Probability and Stochastic Process II:
 Random Matrix Theory and Applications
 Lecture 2: From Random Scalars to Random Matrices

Zhenyu Liao, Tiebin Mi, Caiming Qiu

School of Electronic Information and Communications (EIC) Huazhong University of Science and Technology (HUST)

March 1, 2023

Outline

LLN and CLT

From Random Scalars to Random Matrices

RMT Basis

What we will have today

» reminder on Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
》 from random scalars to random vectors and matrices
» RMT basic concepts: resolvent, spectral measure, and Stieltjes transform
» deterministic equivalent framework to RMT

What we will have today

» reminder on Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
» from random scalars to random vectors and matrices
》 RMT basic concepts: resolvent, spectral measure, and Stieltjes transform
» deterministic equivalent framework to RMT

What we will have today

» reminder on Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
» from random scalars to random vectors and matrices
» RMT basic concepts: resolvent, spectral measure, and Stieltjes transform » deterministic equivalent framework to RMT

What we will have today

» reminder on Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
» from random scalars to random vectors and matrices
» RMT basic concepts: resolvent, spectral measure, and Stieltjes transform
» deterministic equivalent framework to RMT

Outline

LLN and CLT

From Random Scalars to Random Matrices

```
RMT Basis
```


LLN and CLT

» (Strong) law of large numbers (LLN): for a sequence of i.i.d. random variables x_{1}, \ldots, x_{p} with the same expectation $\mathbb{E}\left[x_{i}\right]=\mu$, we have

$$
\begin{equation*}
\frac{1}{p} \sum_{i=1}^{p} x_{i} \rightarrow \mu \tag{1}
\end{equation*}
$$

almost surely as $p \rightarrow \infty$.
» Central limit theorem (CLT, Lindeberg-Lévy tyep): for a sequence of i.i.d. random variables x_{1}, \ldots, x_{p} with the same expectation $\mathbb{E}\left[x_{i}\right]=\mu$ and variance $\operatorname{Var}\left[x_{i}\right]=\sigma^{2}<\infty$, we have

LLN and CLT

» (Strong) law of large numbers (LLN): for a sequence of i.i.d. random variables x_{1}, \ldots, x_{p} with the same expectation $\mathbb{E}\left[x_{i}\right]=\mu$, we have

$$
\begin{equation*}
\frac{1}{p} \sum_{i=1}^{p} x_{i} \rightarrow \mu \tag{1}
\end{equation*}
$$

almost surely as $p \rightarrow \infty$.
» Central limit theorem (CLT, Lindeberg-Lévy tyep): for a sequence of i.i.d. random variables x_{1}, \ldots, x_{p} with the same expectation $\mathbb{E}\left[x_{i}\right]=\mu$ and variance $\operatorname{Var}\left[x_{i}\right]=\sigma^{2}<\infty$, we have

$$
\begin{equation*}
\sqrt{p}\left(\frac{1}{p} \sum_{i=1}^{p}\left(x_{i}-\mu\right)\right) \rightarrow \mathcal{N}\left(0, \sigma^{2}\right) \tag{2}
\end{equation*}
$$

in distribution as $p \rightarrow \infty$.

Outline

LLN and CLT

From Random Scalars to Random Matrices

RMT Basis

OK with LLN and CLT, so what?

Different view of LLN and CLT: large-dimensional deterministic behavior and fluctuation. Single scalar random variables
》Scalar random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
» x in general not expected to establish some kind of "close-to-deterministic" behavior.
» True for a single observation, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables
Consider a set of size p i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top} \in \mathbb{R}^{p}$, with $\mathbb{E}\left[x_{i}\right]=\mu, \operatorname{Var}\left[x_{i}\right]=1, i \in\{1, \ldots, p\}$

OK with LLN and CLT, so what?

Different view of LLN and CLT: large-dimensional deterministic behavior and fluctuation. Single scalar random variables
»Scalar random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
》 x in general not expected to establish some kind of "close-to-deterministic" behavior.
»True for a single observation, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables
Consider a set of size p i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top} \in \mathbb{R}^{p}$, with $\mathbb{E}\left[x_{i}\right]=\mu, \operatorname{Var}\left[x_{i}\right]=1, i \in\{1, \ldots, p\}$.

OK with LLN and CLT, so what?

Different view of LLN and CLT: large-dimensional deterministic behavior and fluctuation. Single scalar random variables
»Scalar random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
» x in general not expected to establish some kind of "close-to-deterministic" behavior.
$»$ True for a single observation, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables
Consider a set of size p i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top} \in \mathbb{R}^{p}$, with $\mathbb{E}\left[x_{i}\right]=\mu, \operatorname{Var}\left[x_{i}\right]=1, i \in\{1, \ldots, p\}$.

OK with LLN and CLT, so what?

Different view of LLN and CLT: large-dimensional deterministic behavior and fluctuation. Single scalar random variables
»Scalar random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
» x in general not expected to establish some kind of "close-to-deterministic" behavior.
»True for a single observation, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables
Consider a set of size p i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top} \in \mathbb{R}^{p}$, with $\mathbb{E}\left[x_{i}\right]=\mu, \operatorname{Var}\left[x_{i}\right]=1, i \in\{1, \ldots, p\}$.

OK with LLN and CLT, so what?

Different view of LLN and CLT: large-dimensional deterministic behavior and fluctuation. Single scalar random variables
»Scalar random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
» x in general not expected to establish some kind of "close-to-deterministic" behavior.
» True for a single observation, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.
Random vectors: many scalar random variables
Consider a set of size p i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top} \in \mathbb{R}^{p}$, with $\mathbb{E}\left[x_{i}\right]=\mu, \operatorname{Var}\left[x_{i}\right]=1, i \in\{1, \ldots, p\}$.
\geqslant as p independent scalar random variables $x \in \mathbb{R}$; or
» as a single realization of a random vector $\mathbf{x} \in \mathbb{R}^{p}$, having independent entries.

OK with LLN and CLT, so what?

Different view of LLN and CLT: large-dimensional deterministic behavior and fluctuation. Single scalar random variables
»Scalar random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
» x in general not expected to establish some kind of "close-to-deterministic" behavior.
» True for a single observation, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables
Consider a set of size p i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top} \in \mathbb{R}^{p}$, with $\mathbb{E}\left[x_{i}\right]=\mu, \operatorname{Var}\left[x_{i}\right]=1, i \in\{1, \ldots, p\}$.
》 as p independent scalar random variables $x \in \mathbb{R}$; or
\gg as a single realization of a random vector $x \in \mathbb{R}^{P}$, having independent entries.

OK with LLN and CLT, so what?

