Probability and Stochastic Process II: Random Matrix Theory and Applications Lecture 2: From Random Scalars to Random Matrices

Zhenyu Liao, Tiebin Mi, Caiming Qiu

School of Electronic Information and Communications (EIC) Huazhong University of Science and Technology (HUST)

March 1, 2023

Outline

LLN and CLT

From Random Scalars to Random Matrices

RMT Basis

» reminder on Law of Large Numbers (LLN) and Central Limit Theorem (CLT)

- » from random scalars to random vectors and matrices
- » RMT basic concepts: resolvent, spectral measure, and Stieltjes transform
- » deterministic equivalent framework to RMT

- » reminder on Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
- » from random scalars to random vectors and matrices
- » RMT basic concepts: resolvent, spectral measure, and Stieltjes transform
- » deterministic equivalent framework to RMT

- » reminder on Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
- » from random scalars to random vectors and matrices
- » RMT basic concepts: resolvent, spectral measure, and Stieltjes transform
- » deterministic equivalent framework to RMT

- » reminder on Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
- » from random scalars to random vectors and matrices
- » RMT basic concepts: resolvent, spectral measure, and Stieltjes transform
- » deterministic equivalent framework to RMT

Outline

LLN and CLT

From Random Scalars to Random Matrices

RMT Basis

LLN and CLT

» (Strong) law of large numbers (LLN): for a sequence of i.i.d. random variables x_1, \ldots, x_p with the same expectation $\mathbb{E}[x_i] = \mu$, we have

$$\frac{1}{p}\sum_{i=1}^{p} x_i \to \mu,\tag{1}$$

almost surely as $p \to \infty$.

» Central limit theorem (CLT, Lindeberg–Lévy tyep): for a sequence of i.i.d. random variables x_1, \ldots, x_p with the same expectation $\mathbb{E}[x_i] = \mu$ and variance $\operatorname{Var}[x_i] = \sigma^2 < \infty$, we have

$$\sqrt{p}\left(\frac{1}{p}\sum_{i=1}^{p}(x_{i}-\mu)\right) \to \mathcal{N}(0,\sigma^{2}),$$
(2)

in distribution as $p \to \infty$.

LLN and CLT

» (Strong) law of large numbers (LLN): for a sequence of i.i.d. random variables x_1, \ldots, x_p with the same expectation $\mathbb{E}[x_i] = \mu$, we have

$$\frac{1}{p}\sum_{i=1}^{p}x_{i} \to \mu, \tag{1}$$

almost surely as $p \to \infty$.

» Central limit theorem (CLT, Lindeberg–Lévy tyep): for a sequence of i.i.d. random variables x_1, \ldots, x_p with the same expectation $\mathbb{E}[x_i] = \mu$ and variance $\operatorname{Var}[x_i] = \sigma^2 < \infty$, we have

$$\sqrt{p}\left(\frac{1}{p}\sum_{i=1}^{p}(x_{i}-\mu)\right) \to \mathcal{N}(0,\sigma^{2}),$$
(2)

in distribution as $p \to \infty$.

Outline

LLN and CLT

From Random Scalars to Random Matrices

RMT Basis

Different view of LLN and CLT: large-dimensional *deterministic* behavior and fluctuation. **Single scalar random variables**

- » *Scalar* random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
- » *x* in general *not* expected to establish some kind of "close-to-deterministic" behavior.
- » True for a *single observation*, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables

Consider a set of size *p* i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x} = [x_1, \ldots, x_p]^{\mathsf{T}} \in \mathbb{R}^p$, with $\mathbb{E}[x_i] = \mu$, $\operatorname{Var}[x_i] = 1$, $i \in \{1, \ldots, p\}$.

» as *p* independent *scalar* random variables $x \in \mathbb{R}$; or

Different view of LLN and CLT: large-dimensional *deterministic* behavior and fluctuation. **Single scalar random variables**

- » *Scalar* random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
- » *x* in general *not* expected to establish some kind of "close-to-deterministic" behavior.
- » True for a *single observation*, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables

Consider a set of size *p* i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x} = [x_1, \dots, x_p]^{\mathsf{T}} \in \mathbb{R}^p$, with $\mathbb{E}[x_i] = \mu$, $\operatorname{Var}[x_i] = 1$, $i \in \{1, \dots, p\}$.

» as *p* independent *scalar* random variables $x \in \mathbb{R}$; or

Different view of LLN and CLT: large-dimensional *deterministic* behavior and fluctuation. **Single scalar random variables**

- » *Scalar* random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
- » *x* in general *not* expected to establish some kind of "close-to-deterministic" behavior.
- » True for a *single observation*, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables

Consider a set of size *p* i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x} = [x_1, \dots, x_p]^{\mathsf{T}} \in \mathbb{R}^p$, with $\mathbb{E}[x_i] = \mu$, $\operatorname{Var}[x_i] = 1$, $i \in \{1, \dots, p\}$.

» as *p* independent *scalar* random variables $x \in \mathbb{R}$; or

Different view of LLN and CLT: large-dimensional *deterministic* behavior and fluctuation. **Single scalar random variables**

- » *Scalar* random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
- » *x* in general *not* expected to establish some kind of "close-to-deterministic" behavior.
- » True for a *single observation*, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables

Consider a set of size *p* i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x} = [x_1, \ldots, x_p]^{\mathsf{T}} \in \mathbb{R}^p$, with $\mathbb{E}[x_i] = \mu$, $\operatorname{Var}[x_i] = 1$, $i \in \{1, \ldots, p\}$.

» as *p* independent *scalar* random variables $x \in \mathbb{R}$; or

Different view of LLN and CLT: large-dimensional *deterministic* behavior and fluctuation. **Single scalar random variables**

- » *Scalar* random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
- » *x* in general *not* expected to establish some kind of "close-to-deterministic" behavior.
- » True for a *single observation*, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables

Consider a set of size *p* i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x} = [x_1, \ldots, x_p]^{\mathsf{T}} \in \mathbb{R}^p$, with $\mathbb{E}[x_i] = \mu$, $\operatorname{Var}[x_i] = 1$, $i \in \{1, \ldots, p\}$.

» as *p* independent *scalar* random variables $x \in \mathbb{R}$; or

Different view of LLN and CLT: large-dimensional *deterministic* behavior and fluctuation. **Single scalar random variables**

- » *Scalar* random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
- » *x* in general *not* expected to establish some kind of "close-to-deterministic" behavior.
- » True for a *single observation*, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables

Consider a set of size *p* i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x} = [x_1, \ldots, x_p]^{\mathsf{T}} \in \mathbb{R}^p$, with $\mathbb{E}[x_i] = \mu$, $\operatorname{Var}[x_i] = 1$, $i \in \{1, \ldots, p\}$.

» as *p* independent *scalar* random variables $x \in \mathbb{R}$; or

Different view of LLN and CLT: large-dimensional *deterministic* behavior and fluctuation. **Single scalar random variables**

- » *Scalar* random variable $x \in \mathbb{R}$, characterize its behavior distribution/law, characteristic function and/or successive moments, etc.
- » *x* in general *not* expected to establish some kind of "close-to-deterministic" behavior.
- » True for a *single observation*, although certainly the sum of many such random variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables

Consider a set of size *p* i.i.d. realizations/copies of such random variable. As a random vector $\mathbf{x} = [x_1, \ldots, x_p]^{\mathsf{T}} \in \mathbb{R}^p$, with $\mathbb{E}[x_i] = \mu$, $\operatorname{Var}[x_i] = 1$, $i \in \{1, \ldots, p\}$.

- » as *p* independent *scalar* random variables *x* ∈ \mathbb{R} ; or
- » as a single realization of a *random vector* $\mathbf{x} \in \mathbb{R}^{p}$, having independent entries.

