Probability and Stochastic Process II: Random Matrix Theory and Applications Lecture 3: MP and semicircle laws

Zhenyu Liao, Tiebin Mi, Caiming Qiu

```
School of Electronic Information and Communications (EIC) Huazhong University of Science and Technology (HUST)
```

March 7, 2023

Outline

SCM and MP law

Proof of Marčenko-Pastur law

Proof of semicircle law

Generalized MP for SCM

What we will have today

》 sample covariance matrix and the limiting Marčenko-Pastur law
»Wigner matrix and the limiting semicircle law
>proof via Bai and Silverstein approach and/or Gaussian tool

What we will have today

»sample covariance matrix and the limiting Marčenko-Pastur law
»Wigner matrix and the limiting semicircle law
» proof via Bai and Silverstein approach and/or Gaussian tool

What we will have today

» sample covariance matrix and the limiting Marčenko-Pastur law
» Wigner matrix and the limiting semicircle law
» proof via Bai and Silverstein approach and/or Gaussian tool

Outline

SCM and MP law

Proof of Marčenko-Pastur law

Proof of semicircle law

Generalized MP for SCM

Sample covariance matrix in the large n, p regime

» Problem: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ with $\mathbf{x}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,

》 Maximum likelihood sample covariance matrix

\gg In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C}=\mathbf{I}_{p}$ with $n<p, \hat{\mathbf{C}}$ has at least $p-n$ zero eigenvalues:
$\|\hat{\mathrm{C}}-\mathrm{C}\| \nrightarrow 0, \quad n, p \rightarrow \infty \Rightarrow$ eigenvalue mismatch and not consistent! \gg due to $\|\mathbf{A}\|_{\infty} \leq\|\mathbf{A}\| \leq p\|\mathbf{A}\|_{\infty}$ for $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\|\mathbf{A}\|_{\infty} \equiv \max _{i j}\left|\mathbf{A}_{i j}\right|$.

Sample covariance matrix in the large n, p regime

》Problem: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ with $\mathbf{x}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
» Maximum likelihood sample covariance matrix with entry-wise convergence

$$
\hat{\mathbf{C}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \in \mathbb{R}^{p \times p},
$$

almost surely as $n \rightarrow \infty$: optimal for $n \gg p$ (or, for p "small").
» In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C}=\mathbf{I}_{p}$ with $n<p, \hat{\mathbf{C}}$ has at least $p-n$ zero eigenvalues:

\square

Sample covariance matrix in the large n, p regime

》Problem: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ with $\mathbf{x}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
» Maximum likelihood sample covariance matrix with entry-wise convergence

$$
\hat{\mathbf{C}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \in \mathbb{R}^{p \times p}, \quad[\hat{\mathbf{C}}]_{i j} \rightarrow[\mathbf{C}]_{i j}
$$

almost surely as $n \rightarrow \infty$: optimal for $n \gg p$ (or, for p "small" $)$.
» In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C}=\mathrm{I}_{p}$ with $n<p, \hat{\mathrm{C}}$ has at least $p-n$ zero eigenvalues:
$\|\hat{C}-C\| \nRightarrow 0, \quad n, p \rightarrow \infty \Rightarrow$ eigenvalue mismatch and not consistent! \gg due to $\|\mathbf{A}\|_{\infty} \leq\|\mathbf{A}\| \leq p\|\mathbf{A}\|_{\infty}$ for $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\|\mathbf{A}\|_{\infty} \equiv \max _{i j}\left|\mathbf{A}_{i j}\right|$.