Different view of LLN and CLT: large-dimensional deterministic behavior and fluctuation. Single scalar random variables
»Scalar random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
» x in general not expected to establish some kind of "close-to-deterministic" behavior.
» True for a single observation, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables

Consider a set of size p i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{p}\right]^{\top} \in \mathbb{R}^{p}$, with $\mathbb{E}\left[x_{i}\right]=\mu, \operatorname{Var}\left[x_{i}\right]=1, i \in\{1, \ldots, p\}$.
» as p independent scalar random variables $x \in \mathbb{R}$; or
\gg as a single realization of a random vector $\mathbf{x} \in \mathbb{R}^{p}$, having independent entries.

OK with LLN and CLT, so what?

(i) Scalar: nothing more can be said about each individual random variable:

- inappropriate to predict the behavior of x_{i} with any deterministic value
- in general incorrect to say "the random x_{i} is close to $\mu=\mathbb{E}\left[x_{i}\right]$ ", since, for x_{i} with $\mathbb{E}[x]=\mu$ and $\operatorname{Var}[x]=1$, by Chebyshev's inequality.
o random fluctuation $x_{i}-\mathbb{E}\left[x_{i}\right]$ can be as large as $\mu=\mathbb{E}\left[x_{i}\right]$.
Vector: a different picture: single realization of random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$.

OK with LLN and CLT, so what?

(i) Scalar: nothing more can be said about each individual random variable: - inappropriate to predict the behavior of x_{i} with any deterministic value - in general incorrect to say "the random x_{i} is close to $\mu=\mathbb{E}\left[x_{i}\right]$ ", since, for x_{i} with $\mathbb{E}[x]=\mu$ and $\operatorname{Var}[x]=1$, by Chebyshev's inequality.
o random fluctuation $x_{i}-\mathbb{E}\left[x_{i}\right]$ can be as large as $\mu=\mathbb{E}\left[x_{i}\right]$.
Vector: a different picture: single realization of random vector $x / \sqrt{P} \in \mathbb{R}^{p}$

OK with LLN and CLT, so what?

(i) Scalar: nothing more can be said about each individual random variable: - inappropriate to predict the behavior of x_{i} with any deterministic value - in general incorrect to say "the random x_{i} is close to $\mu=\mathbb{E}\left[x_{i}\right]$ ", since, for x_{i} with $\mathbb{E}[x]=\mu$ and $\operatorname{Var}[x]=1$, by Chebyshev's inequality.

$$
\begin{equation*}
\mathbb{P}(|x-\mu| \geq t) \leq t^{-2}, \quad \forall t>0 \tag{3}
\end{equation*}
$$

o random fluctuation $x_{i}-\mathbb{E}\left[x_{i}\right]$ can be as large as $\mu=\mathbb{E}\left[x_{i}\right]$.
Vector: a different picture: single realization of random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$

OK with LLN and CLT, so what?

(i) Scalar: nothing more can be said about each individual random variable:

- inappropriate to predict the behavior of x_{i} with any deterministic value
- in general incorrect to say "the random x_{i} is close to $\mu=\mathbb{E}\left[x_{i}\right]$ ", since, for x_{i} with $\mathbb{E}[x]=\mu$ and $\operatorname{Var}[x]=1$, by Chebyshev's inequality.

$$
\begin{equation*}
\mathbb{P}(|x-\mu| \geq t) \leq t^{-2}, \quad \forall t>0 \tag{3}
\end{equation*}
$$

- random fluctuation $x_{i}-\mathbb{E}\left[x_{i}\right]$ can be as large as $\mu=\mathbb{E}\left[x_{i}\right]$.

Vector: a different picture: single realization of random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$

OK with LLN and CLT, so what?

(i) Scalar: nothing more can be said about each individual random variable:

- inappropriate to predict the behavior of x_{i} with any deterministic value
- in general incorrect to say "the random x_{i} is close to $\mu=\mathbb{E}\left[x_{i}\right]$ ", since, for x_{i} with $\mathbb{E}[x]=\mu$ and $\operatorname{Var}[x]=1$, by Chebyshev's inequality.

$$
\begin{equation*}
\mathbb{P}(|x-\mu| \geq t) \leq t^{-2}, \quad \forall t>0 \tag{3}
\end{equation*}
$$

- random fluctuation $x_{i}-\mathbb{E}\left[x_{i}\right]$ can be as large as $\mu=\mathbb{E}\left[x_{i}\right]$.
(ii) Vector: a different picture: single realization of random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$.
- cannot say anything in general about each individual vector x.
- however, if we are interested in only the (scalar and linear) observations of the random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$ (with $\left.\mathbb{E}[\mathbf{x}]=\mu \mathbf{1}_{p} / \sqrt{p}\right)$, we known much more:

OK with LLN and CLT, so what?

(i) Scalar: nothing more can be said about each individual random variable:

- inappropriate to predict the behavior of x_{i} with any deterministic value
- in general incorrect to say "the random x_{i} is close to $\mu=\mathbb{E}\left[x_{i}\right]$ ", since, for x_{i} with $\mathbb{E}[x]=\mu$ and $\operatorname{Var}[x]=1$, by Chebyshev's inequality.

$$
\begin{equation*}
\mathbb{P}(|x-\mu| \geq t) \leq t^{-2}, \quad \forall t>0 \tag{3}
\end{equation*}
$$

- random fluctuation $x_{i}-\mathbb{E}\left[x_{i}\right]$ can be as large as $\mu=\mathbb{E}\left[x_{i}\right]$.
(ii) Vector: a different picture: single realization of random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$.
- cannot say anything in general about each individual vector \mathbf{x}.
- however, if we are interested in only the (scalar and linear) observations of the random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$ (with $\left.\mathbb{E}[\mathbf{x}]=\mu \mathbf{1}_{p} / \sqrt{p}\right)$, we known much more:

OK with LLN and CLT, so what?

(i) Scalar: nothing more can be said about each individual random variable:

- inappropriate to predict the behavior of x_{i} with any deterministic value
- in general incorrect to say "the random x_{i} is close to $\mu=\mathbb{E}\left[x_{i}\right]$ ", since, for x_{i} with $\mathbb{E}[x]=\mu$ and $\operatorname{Var}[x]=1$, by Chebyshev's inequality.

$$
\begin{equation*}
\mathbb{P}(|x-\mu| \geq t) \leq t^{-2}, \quad \forall t>0 \tag{3}
\end{equation*}
$$

- random fluctuation $x_{i}-\mathbb{E}\left[x_{i}\right]$ can be as large as $\mu=\mathbb{E}\left[x_{i}\right]$.
(ii) Vector: a different picture: single realization of random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$.
- cannot say anything in general about each individual vector \mathbf{x}.
- however, if we are interested in only the (scalar and linear) observations of the random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$ (with $\mathbb{E}[\mathbf{x}]=\mu \mathbf{1}_{p} / \sqrt{p}$), we known much more:

$$
\begin{equation*}
\frac{1}{p} \mathbf{x}^{\top} \mathbf{1}_{p} \xrightarrow{\text { a.s. }} \mathbb{E}\left[x_{i}\right]=\mu, \quad \frac{1}{\sqrt{p}}\left(\mathbf{x}-\mu \mathbf{1}_{p}\right)^{\top} \mathbf{1}_{p} \xrightarrow{d} \mathcal{N}(0,1), \quad p \rightarrow \infty . \tag{4}
\end{equation*}
$$

OK with LLN and CLT, so what?

