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What we will have today

∠ sample covariance matrix and the limiting Marc̆enko–Pastur law
∠ Wigner matrix and the limiting semicircle law
∠ proof via Bai and Silverstein approach and/or Gaussian tool
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Sample covariance matrix in the large n, p regime

∠ Problem: estimate covariance C ∈ Rp×p from n data samples x1, . . . , xn with
xi ∼ N (0,C),

∠ Maximum likelihood sample covariance matrix with entry-wise convergence

Ĉ =
1
n

n∑
i=1

xixT
i ∈ Rp×p, [Ĉ]ij → [C]ij

almost surely as n → ∞: optimal for n ≫ p (or, for p “small”).
∠ In the regime n ∼ p, conventional wisdom breaks down: for C = Ip with n < p, Ĉ has

at least p− n zero eigenvalues:

∥Ĉ− C∥ ̸→ 0, n, p → ∞ ⇒ eigenvalue mismatch and not consistent!

∠ due to ∥A∥∞ ≤ ∥A∥ ≤ p∥A∥∞ for A ∈ Rp×p and ∥A∥∞ ≡ maxij |Aij|.
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What about n = 100p? For C = Ip, as n, p → ∞with p/n → c ∈ (0,∞): MP law

µ(dx) = (1− c−1)+δ(x) + 1
2πcx

√
(x − E−)+(E+ − x)+dx

where E− = (1−
√
c)2, E+ = (1+

√
c)2 and (x)+ ≡ max(x, 0). Close match!
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Empirical eigenvalues of Ĉ

Figure: Eigenvalue distribution of Ĉ versus Marc̆enko-Pastur law, p = 500, n = 50 000.

∠ eigenvalues span on [E− = (1−
√
c)2,E+ = (1+

√
c)2].

∠ for n = 100p, on a range of ±2
√
c = ±0.2 around the population eigenvalue 1.
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Marc̆enko–Pastur law

Marc̆enko–Pastur law

Let X ∈ Rp×n be a random matrix with i.i.d. entries of zero mean and σ2 variance.
Then, as n, p → ∞ with p/n → c ∈ (0,∞), with probability one, the empirical spectral
measure µ 1

nXXT of 1
nXX

T converges weakly to the probability measure µ

µ(dx) = (1− c−1)+δ0(x) +
1

2πcσ2x

√
(x − σ2E−)+(σ2E+ − x)+ dx, (1)

where E± = (1±
√
c)2 and (x)+ = max(0, x). In particular, with σ2 = 1,

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x − E−)

+ (E+ − x)+ dx, (2)

which is known as the Marc̆enko-Pastur law.
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Figure: Marc̆enko-Pastur distribution for different values of c.
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Proof of Marc̆enko–Pastur law
Workflow: random matrix X of interest⇒ resolvent QX(z) and ST 1

p trQX(z) = mX(z)
⇒ study the limiting ST mX(z) → m(z)⇒ inverse ST to get limiting µX → µ.

Empirical Spectral Distribution (ESD)

For symmetric X ∈ Rp×p, the empirical spectral distribution (ESD) µX of X is defined as
the normalized counting measure of the eigenvalues λ1(X), . . . , λp(X) of X, i.e., µX ≡
1
p
∑p

i=1 δλi(X), where δx represents the Dirac measure at x.

Stieltjes transform

For a real probability measure µ with support supp(µ), the Stieltjes transform mµ(z) is
defined, for all z ∈ C \ supp(µ), as

mµ(z) ≡
∫

µ(dt)
t− z

. (3)
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Heuristic proof of MP law via “leave-one-out” approach

∠ “guess” Q̄(z) = F−1(z) for some F(z) such that E[Q] ≃ Q̄ and 1
p trQ(z) ≃ 1

p tr Q̄(z).
∠ for X = [x1, . . . , xn],

Q(z)− Q̄(z) = Q(z)
(
F(z) + zIp −

1
n
XXT

)
Q̄(z)

= Q(z)
(
F(z) + zIp −

1
n

n∑
i=1

xixT
i

)
Q̄(z).