Sample covariance matrix in the large n, p regime

》Problem: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ with $\mathbf{x}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
» Maximum likelihood sample covariance matrix with entry-wise convergence

$$
\hat{\mathbf{C}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \in \mathbb{R}^{p \times p}, \quad[\hat{\mathbf{C}}]_{i j} \rightarrow[\mathbf{C}]_{i j}
$$

almost surely as $n \rightarrow \infty$: optimal for $n \gg p$ (or, for p "small").
» In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C}=\mathrm{I}_{p}$ with $n<p, \hat{\mathrm{C}}$ has at least $p-n$ zero eigenvalues:

$$
\|\hat{C}-C\| \nrightarrow 0, \quad n, p \rightarrow \infty \Rightarrow \text { eigenvalue mismatch and not consistent! }
$$

\square

Sample covariance matrix in the large n, p regime

》 Problem: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ with $\mathbf{x}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
» Maximum likelihood sample covariance matrix with entry-wise convergence

$$
\hat{\mathbf{C}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \in \mathbb{R}^{p \times p}, \quad[\hat{\mathbf{C}}]_{i j} \rightarrow[\mathbf{C}]_{i j}
$$

almost surely as $n \rightarrow \infty$: optimal for $n \gg p$ (or, for p "small").
» In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C}=\mathbf{I}_{p}$ with $n<p, \hat{\mathbf{C}}$ has at least $p-n$ zero eigenvalues:

$$
\|\hat{\mathbf{C}}-\mathbf{C}\| \nrightarrow 0, \quad n, p \rightarrow \infty \Rightarrow \text { eigenvalue mismatch and not consistent! }
$$

Sample covariance matrix in the large n, p regime

》 Problem: estimate covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ with $\mathbf{x}_{i} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$,
» Maximum likelihood sample covariance matrix with entry-wise convergence

$$
\hat{\mathbf{C}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \in \mathbb{R}^{p \times p}, \quad[\hat{\mathbf{C}}]_{i j} \rightarrow[\mathbf{C}]_{i j}
$$

almost surely as $n \rightarrow \infty$: optimal for $n \gg p$ (or, for p "small").
» In the regime $n \sim p$, conventional wisdom breaks down: for $\mathbf{C}=\mathbf{I}_{p}$ with $n<p, \hat{\mathbf{C}}$ has at least $p-n$ zero eigenvalues:

$$
\|\hat{\mathbf{C}}-\mathbf{C}\| \nrightarrow 0, \quad n, p \rightarrow \infty \Rightarrow \text { eigenvalue mismatch and not consistent! }
$$

»due to $\|\mathbf{A}\|_{\infty} \leq\|\mathbf{A}\| \leq p\|\mathbf{A}\|_{\infty}$ for $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\|\mathbf{A}\|_{\infty} \equiv \max _{i j}\left|\mathbf{A}_{i j}\right|$.

What about $n=100 p$? For $C=I_{p}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty):$ MP law

where $E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}$ and $(x)^{+} \equiv \max (x, 0)$. Close match!

Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marčenko-Pastur law, $p=500, n=50000$.
\gg eigenvalues span on $\left[E_{-}=(1-\sqrt{c})^{2} \cdot E_{+}=(1+\sqrt{c})^{2}\right]$.
$>$ for $\mathbf{n}=100 \mathrm{p}$, on a range of $\pm 2 \sqrt{c}= \pm 0.2$ around the population eigenvalue 1 .

What about $n=100 p$? For $\mathbf{C}=\mathbf{I}_{p}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty):$ MP law

where $E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}$ and $(x)^{+} \equiv \max (x, 0)$. Close match!

Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marčenko-Pastur law, $p=500, n=50000$.
$>$ eigenvalues span on $\left[E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}\right]$.
$>$ for $\mathrm{n}=100 \mathrm{p}$, on a range of $\pm 2 \sqrt{c}= \pm 0.2$ around the population eigenvalue 1.

What about $n=100 p$? For $\mathbf{C}=\mathbf{I}_{p}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$: MP law

$$
\mu(d x)=\left(1-c^{-1}\right)^{+} \delta(x)+\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x
$$

where $E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}$ and $(x)^{+} \equiv \max (x, 0)$.

Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marčenko-Pastur law, $p=500, n=50000$.
$>$ eigenvalues span on $\left[E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}\right]$.
$>$ for $\mathrm{n}=100$ p, on a range of $\pm 2 \sqrt{c}= \pm 0.2$ around the population eigenvalue 1 .