This is

$$
\frac{1}{p} \mathbf{x}^{\top} \mathbf{1}_{p} \simeq \underbrace{\mu}_{O(1)}+\underbrace{\frac{1}{\sqrt{p}} \mathcal{N}(0,1)}_{O\left(p^{-1 / 2}\right)}
$$

[^0]
OK with LLN and CLT, so what?

This is

$$
\frac{1}{p} \mathbf{x}^{\top} \mathbf{1}_{p} \simeq \underbrace{\mu}_{O(1)}+\underbrace{\frac{1}{\sqrt{p}} \mathcal{N}(0,1)}_{O\left(p^{-1 / 2}\right)}
$$

» a large dimensional random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$, when "observed" via the linear map $\mathbf{1}_{p}^{\top}(\cdot) / \sqrt{p}$ of unit Euclidean norm (i.e., of "scale" independent of p);
» leads to x (when "observed" in this way) exhibiting the joint behavior of:
(i) approximately, in its first order, a deterministic quantity μ; and
(ii) in its second-order, a universal Gaussian fluctuation that is strongly concentrated and independent of the specific law of x_{i}.

OK with LLN and CLT, so what?

This is

$$
\frac{1}{p} \mathbf{x}^{\top} \mathbf{1}_{p} \simeq \underbrace{\mu}_{O(1)}+\underbrace{\frac{1}{\sqrt{p}} \mathcal{N}(0,1)}_{O\left(p^{-1 / 2}\right)}
$$

》 a large dimensional random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$, when "observed" via the linear map $\mathbf{1}_{p}^{\mathrm{T}}(\cdot) / \sqrt{p}$ of unit Euclidean norm (i.e., of "scale" independent of p);
» leads to \mathbf{x} (when "observed" in this way) exhibiting the joint behavior of:
(i) approximately, in its first order, a deterministic quantity μ; and
(ii) in its second-order, a universal Gaussian fluctuation that is strongly concentrated and independent of the specific law of x_{i}.

What about random matrices?

»As in the case of (high-dimensional) random vectors, we should NOT expect random matrices themselves converge in any useful sense;

» e.g., there does NOT exist deterministic matrix $\overline{\mathrm{X}}$ so that the random matrix $\mathrm{X} \in \mathbb{R}^{p \times p}$

$$
\begin{equation*}
\|\mathbf{X}-\overline{\mathbf{X}}\| \rightarrow 0 \tag{5}
\end{equation*}
$$

in spectral norm as $p \rightarrow \infty$ (in probability or almost surely);
» nonetheless, "properly scaled" scalar observations $f: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$ of X DO converge, and there exists deterministic \bar{X} such that

$$
\begin{equation*}
f(\mathbf{X})-f(\overline{\mathbf{X}}) \rightarrow 0, \tag{6}
\end{equation*}
$$

as $p \rightarrow \infty$. We say such $\overline{\mathbf{X}}$ is a deterministic equivalent of the random matrix \mathbf{X}. » observation f of interest in RMT include (empirical) eigenvalue distribution/measure, linear eigenvalue statistics, specific eigenvalue location, projection of eigenvectors, etc.

What about random matrices?

»As in the case of (high-dimensional) random vectors, we should NOT expect random matrices themselves converge in any useful sense;
»e.g., there does NOT exist deterministic matrix $\overline{\mathbf{X}}$ so that the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$

$$
\begin{equation*}
\|\mathbf{X}-\overline{\mathbf{X}}\| \rightarrow 0 \tag{5}
\end{equation*}
$$

in spectral norm as $p \rightarrow \infty$ (in probability or almost surely);
$>$ nonetheless, "properly scaled" scalar observations $f: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$ of X DO converge,
and there exists deterministic $\overline{\mathbf{X}}$ such that

$$
f(\mathbf{X})-f(\overline{\mathbf{X}}) \rightarrow 0,
$$

as $p \rightarrow \infty$. We say such $\overline{\mathbf{X}}$ is a deterministic equivalent of the random matrix \mathbf{X}.
» observation f of interest in RMT include (empirical) eigenvalue distribution/measure, linear eigenvalue statistics, specific eigenvalue location, projection of eigenvectors, etc.

What about random matrices?

»As in the case of (high-dimensional) random vectors, we should NOT expect random matrices themselves converge in any useful sense;
»e.g., there does NOT exist deterministic matrix $\overline{\mathbf{X}}$ so that the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$

$$
\begin{equation*}
\|\mathbf{X}-\overline{\mathbf{X}}\| \rightarrow 0 \tag{5}
\end{equation*}
$$

in spectral norm as $p \rightarrow \infty$ (in probability or almost surely);
» nonetheless, "properly scaled" scalar observations $f: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$ of X DO converge, and there exists deterministic $\overline{\mathbf{X}}$ such that

$$
\begin{equation*}
f(\mathbf{X})-f(\overline{\mathbf{X}}) \rightarrow 0 \tag{6}
\end{equation*}
$$

as $p \rightarrow \infty$. We say such $\overline{\mathbf{X}}$ is a deterministic equivalent of the random matrix \mathbf{X}.
» observation f of interest in RMT include (empirical) eigenvalue distribution/measure, linear eigenvalue statistics, specific eigenvalue location, projection of eigenvectors, etc.

What about random matrices?

»As in the case of (high-dimensional) random vectors, we should NOT expect random matrices themselves converge in any useful sense;
»e.g., there does NOT exist deterministic matrix $\overline{\mathbf{X}}$ so that the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$

$$
\begin{equation*}
\|\mathbf{X}-\overline{\mathbf{X}}\| \rightarrow 0 \tag{5}
\end{equation*}
$$

in spectral norm as $p \rightarrow \infty$ (in probability or almost surely);
» nonetheless, "properly scaled" scalar observations $f: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$ of X DO converge, and there exists deterministic $\overline{\mathbf{X}}$ such that

$$
\begin{equation*}
f(\mathbf{X})-f(\overline{\mathbf{X}}) \rightarrow 0 \tag{6}
\end{equation*}
$$

as $p \rightarrow \infty$. We say such $\overline{\mathbf{X}}$ is a deterministic equivalent of the random matrix \mathbf{X}.
» observation f of interest in RMT include (empirical) eigenvalue distribution/measure, linear eigenvalue statistics, specific eigenvalue location, projection of eigenvectors, etc.