∠ for Q̄(z) ↔ Q(z) a DE for Q(z), look for 1
p tr(Q(z)− Q̄(z)) → 0,

1
p
tr(F(z) + zIp)Q̄(z)Q(z)− 1

n

n∑
i=1

1
p
xT
i Q̄(z)Q(z)xi → 0. (4)

∠ xT
i Q̄(z)Q(z)xi/p as a quadratic form close to a trace form independent of xi.

∠ cannot be applied directly as Q(z) depends on xi.
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Heuristic proof of MP law via “leave-one-out”

Objective: “guess” the form of Q̄(z) = F−1(z) for some F(z) so that 1
p trQ(z) ≃ 1

p tr Q̄(z).

∠ use Sherman–Morrison to write Q(z)xi = Q−i(z)xi
1+ 1

nx
T
i Q−i(z)xi

,

∠ now Q−i(z) = ( 1n
∑

j ̸=i xjxT
j − zIp)−1 is independent of xi,

∠ quadratic form close to the trace:

1
p
xT
i Q̄(z)Q(z)xi =

1
px

T
i Q̄(z)Q−i(z)xi

1+ 1
nxT

i Q−i(z)xi
≃

1
p tr Q̄(z)Q−i(z)

1+ 1
n trQ−i(z)

. (5)

∠ So 1
p tr(F(z) + zIp)Q̄(z)Q(z) ≃

1
p tr Q̄(z)Q(z)
1+ 1

n trQ(z) , and “guess” F(z) ≃
(
−z+ 1

1+ 1
n trQ(z)

)
Ip.

∠ self-consistent equation of limiting ST m(z) as
1
p
trQ(z) ≃ m(z) = 1

−z+ 1
1+ p

n
1
p trQ(z)

≃ 1
−z+ 1

1+ p
nm(z)

. (6)
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Heuristic proof of MP law via “leave-one-out”

Objective: “guess” the form of Q̄(z) = F−1(z) for some F(z) 1
p trQ(z) ≃ 1

p tr Q̄(z).

∠ we have F(z) =
(
−z+ 1

1+ 1
n tr Q̄(z)

)
Ip,

∠ and Q̄(z) = m(z)Ip with m(z) unique Stieltjes transform solution to

m(z) =
(
−z+ 1

1+ cm(z)

)−1
, or zcm2(z)− (1− c− z)m(z) + 1 = 0.

∠ has two solutions defined via the two values of the complex square root function
(letting z = ρeıθ for ρ ≥ 0 and θ ∈ [0, 2π),

√
z ∈ {±√

ρeıθ/2})

m(z) = 1− c− z
2cz

+

√
((1+

√
c)2 − z)((1−

√
c)2 − z)

2cz
,

only one of which is such that ℑ[z]ℑ[m(z)] > 0 by definition of Stieltjes transforms.
∠ apply inverse Stieltjes transform we conclude the proof.
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Some thoughts on the “leave-one-out” proof

∠ in essence: propose Q̄(z) as an approximation of E[Q(z)], but simple to evaluate (via a
quadratic equation)

∠ quadratic form close to the trace: high-dimensional concentration (around the
expectation), anything more than LLN and concentration

∠ leave-one-out analysis of large-scale system: 1
p trQ(z) ≃ 1

p trQ−i(z) for n, p large.

∠ low complexity analysis of large random system: joint behavior of p eigenvalues RMT→ a
single deterministic (quadratic) equation

∠ These are the main intuitions and ingredients for almost everything in RMT and
high-dimensional statistics!
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Proof of MP law with Gaussian method

Stein’s Lemma

Let x ∼ N (0, 1) and f : R → R a continuously differentiable function having at most
polynomial growth and such that E[f ′(x)] < ∞. Then,

E[xf (x)] = E[f ′(x)]. (7)

In particular, for x ∼ N (0,C) with C ∈ Rp×p and f : Rp → R a continuously differen-
tiable function with derivatives having at most polynomial growth with respect to p,