(i) **Scalar**: nothing more can be said about each *individual* random variable:

inappropriate to predict the behavior of x_i with any *deterministic* value
in general *incorrect* to say "the random x_i is close to µ = E[x_i]", since, for x_i with E[x] = µ and Var[x] = 1, by Chebyshev's inequality.

$$\mathbb{P}(|x-\mu| \ge t) \le t^{-2}, \quad \forall t > 0.$$
(3)

o random fluctuation $x_i - \mathbb{E}[x_i]$ can be as large as $\mu = \mathbb{E}[x_i]$.

(ii) Vector: a different picture: single realization of random vector x/√p ∈ ℝ^p.
o cannot say anything in general about each individual vector x.
o however, if we are interested in only the (scalar and linear) observations of the random vector x/√p ∈ ℝ^p (with 𝔼[x] = μ1_p/√p), we known much more:

$$\frac{1}{p} \mathbf{x}^{\mathsf{T}} \mathbf{1}_p \xrightarrow{a.s.} \mathbb{E}[x_i] = \mu, \quad \frac{1}{\sqrt{p}} (\mathbf{x} - \mu \mathbf{1}_p)^{\mathsf{T}} \mathbf{1}_p \xrightarrow{d} \mathcal{N}(0, 1), \quad p \to \infty.$$
(4)

- (i) Scalar: nothing more can be said about each *individual* random variable:
 o inappropriate to predict the behavior of x_i with any *deterministic* value
 - o in general *incorrect* to say "the random x_i is close to $\mu = \mathbb{E}[x_i]$ ", since, for x_i with $\mathbb{E}[x] = \mu$ and Var[x] = 1, by Chebyshev's inequality.

$$\mathbb{P}(|x-\mu| \ge t) \le t^{-2}, \quad \forall t > 0.$$

o random fluctuation $x_i - \mathbb{E}[x_i]$ can be as large as $\mu = \mathbb{E}[x_i]$.

(ii) Vector: a different picture: single realization of random vector x/√p ∈ ℝ^p.
o cannot say anything in general about each individual vector x.
o however, if we are interested in only the (scalar and linear) observations of the random vector x/√p ∈ ℝ^p (with 𝔼[x] = μ𝔅 p/√p), we known much more:

$$\frac{1}{p} \mathbf{x}^{\mathsf{T}} \mathbf{1}_p \xrightarrow{a.s.} \mathbb{E}[x_i] = \mu, \quad \frac{1}{\sqrt{p}} (\mathbf{x} - \mu \mathbf{1}_p)^{\mathsf{T}} \mathbf{1}_p \xrightarrow{d} \mathcal{N}(0, 1), \quad p \to \infty.$$
(4)

(i) Scalar: nothing more can be said about each *individual* random variable:
o inappropriate to predict the behavior of x_i with any *deterministic* value
o in general *incorrect* to say "the random x_i is close to μ = E[x_i]", since, for x_i with E[x] = μ and Var[x] = 1, by Chebyshev's inequality.

$$\mathbb{P}(|x-\mu| \ge t) \le t^{-2}, \quad \forall t > 0.$$
(3)

o random fluctuation $x_i - \mathbb{E}[x_i]$ can be as large as $\mu = \mathbb{E}[x_i]$.

(ii) Vector: a different picture: single realization of random vector x/√p ∈ ℝ^p.
 o cannot say anything in general about each individual vector x.
 o however, if we are interested in only the (scalar and linear) observations of the random vector x/√p ∈ ℝ^p (with E[x] = μ1_p/√p), we known much more:

$$\frac{1}{p} \mathbf{x}^{\mathsf{T}} \mathbf{1}_p \xrightarrow{a.s.} \mathbb{E}[x_i] = \mu, \quad \frac{1}{\sqrt{p}} (\mathbf{x} - \mu \mathbf{1}_p)^{\mathsf{T}} \mathbf{1}_p \xrightarrow{d} \mathcal{N}(0, 1), \quad p \to \infty.$$
(4)

(i) Scalar: nothing more can be said about each *individual* random variable:
o inappropriate to predict the behavior of x_i with any *deterministic* value
o in general *incorrect* to say "the random x_i is close to μ = E[x_i]", since, for x_i with E[x] = μ and Var[x] = 1, by Chebyshev's inequality.

$$\mathbb{P}(|x-\mu| \ge t) \le t^{-2}, \quad \forall t > 0.$$
(3)

o random fluctuation $x_i - \mathbb{E}[x_i]$ can be as large as $\mu = \mathbb{E}[x_i]$.

(ii) Vector: a different picture: single realization of random vector x/√p ∈ ℝ^p.
 o cannot say anything in general about each individual vector x.
 o however, if we are interested in only the (scalar and linear) observations of the random vector x/√p ∈ ℝ^p (with E[x] = μ1_p/√p), we known much more:

$$\frac{1}{p} \mathbf{x}^{\mathsf{T}} \mathbf{1}_p \xrightarrow{a.s.} \mathbb{E}[x_i] = \mu, \quad \frac{1}{\sqrt{p}} (\mathbf{x} - \mu \mathbf{1}_p)^{\mathsf{T}} \mathbf{1}_p \xrightarrow{d} \mathcal{N}(0, 1), \quad p \to \infty.$$
(4)

(i) Scalar: nothing more can be said about each *individual* random variable:
o inappropriate to predict the behavior of x_i with any *deterministic* value
o in general *incorrect* to say "the random x_i is close to μ = E[x_i]", since, for x_i with E[x] = μ and Var[x] = 1, by Chebyshev's inequality.

$$\mathbb{P}(|x-\mu| \ge t) \le t^{-2}, \quad \forall t > 0.$$
(3)

o random fluctuation $x_i - \mathbb{E}[x_i]$ can be as large as $\mu = \mathbb{E}[x_i]$.

- (ii) **Vector**: a different picture: single realization of random vector $\mathbf{x}/\sqrt{p} \in \mathbb{R}^{p}$. \circ cannot say anything in general about each individual vector \mathbf{x} .
 - however, if we are interested in only the (scalar and linear) observations of the random vector $\mathbf{x}/\sqrt{p} \in \mathbb{R}^p$ (with $\mathbb{E}[\mathbf{x}] = \mu \mathbf{1}_p/\sqrt{p}$), we known much more:

$$\frac{1}{p} \mathbf{x}^{\mathsf{T}} \mathbf{1}_{p} \xrightarrow{a.s.} \mathbb{E}[x_{i}] = \mu, \quad \frac{1}{\sqrt{p}} (\mathbf{x} - \mu \mathbf{1}_{p})^{\mathsf{T}} \mathbf{1}_{p} \xrightarrow{d} \mathcal{N}(0, 1), \quad p \to \infty.$$
(4)

(i) Scalar: nothing more can be said about each *individual* random variable:
o inappropriate to predict the behavior of x_i with any *deterministic* value
o in general *incorrect* to say "the random x_i is close to μ = E[x_i]", since, for x_i with E[x] = μ and Var[x] = 1, by Chebyshev's inequality.

$$\mathbb{P}(|x-\mu| \ge t) \le t^{-2}, \quad \forall t > 0.$$
(3)

o random fluctuation $x_i - \mathbb{E}[x_i]$ can be as large as $\mu = \mathbb{E}[x_i]$.

(ii) Vector: a different picture: single realization of random vector x/√p ∈ ℝ^p.
 o cannot say anything in general about each individual vector x.