Deterministic equivalent for RMT: intuition and proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?
》 while the random matrix $\mathrm{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact
even "more" random due to the growing degrees of freedom);
»scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \rightarrow \infty$;
»So, to propose a DE , it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:

Deterministic equivalent for RMT: intuition and proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?
» while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
\gg scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \rightarrow \infty$;
» So, to propose a DE , it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:

Deterministic equivalent for RMT: intuition and proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?
» while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
» scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \rightarrow \infty$;
o the random $f(\mathbf{X})$, if concentrates, must concentrated around its expectation $\mathbb{E}[f(\mathbf{X})]$; 0 in fact, as $p \rightarrow \infty$, more randomness in $\mathbf{X} \Rightarrow \operatorname{Var}[f(\mathbf{X})] \downarrow 0$, e.g., $\operatorname{Var}[f(\mathbf{X})]=p^{-4}$; o if the functional f $»$ So, to propose a $D E$, it suffices to evaluate $\mathbb{E}[X]$

Deterministic equivalent for RMT: intuition and proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?
» while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
》 scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \rightarrow \infty$; o the random $f(\mathbf{X})$, if concentrates, must concentrated around its expectation $\mathbb{E}[f(\mathbf{X})]$;
o if the functional f
»So, to propose a $D E$, it suffices to evaluate $\mathbb{E}[\mathbf{X}]$

Deterministic equivalent for RMT: intuition and proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?
» while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
》 scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \rightarrow \infty$;

- the random $f(\mathbf{X})$, if concentrates, must concentrated around its expectation $\mathbb{E}[f(\mathbf{X})]$; - in fact, as $p \rightarrow \infty$, more randomness in $\mathbf{X} \Rightarrow \operatorname{Var}[f(\mathbf{X})] \downarrow 0$, e.g., $\operatorname{Var}[f(\mathbf{X})]=p^{-4}$;
o if the functional f
»So, to propose a $D E$, it suffices to evaluate $\mathbb{E}[\mathbf{X}]$

Deterministic equivalent for RMT: intuition and proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?
» while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
》 scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \rightarrow \infty$;

- the random $f(\mathbf{X})$, if concentrates, must concentrated around its expectation $\mathbb{E}[f(\mathbf{X})]$; - in fact, as $p \rightarrow \infty$, more randomness in $\mathbf{X} \Rightarrow \operatorname{Var}[f(\mathbf{X})] \downarrow 0$, e.g., $\operatorname{Var}[f(\mathbf{X})]=p^{-4}$; - if the functional $f: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$ is linear, then $\mathbb{E}[f(\mathbf{X})]=f(\mathbb{E}[\mathbf{X}])$.

Deterministic equivalent for RMT: intuition and proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?
》 while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
» scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \rightarrow \infty$;

- the random $f(\mathbf{X})$, if concentrates, must concentrated around its expectation $\mathbb{E}[f(\mathbf{X})]$;
- in fact, as $p \rightarrow \infty$, more randomness in $\mathbf{X} \Rightarrow \operatorname{Var}[f(\mathbf{X})] \downarrow 0$, e.g., $\operatorname{Var}[f(\mathbf{X})]=p^{-4}$;
o if the functional $f: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$ is linear, then $\mathbb{E}[f(\mathbf{X})]=f(\mathbb{E}[\mathbf{X}])$.
»So, to propose a DE, it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:
o however, $\mathbb{E}[X]$ may be hardly accessible (due to integration)
- find a simple and more accessible deterministic $\overline{\mathbf{X}}$ with $\overline{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\overline{\mathbf{X}}-\mathbb{E}[\mathbf{X}]\| \rightarrow 0$ as $p \rightarrow \infty$; and
o show variance of $f(\mathbf{X})$ decav sufficiently fast as $p \rightarrow \infty$.

Deterministic equivalent for RMT: intuition and proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?
» while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
» scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \rightarrow \infty$;

- the random $f(\mathbf{X})$, if concentrates, must concentrated around its expectation $\mathbb{E}[f(\mathbf{X})]$;
- in fact, as $p \rightarrow \infty$, more randomness in $\mathbf{X} \Rightarrow \operatorname{Var}[f(\mathbf{X})] \downarrow 0$, e.g., $\operatorname{Var}[f(\mathbf{X})]=p^{-4}$;
\circ if the functional $f: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$ is linear, then $\mathbb{E}[f(\mathbf{X})]=f(\mathbb{E}[\mathbf{X}])$.
»So, to propose a DE , it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:
- however, $\mathbb{E}[\mathbf{X}]$ may be hardly accessible (due to integration)
- find a simple and more accessible deterministic $\overline{\mathbf{X}}$ with $\overline{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\overline{\mathbf{X}}-\mathbb{E}[\mathbf{X}]\| \rightarrow 0$ as $p \rightarrow \infty$; and

Deterministic equivalent for RMT: intuition and proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?
》 while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
» scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \rightarrow \infty$;

- the random $f(\mathbf{X})$, if concentrates, must concentrated around its expectation $\mathbb{E}[f(\mathbf{X})]$;
- in fact, as $p \rightarrow \infty$, more randomness in $\mathbf{X} \Rightarrow \operatorname{Var}[f(\mathbf{X})] \downarrow 0$, e.g., $\operatorname{Var}[f(\mathbf{X})]=p^{-4}$;
- if the functional $f: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$ is linear, then $\mathbb{E}[f(\mathbf{X})]=f(\mathbb{E}[\mathbf{X}])$.
»So, to propose a DE , it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:
- however, $\mathbb{E}[\mathbf{X}]$ may be hardly accessible (due to integration)
- find a simple and more accessible deterministic $\overline{\mathbf{X}}$ with $\overline{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p
large, e.g., $\|\overline{\mathbf{X}}-\mathbb{E}[\mathbf{X}]\| \rightarrow 0$ as $p \rightarrow \infty$; and
- show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \rightarrow \infty$.

Deterministic equivalent for RMT: intuition and proof

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?
» while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
» scalar observation $f(\mathbf{X})$ of \mathbf{X} becomes "more concentrated" as $p \rightarrow \infty$;

- the random $f(\mathbf{X})$, if concentrates, must concentrated around its expectation $\mathbb{E}[f(\mathbf{X})]$;
- in fact, as $p \rightarrow \infty$, more randomness in $\mathbf{X} \Rightarrow \operatorname{Var}[f(\mathbf{X})] \downarrow 0$, e.g., $\operatorname{Var}[f(\mathbf{X})]=p^{-4}$;
o if the functional $f: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$ is linear, then $\mathbb{E}[f(\mathbf{X})]=f(\mathbb{E}[\mathbf{X}])$.
»So, to propose a DE , it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:
- however, $\mathbb{E}[\mathbf{X}]$ may be hardly accessible (due to integration)
- find a simple and more accessible deterministic $\overline{\mathbf{X}}$ with $\overline{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\overline{\mathbf{X}}-\mathbb{E}[\mathbf{X}]\| \rightarrow 0$ as $p \rightarrow \infty$; and
- show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \rightarrow \infty$.
$»$ We say $\overline{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \overline{\mathbf{X}}$.