What about $n=100 p$? For $\mathbf{C}=\mathbf{I}_{p}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$: MP law

$$
\mu(d x)=\left(1-c^{-1}\right)^{+} \delta(x)+\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x
$$

where $E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}$ and $(x)^{+} \equiv \max (x, 0)$. Close match!

Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marčenko-Pastur law, $p=500, n=50000$.
$>$ eigenvalues span on $\left[E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}\right]$.
$>$ for $\mathrm{n}=100$ p, on a range of $\pm 2 \sqrt{c}= \pm 0.2$ around the population eigenvalue 1 .

What about $n=100 p$? For $\mathbf{C}=\mathbf{I}_{p}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$: MP law

$$
\mu(d x)=\left(1-c^{-1}\right)^{+} \delta(x)+\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x
$$

where $E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}$ and $(x)^{+} \equiv \max (x, 0)$. Close match!

Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marčenko-Pastur law, $p=500, n=50000$.
» eigenvalues span on $\left[E_{-}=(1-\sqrt{\mathbf{c}})^{2}, E_{+}=(1+\sqrt{\mathbf{c}})^{2}\right]$.
\gg for $n=100 p$, on a range of $\pm 2 \sqrt{c}= \pm 0.2$ around the population eigenvalue 1 .

What about $n=100 p$? For $\mathbf{C}=\mathbf{I}_{p}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$: MP law

$$
\mu(d x)=\left(1-c^{-1}\right)^{+} \delta(x)+\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x
$$

where $E_{-}=(1-\sqrt{c})^{2}, E_{+}=(1+\sqrt{c})^{2}$ and $(x)^{+} \equiv \max (x, 0)$. Close match!

Figure: Eigenvalue distribution of $\hat{\mathbf{C}}$ versus Marčenko-Pastur law, $p=500, n=50000$.
$»$ eigenvalues span on $\left[E_{-}=(1-\sqrt{\mathbf{c}})^{2}, E_{+}=(1+\sqrt{\mathbf{c}})^{2}\right]$.
\gg for $\mathbf{n}=\mathbf{1 0 0}$ p, on a range of $\pm \mathbf{2} \sqrt{\mathrm{c}}= \pm \mathbf{0 . 2}$ around the population eigenvalue 1 .

Marčenko-Pastur law

Let $\mathbf{X} \in \mathbb{R}^{p \times n}$ be a random matrix with i.i.d. entries of zero mean and σ^{2} variance. Then, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, with probability one, the empirical spectral measure $\mu_{\frac{1}{n}} \mathbf{X} \mathbf{X}^{\top}$ of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ converges weakly to the probability measure μ

$$
\begin{equation*}
\mu(d x)=\left(1-c^{-1}\right)^{+} \delta_{0}(x)+\frac{1}{2 \pi c \sigma^{2} x} \sqrt{\left(x-\sigma^{2} E_{-}\right)^{+}\left(\sigma^{2} E_{+}-x\right)^{+}} d x \tag{1}
\end{equation*}
$$

where $E_{ \pm}=(1 \pm \sqrt{c})^{2}$ and $(x)^{+}=\max (0, x)$. In particular, with $\sigma^{2}=1$,

$$
\begin{equation*}
\mu(d x)=\left(1-c^{-1}\right)^{+} \delta_{0}(x)+\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x \tag{2}
\end{equation*}
$$

which is known as the Marčenko-Pastur law.

Figure: Marčenko-Pastur distribution for different values of c.

Outline

SCM and MP law

Proof of Marčenko-Pastur law

Proof of semicircle law

Generalized MP for SCM

Proof of Marčenko-Pastur law

Workflow: random matrix \mathbf{X} of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and ST $\frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)=m_{\mathbf{X}}(z)$

Empirical Spectral Distribution (ESD)

For a real probability measure μ with $\operatorname{support} \operatorname{supp}(\mu)$, the Stieltjes transform $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

Proof of Marčenko-Pastur law

Workflow: random matrix \mathbf{X} of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and $\mathrm{ST} \frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)=m_{\mathbf{X}}(z)$ \Rightarrow study the limiting ST $m_{\mathbf{X}}(z) \rightarrow m(z) \Rightarrow$ inverse ST to get limiting $\mu_{\mathbf{X}} \rightarrow \mu$.