• however, if we are interested in only the (scalar and linear) observations of the random vector $\mathbf{x}/\sqrt{p} \in \mathbb{R}^p$ (with $\mathbb{E}[\mathbf{x}] = \mu \mathbf{1}_p/\sqrt{p}$), we known much more:

$$\frac{1}{p} \mathbf{x}^{\mathsf{T}} \mathbf{1}_{p} \xrightarrow{a.s.} \mathbb{E}[x_{i}] = \mu, \quad \frac{1}{\sqrt{p}} (\mathbf{x} - \mu \mathbf{1}_{p})^{\mathsf{T}} \mathbf{1}_{p} \xrightarrow{d} \mathcal{N}(0, 1), \quad p \to \infty.$$
(4)

(i) Scalar: nothing more can be said about each *individual* random variable:
o inappropriate to predict the behavior of x_i with any *deterministic* value
o in general *incorrect* to say "the random x_i is close to μ = E[x_i]", since, for x_i with E[x] = μ and Var[x] = 1, by Chebyshev's inequality.

$$\mathbb{P}(|x-\mu| \ge t) \le t^{-2}, \quad \forall t > 0.$$
(3)

o random fluctuation $x_i - \mathbb{E}[x_i]$ can be as large as $\mu = \mathbb{E}[x_i]$.

- (ii) Vector: a different picture: single realization of random vector x/√p ∈ ℝ^p.
 o cannot say anything in general about each individual vector x.
 - o however, if we are interested in only the (scalar and linear) observations of the random vector $\mathbf{x}/\sqrt{p} \in \mathbb{R}^p$ (with $\mathbb{E}[\mathbf{x}] = \mu \mathbf{1}_p/\sqrt{p}$), we known much more:

$$\frac{1}{p} \mathbf{x}^{\mathsf{T}} \mathbf{1}_{p} \xrightarrow{a.s.} \mathbb{E}[x_{i}] = \mu, \quad \frac{1}{\sqrt{p}} (\mathbf{x} - \mu \mathbf{1}_{p})^{\mathsf{T}} \mathbf{1}_{p} \xrightarrow{d} \mathcal{N}(0, 1), \quad p \to \infty.$$
(4)

This is

- » a large dimensional random vector $\mathbf{x}/\sqrt{p} \in \mathbb{R}^p$, when "observed" via the linear map $\mathbf{1}_p^{\mathsf{T}}(\cdot)/\sqrt{p}$ of unit Euclidean norm (i.e., of "scale" independent of p);
- » leads to **x** (when "observed" in this way) exhibiting the joint behavior of:
- (i) approximately, in its first order, a *deterministic* quantity μ ; and
- (ii) in its second-order, a universal Gaussian fluctuation that is strongly concentrated and independent of the specific law of *x_i*.

This is

$$\frac{1}{p} \mathbf{x}^{\mathsf{T}} \mathbf{1}_{p} \simeq \underbrace{\mu}_{O(1)} + \underbrace{\frac{1}{\sqrt{p}} \mathcal{N}(0, 1)}_{O(p^{-1/2})}.$$

- » a large dimensional random vector $\mathbf{x}/\sqrt{p} \in \mathbb{R}^p$, when "observed" via the linear map $\mathbf{1}_p^{\mathsf{T}}(\cdot)/\sqrt{p}$ of unit Euclidean norm (i.e., of "scale" independent of p);
- » leads to **x** (when "observed" in this way) exhibiting the joint behavior of:
 - (i) approximately, in its first order, a *deterministic* quantity μ ; and
- (ii) in its second-order, a **universal** Gaussian fluctuation that is **strongly concentrated** and **independent** of the specific law of x_i .

This is

$$\frac{1}{p} \mathbf{x}^{\mathsf{T}} \mathbf{1}_{p} \simeq \underbrace{\mu}_{O(1)} + \underbrace{\frac{1}{\sqrt{p}} \mathcal{N}(0, 1)}_{O(p^{-1/2})}.$$

- » a large dimensional random vector $\mathbf{x}/\sqrt{p} \in \mathbb{R}^p$, when "observed" via the linear map $\mathbf{1}_p^{\mathsf{T}}(\cdot)/\sqrt{p}$ of unit Euclidean norm (i.e., of "scale" independent of p);
- » leads to \mathbf{x} (when "observed" in this way) exhibiting the joint behavior of:
 - (i) approximately, in its first order, a *deterministic* quantity μ ; and
- (ii) in its second-order, a **universal** Gaussian fluctuation that is **strongly concentrated** and **independent** of the specific law of x_i .

- » As in the case of (high-dimensional) random vectors, we should NOT expect random matrices themselves converge in any useful sense;
- » e.g., there does **NOT** exist deterministic matrix $\bar{\mathbf{X}}$ so that the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$

$$\|\mathbf{X} - \bar{\mathbf{X}}\| \to 0, \tag{5}$$

in spectral norm as $p \to \infty$ (in probability or almost surely); » nonetheless, "properly scaled" scalar observations $f : \mathbb{R}^{p \times p} \to \mathbb{R}$ of **X DO** converge, and there exists deterministic $\overline{\mathbf{X}}$ such that

$$f(\mathbf{X}) - f(\bar{\mathbf{X}}) \to 0, \tag{6}$$

as $p \to \infty$. We say such $\bar{\mathbf{X}}$ is a **deterministic equivalent** of the random matrix \mathbf{X} .

- » As in the case of (high-dimensional) random vectors, we should NOT expect random matrices themselves converge in any useful sense;
- » e.g., there does **NOT** exist deterministic matrix $\bar{\mathbf{X}}$ so that the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$

$$\|\mathbf{X} - \bar{\mathbf{X}}\| \to 0, \tag{5}$$

in spectral norm as $p \to \infty$ (in probability or almost surely);

» nonetheless, "properly scaled" scalar observations $f : \mathbb{R}^{p \times p} \to \mathbb{R}$ of **X DO** converge, and there exists deterministic $\bar{\mathbf{X}}$ such that

$$f(\mathbf{X}) - f(\bar{\mathbf{X}}) \to 0, \tag{6}$$

as $p \to \infty$. We say such $\bar{\mathbf{X}}$ is a **deterministic equivalent** of the random matrix \mathbf{X} .

- » As in the case of (high-dimensional) random vectors, we should NOT expect random matrices themselves converge in any useful sense;
- » e.g., there does **NOT** exist deterministic matrix $\bar{\mathbf{X}}$ so that the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$

$$\|\mathbf{X} - \bar{\mathbf{X}}\| \to 0, \tag{5}$$

in spectral norm as $p \to \infty$ (in probability or almost surely); » nonetheless, "properly scaled" scalar observations $f : \mathbb{R}^{p \times p} \to \mathbb{R}$ of **X DO** converge, and there exists deterministic $\bar{\mathbf{X}}$ such that

$$f(\mathbf{X}) - f(\bar{\mathbf{X}}) \to 0, \tag{6}$$

as $p \to \infty$. We say such $\bar{\mathbf{X}}$ is a **deterministic equivalent** of the random matrix \mathbf{X} .

- » As in the case of (high-dimensional) random vectors, we should NOT expect random matrices themselves converge in any useful sense;
- » e.g., there does **NOT** exist deterministic matrix $\bar{\mathbf{X}}$ so that the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$

$$\|\mathbf{X} - \bar{\mathbf{X}}\| \to 0, \tag{5}$$

in spectral norm as $p \to \infty$ (in probability or almost surely); » nonetheless, "properly scaled" scalar observations $f : \mathbb{R}^{p \times p} \to \mathbb{R}$ of **X DO** converge, and there exists deterministic $\bar{\mathbf{X}}$ such that

$$f(\mathbf{X}) - f(\bar{\mathbf{X}}) \to 0, \tag{6}$$

as $p \to \infty$. We say such $\bar{\mathbf{X}}$ is a **deterministic equivalent** of the random matrix \mathbf{X} .

- » while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation f(X) of X becomes "more concentrated" as p → ∞;
 the random f(X), if concentrates, must concentrated around its expectation E[f(X)],
 in fact, as p → ∞, more randomness in X ⇒ Var[f(X)] ↓ 0, e.g., Var[f(X)] = p⁻⁴;
 if the functional f : R^{p×p} → R is linear, then E[f(X)] = f(E[X]).
- » So, to propose a DE, it suffices to evaluate $\mathbb{E}[X]$:
 - however, $\mathbb{E}[X]$ may be hardly accessible (due to integration)
 - o find a simple and more accessible deterministic \bar{X} with $\bar{X} \simeq \mathbb{E}[X]$ in some sense for p large, e.g., $\|\bar{X} \mathbb{E}[X]\| \to 0$ as $p \to \infty$; and
 - o show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \to \infty$.
- » We say $\overline{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \overline{\mathbf{X}}$.