Outline

LLN and CLT

From Random Scalars to Random Matrices

RMT Basis

Fundamental Objects

Core interest of RMT: evaluation of eigenvalues and eigenvectors of a random matrix.
For a symmetric/Hermitian matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$, the resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ of \mathbf{X} is defined, for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{X}, as $\mathbf{Q}_{\mathbf{X}}(z) \equiv\left(\mathbf{X}-z \mathbf{I}_{p}\right)^{-1}$.

For symmetric $\mathbf{X} \in \mathbb{R}^{p \times p}$, the empirical spectral distribution (ESD) $\mu_{\mathbf{X}}$ of \mathbf{X} is defined as the normalized counting measure of the eigenvalues $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ of \mathbf{X}, i.e., $\mu_{\mathbf{X}} \equiv$ $\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(\mathbf{X})}$, where δ_{x} represents the Dirac measure at x.

Resolvent as the core object

Objects of interest	Functionals of resolvent $\mathbf{Q}_{\mathbf{x}}(z)$
Empirical Spectral Distribution (ESD)	
$\mu_{\mathbf{X}}$ of \mathbf{X}	Stieltjes transform $m_{\mu_{\mathbf{X}}}(z)=\frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{x}}(z)$
Linear spectral statistics (LSS):	Integration of trace of $\mathbf{Q}_{\mathbf{X}}(z):-\frac{1}{2 \pi \imath} \oint_{\Gamma} f(z) \frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z) d z$
$f(\mathbf{X}) \equiv \frac{1}{p} \sum_{i} f\left(\lambda_{i}(\mathbf{X})\right)$	(via Cauchy's integral)
Projections of eigenvectors	Bilinear form $\mathbf{v}^{\top} \mathbf{Q}_{\mathbf{X}}(z) \mathbf{v}$ of $\mathbf{Q}_{\mathbf{x}}$
$\mathbf{v}^{\top} \mathbf{u}(\mathbf{X})$ and $\mathbf{v}^{\top} \mathbf{U}(\mathbf{X})$ onto	
some given vector $\mathbf{v} \in \mathbb{R}^{p}$	
General matrix functional	Integration of bilinear form of $\mathbf{Q}_{\mathbf{X}}(z):$
$F(\mathbf{X})=\sum_{i} f\left(\lambda_{i}(\mathbf{X})\right) \mathbf{v}_{1}^{\top} \mathbf{u}_{i}(\mathbf{X}) \mathbf{u}_{i}(\mathbf{X})^{\top} \mathbf{v}_{2}$	$-\frac{1}{2 \pi \imath} \oint_{\Gamma} f(z) \mathbf{v}_{1}^{\top} \mathbf{Q}_{\mathbf{x}}(z) \mathbf{v}_{2} d z$

Use resolvent for eigenvalue distribution

For a symmetric/Hermitian matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$, the resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ of \mathbf{X} is defined, for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{X}, as $\mathbf{Q}_{\mathbf{X}}(z) \equiv\left(\mathbf{X}-z \mathbf{I}_{p}\right)^{-1}$.

Let $\mathbf{X}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}$ be the spectral decomposition of \mathbf{X}, with $\boldsymbol{\Lambda}=\left\{\lambda_{i}(\mathbf{X})\right\}_{i=1}^{p}$ eigenvalues and $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right] \in \mathbb{R}^{p \times p}$ the associated eigenvectors. Then,

$$
\begin{equation*}
\mathbf{Q}(z)=\mathbf{U}\left(\boldsymbol{\Lambda}-z \mathbf{I}_{p}\right)^{-1} \mathbf{U}^{\top}=\sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\top}}{\lambda_{i}(\mathbf{X})-z} . \tag{7}
\end{equation*}
$$

Thus, for $\mu_{\mathbf{X}} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(\mathbf{X})}$ the ESD of \mathbf{X},

$$
\begin{equation*}
\frac{1}{p} \operatorname{tr} \mathbf{Q}(z)=\frac{1}{p} \sum_{i=1}^{p} \frac{1}{\lambda_{i}(\mathbf{X})-z}=\int \frac{\mu_{\mathbf{X}}(d t)}{t-z} \tag{8}
\end{equation*}
$$

The Stieltjes transform

For a real probability measure μ with support $\operatorname{supp}(\mu)$, the Stieltjes transform $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
\begin{equation*}
m_{\mu}(z) \equiv \int \frac{\mu(d t)}{t-z} \tag{9}
\end{equation*}
$$

Stieltjes transform

```
For \(m_{\mu}\) the Stieltjes transform of a probability measure \(\mu\), then
》 \(m_{\mu}\) is complex analytic on its domain of definition \(\mathbb{C} \backslash \operatorname{supp}(\mu)\);
» it is bounded \(\left|m_{\mu}(z)\right| \leq 1 / \operatorname{dist}(z, \operatorname{supp}(\mu))\);
\(\gg\) it satisfies \(m_{\mu}(z)>0\) for \(z<\inf \operatorname{supp}(\mu), m_{\mu}(z)<0\) for \(z>\sup \operatorname{supp}(\mu)\) and \(\Im[z] \cdot \Im\left[m_{\mu}(z)\right]>0\) if \(z \in \mathbb{C} \backslash \mathbb{R}\); and
» it is an increasing function on all connected components of its restriction to \(\mathbb{R} \backslash \operatorname{supp}(\mu)\) (since \(m_{\mu}^{\prime}(x)=\int(t-x)^{-2} \mu(d t)>0\) ) with \(\lim _{x \rightarrow \pm \infty} m_{\mu}(x)=0\) if \(\operatorname{supp}(\mu)\) is bounded.
```


The Stieltjes transform

For a real probability measure μ with $\operatorname{support} \operatorname{supp}(\mu)$, the Stieltjes transform $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
\begin{equation*}
m_{\mu}(z) \equiv \int \frac{\mu(d t)}{t-z} \tag{9}
\end{equation*}
$$

Stieltjes transform
For m_{μ} the Stieltjes transform of a probability measure μ, then
» m_{μ} is complex analytic on its domain of definition $\mathbb{C} \backslash \operatorname{supp}(\mu)$;
$»$ it is bounded $\left|m_{\mu}(z)\right| \leq 1 / \operatorname{dist}(z, \operatorname{supp}(\mu))$;
» it satisfies $m_{\mu}(z)>0$ for $z<\inf \operatorname{supp}(\mu), m_{\mu}(z)<0$ for $z>\sup \operatorname{supp}(\mu)$ and $\Im[z] \cdot \Im\left[m_{\mu}(z)\right]>0$ if $z \in \mathbb{C} \backslash \mathbb{R}$; and
»it is an increasing function on all connected components of its restriction to $\mathbb{R} \backslash \operatorname{supp}(\mu)$ (since $m_{\mu}^{\prime}(x)=\int(t-x)^{-2} \mu(d t)>0$) with $\lim _{x \rightarrow \pm \infty} m_{\mu}(x)=0$ if $\operatorname{supp}(\mu)$ is bounded.