For symmetric $\mathbf{X} \in \mathbb{R}^{p \times p}$, the empirical spectral distribution (ESD) $\mu \times$ of \mathbf{X} is defined as
the normalized counting measure of the eigenvalues $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ of \mathbf{X}, i.e., $\mu_{\mathbf{X}} \equiv$ $\frac{1}{p} \sum_{i=1}^{p}$
where δ_{x} represents the Dirac measure at x.
Empirical Spectral Distribution (ESD)

For a real probability measure μ with $\operatorname{support} \operatorname{supp}(\mu)$, the Stieltjes transform $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

Proof of Marčenko-Pastur law

Workflow: random matrix \mathbf{X} of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and $\mathrm{ST} \frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)=m_{\mathbf{X}}(z)$ \Rightarrow study the limiting ST $m_{\mathbf{X}}(z) \rightarrow m(z) \Rightarrow$ inverse ST to get limiting $\mu_{\mathbf{X}} \rightarrow \mu$.

For symmetric $\mathbf{X} \in \mathbb{R}^{p \times p}$, the empirical spectral distribution (ESD) $\mu_{\mathbf{X}}$ of \mathbf{X} is defined as the normalized counting measure of the eigenvalues $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ of \mathbf{X}, i.e., $\mu_{\mathbf{X}} \equiv$ $\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(\mathbf{X})}$, where δ_{x} represents the Dirac measure at x.

Empirical Spectral Distribution (ESD)
For a real probability measure μ with support $\operatorname{supp}(\mu)$, the Stieltjes transform $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

Proof of Marčenko-Pastur law

Workflow: random matrix \mathbf{X} of interest \Rightarrow resolvent $\mathbf{Q}_{\mathbf{X}}(z)$ and $\mathrm{ST} \frac{1}{p} \operatorname{tr} \mathbf{Q}_{\mathbf{X}}(z)=m_{\mathbf{X}}(z)$
\Rightarrow study the limiting ST $m_{\mathbf{X}}(z) \rightarrow m(z) \Rightarrow$ inverse ST to get limiting $\mu_{\mathbf{X}} \rightarrow \mu$.
For symmetric $\mathbf{X} \in \mathbb{R}^{p \times p}$, the empirical spectral distribution (ESD) $\mu_{\mathbf{X}}$ of \mathbf{X} is defined as the normalized counting measure of the eigenvalues $\lambda_{1}(\mathbf{X}), \ldots, \lambda_{p}(\mathbf{X})$ of \mathbf{X}, i.e., $\mu_{\mathbf{X}} \equiv$ $\frac{1}{p} \sum_{i=1}^{p} \delta_{\lambda_{i}(\mathbf{X})}$, where δ_{x} represents the Dirac measure at x.

Empirical Spectral Distribution (ESD)
For a real probability measure μ with support $\operatorname{supp}(\mu)$, the Stieltjes transform $m_{\mu}(z)$ is defined, for all $z \in \mathbb{C} \backslash \operatorname{supp}(\mu)$, as

$$
\begin{equation*}
m_{\mu}(z) \equiv \int \frac{\mu(d t)}{t-z} \tag{3}
\end{equation*}
$$

Heuristic proof of MP law via "leave-one-out" approach

 »"guess" $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ such that $\mathbb{E}[\mathbf{Q}] \simeq \overline{\mathbf{Q}}$ and $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.
$\gg \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i} / p$ as a quadratic form close to a trace form independent of \mathbf{x}_{i}. \gg cannot be applied directly as $\mathbf{Q}(z)$ depends on \mathbf{x}_{i}.