- » while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation f(X) of X becomes "more concentrated" as p → ∞;
 the random f(X), if concentrates, must concentrated around its expectation E[f(X)],
 in fact, as p → ∞, more randomness in X ⇒ Var[f(X)] ↓ 0, e.g., Var[f(X)] = p⁻⁴;
 if the functional f : R^{p×p} → R is linear, then E[f(X)] = f(E[X]).
- » So, to propose a DE, it suffices to evaluate $\mathbb{E}[X]$:
 - however, $\mathbb{E}[X]$ may be hardly accessible (due to integration)
 - o find a simple and more accessible deterministic $\bar{\mathbf{X}}$ with $\bar{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\bar{\mathbf{X}} \mathbb{E}[\mathbf{X}]\| \to 0$ as $p \to \infty$; and
 - o show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \to \infty$.
- » We say $\overline{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \overline{\mathbf{X}}$.

- » while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation f(X) of X becomes "more concentrated" as p → ∞;
 the random f(X), if concentrates, must concentrated around its expectation E[f(X)];
 in fact, as p → ∞, more randomness in X ⇒ Var[f(X)] ↓ 0, e.g., Var[f(X)] = p⁻⁴;
 if the functional f: R^{p×p} → R is linear, then E[f(X)] = f(E[X]).
- » So, to propose a DE, it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:
 - o however, $\mathbb{E}[X]$ may be hardly accessible (due to integration)
 - o find a simple and more accessible deterministic $\bar{\mathbf{X}}$ with $\bar{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\bar{\mathbf{X}} \mathbb{E}[\mathbf{X}]\| \to 0$ as $p \to \infty$; and
 - o show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \to \infty$.
- » We say $\overline{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \overline{\mathbf{X}}$.

- » while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation f(X) of X becomes "more concentrated" as p → ∞;
 the random f(X), if concentrates, must concentrated around its expectation E[f(X)];
 in fact, as p → ∞, more randomness in X ⇒ Var[f(X)] ↓ 0, e.g., Var[f(X)] = p⁻⁴;
 if the functional f: R^{p×p} → R is linear, then E[f(X)] = f(E[X]).
- » So, to propose a DE, it suffices to evaluate $\mathbb{E}[X]$:
 - o however, $\mathbb{E}[X]$ may be hardly accessible (due to integration)
 - o find a simple and more accessible deterministic $\bar{\mathbf{X}}$ with $\bar{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\bar{\mathbf{X}} \mathbb{E}[\mathbf{X}]\| \to 0$ as $p \to \infty$; and
 - o show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \to \infty$.
- » We say $\overline{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \overline{\mathbf{X}}$.

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?

- » while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation f(X) of X becomes "more concentrated" as p → ∞;
 the random f(X), if concentrates, must concentrated around its expectation E[f(X)];
 in fact, as p → ∞, more randomness in X ⇒ Var[f(X)] ↓ 0, e.g., Var[f(X)] = p⁻⁴;
 if the functional f: R^{p×p} → R is linear, then E[f(X)] = f(E[X]).
- » So, to propose a DE, it suffices to evaluate $\mathbb{E}[X]$:

• however, $\mathbb{E}[X]$ may be hardly accessible (due to integration)

o find a simple and more accessible deterministic \bar{X} with $\bar{X} \simeq \mathbb{E}[X]$ in some sense for p large, e.g., $\|\bar{X} - \mathbb{E}[X]\| \to 0$ as $p \to \infty$; and

o show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \to \infty$.

» We say $\overline{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \overline{\mathbf{X}}$.

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?

- » while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation f(X) of X becomes "more concentrated" as p → ∞;
 the random f(X), if concentrates, must concentrated around its expectation E[f(X)];
 in fact, as p → ∞, more randomness in X ⇒ Var[f(X)] ↓ 0, e.g., Var[f(X)] = p⁻⁴;
 if the functional f: R^{p×p} → R is linear, then E[f(X)] = f(E[X]).
- » So, to propose a DE, it suffices to evaluate $\mathbb{E}[X]$:
 - o however, $\mathbb{E}[X]$ may be hardly accessible (due to integration)
 - find a simple and more accessible deterministic $\bar{\mathbf{X}}$ with $\bar{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for *p* large, e.g., $\|\bar{\mathbf{X}} \mathbb{E}[\mathbf{X}]\| \rightarrow 0$ as *p* → ∞; and
 - o show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \to \infty$.
- » We say $\overline{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \overline{\mathbf{X}}$.

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?

- » while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation f(X) of X becomes "more concentrated" as p → ∞;
 the random f(X), if concentrates, must concentrated around its expectation E[f(X)];
 in fact, as p → ∞, more randomness in X ⇒ Var[f(X)] ↓ 0, e.g., Var[f(X)] = p⁻⁴;
 if the functional f: R^{p×p} → R is linear, then E[f(X)] = f(E[X]).
- » So, to propose a DE, it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:
 - o however, $\mathbb{E}[X]$ may be hardly accessible (due to integration)
 - o find a simple and more accessible deterministic $\bar{\mathbf{X}}$ with $\bar{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\bar{\mathbf{X}} \mathbb{E}[\mathbf{X}]\| \to 0$ as $p \to \infty$; and

o show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \to \infty$.

» We say $\bar{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \bar{\mathbf{X}}$.

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?

- » while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation f(X) of X becomes "more concentrated" as p → ∞;
 the random f(X), if concentrates, must concentrated around its expectation E[f(X)];
 in fact, as p → ∞, more randomness in X ⇒ Var[f(X)] ↓ 0, e.g., Var[f(X)] = p⁻⁴;
 if the functional f: R^{p×p} → R is linear, then E[f(X)] = f(E[X]).
- » So, to propose a DE, it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:
 - o however, $\mathbb{E}[\mathbf{X}]$ may be hardly accessible (due to integration)
 - o find a simple and more accessible deterministic $\bar{\mathbf{X}}$ with $\bar{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\bar{\mathbf{X}} \mathbb{E}[\mathbf{X}]\| \to 0$ as $p \to \infty$; and

o show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \to \infty$.

» We say $\overline{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \overline{\mathbf{X}}$.

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?

- » while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation f(X) of X becomes "more concentrated" as p → ∞;
 the random f(X), if concentrates, must concentrated around its expectation E[f(X)];
 in fact, as p → ∞, more randomness in X ⇒ Var[f(X)] ↓ 0, e.g., Var[f(X)] = p⁻⁴;
 if the functional f: R^{p×p} → R is linear, then E[f(X)] = f(E[X]).
- » So, to propose a DE, it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:
 - o however, $\mathbb{E}[X]$ may be hardly accessible (due to integration)
 - o find a simple and more accessible deterministic $\bar{\mathbf{X}}$ with $\bar{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\bar{\mathbf{X}} \mathbb{E}[\mathbf{X}]\| \to 0$ as $p \to \infty$; and
 - o show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \to \infty$.
- » We say $\overline{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \overline{\mathbf{X}}$.

What is actually happening with scalar observations of random matrices and the deterministic equivalent (DE)?