The inverse Stieltjes transform

For a, b continuity points of the probability measure μ, we have

$$
\begin{equation*}
\mu([a, b])=\frac{1}{\pi} \lim _{y \downarrow 0} \int_{a}^{b} \Im\left[m_{\mu}(x+\imath y)\right] d x . \tag{10}
\end{equation*}
$$

Besides, if μ admits a density f at x (i.e., $\mu(x)$ is differentiable in a neighborhood of x and $\left.\lim _{\epsilon \rightarrow 0}(2 \epsilon)^{-1} \mu([x-\epsilon, x+\epsilon])=f(x)\right)$,

$$
\begin{equation*}
f(x)=\frac{1}{\pi} \lim _{y \downarrow 0} \Im\left[m_{\mu}(x+\imath y)\right] . \tag{11}
\end{equation*}
$$

Inverse Stieltjes transform

The inverse Stieltjes transform

For a, b continuity points of the probability measure μ, we have

$$
\begin{equation*}
\mu([a, b])=\frac{1}{\pi} \lim _{y \downarrow 0} \int_{a}^{b} \Im\left[m_{\mu}(x+\imath y)\right] d x . \tag{10}
\end{equation*}
$$

Besides, if μ admits a density f at x (i.e., $\mu(x)$ is differentiable in a neighborhood of x and $\left.\lim _{\epsilon \rightarrow 0}(2 \epsilon)^{-1} \mu([x-\epsilon, x+\epsilon])=f(x)\right)$,

$$
\begin{equation*}
f(x)=\frac{1}{\pi} \lim _{y \downarrow 0} \Im\left[m_{\mu}(x+\imath y)\right] . \tag{11}
\end{equation*}
$$

Inverse Stieltjes transform
Workflow: random matrix \mathbf{X} of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and ST $\frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)=m_{\mathbf{X}}(z)$

The inverse Stieltjes transform

For a, b continuity points of the probability measure μ, we have

$$
\begin{equation*}
\mu([a, b])=\frac{1}{\pi} \lim _{y \downarrow 0} \int_{a}^{b} \Im\left[m_{\mu}(x+\imath y)\right] d x . \tag{10}
\end{equation*}
$$

Besides, if μ admits a density f at x (i.e., $\mu(x)$ is differentiable in a neighborhood of x and $\left.\lim _{\epsilon \rightarrow 0}(2 \epsilon)^{-1} \mu([x-\epsilon, x+\epsilon])=f(x)\right)$,

$$
\begin{equation*}
f(x)=\frac{1}{\pi} \lim _{y \downarrow 0} \Im\left[m_{\mu}(x+\imath y)\right] . \tag{11}
\end{equation*}
$$

Inverse Stieltjes transform
Workflow: random matrix \mathbf{X} of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and ST $\frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)=m_{\mathbf{X}}(z)$ \Rightarrow study the limiting ST $m_{\mathbf{X}}(z) \rightarrow m(z) \Rightarrow$ inverse ST to get limiting $\mu_{\mathbf{X}} \rightarrow \mu$.

Use the resolvent for eigenvalue functionals

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, the linear spectral statistics (LSS) $f_{\mathbf{X}}$ of \mathbf{X} is defined as the averaged statistics of the eigenvalues $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ of \mathbf{X} via some function $f: \mathbb{R} \rightarrow \mathbb{R}$, that is

$$
\begin{equation*}
f(\mathbf{X})=\frac{1}{p} \sum_{i=1}^{p} f\left(\lambda_{i}(\mathbf{X})\right)=\int f(t) \mu_{\mathbf{X}}(d t) \tag{12}
\end{equation*}
$$

for $\mu_{\mathbf{X}}$ the ESD of \mathbf{X}.

Cauchy's integral formula

For $\Gamma \subset \mathbb{C}$ a positively (i.e., counterclockwise) oriented simple closed curve and a complex function $f(z)$ analytic in a region containing Γ and its inside, then
(i) if $z_{0} \in \mathbb{C}$ is enclosed by $\Gamma, f\left(z_{0}\right)=-\frac{1}{2 \pi \imath} \oint_{\Gamma} \frac{f(z)}{z_{0}-z} d z$;
(ii) if not, $\frac{1}{2 \pi \imath} \oint_{\Gamma} \frac{f(z)}{z_{0}-z} d z=0$.

Cauchy's integral formula
LSS via contour integration: For $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ eigenvalues of a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, some function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is complex analytic in a compact neighborhood of the support $\operatorname{supp}\left(\mu_{\mathbf{X}}\right)$ (of the ESD $\mu_{\mathbf{X}}$ of \mathbf{X}), then

[^1]
Cauchy's integral formula

For $\Gamma \subset \mathbb{C}$ a positively (i.e., counterclockwise) oriented simple closed curve and a complex function $f(z)$ analytic in a region containing Γ and its inside, then
(i) if $z_{0} \in \mathbb{C}$ is enclosed by $\Gamma, f\left(z_{0}\right)=-\frac{1}{2 \pi \imath} \oint_{\Gamma} \frac{f(z)}{z_{0}-z} d z$;
(ii) if not, $\frac{1}{2 \pi \imath} \oint_{\Gamma} \frac{f(z)}{z_{0}-z} d z=0$.

Cauchy's integral formula
LSS via contour integration: For $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ eigenvalues of a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, some function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is complex analytic in a compact neighborhood of the support $\operatorname{supp}\left(\mu_{\mathbf{X}}\right)$ (of the ESD $\mu_{\mathbf{X}}$ of \mathbf{X}), then

$$
\begin{equation*}
f(\mathbf{X})=\int f(t) \mu_{\mathbf{X}}(d t)=-\int \frac{1}{2 \pi \imath} \oint_{\Gamma} \frac{f(z) d z}{t-z} \mu_{\mathbf{X}}(d t)=-\frac{1}{2 \pi \imath} \oint_{\Gamma} f(z) m_{\mu_{\mathbf{X}}}(z) d z \tag{13}
\end{equation*}
$$

for any contour Γ that encloses $\operatorname{supp}\left(\mu_{\mathbf{X}}\right)$, i.e., all the eigenvalues $\lambda_{i}(\mathbf{X})$.