Heuristic proof of MP law via "leave-one-out" approach

 »"guess" $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ such that $\mathbb{E}[\mathbf{Q}] \simeq \overline{\mathbf{Q}}$ and $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$. » for $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]$,$$
\begin{aligned}
\mathbf{Q}(z)-\overline{\mathbf{Q}}(z) & =\mathbf{Q}(z)\left(\mathbf{F}(z)+z \mathbf{I}_{p}-\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}\right) \overline{\mathbf{Q}}(z) \\
& =\mathbf{Q}(z)\left(\mathbf{F}(z)+z \mathbf{I}_{p}-\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right) \overline{\mathbf{Q}}(z)
\end{aligned}
$$

\geqslant for $\overline{\mathbf{Q}}(z) \leftrightarrow \mathbf{Q}(z)$ a $D E$ for $\mathbf{Q}(z)$, look for $\frac{1}{p} \operatorname{tr}(\mathbf{Q}(z)-\overline{\mathbf{Q}}(z)) \rightarrow 0$,

》 $\mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i} / p$ as a quadratic form close to a trace form independent of \mathbf{x}_{i}.
» cannot be applied directly as $\mathbf{Q}(z)$ depends on \mathbf{x}_{i}.

Heuristic proof of MP law via "leave-one-out" approach

»"guess" $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ such that $\mathbb{E}[\mathbf{Q}] \simeq \overline{\mathbf{Q}}$ and $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.
» for $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]$,

$$
\begin{aligned}
\mathbf{Q}(z)-\overline{\mathbf{Q}}(z) & =\mathbf{Q}(z)\left(\mathbf{F}(z)+z \mathbf{I}_{p}-\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}\right) \overline{\mathbf{Q}}(z) \\
& =\mathbf{Q}(z)\left(\mathbf{F}(z)+z \mathbf{I}_{p}-\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right) \overline{\mathbf{Q}}(z)
\end{aligned}
$$

» for $\overline{\mathbf{Q}}(z) \leftrightarrow \mathbf{Q}(z)$ a DE for $\mathbf{Q}(z)$, look for $\frac{1}{p} \operatorname{tr}(\mathbf{Q}(z)-\overline{\mathbf{Q}}(z)) \rightarrow 0$,

$$
\begin{equation*}
\frac{1}{p} \operatorname{tr}\left(\mathbf{F}(z)+z \mathbf{I}_{p}\right) \overline{\mathbf{Q}}(z) \mathbf{Q}(z)-\frac{1}{n} \sum_{i=1}^{n} \frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i} \rightarrow 0 \tag{4}
\end{equation*}
$$

Heuristic proof of MP law via "leave-one-out" approach

»"guess" $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ such that $\mathbb{E}[\mathbf{Q}] \simeq \overline{\mathbf{Q}}$ and $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.
» for $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]$,

$$
\begin{aligned}
\mathbf{Q}(z)-\overline{\mathbf{Q}}(z) & =\mathbf{Q}(z)\left(\mathbf{F}(z)+z \mathbf{I}_{p}-\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}\right) \overline{\mathbf{Q}}(z) \\
& =\mathbf{Q}(z)\left(\mathbf{F}(z)+z \mathbf{I}_{p}-\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right) \overline{\mathbf{Q}}(z)
\end{aligned}
$$

» for $\overline{\mathbf{Q}}(z) \leftrightarrow \mathbf{Q}(z)$ a DE for $\mathbf{Q}(z)$, look for $\frac{1}{p} \operatorname{tr}(\mathbf{Q}(z)-\overline{\mathbf{Q}}(z)) \rightarrow 0$,

$$
\begin{equation*}
\frac{1}{p} \operatorname{tr}\left(\mathbf{F}(z)+z \mathbf{I}_{p}\right) \overline{\mathbf{Q}}(z) \mathbf{Q}(z)-\frac{1}{n} \sum_{i=1}^{n} \frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i} \rightarrow 0 \tag{4}
\end{equation*}
$$

» $\mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i} / p$ as a quadratic form close to a trace form independent of \mathbf{x}_{i}.

