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What we will have today

∠ reminder on Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
∠ from random scalars to random vectors and matrices
∠ RMT basic concepts: resolvent, spectral measure, and Stieltjes transform
∠ deterministic equivalent framework to RMT
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LLN and CLT
∠ (Strong) law of large numbers (LLN): for a sequence of i.i.d. random variables

x1, . . . , xp with the same expectation E[xi] = µ, we have

1
p

p∑
i=1

xi → µ, (1)

almost surely as p → ∞.
∠ Central limit theorem (CLT, Lindeberg–Lévy tyep): for a sequence of i.i.d. random

variables x1, . . . , xp with the same expectation E[xi] = µ and variance Var[xi] = σ2 < ∞,
we have

√p
(
1
p

p∑
i=1

(xi − µ)

)
→ N (0, σ2), (2)

in distribution as p → ∞.
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OK with LLN and CLT, so what?
Different view of LLN and CLT: large-dimensional deterministic behavior and fluctuation.
Single scalar random variables
∠ Scalar random variable x ∈ R, characterize its behavior distribution/law, characteristic

function and/or successive moments, etc.
∠ x in general not expected to establish some kind of “close-to-deterministic” behavior.
∠ True for a single observation, although certainly the sum of many such random

variables may concentrate and exhibit a close-to-deterministic behavior.

Random vectors: many scalar random variables
Consider a set of size p i.i.d. realizations/copies of such random variable. As a random
vector x = [x1, . . . , xp]T ∈ Rp, with E[xi] = µ, Var[xi] = 1, i ∈ {1, . . . , p}.
∠ as p independent scalar random variables x ∈ R; or
∠ as a single realization of a random vector x ∈ Rp, having independent entries.
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OK with LLN and CLT, so what?

(i) Scalar: nothing more can be said about each individual random variable:
○␣ inappropriate to predict the behavior of xi with any deterministic value
○␣ in general incorrect to say “the random xi is close to µ = E[xi]”, since, for xi with
E[x] = µ and Var[x] = 1, by Chebyshev’s inequality.

P(|x − µ| ≥ t) ≤ t−2, ∀t > 0. (3)

○␣ random fluctuation xi − E[xi] can be as large as µ = E[xi].
(ii) Vector: a different picture: single realization of random vector x/√p ∈ Rp.

○␣ cannot say anything in general about each individual vector x.
○␣ however, if we are interested in only the (scalar and linear) observations of the
random vector x/√p ∈ Rp (with E[x] = µ1p/

√p), we known much more:
1
p
xT1p

a.s.−−→ E[xi] = µ,
1
√p

(x− µ1p)T1p
d−→N (0, 1), p → ∞. (4)
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OK with LLN and CLT, so what?
This is

1
p
xT1p ≃ µ︸︷︷︸

O(1)

+
1
√p

N (0, 1)︸ ︷︷ ︸
O(p−1/2)

.

∠ a large dimensional random vector x/√p ∈ Rp, when “observed” via the linear map
1T
p (·)/

√p of unit Euclidean norm (i.e., of “scale” independent of p);
∠ leads to x (when “observed” in this way) exhibiting the joint behavior of:
(i) approximately, in its first order, a deterministic quantity µ; and
(ii) in its second-order, a universal Gaussian fluctuation that is strongly concentrated

and independent of the specific law of xi.
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What about random matrices?
∠ As in the case of (high-dimensional) random vectors, we should NOT expect random

matrices themselves converge in any useful sense;
∠ e.g., there does NOT exist deterministic matrix X̄ so that the random matrix X ∈ Rp×p

∥X− X̄∥ → 0, (5)

in spectral norm as p → ∞ (in probability or almost surely);
∠ nonetheless, “properly scaled” scalar observations f : Rp×p → R of X DO converge,

and there exists deterministic X̄ such that

f (X)− f (X̄) → 0, (6)

as p → ∞. We say such X̄ is a deterministic equivalent of the random matrix X.
∠ observation f of interest in RMT include (empirical) eigenvalue distribution/measure,

linear eigenvalue statistics, specific eigenvalue location, projection of eigenvectors, etc.
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Deterministic equivalent for RMT: intuition and proof

What is actually happening with scalar observations of random matrices and the
deterministic equivalent (DE)?
∠ while the random matrix X ∈ Rp×p remains random as the dimension p grows (in fact

even “more” random due to the growing degrees of freedom);
∠ scalar observation f (X) of X becomes “more concentrated” as p → ∞;

○␣ the random f (X), if concentrates, must concentrated around its expectation E[f (X)];
○␣ in fact, as p → ∞, more randomness in X ⇒ Var[f (X)] ↓ 0, e.g., Var[f (X)] = p−4;
○␣ if the functional f : Rp×p → R is linear, then E[f (X)] = f (E[X]).