E[[x]if (x)] =
p∑

j=1
[C]ijE

[
∂f (x)
∂[x]j

]
, (8)

where ∂/∂[x]i indicates differentiation with respect to the i-th entry of x; or, in vector
form E[xf (x)] = CE[∇f (x)], with ∇f (x) the gradient of f (x)with respect to x.
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Proof of MP law with Gaussian method
First observe that Q = 1

z
1
nXX

TQ− 1
z Ip, so that E[Qij] =

1
zn
∑n

k=1 E[Xik[XTQ]kj]− 1
zδij, in

which E[Xik[XTQ]kj] = E[xf (x)] for x = Xik and f (x) = [XTQ]kj. Therefore, from Stein’s
lemma and the fact that ∂Q = − 1

nQ∂(XXT)Q,[a]

E[Xik[XTQ]kj] = E

[
∂[XTQ]kj

∂Xik

]
= E[ET

ikQ]kj − E
[
1
n
XTQ(EikXT + XET

ik)Q
]
kj

= E[Qij]− E
[
1
n
[XTQ]ki[XTQ]kj

]
− E

[
1
n
[XTQX]kkQij

]
for Eij the indicator matrix with entry [Eij]lm = δilδjm, so that, summing over k,

1
z
1
n

n∑
k=1

E[Xik[XTQ]kj] =
1
z
E[Qij]−

1
z
1
n2

E[Qij tr(QXXT)]− 1
z
1
n2

E[QXXTQ]ij.

[a] This is the matrix version of d(1/x) = −dx/x2 .



SCM and MP law Proof of Marc̆enko–Pastur law Proof of semicircle law Generalized MP for SCM ∠ 16/29

Proof of MP law with Gaussian method
First observe that Q = 1

z
1
nXX

TQ− 1
z Ip, so that E[Qij] =

1
zn
∑n

k=1 E[Xik[XTQ]kj]− 1
zδij, in

which E[Xik[XTQ]kj] = E[xf (x)] for x = Xik and f (x) = [XTQ]kj. Therefore, from Stein’s
lemma and the fact that ∂Q = − 1

nQ∂(XXT)Q,[a]

E[Xik[XTQ]kj] = E

[
∂[XTQ]kj

∂Xik

]
= E[ET

ikQ]kj − E
[
1
n
XTQ(EikXT + XET

ik)Q
]
kj

= E[Qij]− E
[
1
n
[XTQ]ki[XTQ]kj

]
− E

[
1
n
[XTQX]kkQij

]
for Eij the indicator matrix with entry [Eij]lm = δilδjm, so that, summing over k,

1
z
1
n

n∑
k=1

E[Xik[XTQ]kj] =
1
z
E[Qij]−

1
z
1
n2

E[Qij tr(QXXT)]− 1
z
1
n2

E[QXXTQ]ij.

[a] This is the matrix version of d(1/x) = −dx/x2 .



SCM and MP law Proof of Marc̆enko–Pastur law Proof of semicircle law Generalized MP for SCM ∠ 16/29

Proof of MP law with Gaussian method
First observe that Q = 1

z
1
nXX

TQ− 1
z Ip, so that E[Qij] =

1
zn
∑n

k=1 E[Xik[XTQ]kj]− 1
zδij, in

which E[Xik[XTQ]kj] = E[xf (x)] for x = Xik and f (x) = [XTQ]kj. Therefore, from Stein’s
lemma and the fact that ∂Q = − 1

nQ∂(XXT)Q,[a]

E[Xik[XTQ]kj] = E

[
∂[XTQ]kj

∂Xik

]
= E[ET

ikQ]kj − E
[
1
n
XTQ(EikXT + XET

ik)Q
]
kj

= E[Qij]− E
[
1
n
[XTQ]ki[XTQ]kj

]
− E

[
1
n
[XTQX]kkQij

]
for Eij the indicator matrix with entry [Eij]lm = δilδjm, so that, summing over k,

1
z
1
n

n∑
k=1

E[Xik[XTQ]kj] =
1
z
E[Qij]−

1
z
1
n2

E[Qij tr(QXXT)]− 1
z
1
n2

E[QXXTQ]ij.