- » while the random matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$ remains random as the dimension p grows (in fact even "more" random due to the growing degrees of freedom);
- scalar observation f(X) of X becomes "more concentrated" as p → ∞;
 the random f(X), if concentrates, must concentrated around its expectation E[f(X)];
 in fact, as p → ∞, more randomness in X ⇒ Var[f(X)] ↓ 0, e.g., Var[f(X)] = p⁻⁴;
 if the functional f: R^{p×p} → R is linear, then E[f(X)] = f(E[X]).
- » So, to propose a DE, it suffices to evaluate $\mathbb{E}[\mathbf{X}]$:
 - o however, $\mathbb{E}[X]$ may be hardly accessible (due to integration)
 - o find a simple and more accessible deterministic $\bar{\mathbf{X}}$ with $\bar{\mathbf{X}} \simeq \mathbb{E}[\mathbf{X}]$ in some sense for p large, e.g., $\|\bar{\mathbf{X}} \mathbb{E}[\mathbf{X}]\| \to 0$ as $p \to \infty$; and

o show variance of $f(\mathbf{X})$ decay sufficiently fast as $p \to \infty$.

» We say $\overline{\mathbf{X}}$ is a DE for \mathbf{X} when $f(\mathbf{X})$ is evaluated, and denote $\mathbf{X} \leftrightarrow \overline{\mathbf{X}}$.

Outline

LLN and CLT

From Random Scalars to Random Matrices

RMT Basis

Fundamental Objects

Core interest of RMT: evaluation of eigenvalues and eigenvectors of a random matrix.

For a symmetric/Hermitian matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$, the resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ of \mathbf{X} is defined, for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{X} , as $\mathbf{Q}_{\mathbf{X}}(z) \equiv (\mathbf{X} - z\mathbf{I}_p)^{-1}$.

Resolvent

For symmetric $\mathbf{X} \in \mathbb{R}^{p \times p}$, the *empirical spectral distribution* (*ESD*) $\mu_{\mathbf{X}}$ of \mathbf{X} is defined as the normalized counting measure of the eigenvalues $\lambda_1(\mathbf{X}), \ldots, \lambda_p(\mathbf{X})$ of \mathbf{X} , i.e., $\mu_{\mathbf{X}} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_i(\mathbf{X})}$, where δ_x represents the Dirac measure at x.

Empirical Spectral Distribution (ESD)

Resolvent as the core object

Objects of interest	Functionals of resolvent $\mathbf{Q}_{\mathbf{X}}(z)$
Empirical Spectral Distribution (ESD)	
$\mu_{\mathbf{X}}$ of \mathbf{X}	Stieltjes transform $m_{\mu_{\mathbf{X}}}(z) = \frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)$
Linear spectral statistics (LSS):	Integration of trace of $\mathbf{Q}_{\mathbf{X}}(z)$: $-\frac{1}{2\pi i} \oint_{\Gamma} f(z) \frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z) dz$
$f(\mathbf{X}) \equiv rac{1}{p} \sum_i f(\lambda_i(\mathbf{X}))$	(via Cauchy's integral)
Projections of eigenvectors	_
$\mathbf{v}^{T}\mathbf{u}(\mathbf{X})$ and $\mathbf{v}^{T}\mathbf{U}(\mathbf{X})$ onto	Bilinear form $\mathbf{v}^{T}\mathbf{Q}_{\mathbf{X}}(z)\mathbf{v}$ of $\mathbf{Q}_{\mathbf{X}}$
some given vector $\mathbf{v} \in \mathbb{R}^p$	
General matrix functional	Integration of bilinear form of $\mathbf{Q}_{\mathbf{X}}(z)$:
$F(\mathbf{X}) = \sum_{i} f(\lambda_{i}(\mathbf{X})) \mathbf{v}_{1}^{T} \mathbf{u}_{i}(\mathbf{X}) \mathbf{u}_{i}(\mathbf{X})^{T} \mathbf{v}_{2}$	$-\frac{1}{2\pi^2} \oint_{\Gamma} f(z) \mathbf{v}_1^{T} \mathbf{Q}_{X}(z) \mathbf{v}_2 dz$
involving both eigenvalues and eigenvectors	$2\pi i J\Gamma J (2 - 1) \mathbf{X} (2) \mathbf{V} \mathbf{Z} \mathbf{W} \mathbf{Z}$

Use resolvent for eigenvalue distribution

For a symmetric/Hermitian matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$, the resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ of \mathbf{X} is defined, for $z \in \mathbb{C}$ not an eigenvalue of \mathbf{X} , as $\mathbf{Q}_{\mathbf{X}}(z) \equiv (\mathbf{X} - z\mathbf{I}_p)^{-1}$.

Let $\mathbf{X} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\mathsf{T}}$ be the spectral decomposition of \mathbf{X} , with $\mathbf{\Lambda} = \{\lambda_i(\mathbf{X})\}_{i=1}^p$ eigenvalues and $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_p] \in \mathbb{R}^{p \times p}$ the associated eigenvectors. Then,

$$\mathbf{Q}(z) = \mathbf{U}(\mathbf{\Lambda} - z\mathbf{I}_p)^{-1}\mathbf{U}^{\mathsf{T}} = \sum_{i=1}^p \frac{\mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}}{\lambda_i(\mathbf{X}) - z}.$$
(7)

Resolvent

Thus, for $\mu_{\mathbf{X}} \equiv \frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_i(\mathbf{X})}$ the ESD of **X**,

$$\frac{1}{p}\operatorname{tr}\mathbf{Q}(z) = \frac{1}{p}\sum_{i=1}^{p}\frac{1}{\lambda_{i}(\mathbf{X}) - z} = \int \frac{\mu_{\mathbf{X}}(dt)}{t - z}.$$
(8)

The Stieltjes transform

For a real probability measure μ with support $\operatorname{supp}(\mu)$, the *Stieltjes transform* $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \setminus \operatorname{supp}(\mu)$, as

$$m_\mu(z)\equiv\intrac{\mu(dt)}{t-z}.$$

Stieltjes transform ---

For m_{μ} the Stieltjes transform of a probability measure μ , then

- » m_{μ} is complex analytic on its domain of definition $\mathbb{C} \setminus \text{supp}(\mu)$;
- » it is bounded $|m_{\mu}(z)| \leq 1/\operatorname{dist}(z, \operatorname{supp}(\mu));$
- » it satisfies $m_{\mu}(z) > 0$ for $z < \inf \operatorname{supp}(\mu)$, $m_{\mu}(z) < 0$ for $z > \operatorname{sup supp}(\mu)$ and $\Im[z] \cdot \Im[m_{\mu}(z)] > 0$ if $z \in \mathbb{C} \setminus \mathbb{R}$; and
- » it is an increasing function on all connected components of its restriction to $\mathbb{R} \setminus \text{supp}(\mu)$ (since $m'_{\mu}(x) = \int (t-x)^{-2} \mu(dt) > 0$) with $\lim_{x \to \pm \infty} m_{\mu}(x) = 0$ if $\text{supp}(\mu)$ is bounded.

(9)

The Stieltjes transform

For a real probability measure μ with support $\operatorname{supp}(\mu)$, the *Stieltjes transform* $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \setminus \operatorname{supp}(\mu)$, as

$$m_{\mu}(z) \equiv \int \frac{\mu(dt)}{t-z}.$$
(9)

- Stieltjes transform -

For m_{μ} the Stieltjes transform of a probability measure μ , then

- » m_{μ} is complex analytic on its domain of definition $\mathbb{C} \setminus \text{supp}(\mu)$;
- » it is bounded $|m_{\mu}(z)| \leq 1/\operatorname{dist}(z, \operatorname{supp}(\mu));$
- » it satisfies $m_{\mu}(z) > 0$ for $z < \inf \operatorname{supp}(\mu)$, $m_{\mu}(z) < 0$ for $z > \operatorname{sup supp}(\mu)$ and $\Im[z] \cdot \Im[m_{\mu}(z)] > 0$ if $z \in \mathbb{C} \setminus \mathbb{R}$; and
- » it is an increasing function on all connected components of its restriction to $\mathbb{R} \setminus \text{supp}(\mu)$ (since $m'_{\mu}(x) = \int (t-x)^{-2} \mu(dt) > 0$) with $\lim_{x \to \pm \infty} m_{\mu}(x) = 0$ if $\text{supp}(\mu)$ is bounded.