∠ So, to propose a DE, it suffices to evaluate E[X]:
○␣ however, E[X] may be hardly accessible (due to integration)
○␣ find a simple and more accessible deterministic X̄ with X̄ ≃ E[X] in some sense for p
large, e.g., ∥X̄− E[X]∥ → 0 as p → ∞; and

○␣ show variance of f (X) decay sufficiently fast as p → ∞.
∠ We say X̄ is a DE for X when f (X) is evaluated, and denote X ↔ X̄.
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○␣ find a simple and more accessible deterministic X̄ with X̄ ≃ E[X] in some sense for p
large, e.g., ∥X̄− E[X]∥ → 0 as p → ∞; and

○␣ show variance of f (X) decay sufficiently fast as p → ∞.
∠ We say X̄ is a DE for X when f (X) is evaluated, and denote X ↔ X̄.
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Fundamental Objects

Core interest of RMT: evaluation of eigenvalues and eigenvectors of a random matrix.

Resolvent

For a symmetric/Hermitian matrix X ∈ Rn×n, the resolvent QX(z) of X is defined, for
z ∈ C not an eigenvalue of X, as QX(z) ≡

(
X− zIp

)−1.

Empirical Spectral Distribution (ESD)

For symmetric X ∈ Rp×p, the empirical spectral distribution (ESD) µX of X is defined as
the normalized counting measure of the eigenvalues λ1(X), . . . , λp(X) of X, i.e., µX ≡
1
p
∑p

i=1 δλi(X), where δx represents the Dirac measure at x.
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Resolvent as the core object

Objects of interest Functionals of resolvent QX(z)
Empirical Spectral Distribution (ESD)

µX of X Stieltjes transform mµX(z) = 1
p trQX(z)

Linear spectral statistics (LSS):
f (X) ≡ 1

p
∑

i f (λi(X))
Integration of trace of QX(z): − 1

2πı

∮
Γ
f (z) 1p trQX(z) dz

(via Cauchy’s integral)
Projections of eigenvectors
vTu(X) and vTU(X) onto
some given vector v ∈ Rp

Bilinear form vTQX(z)v of QX

General matrix functional
F(X) =

∑
i f (λi(X))vT

1 ui(X)ui(X)Tv2
involving both eigenvalues and eigenvectors

Integration of bilinear form of QX(z):
− 1

2πı

∮
Γ
f (z)vT

1 QX(z)v2 dz
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Use resolvent for eigenvalue distribution

Resolvent

For a symmetric/Hermitian matrix X ∈ Rn×n, the resolvent QX(z) of X is defined, for
z ∈ C not an eigenvalue of X, as QX(z) ≡

(
X− zIp

)−1.

Let X = UΛUT be the spectral decomposition of X, with Λ = {λi(X)}
p
i=1 eigenvalues and

U = [u1, . . . ,up] ∈ Rp×p the associated eigenvectors. Then,

Q(z) = U(Λ− zIp)−1UT =

p∑
i=1

uiuT
i

λi(X)− z
. (7)

Thus, for µX ≡ 1
p
∑p

i=1 δλi(X) the ESD of X,

1
p
trQ(z) = 1

p

p∑
i=1

1
λi(X)− z

=

∫
µX(dt)
t− z

. (8)
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The Stieltjes transform

Stieltjes transform

For a real probability measure µ with support supp(µ), the Stieltjes transform mµ(z) is
defined, for all z ∈ C \ supp(µ), as

mµ(z) ≡
∫

µ(dt)
t− z

. (9)

For mµ the Stieltjes transform of a probability measure µ, then
∠ mµ is complex analytic on its domain of definition C \ supp(µ);
∠ it is bounded |mµ(z)| ≤ 1/ dist(z, supp(µ));
∠ it satisfies mµ(z) > 0 for z < inf supp(µ), mµ(z) < 0 for z > sup supp(µ) and

ℑ[z] · ℑ[mµ(z)] > 0 if z ∈ C \ R; and
∠ it is an increasing function on all connected components of its restriction to R \ supp(µ)

(since m′
µ(x) =

∫
(t− x)−2µ(dt) > 0) with limx→±∞mµ(x) = 0 if supp(µ) is bounded.
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The inverse Stieltjes transform

Inverse Stieltjes transform

For a, b continuity points of the probability measure µ, we have

µ([a, b]) = 1
π
lim
y↓0

∫ b

a
ℑ [mµ(x + ıy)] dx. (10)