Heuristic proof of MP law via "leave-one-out" approach

»"guess" $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ such that $\mathbb{E}[\mathbf{Q}] \simeq \overline{\mathbf{Q}}$ and $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.
» for $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]$,

$$
\begin{aligned}
\mathbf{Q}(z)-\overline{\mathbf{Q}}(z) & =\mathbf{Q}(z)\left(\mathbf{F}(z)+z \mathbf{I}_{p}-\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}\right) \overline{\mathbf{Q}}(z) \\
& =\mathbf{Q}(z)\left(\mathbf{F}(z)+z \mathbf{I}_{p}-\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right) \overline{\mathbf{Q}}(z)
\end{aligned}
$$

» for $\overline{\mathbf{Q}}(z) \leftrightarrow \mathbf{Q}(z)$ a DE for $\mathbf{Q}(z)$, look for $\frac{1}{p} \operatorname{tr}(\mathbf{Q}(z)-\overline{\mathbf{Q}}(z)) \rightarrow 0$,

$$
\begin{equation*}
\frac{1}{p} \operatorname{tr}\left(\mathbf{F}(z)+z \mathbf{I}_{p}\right) \overline{\mathbf{Q}}(z) \mathbf{Q}(z)-\frac{1}{n} \sum_{i=1}^{n} \frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i} \rightarrow 0 \tag{4}
\end{equation*}
$$

$\gg \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i} / p$ as a quadratic form close to a trace form independent of \mathbf{x}_{i}.
» cannot be applied directly as $\mathbf{Q}(z)$ depends on \mathbf{x}_{i}.

Heuristic proof of MP law via "leave-one-out"

 Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ so that $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.》So $\frac{1}{p} \operatorname{tr}\left(\mathbf{F}(z)+z \mathbf{I}_{p}\right) \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \simeq \frac{\frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z) \mathbf{Q}(z)}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}(z)}$, and "guess" $\mathbf{F}(z) \simeq\left(-z+\frac{1}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}(z)}\right) \mathbf{I}_{p}$. \gg self-consistent equation of limiting ST $m(z)$ as

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ so that $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.
» use Sherman-Morrison to write $\mathbf{Q}(z) \mathbf{x}_{i}=\frac{\mathbf{Q}_{-i}(z) \mathbf{x}_{i}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}(z) \mathbf{x}_{i}}$,

\gg self-consistent equation of limiting ST $m(z)$ as

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ so that $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.
» use Sherman-Morrison to write $\mathbf{Q}(z) \mathbf{x}_{i}=\frac{\mathbf{Q}_{-i}(z) \mathbf{x}_{i}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}(z) \mathbf{x}_{i}}$,
»now $\mathbf{Q}_{-i}(z)=\left(\frac{1}{n} \sum_{j \neq i} \mathbf{x}_{j} \mathbf{x}_{j}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ is independent of \mathbf{x}_{i},

》 quadratic form close to the trace:

\gg self-consistent equation of limiting ST $m(z)$ as

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ so that $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$. » use Sherman-Morrison to write $\mathbf{Q}(z) \mathbf{x}_{i}=\frac{\mathbf{Q}_{-i}(z) \mathbf{x}_{i}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}(z) \mathbf{x}_{i}}$,
»now $\mathbf{Q}_{-i}(z)=\left(\frac{1}{n} \sum_{j \neq i} \mathbf{x}_{j} \mathbf{x}_{j}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ is independent of \mathbf{x}_{i},
» quadratic form close to the trace:

$$
\begin{equation*}
\frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i}=\frac{\frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}_{-i}(z) \mathbf{x}_{i}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}(z) \mathbf{x}_{i}} \simeq \frac{\frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z) \mathbf{Q}_{-i}(z)}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}_{-i}(z)} \tag{5}
\end{equation*}
$$