The inverse Stieltjes transform

For *a*, *b* continuity points of the probability measure μ , we have

$$\mu([a,b]) = \frac{1}{\pi} \lim_{y \downarrow 0} \int_{a}^{b} \Im \left[m_{\mu}(x + iy) \right] dx.$$
(10)

Besides, if μ admits a density f at x (i.e., $\mu(x)$ is differentiable in a neighborhood of x and $\lim_{\epsilon \to 0} (2\epsilon)^{-1} \mu([x - \epsilon, x + \epsilon]) = f(x))$,

$$f(x) = \frac{1}{\pi} \lim_{y \downarrow 0} \Im \left[m_{\mu}(x + iy) \right].$$
(11)

Inverse Stieltjes transform

Workflow: random matrix **X** of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and ST $\frac{1}{p}$ tr $\mathbf{Q}_{\mathbf{X}}(z) = m_{\mathbf{X}}(z)$ \Rightarrow study the limiting ST $m_{\mathbf{X}}(z) \rightarrow m(z) \Rightarrow$ inverse ST to get limiting $\mu_{\mathbf{X}} \rightarrow \mu$.

The inverse Stieltjes transform

For *a*, *b* continuity points of the probability measure μ , we have

$$\mu([a,b]) = \frac{1}{\pi} \lim_{y \downarrow 0} \int_{a}^{b} \Im \left[m_{\mu}(x + iy) \right] dx.$$
(10)

Besides, if μ admits a density f at x (i.e., $\mu(x)$ is differentiable in a neighborhood of x and $\lim_{\epsilon \to 0} (2\epsilon)^{-1} \mu([x - \epsilon, x + \epsilon]) = f(x))$,

$$f(x) = \frac{1}{\pi} \lim_{y \downarrow 0} \Im \left[m_{\mu}(x + iy) \right].$$
(11)

Inverse Stieltjes transform

Workflow: random matrix **X** of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and ST $\frac{1}{p}$ tr $\mathbf{Q}_{\mathbf{X}}(z) = m_{\mathbf{X}}(z)$ \Rightarrow study the limiting ST $m_{\mathbf{X}}(z) \rightarrow m(z) \Rightarrow$ inverse ST to get limiting $\mu_{\mathbf{X}} \rightarrow \mu$.

The inverse Stieltjes transform

For *a*, *b* continuity points of the probability measure μ , we have

$$\mu([a,b]) = \frac{1}{\pi} \lim_{y \downarrow 0} \int_{a}^{b} \Im \left[m_{\mu}(x + iy) \right] dx.$$
(10)

Besides, if μ admits a density f at x (i.e., $\mu(x)$ is differentiable in a neighborhood of x and $\lim_{\epsilon \to 0} (2\epsilon)^{-1} \mu([x - \epsilon, x + \epsilon]) = f(x))$,

$$f(x) = \frac{1}{\pi} \lim_{y \downarrow 0} \Im \left[m_{\mu}(x + iy) \right].$$
(11)

Inverse Stieltjes transform

Workflow: random matrix **X** of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and ST $\frac{1}{p}$ tr $\mathbf{Q}_{\mathbf{X}}(z) = m_{\mathbf{X}}(z)$ \Rightarrow study the limiting ST $m_{\mathbf{X}}(z) \rightarrow m(z) \Rightarrow$ inverse ST to get limiting $\mu_{\mathbf{X}} \rightarrow \mu$.

Use the resolvent for eigenvalue functionals

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, the *linear spectral statistics* (LSS) $f_{\mathbf{X}}$ of \mathbf{X} is defined as the averaged statistics of the eigenvalues $\lambda_1(\mathbf{X}), \ldots, \lambda_p(\mathbf{X})$ of \mathbf{X} via some function $f : \mathbb{R} \to \mathbb{R}$, that is

$$f(\mathbf{X}) = \frac{1}{p} \sum_{i=1}^{p} f(\lambda_i(\mathbf{X})) = \int f(t) \mu_{\mathbf{X}}(dt),$$
(12)

for $\mu_{\mathbf{X}}$ the ESD of \mathbf{X} .

Linear Spectral Statistics (LSS)

Cauchy's integral formula

For Γ ⊂ C a positively (i.e., counterclockwise) oriented simple closed curve and a complex function f(z) analytic in a region containing Γ and its inside, then
(i) if z₀ ∈ C is enclosed by Γ, f(z₀) = -¹/_{2πi} ∮_Γ f(z₀)/z_{0-z} dz;
(ii) if not, ¹/_{2πi} ∮_Γ f(z₀)/z_{0-z} dz = 0.

LSS via contour integration: For $\lambda_1(\mathbf{X}), \ldots, \lambda_p(\mathbf{X})$ eigenvalues of a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, some function $f : \mathbb{R} \to \mathbb{R}$ that is complex analytic in a compact neighborhood of the support supp $(\mu_{\mathbf{X}})$ (of the ESD $\mu_{\mathbf{X}}$ of \mathbf{X}), then

$$f(\mathbf{X}) = \int f(t)\mu_{\mathbf{X}}(dt) = -\int \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)\,dz}{t-z} \mu_{\mathbf{X}}(dt) = -\frac{1}{2\pi i} \oint_{\Gamma} f(z)m_{\mu_{\mathbf{X}}}(z)\,dz,\tag{13}$$

for *any* contour Γ that encloses supp $(\mu_{\mathbf{X}})$, i.e., all the eigenvalues $\lambda_i(\mathbf{X})$.

Cauchy's integral formula

Cauchy's integral formula

For Γ ⊂ C a positively (i.e., counterclockwise) oriented simple closed curve and a complex function f(z) analytic in a region containing Γ and its inside, then
(i) if z₀ ∈ C is enclosed by Γ, f(z₀) = -1/(2πi) ∮_Γ f(z)/(z₀-z) dz;
(ii) if not, 1/(2πi) ∮_Γ f(z)/(z₀-z) dz = 0. Cauchy's integral formula

LSS via contour integration: For $\lambda_1(\mathbf{X}), \ldots, \lambda_p(\mathbf{X})$ eigenvalues of a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, some function $f : \mathbb{R} \to \mathbb{R}$ that is complex analytic in a compact neighborhood of the support supp $(\mu_{\mathbf{X}})$ (of the ESD $\mu_{\mathbf{X}}$ of \mathbf{X}), then

$$f(\mathbf{X}) = \int f(t)\mu_{\mathbf{X}}(dt) = -\int \frac{1}{2\pi\imath} \oint_{\Gamma} \frac{f(z)\,dz}{t-z}\mu_{\mathbf{X}}(dt) = -\frac{1}{2\pi\imath} \oint_{\Gamma} f(z)m_{\mu_{\mathbf{X}}}(z)\,dz,\tag{13}$$

for *any* contour Γ that encloses supp $(\mu_{\mathbf{X}})$, i.e., all the eigenvalues $\lambda_i(\mathbf{X})$.

$$\begin{split} &\frac{1}{p}\sum_{\lambda_{i}(\mathbf{X})\in[a,b]}\delta_{\lambda_{i}(\mathbf{X})} = -\frac{1}{2\pi\imath}\oint_{\Gamma}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz\\ &= -\frac{1}{2\pi\imath}\int_{a-\varepsilon_{x}-\imath\varepsilon_{y}}^{b+\varepsilon_{x}-\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz - \frac{1}{2\pi\imath}\int_{b+\varepsilon_{x}+\imath\varepsilon_{y}}^{a-\varepsilon_{x}+\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz\\ &- \frac{1}{2\pi\imath}\int_{a-\varepsilon_{x}+\imath\varepsilon_{y}}^{a-\varepsilon_{x}-\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz - \frac{1}{2\pi\imath}\int_{b+\varepsilon_{x}-\imath\varepsilon_{y}}^{b+\varepsilon_{x}+\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz.\end{split}$$