[a] This is the matrix version of d(1/x) = −dx/x2 .



SCM and MP law Proof of Marc̆enko–Pastur law Proof of semicircle law Generalized MP for SCM ∠ 17/29

Proof of MP law with Gaussian method
We have

1
z
1
n

n∑
k=1

E[Xik[XTQ]kj] =
1
z
E[Qij]−

1
z
1
n2

E[Qij tr(QXXT)]− 1
z
1
n2

E[QXXTQ]ij.

The term in the second line has vanishing operator norm (of order O(n−1)) as n, p → ∞.
Also, tr(QXXT) = np+ zn trQ. As a result, matrix-wise, we obtain

E[Q] +
1
z
Ip = E[X·k[XTQ]k·] =

1
z
E[Q]− 1

z
1
n
E[Q(p+ z trQ)] + o∥·∥(1),

where X·k and Xk· is the k-th column and row of X, respectively. As the random
1
p trQ → m(z) as n, p → ∞, take it out of the expectation in the limit and

E[Q](1− p/n− z− p/n · zm(z)) = Ip + o∥·∥(1),
which, taking the trace to identify m(z), concludes the proof.
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Nash–Poincaré inequality

For x ∼ N (0,C)withC ∈ Rp×p and f : Rp → R continuously differentiable with deriva-
tives having at most polynomial growth with respect to p,

Var[f (x)] ≤
p∑

i,j=1
[C]ijE

[
∂f (x)
∂[x]i

∂f (x)
∂[x]j

]
= E

[
(∇f (x))TC∇f (x)

]
,

where we denote∇f (x) the gradient of f (x) with respect to x.

∠ allow to bound the “fluctuation” of random functionals, e.g., the ST 1
p trQ(z), etc.

∠ to further establish stochastic convergence (in probability or almost surely) as
n, p → ∞.
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Extension to non-Gaussian case

Interpolation trick

For x ∈ R a random variable with zero mean and unit variance, y ∼ N (0, 1), and f a
(k + 2)-times differentiable function with bounded derivatives,

E[f (x)]− E[f (y)] =
k∑

ℓ=2

κℓ+1
2ℓ!

∫ 1

0
E[f (ℓ+1)x(t)]t(ℓ−1)/2dt+ ϵk,

where κℓ is the ℓth cumulant of x, x(t) =
√
tx + (1 −

√
t)y, and |ϵk| ≤ CkE[|x|k+2] ·

supt |f (k+2)(t)| for some constant Ck only dependent on k.
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Wigner semicircle law

Wigner semicircle law

Let X ∈ Rn×n be symmetric and such that the Xij ∈ R, j ≥ i, are independent zero mean
and unit variance random variables. Then, forQ(z) = (X/

√
n− zIn)−1, as n → ∞,

Q(z) ↔ Q̄(z), Q̄(z) = m(z)In, (9)

with m(z) the unique ST solution to

m2(z) + zm(z) + 1 = 0. (10)

The function m(z) is the Stieltjes transform of the probability measure

µ(dx) = 1
2π

√
(4− x2)+ dx, (11)

known as theWigner semicircle law.
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Proof of semicircle law: leave one out heuristic
Let Q = (X/

√
n− zIn)−1 be the resolvent, by diagonal entries of matrix inverse lemma,

Qii =
(
Xii/

√
n− z− xT

i Q−ixi/n
)−1

,

with [Q]−i = (X−i/
√
n− zIn−1)

−1, X−i ∈ R(n−1)×(n−1) the matrix obtained by deleting the
i-th row and column from X, and xi ∈ Rn−1 the i-th column/row of X with its i-th entry
removed. Summing over i,

1
n
trQ =

1
n

n∑
i=1

1
1√
nXii − z− 1

nxT
i Q−ixi

=
1
n

n∑
i=1

1
−z− 1

nxT
i Q−ixi

+ o(1),

since 1√
nXii vanishes as n → ∞. By quadratic form close to the trace, for large n,