»So $\frac{1}{p} \operatorname{tr}\left(\mathbf{F}(z)+z \mathbf{I}_{p}\right) \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \simeq \frac{\frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z) \mathbf{Q}(z)}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}(z)}$, and "guess" $\mathbf{F}(z) \simeq\left(-z+\frac{1}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}(z)}\right) \mathrm{I}_{p}$
\gg self-consistent equation of limiting ST $m(z)$ as

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ so that $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.
» use Sherman-Morrison to write $\mathbf{Q}(z) \mathbf{x}_{i}=\frac{\mathbf{Q}_{-i}(z) \mathbf{x}_{i}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}(z) \mathbf{x}_{i}}$,
» now $\mathbf{Q}_{-i}(z)=\left(\frac{1}{n} \sum_{j \neq i} \mathbf{x}_{j} \mathbf{x}_{j}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ is independent of \mathbf{x}_{i},
» quadratic form close to the trace:

$$
\begin{equation*}
\frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i}=\frac{\frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}_{-i}(z) \mathbf{x}_{i}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}(z) \mathbf{x}_{i}} \simeq \frac{\frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z) \mathbf{Q}_{-i}(z)}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}_{-i}(z)} \tag{5}
\end{equation*}
$$

\gg So $\frac{1}{p} \operatorname{tr}\left(\mathbf{F}(z)+z \mathbf{I}_{p}\right) \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \simeq \frac{\frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z) \mathbf{Q}(z)}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}(z)}$, and "guess" $\mathbf{F}(z) \simeq\left(-z+\frac{1}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}(z)}\right) \mathbf{I}_{p}$.》 self-consistent equation of limiting ST $m(z)$ as

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z)$ so that $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$. » use Sherman-Morrison to write $\mathbf{Q}(z) \mathbf{x}_{i}=\frac{\mathbf{Q}_{-i}(z) \mathbf{x}_{i}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}(z) \mathbf{x}_{i}}$,
» now $\mathbf{Q}_{-i}(z)=\left(\frac{1}{n} \sum_{j \neq i} \mathbf{x}_{j} \mathbf{x}_{j}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ is independent of \mathbf{x}_{i},
» quadratic form close to the trace:

$$
\begin{equation*}
\frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \mathbf{x}_{i}=\frac{\frac{1}{p} \mathbf{x}_{i}^{\top} \overline{\mathbf{Q}}(z) \mathbf{Q}_{-i}(z) \mathbf{x}_{i}}{1+\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i}(z) \mathbf{x}_{i}} \simeq \frac{\frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z) \mathbf{Q}_{-i}(z)}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}_{-i}(z)} \tag{5}
\end{equation*}
$$

»So $\frac{1}{p} \operatorname{tr}\left(\mathbf{F}(z)+z \mathbf{I}_{p}\right) \overline{\mathbf{Q}}(z) \mathbf{Q}(z) \simeq \frac{\frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z) \mathbf{Q}(z)}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}(z)}$, and "guess" $\mathbf{F}(z) \simeq\left(-z+\frac{1}{1+\frac{1}{n} \operatorname{tr} \mathbf{Q}(z)}\right) \mathbf{I}_{p}$.
» self-consistent equation of limiting ST $m(z)$ as

$$
\begin{equation*}
\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq m(z)=\frac{1}{-z+\frac{1}{1+\frac{p}{n} \frac{1}{p} \operatorname{tr} \mathbf{Q}(z)}} \simeq \frac{1}{-z+\frac{1}{1+\frac{p}{n} m(z)}} \tag{6}
\end{equation*}
$$

Heuristic proof of MP law via "leave-one-out"

 Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z) \frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$. » we have $\mathbf{F}(z)=\left(-z+\frac{1}{1+\frac{1}{n} \operatorname{tr} \overline{\mathbf{Q}}(z)}\right) \mathbf{I}_{p}$, \gg and $\bar{Q}(z)=m(z) I_{p}$ with $m(z)$ unique Stieltjes transform solution to
\gg has two solutions defined via the two values of the complex square root function (letting $z=\rho e^{\imath \theta}$ for $\rho \geq 0$ and $\theta \in[0,2 \pi), \sqrt{z} \in\left\{ \pm \sqrt{\rho} e^{2 \theta / 2}\right\}$)
only one of which is such that $\Im[z] \Im[m(z)]>0$ by definition of Stieltjes transforms. » apply inverse Stieltjes transform we conclude the proof.