» Since $\Re[m(x+\imath y)] = \Re[m(x-\imath y)], \Im[m(x+\imath y)] = -\Im[m(x-\imath y)];$ » we have $\int_{a-\varepsilon_x}^{b+\varepsilon_x} m_{\mu_{\mathbf{X}}}(x-\imath \varepsilon_y) dx + \int_{b+\varepsilon_x}^{a-\varepsilon_x} m_{\mu_{\mathbf{X}}}(x+\imath \varepsilon_y) dx = -2\imath \int_{a-\varepsilon_x}^{b+\varepsilon_x} \Im[m_{\mu_{\mathbf{X}}}(x+\imath \varepsilon_y)] dx;$ » and consequently $\mu([a,b]) = \frac{1}{p} \sum_{\lambda_i(\mathbf{X}) \in [a,b]} \lambda_i(\mathbf{X}) = \frac{1}{\pi} \lim_{\varepsilon_y \downarrow 0} \int_a^b \Im[m_{\mu_{\mathbf{X}}}(x+\imath \varepsilon_y)] dx.$

$$\frac{1}{p} \sum_{\lambda_{i}(\mathbf{X})\in[a,b]} \delta_{\lambda_{i}(\mathbf{X})} = -\frac{1}{2\pi \imath} \oint_{\Gamma} \mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) \, dz$$

$$= -\frac{1}{2\pi \imath} \int_{a-\varepsilon_{x}-\imath\varepsilon_{y}}^{b+\varepsilon_{x}-\imath\varepsilon_{y}} \mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) \, dz - \frac{1}{2\pi \imath} \int_{b+\varepsilon_{x}+\imath\varepsilon_{y}}^{a-\varepsilon_{x}+\imath\varepsilon_{y}} \mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) \, dz$$

$$- \frac{1}{2\pi \imath} \int_{a-\varepsilon_{x}+\imath\varepsilon_{y}}^{a-\varepsilon_{x}-\imath\varepsilon_{y}} \mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) \, dz - \frac{1}{2\pi \imath} \int_{b+\varepsilon_{x}-\imath\varepsilon_{y}}^{b+\varepsilon_{x}+\imath\varepsilon_{y}} \mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z) m_{\mu_{\mathbf{X}}}(z) \, dz.$$
Since $\Re[m(x+\imath y)] = \Re[m(x-\imath y)], \Im[m(x+\imath y)] = -\Im[m(x-\imath y)];$

Since ℜ[m(x + iy)] = ℜ[m(x − iy)], ℜ[m(x + iy)] = −ℜ[m(x − iy)];
we have ∫_{a-ε_x}^{b+ε_x} m_{µx}(x − iε_y) dx + ∫_{b+ε_x}^{a-ε_x} m_{µx}(x + iε_y) dx = −2i ∫_{a-ε_x}^{b+ε_x} ℜ[m_{µx}(x + iε_y)] dx;
and consequently µ([a, b]) = ½ ∑_{λi}(x)∈[a,b]</sub> λ_i(X) = ¼ lim_{εy↓0} ∫_a^b ℜ[m_{µx}(x + iε_y)] dx.

$$\begin{split} &\frac{1}{p}\sum_{\lambda_{i}(\mathbf{X})\in[a,b]}\delta_{\lambda_{i}(\mathbf{X})} = -\frac{1}{2\pi\imath}\oint_{\Gamma}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz\\ &= -\frac{1}{2\pi\imath}\int_{a-\varepsilon_{x}-\imath\varepsilon_{y}}^{b+\varepsilon_{x}-\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz - \frac{1}{2\pi\imath}\int_{b+\varepsilon_{x}+\imath\varepsilon_{y}}^{a-\varepsilon_{x}+\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz\\ &- \frac{1}{2\pi\imath}\int_{a-\varepsilon_{x}+\imath\varepsilon_{y}}^{a-\varepsilon_{x}-\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz - \frac{1}{2\pi\imath}\int_{b+\varepsilon_{x}-\imath\varepsilon_{y}}^{b+\varepsilon_{x}+\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz.\\ &\gg \text{ Since }\Re[m(x+\imath y)] = \Re[m(x-\imath y)], \Im[m(x+\imath y)] = -\Im[m(x-\imath y)];\\ &\gg \text{ we have }\int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}}m_{\mu_{\mathbf{X}}}(x-\imath\varepsilon_{y})\,dx + \int_{b+\varepsilon_{x}}^{a-\varepsilon_{x}}m_{\mu_{\mathbf{X}}}(x+\imath\varepsilon_{y})\,dx = -2\imath\int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}}\Im[m_{\mu_{\mathbf{X}}}(x+\imath\varepsilon_{y})]\,dx; \end{split}$$

» and consequently $\mu([a,b]) = \frac{1}{p} \sum_{\lambda_i(\mathbf{X}) \in [a,b]} \lambda_i(\mathbf{X}) = \frac{1}{\pi} \lim_{\varepsilon_y \downarrow 0} \int_a^b \Im[m_{\mu_{\mathbf{X}}}(x + i\varepsilon_y)] dx.$

$$\begin{split} &\frac{1}{p}\sum_{\lambda_{i}(\mathbf{X})\in[a,b]}\delta_{\lambda_{i}(\mathbf{X})}=-\frac{1}{2\pi\imath}\oint_{\Gamma}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz\\ &=-\frac{1}{2\pi\imath}\int_{a-\varepsilon_{x}-\imath\varepsilon_{y}}^{b+\varepsilon_{x}-\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz-\frac{1}{2\pi\imath}\int_{b+\varepsilon_{x}+\imath\varepsilon_{y}}^{a-\varepsilon_{x}+\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz\\ &-\frac{1}{2\pi\imath}\int_{a-\varepsilon_{x}+\imath\varepsilon_{y}}^{a-\varepsilon_{x}-\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz-\frac{1}{2\pi\imath}\int_{b+\varepsilon_{x}-\imath\varepsilon_{y}}^{b+\varepsilon_{x}+\imath\varepsilon_{y}}\mathbf{1}_{\Re[z]\in[a-\varepsilon,b+\varepsilon]}(z)m_{\mu_{\mathbf{X}}}(z)\,dz.\\ &\gg \text{Since }\Re[m(x+\imath y)]=\Re[m(x-\imath y)], \Im[m(x+\imath y)]=-\Im[m(x-\imath y)];\\ &\gg \text{ we have }\int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}}m_{\mu_{\mathbf{X}}}(x-\imath\varepsilon_{y})\,dx+\int_{b+\varepsilon_{x}}^{a-\varepsilon_{x}}m_{\mu_{\mathbf{X}}}(x+\imath\varepsilon_{y})dx=-2\imath\int_{a-\varepsilon_{x}}^{b+\varepsilon_{x}}\Im[m_{\mu_{\mathbf{X}}}(x+\imath\varepsilon_{y})]\,dx;\\ &\gg \text{ and consequently }\mu([a,b])=\frac{1}{p}\sum_{\lambda_{i}(\mathbf{X})\in[a,b]}\lambda_{i}(\mathbf{X})=\frac{1}{\pi}\lim_{\varepsilon_{y}\downarrow0}\int_{a}^{b}\Im[m_{\mu_{\mathbf{X}}}(x+\imath\varepsilon_{y})]\,dx. \end{split}$$

Figure: Illustration of a rectangular contour Γ and support of μ_X on the complex plane.

Use resolvent for eigenvectors and eigenspace

Resolvent $Q_X(z)$ contains eigenvector information about X, recall

$$\mathbf{Q}_{\mathbf{X}}(z) = \sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}}}{\lambda_{i}(\mathbf{X}) - z},$$

and that we have direct access to the *i*-th eigenvector \mathbf{u}_i of \mathbf{X} through

$$\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}} = -\frac{1}{2\pi\imath} \oint_{\Gamma_{\lambda_{i}(\mathbf{X})}} \mathbf{Q}_{\mathbf{X}}(z) \, dz, \qquad (14)$$

for $\Gamma_{\lambda_i(\mathbf{X})}$ a contour circling around $\lambda_i(\mathbf{X})$ only.