LSS to retrieve the inverse Stieltjes transform formula

$$
\begin{aligned}
& \frac{1}{p} \sum_{\lambda_{i}(\mathbf{X}) \in[a, b]} \delta_{\lambda_{i}(\mathbf{X})}=-\frac{1}{2 \pi \imath} \oint_{\Gamma} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z \\
& =-\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}-\imath \varepsilon_{y}}^{b+\varepsilon_{x}-\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z-\frac{1}{2 \pi \imath} \int_{b+\varepsilon_{x}+\imath \varepsilon_{y}}^{a-\varepsilon_{x}+\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z \\
& -\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}+\imath \varepsilon_{y}}^{a-\varepsilon_{x}-\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z-\frac{1}{2 \pi \imath} \int_{b+\varepsilon_{x}-\imath \varepsilon_{y}}^{b+\varepsilon_{x}+\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z
\end{aligned}
$$

LSS to retrieve the inverse Stieltjes transform formula

$$
\begin{aligned}
& \frac{1}{p} \sum_{\lambda_{i}(\mathbf{X}) \in[a, b]} \delta_{\lambda_{i}(\mathbf{X})}=-\frac{1}{2 \pi \imath} \oint_{\Gamma} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z \\
& =-\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}-\imath \varepsilon_{y}}^{b+\varepsilon_{x}-\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z-\frac{1}{2 \pi \imath} \int_{b+\varepsilon_{x}+\imath \varepsilon_{y}}^{a-\varepsilon_{x}+\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu \mathbf{X}}(z) d z \\
& -\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}+\imath \varepsilon_{y}}^{a-\varepsilon_{x}-\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu \mathbf{X}}(z) d z-\frac{1}{2 \pi \imath} \int_{b+\varepsilon_{x}-\imath \varepsilon_{y}}^{b+\varepsilon_{x}+\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu \mathbf{X}}(z) d z
\end{aligned}
$$

$»$ Since $\Re[m(x+\imath y)]=\Re[m(x-\imath y)], \Im[m(x+\imath y)]=-\Im[m(x-\imath y)]$;

LSS to retrieve the inverse Stieltjes transform formula

$$
\begin{aligned}
& \frac{1}{p} \sum_{\lambda_{i}(\mathbf{X}) \in[a, b]} \delta_{\lambda_{i}(\mathbf{X})}=-\frac{1}{2 \pi \imath} \oint_{\Gamma} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z \\
& =-\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}-\imath \varepsilon_{y}}^{b+\varepsilon_{x}-\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu \mathbf{X}}(z) d z-\frac{1}{2 \pi \imath} \int_{b+\varepsilon_{x}+\imath \varepsilon_{y}}^{a-\varepsilon_{x}+\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu \mathbf{X}}(z) d z \\
& -\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}+\imath \varepsilon_{y}}^{a-\varepsilon_{x}-\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z-\frac{1}{2 \pi \imath} \int_{b+\varepsilon_{x}-\imath \varepsilon_{y}}^{b+\varepsilon_{x}+\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]]}(z) m_{\mu_{\mathbf{X}}}(z) d z
\end{aligned}
$$

$»$ Since $\Re[m(x+\imath y)]=\Re[m(x-\imath y)], \Im[m(x+\imath y)]=-\Im[m(x-\imath y)]$;
» we have $\int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}} m_{\mu_{\mathbf{X}}}\left(x-\imath \varepsilon_{y}\right) d x+\int_{b+\varepsilon_{x}}^{a-\varepsilon_{x}} m_{\mu_{\mathrm{X}}}\left(x+\imath \varepsilon_{y}\right) d x=-2 \imath \int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}} \Im\left[m_{\mu_{\mathrm{X}}}\left(x+\imath \varepsilon_{y}\right)\right] d x$;

LSS to retrieve the inverse Stieltjes transform formula

$$
\begin{aligned}
& \frac{1}{p} \sum_{\lambda_{i}(\mathbf{X}) \in[a, b]} \delta_{\lambda_{i}(\mathbf{X})}=-\frac{1}{2 \pi \imath} \oint_{\Gamma} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z \\
& =-\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}-\imath \varepsilon_{y}}^{b+\varepsilon_{x}-\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu \mathbf{X}}(z) d z-\frac{1}{2 \pi \imath} \int_{b+\varepsilon_{x}+\imath \varepsilon_{y}}^{a-\varepsilon_{x}+\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu \mathbf{X}}(z) d z \\
& -\frac{1}{2 \pi \imath} \int_{a-\varepsilon_{x}+\imath \varepsilon_{y}}^{a-\varepsilon_{x}-\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) d z-\frac{1}{2 \pi \imath} \int_{b+\varepsilon_{x}-\imath \varepsilon_{y}}^{b+\varepsilon_{x}+\imath \varepsilon_{y}} 1_{\Re[z] \in[a-\varepsilon, b+\varepsilon]]}(z) m_{\mu \mathbf{X}}(z) d z
\end{aligned}
$$

$»$ Since $\Re[m(x+\imath y)]=\Re[m(x-\imath y)], \Im[m(x+\imath y)]=-\Im[m(x-\imath y)]$;
» we have $\int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}} m_{\mu_{\mathbf{X}}}\left(x-\imath \varepsilon_{y}\right) d x+\int_{b+\varepsilon_{x}}^{a-\varepsilon_{x}} m_{\mu_{\mathbf{X}}}\left(x+\imath \varepsilon_{y}\right) d x=-2 \imath \int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}} \Im\left[m_{\mu_{\mathrm{X}}}\left(x+\imath \varepsilon_{y}\right)\right] d x$;
» and consequently $\mu([a, b])=\frac{1}{p} \sum_{\lambda_{i}(\mathbf{X}) \in[a, b]} \lambda_{i}(\mathbf{X})=\frac{1}{\pi} \lim _{\varepsilon_{y \downarrow 0} \downarrow} \int_{a}^{b} \Im\left[m_{\mu_{\mathbf{X}}}\left(x+\imath \varepsilon_{y}\right)\right] d x$.

Figure: Illustration of a rectangular contour Γ and support of $\mu_{\mathbf{X}}$ on the complex plane.