Besides, if µ admits a density f at x (i.e., µ(x) is differentiable in a neighborhood of x
and limϵ→0(2ϵ)−1µ([x − ϵ, x + ϵ]) = f (x)),

f (x) = 1
π
lim
y↓0

ℑ [mµ(x + ıy)] . (11)

Workflow: random matrix X of interest⇒ resolvent QX(z) and ST 1
p trQX(z) = mX(z)

⇒ study the limiting ST mX(z) → m(z)⇒ inverse ST to get limiting µX → µ.
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Use the resolvent for eigenvalue functionals

Linear Spectral Statistics (LSS)

For a symmetric matrix X ∈ Rp×p, the linear spectral statistics (LSS) fX of X is defined
as the averaged statistics of the eigenvalues λ1(X), . . . , λp(X) of X via some function
f : R → R, that is

f (X) = 1
p

p∑
i=1

f (λi(X)) =
∫

f (t)µX(dt), (12)

for µX the ESD of X.
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Cauchy’s integral formula

Cauchy’s integral formula

For Γ ⊂ C a positively (i.e., counterclockwise) oriented simple closed curve and a
complex function f (z) analytic in a region containing Γ and its inside, then

(i) if z0 ∈ C is enclosed by Γ, f (z0) = − 1
2πı
∮
Γ

f (z)
z0−z dz;

(ii) if not, 1
2πı
∮
Γ

f (z)
z0−z dz = 0.

LSS via contour integration: For λ1(X), . . . , λp(X) eigenvalues of a symmetric matrix
X ∈ Rp×p, some function f : R → R that is complex analytic in a compact neighborhood of
the support supp(µX) (of the ESD µX of X), then

f (X) =
∫

f (t)µX(dt) = −
∫

1
2πı

∮
Γ

f (z) dz
t− z

µX(dt) = − 1
2πı

∮
Γ
f (z)mµX(z) dz, (13)

for any contour Γ that encloses supp(µX), i.e., all the eigenvalues λi(X).



LLN and CLT From Random Scalars to RandomMatrices RMT Basis ∠ 19/23

Cauchy’s integral formula

Cauchy’s integral formula

For Γ ⊂ C a positively (i.e., counterclockwise) oriented simple closed curve and a
complex function f (z) analytic in a region containing Γ and its inside, then

(i) if z0 ∈ C is enclosed by Γ, f (z0) = − 1
2πı
∮
Γ

f (z)
z0−z dz;

(ii) if not, 1
2πı
∮
Γ

f (z)
z0−z dz = 0.

LSS via contour integration: For λ1(X), . . . , λp(X) eigenvalues of a symmetric matrix
X ∈ Rp×p, some function f : R → R that is complex analytic in a compact neighborhood of
the support supp(µX) (of the ESD µX of X), then

f (X) =
∫

f (t)µX(dt) = −
∫

1
2πı

∮
Γ

f (z) dz
t− z

µX(dt) = − 1
2πı

∮
Γ
f (z)mµX(z) dz, (13)

for any contour Γ that encloses supp(µX), i.e., all the eigenvalues λi(X).



LLN and CLT From Random Scalars to RandomMatrices RMT Basis ∠ 20/23

LSS to retrieve the inverse Stieltjes transform formula

1
p

∑
λi(X)∈[a,b]

δλi(X) = − 1
2πı

∮
Γ
1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz

= − 1
2πı

∫ b+εx−ıεy

a−εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz−
1
2πı

∫ a−εx+ıεy

b+εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz

− 1
2πı

∫ a−εx−ıεy

a−εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz−
1
2πı

∫ b+εx+ıεy

b+εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz.

∠ Since ℜ[m(x + ıy)] = ℜ[m(x − ıy)],ℑ[m(x + ıy)] = −ℑ[m(x − ıy)];
∠ we have

∫ b+εx
a−εx

mµX(x − ıεy) dx +
∫ a−εx
b+εx

mµX(x + ıεy)dx = −2ı
∫ b+εx
a−εx

ℑ[mµX(x + ıεy)] dx;
∠ and consequently µ([a, b]) = 1

p
∑

λi(X)∈[a,b] λi(X) = 1
π limεy↓0

∫ b
a ℑ[mµX(x + ıεy)] dx.



LLN and CLT From Random Scalars to RandomMatrices RMT Basis ∠ 20/23

LSS to retrieve the inverse Stieltjes transform formula

1
p

∑
λi(X)∈[a,b]

δλi(X) = − 1
2πı

∮
Γ
1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz

= − 1
2πı

∫ b+εx−ıεy

a−εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz−
1
2πı

∫ a−εx+ıεy

b+εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz

− 1
2πı

∫ a−εx−ıεy

a−εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz−
1
2πı

∫ b+εx+ıεy

b+εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz.