- » seen as a matrix-version of LSS formula
- » with the Stieltjes transform $m_{\mu_X}(z)$ replaced by the associated resolvent $\mathbf{Q}_{\mathbf{X}}(z)$

Use resolvent for eigenvectors and eigenspace

Resolvent $Q_X(z)$ contains eigenvector information about X, recall

$$\mathbf{Q}_{\mathbf{X}}(z) = \sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}}}{\lambda_{i}(\mathbf{X}) - z},$$

and that we have direct access to the *i*-th eigenvector \mathbf{u}_i of \mathbf{X} through

$$\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}} = -\frac{1}{2\pi\imath} \oint_{\Gamma_{\lambda_{i}(\mathbf{X})}} \mathbf{Q}_{\mathbf{X}}(z) \, dz, \qquad (14)$$

for $\Gamma_{\lambda_i(\mathbf{X})}$ a contour circling around $\lambda_i(\mathbf{X})$ only.

» seen as a matrix-version of LSS formula

» with the Stieltjes transform $m_{\mu_X}(z)$ replaced by the associated resolvent $\mathbf{Q}_{\mathbf{X}}(z)$

Use resolvent for eigenvectors and eigenspace

Resolvent $Q_X(z)$ contains eigenvector information about X, recall

$$\mathbf{Q}_{\mathbf{X}}(z) = \sum_{i=1}^{p} \frac{\mathbf{u}_{i} \mathbf{u}_{i}^{\mathsf{T}}}{\lambda_{i}(\mathbf{X}) - z},$$

and that we have direct access to the *i*-th eigenvector \mathbf{u}_i of \mathbf{X} through

$$\mathbf{u}_{i}\mathbf{u}_{i}^{\mathsf{T}} = -\frac{1}{2\pi\imath} \oint_{\Gamma_{\lambda_{i}(\mathbf{X})}} \mathbf{Q}_{\mathbf{X}}(z) \, dz, \tag{14}$$

for $\Gamma_{\lambda_i(\mathbf{X})}$ a contour circling around $\lambda_i(\mathbf{X})$ only.

- » seen as a matrix-version of LSS formula
- » with the Stieltjes transform $m_{\mu_{\mathbf{X}}}(z)$ replaced by the associated resolvent $\mathbf{Q}_{\mathbf{X}}(z)$

Spectral functionals via resolvent

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, we say $F \colon \mathbb{R}^{p \times p} \to \mathbb{R}^{p \times p}$ is a (matrix) spectral functional of \mathbf{X} ,

$$F(\mathbf{X}) = \sum_{i \in \mathcal{I} \subseteq \{1, \dots, p\}} f(\lambda_i(\mathbf{X})) \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}, \quad \mathbf{X} = \sum_{i=1}^{p} \lambda_i(\mathbf{X}) \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}.$$
 (15)

Matrix spectral functionals

Spectral functional via contour integration: For $\mathbf{X} \in \mathbb{R}^{p \times p}$, resolvent $\mathbf{Q}_{\mathbf{X}}(z) = (\mathbf{X} - z\mathbf{I}_p)^{-1}, z \in \mathbb{C}$, and $f : \mathbb{R} \to \mathbb{R}$ analytic in a neighborhood of the contour $\Gamma_{\mathcal{I}}$ that circles around the eigenvalues $\lambda_i(\mathbf{X})$ of \mathbf{X} with their indices in the set $\mathcal{I} \subseteq \{1, \ldots, p\}$,

$$F(\mathbf{X}) = -\frac{1}{2\pi \imath} \oint_{\Gamma_{\mathcal{I}}} f(z) \mathbf{Q}_{\mathbf{X}}(z) \, dz.$$
(16)

Example: eigenvector projection $(\mathbf{v}^{\mathsf{T}}\mathbf{u}_i)^2 = -\frac{1}{2\pi i} \oint_{\Gamma_{\lambda_i(\mathbf{X})}} \mathbf{v}^{\mathsf{T}}\mathbf{Q}_{\mathbf{X}}(z)\mathbf{v} dz.$

Spectral functionals via resolvent

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, we say $F \colon \mathbb{R}^{p \times p} \to \mathbb{R}^{p \times p}$ is a (matrix) spectral functional of \mathbf{X} ,

$$F(\mathbf{X}) = \sum_{i \in \mathcal{I} \subseteq \{1, \dots, p\}} f(\lambda_i(\mathbf{X})) \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}, \quad \mathbf{X} = \sum_{i=1}^{p} \lambda_i(\mathbf{X}) \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}.$$
 (15)

Matrix spectral functionals

Spectral functional via contour integration: For $\mathbf{X} \in \mathbb{R}^{p \times p}$, resolvent $\mathbf{Q}_{\mathbf{X}}(z) = (\mathbf{X} - z\mathbf{I}_p)^{-1}, z \in \mathbb{C}$, and $f : \mathbb{R} \to \mathbb{R}$ analytic in a neighborhood of the contour $\Gamma_{\mathcal{I}}$ that circles around the eigenvalues $\lambda_i(\mathbf{X})$ of \mathbf{X} with their indices in the set $\mathcal{I} \subseteq \{1, \ldots, p\}$,

$$F(\mathbf{X}) = -\frac{1}{2\pi \imath} \oint_{\Gamma_{\mathcal{I}}} f(z) \mathbf{Q}_{\mathbf{X}}(z) \, dz.$$
(16)

Example: eigenvector projection $(\mathbf{v}^{\mathsf{T}}\mathbf{u}_i)^2 = -\frac{1}{2\pi i} \oint_{\Gamma_{\lambda_i}(\mathbf{x})} \mathbf{v}^{\mathsf{T}} \mathbf{Q}_{\mathbf{x}}(z) \mathbf{v} dz.$

Spectral functionals via resolvent

For a symmetric matrix $\mathbf{X} \in \mathbb{R}^{p \times p}$, we say $F \colon \mathbb{R}^{p \times p} \to \mathbb{R}^{p \times p}$ is a (matrix) spectral functional of \mathbf{X} ,

$$F(\mathbf{X}) = \sum_{i \in \mathcal{I} \subseteq \{1, \dots, p\}} f(\lambda_i(\mathbf{X})) \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}, \quad \mathbf{X} = \sum_{i=1}^{p} \lambda_i(\mathbf{X}) \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}.$$
 (15)

Matrix spectral functionals

Spectral functional via contour integration: For $\mathbf{X} \in \mathbb{R}^{p \times p}$, resolvent $\mathbf{Q}_{\mathbf{X}}(z) = (\mathbf{X} - z\mathbf{I}_p)^{-1}, z \in \mathbb{C}$, and $f : \mathbb{R} \to \mathbb{R}$ analytic in a neighborhood of the contour $\Gamma_{\mathcal{I}}$ that circles around the eigenvalues $\lambda_i(\mathbf{X})$ of \mathbf{X} with their indices in the set $\mathcal{I} \subseteq \{1, \ldots, p\}$,

$$F(\mathbf{X}) = -\frac{1}{2\pi \imath} \oint_{\Gamma_{\mathcal{I}}} f(z) \mathbf{Q}_{\mathbf{X}}(z) \, dz.$$
(16)

Example: eigenvector projection $(\mathbf{v}^{\mathsf{T}}\mathbf{u}_i)^2 = -\frac{1}{2\pi \imath} \oint_{\Gamma_{\lambda_i}(\mathbf{X})} \mathbf{v}^{\mathsf{T}} \mathbf{Q}_{\mathbf{X}}(z) \mathbf{v} dz.$