Use resolvent for eigenvectors and eigenspace

Resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ contains eigenvector information about \mathbf{X}, recall

$$
\mathbf{Q}_{\mathbf{X}}(z)=\sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\top}}{\lambda_{i}(\mathbf{X})-z},
$$

and that we have direct access to the i-th eigenvector \mathbf{u}_{i} of \mathbf{X} through

$$
\begin{equation*}
\mathbf{u}_{i} \mathbf{u}_{i}^{\top}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}(\mathbf{X})}} \mathbf{Q}_{\mathbf{x}}(z) d z \tag{14}
\end{equation*}
$$

for $\Gamma_{\lambda_{i}(\mathbf{X})}$ a contour circling around $\lambda_{i}(\mathbf{X})$ only.
\geqslant seen as a matrix-version of LSS formula
» with the Stieltjes transform $m_{\mu_{\mathrm{X}}}(z)$ replaced by the associated resolvent $\mathbf{Q x}_{\mathbf{X}}(z)$

Use resolvent for eigenvectors and eigenspace

Resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ contains eigenvector information about \mathbf{X}, recall

$$
\mathbf{Q}_{\mathbf{X}}(z)=\sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\top}}{\lambda_{i}(\mathbf{X})-z},
$$

and that we have direct access to the i-th eigenvector \mathbf{u}_{i} of \mathbf{X} through

$$
\begin{equation*}
\mathbf{u}_{i} \mathbf{u}_{i}^{\top}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}(\mathbf{X})}} \mathbf{Q}_{\mathbf{X}}(z) d z \tag{14}
\end{equation*}
$$

for $\Gamma_{\lambda_{i}(\mathbf{X})}$ a contour circling around $\lambda_{i}(\mathbf{X})$ only.
»seen as a matrix-version of LSS formula
» with the Stieltjes transform $m_{\mu_{\mathrm{X}}}(z)$ replaced by the associated resolvent $\mathrm{Q}_{\mathrm{X}}(z)$

Use resolvent for eigenvectors and eigenspace

Resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ contains eigenvector information about \mathbf{X}, recall

$$
\mathbf{Q}_{\mathbf{X}}(z)=\sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\top}}{\lambda_{i}(\mathbf{X})-z},
$$

and that we have direct access to the i-th eigenvector \mathbf{u}_{i} of \mathbf{X} through

$$
\begin{equation*}
\mathbf{u}_{i} \mathbf{u}_{i}^{\top}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}(\mathbf{X})} \mathbf{Q}_{\mathbf{x}}(z) d z \tag{14}
\end{equation*}
$$

for $\Gamma_{\lambda_{i}(\mathbf{X})}$ a contour circling around $\lambda_{i}(\mathbf{X})$ only.
»seen as a matrix-version of LSS formula
» with the Stieltjes transform $m_{\mu_{\mathbf{X}}}(z)$ replaced by the associated resolvent $\mathbf{Q}_{\mathbf{X}}(z)$

Spectral functionals via resolvent

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, we say $F: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}^{p \times p}$ is a (matrix) spectral functional of \mathbf{X},

$$
\begin{equation*}
F(\mathbf{X})=\sum_{i \in \mathcal{I} \subseteq\{1, \ldots, p\}} f\left(\lambda_{i}(\mathbf{X})\right) \mathbf{u}_{i} \mathbf{u}_{i}^{\top}, \quad \mathbf{X}=\sum_{i=1}^{p} \lambda_{i}(\mathbf{X}) \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \tag{15}
\end{equation*}
$$

Matrix spectral functionals

Spectral functionals via resolvent

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, we say $F: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}^{p \times p}$ is a (matrix) spectral functional of \mathbf{X},

$$
\begin{equation*}
F(\mathbf{X})=\sum_{i \in \mathcal{I} \subseteq\{1, \ldots, p\}} f\left(\lambda_{i}(\mathbf{X})\right) \mathbf{u}_{i} \mathbf{u}_{i}^{\top}, \quad \mathbf{X}=\sum_{i=1}^{p} \lambda_{i}(\mathbf{X}) \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \tag{15}
\end{equation*}
$$

Matrix spectral functionals
Spectral functional via contour integration: For $\mathbf{X} \in \mathbb{R}^{p \times p}$, resolvent $\mathbf{Q}_{\mathbf{X}}(z)=\left(\mathbf{X}-z \mathbf{I}_{p}\right)^{-1}, z \in \mathbb{C}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ analytic in a neighborhood of the contour $\Gamma_{\mathcal{I}}$ that circles around the eigenvalues $\lambda_{i}(\mathbf{X})$ of \mathbf{X} with their indices in the set $\mathcal{I} \subseteq\{1, \ldots, p\}$,

$$
\begin{equation*}
F(\mathbf{X})=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\mathcal{I}}} f(z) \mathbf{Q}_{\mathbf{x}}(z) d z \tag{16}
\end{equation*}
$$

Spectral functionals via resolvent

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, we say $F: \mathbb{R}^{p \times p} \rightarrow \mathbb{R}^{p \times p}$ is a (matrix) spectral functional of \mathbf{X},

$$
\begin{equation*}
F(\mathbf{X})=\sum_{i \in \mathcal{I} \subseteq\{1, \ldots, p\}} f\left(\lambda_{i}(\mathbf{X})\right) \mathbf{u}_{i} \mathbf{u}_{i}^{\top}, \quad \mathbf{X}=\sum_{i=1}^{p} \lambda_{i}(\mathbf{X}) \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \tag{15}
\end{equation*}
$$

Matrix spectral functionals
Spectral functional via contour integration: For $\mathbf{X} \in \mathbb{R}^{p \times p}$, resolvent $\mathbf{Q}_{\mathbf{X}}(z)=\left(\mathbf{X}-z \mathbf{I}_{p}\right)^{-1}, z \in \mathbb{C}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ analytic in a neighborhood of the contour $\Gamma_{\mathcal{I}}$ that circles around the eigenvalues $\lambda_{i}(\mathbf{X})$ of \mathbf{X} with their indices in the set $\mathcal{I} \subseteq\{1, \ldots, p\}$,

$$
\begin{equation*}
F(\mathbf{X})=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\mathcal{I}}} f(z) \mathbf{Q}_{\mathbf{x}}(z) d z \tag{16}
\end{equation*}
$$

Example: eigenvector projection $\left(\mathbf{v}^{\top} \mathbf{u}_{i}\right)^{2}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}(\mathbf{X})}} \mathbf{v}^{\top} \mathbf{Q}_{\mathbf{X}}(z) \mathbf{v} d z$.

[^0]: 》 a large dimensional random vector $\mathbf{x} / \sqrt{p} \in \mathbb{R}^{p}$, when "observed" via the linear map $\mathbf{1}_{p}^{\top}(\cdot) / \sqrt{p}$ of unit Euclidean norm (i.e., of "scale" independent of p);
 » leads to \mathbf{x} (when "observed" in this way) exhibiting the joint behavior of:
 (i) approximately, in its first order, a deterministic quantity μ; and
 (ii) in its second-order, a universal Gaussian fluctuation that is strongly concentrated and independent of the specific law of x_{i}.

[^1]: for any contour Γ that encloses $\operatorname{supp}\left(\mu_{\mathbf{x}}\right)$, i.e., all the eigenvalues $\lambda_{i}(\mathbf{X})$