∠ Since ℜ[m(x + ıy)] = ℜ[m(x − ıy)],ℑ[m(x + ıy)] = −ℑ[m(x − ıy)];
∠ we have

∫ b+εx
a−εx

mµX(x − ıεy) dx +
∫ a−εx
b+εx

mµX(x + ıεy)dx = −2ı
∫ b+εx
a−εx

ℑ[mµX(x + ıεy)] dx;
∠ and consequently µ([a, b]) = 1

p
∑

λi(X)∈[a,b] λi(X) = 1
π limεy↓0

∫ b
a ℑ[mµX(x + ıεy)] dx.



LLN and CLT From Random Scalars to RandomMatrices RMT Basis ∠ 20/23

LSS to retrieve the inverse Stieltjes transform formula

1
p

∑
λi(X)∈[a,b]

δλi(X) = − 1
2πı

∮
Γ
1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz

= − 1
2πı

∫ b+εx−ıεy

a−εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz−
1
2πı

∫ a−εx+ıεy

b+εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz

− 1
2πı

∫ a−εx−ıεy

a−εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz−
1
2πı

∫ b+εx+ıεy

b+εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz.

∠ Since ℜ[m(x + ıy)] = ℜ[m(x − ıy)],ℑ[m(x + ıy)] = −ℑ[m(x − ıy)];
∠ we have

∫ b+εx
a−εx

mµX(x − ıεy) dx +
∫ a−εx
b+εx

mµX(x + ıεy)dx = −2ı
∫ b+εx
a−εx

ℑ[mµX(x + ıεy)] dx;
∠ and consequently µ([a, b]) = 1

p
∑

λi(X)∈[a,b] λi(X) = 1
π limεy↓0

∫ b
a ℑ[mµX(x + ıεy)] dx.



LLN and CLT From Random Scalars to RandomMatrices RMT Basis ∠ 20/23

LSS to retrieve the inverse Stieltjes transform formula

1
p

∑
λi(X)∈[a,b]

δλi(X) = − 1
2πı

∮
Γ
1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz

= − 1
2πı

∫ b+εx−ıεy

a−εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz−
1
2πı

∫ a−εx+ıεy

b+εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz

− 1
2πı

∫ a−εx−ıεy

a−εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz−
1
2πı

∫ b+εx+ıεy

b+εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX(z) dz.

∠ Since ℜ[m(x + ıy)] = ℜ[m(x − ıy)],ℑ[m(x + ıy)] = −ℑ[m(x − ıy)];
∠ we have

∫ b+εx
a−εx

mµX(x − ıεy) dx +
∫ a−εx
b+εx

mµX(x + ıεy)dx = −2ı
∫ b+εx
a−εx

ℑ[mµX(x + ıεy)] dx;
∠ and consequently µ([a, b]) = 1

p
∑

λi(X)∈[a,b] λi(X) = 1
π limεy↓0

∫ b
a ℑ[mµX(x + ıεy)] dx.
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Figure: Illustration of a rectangular contour Γ and support of µX on the complex plane.
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Use resolvent for eigenvectors and eigenspace

Resolvent QX(z) contains eigenvector information about X, recall

QX(z) =
p∑

i=1

uiuT
i

λi(X)− z
,

and that we have direct access to the i-th eigenvector ui of X through

uiuT
i = − 1

2πı

∮
Γλi(X)

QX(z) dz, (14)

for Γλi(X) a contour circling around λi(X) only.
∠ seen as a matrix-version of LSS formula
∠ with the Stieltjes transform mµX(z) replaced by the associated resolvent QX(z)
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Spectral functionals via resolvent

Matrix spectral functionals

For a symmetric matrix X ∈ Rp×p, we say F : Rp×p → Rp×p is a (matrix) spectral func-
tional of X,

F(X) =
∑

i∈I⊆{1,...,p}

f (λi(X))uiuT
i , X =

p∑
i=1

λi(X)uiuT
i . (15)

Spectral functional via contour integration: For X ∈ Rp×p, resolvent
QX(z) = (X− zIp)−1, z ∈ C, and f : R → R analytic in a neighborhood of the contour ΓI
that circles around the eigenvalues λi(X) of X with their indices in the set I ⊆ {1, . . . , p},

F(X) = − 1
2πı

∮
ΓI

f (z)QX(z) dz. (16)

Example: eigenvector projection (vTui)
2 = − 1

2πı
∮
Γλi(X)

vTQX(z)v dz.
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