(trQ/n)2 + z trQ/n+ 1 ≃ o(1).
This is m2(z) + zm(z) + 1 = 0 and thus the conclusion.
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Proof of semicircle law: Gaussian method
Similar to the proof of the Marc̆enko-Pastur law, for Q = (X/

√
n− zIn)−1,

1√
n
E[XQ] = In + zE[Q], (12)

so that by integration by parts and the fact that ∂Q = − 1√
nQ(∂X)Q,

E[Qij] =
1
z

1√
n

n∑
k=1

E[XikQkj]−
1
z
δij =

1
z

1√
n

n∑
k=1

E
[
∂Qkj

∂Xik

]
− 1

z
δij

= −1
z
1
n

n∑
k=1

E[QkiQkj +QkkQij]−
1
z
δij = −1

z
1
n
E
[
[Q2]ij +Qij · trQ

]
− 1

z
δij.
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Proof of semicircle law: Gaussian method
So in matrix form

E[Q] = −1
z
1
n
E[Q2]− 1

z
E[Q] · 1

n
trE[Q]− 1

z
In + o∥·∥(1), (13)

where we used the fact that 1
n trQ− 1

n trEQ
a.s.−−→ 0 as n → ∞ and thus be asymptotically

“taken out of the expectation” (again high-dimensional concentration).
First RHS matrix has asymptotically vanishing operator norm as n, p → ∞,

E[Q] = −1
z

(
1+ 1

z
1
n
trE[Q]

)−1
In + o∥·∥(1)

which, after taking the trace and using 1
n trE[Q(z)]−m(z) → 0, gives the limiting formula

m2(z) + zm(z) + 1 = 0.
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Figure: Histogram of the eigenvalues of X/
√
n versus Wigner semicircle law, for standard Gaussian X and n = 1 000.
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SCM and generalized Marc̆enko–Pastur law

General sample covariance matrix

Let X = C
1
2Z ∈ Rp×n with symmetric nonnegative definite C ∈ Rp×p, Z ∈ Rp×n having

independent zero mean and unit variance entries. Then, as n, p → ∞ with p/n → c ∈
(0,∞), for Q(z) = ( 1nXX

T − zIp)−1 and Q̃(z) = ( 1nX
TX− zIn)−1,

Q(z) ↔ Q̄(z) = −1
z
(
Ip + m̃p(z)C

)−1
, Q̃(z) ↔ ¯̃Q(z) = m̃p(z)In,

with m̃p(z) unique solution to m̃p(z) =
(
−z+ 1

n trC
(
Ip + m̃p(z)C

)−1
)−1

.
If the empirical spectral measure of C converges µC → ν as p → ∞, then µ 1

nXXT → µ,
µ 1

nXTX → µ̃where µ, µ̃ admitting Stieltjes transforms m(z) and m̃(z) such that

m(z) = 1
c
m̃(z) + 1− c

cz
, m̃(z) =

(
−z+ c

∫ tν(dt)
1+ m̃(z)t

)−1
. (14)
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A few remarks on the generalized MP law

∠ different from the explicit MP law, the generalized MP is in general implicit
∠ we have explicitness in essence due to with C = Ip, the implicit equation boils down to

a quadratic equation that has explicit solution
∠ if C has discrete eigenvalues, e.g., µC = 1

3(δ1 + δ3 + δ5), then becomes a (possibly
higher-order) polynomial equation, which may admit explicit solution (up to fourth
order) using radicals

∠ the uniqueness of (Stieltjes transform) solution is ensured within a certain region on
the complex plane, there may exist solutions m̃(z)with negative imaginary parts

∠ numerical evaluation of m̃(z): note that the equation

m̃p(z) =
(
−z+ 1

n
trC

(
Ip + m̃p(z)C

)−1
)−1

(15)

naturally defines a fixed-point equation.
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Figure: Histogram of the eigenvalues of 1
nXX

T, X = C
1
2 Z ∈ Rp×n, [Z]ij ∼ N (0, 1), n = 3 000; for p = 300 and C having

spectral measure µC = 1
3 (δ1 + δ3 + δ7) (top) and µC = 1

3 (δ1 + δ3 + δ5) (bottle).
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