://zhenyu-liao.github.io/pdf/RMT4ML.pdf
https://github.com/Zhenyu-LIAO/RMT4ML
https://zhenyu-liao.github.io/pdf/RMT4ML_solution.pdf
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