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z) \frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.
» we have $\mathbf{F}(z)=\left(-z+\frac{1}{1+\frac{1}{n} \operatorname{tr} \overline{\mathbf{Q}}(z)}\right) \mathbf{I}_{p}$,
» and $\overline{\mathbf{Q}}(z)=m(z) \mathbf{I}_{p}$ with $m(z)$ unique Stieltjes transform solution to

$$
m(z)=\left(-z+\frac{1}{1+c m(z)}\right)^{-1}, \text { or } z c m^{2}(z)-(1-c-z) m(z)+1=0
$$

» has two solutions defined via the two values of the complex square root function (letting $z=\rho e^{\imath \theta}$ for $\rho \geq 0$ and $\theta \in[0,2 \pi), \sqrt{z} \in\left\{ \pm \sqrt{\rho} e^{\imath \theta / 2}\right\}$)

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z) \frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.
» we have $\mathbf{F}(z)=\left(-z+\frac{1}{1+\frac{1}{n} \operatorname{tr} \overline{\mathbf{Q}}(z)}\right) \mathbf{I}_{p}$,
» and $\overline{\mathbf{Q}}(z)=m(z) \mathbf{I}_{p}$ with $m(z)$ unique Stieltjes transform solution to

$$
m(z)=\left(-z+\frac{1}{1+c m(z)}\right)^{-1}, \text { or } z c m^{2}(z)-(1-c-z) m(z)+1=0
$$

» has two solutions defined via the two values of the complex square root function (letting $z=\rho e^{\imath \theta}$ for $\rho \geq 0$ and $\theta \in[0,2 \pi), \sqrt{z} \in\left\{ \pm \sqrt{\rho} e^{\imath \theta / 2}\right\}$)

$$
m(z)=\frac{1-c-z}{2 c z}+\frac{\sqrt{\left((1+\sqrt{c})^{2}-z\right)\left((1-\sqrt{c})^{2}-z\right)}}{2 c z}
$$

only one of which is such that $\Im[z] \Im[m(z)]>0$ by definition of Stieltjes transforms.

Heuristic proof of MP law via "leave-one-out"

Objective: "guess" the form of $\overline{\mathbf{Q}}(z)=\mathbf{F}^{-1}(z)$ for some $\mathbf{F}(z) \frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \overline{\mathbf{Q}}(z)$.
» we have $\mathbf{F}(z)=\left(-z+\frac{1}{1+\frac{1}{n} \operatorname{tr} \overline{\mathbf{Q}}(z)}\right) \mathbf{I}_{p}$,
» and $\overline{\mathbf{Q}}(z)=m(z) \mathbf{I}_{p}$ with $m(z)$ unique Stieltjes transform solution to

$$
m(z)=\left(-z+\frac{1}{1+c m(z)}\right)^{-1}, \text { or } z c m^{2}(z)-(1-c-z) m(z)+1=0
$$

» has two solutions defined via the two values of the complex square root function (letting $z=\rho e^{\imath \theta}$ for $\rho \geq 0$ and $\theta \in[0,2 \pi), \sqrt{z} \in\left\{ \pm \sqrt{\rho} e^{\imath \theta / 2}\right\}$)

$$
m(z)=\frac{1-c-z}{2 c z}+\frac{\sqrt{\left((1+\sqrt{c})^{2}-z\right)\left((1-\sqrt{c})^{2}-z\right)}}{2 c z}
$$

only one of which is such that $\Im[z] \Im[m(z)]>0$ by definition of Stieltjes transforms.
» apply inverse Stieltjes transform we conclude the proof.

Some thoughts on the "leave-one-out" proof

» in essence: propose $\overline{\mathbf{Q}}(z)$ as an approximation of $\mathbb{E}[\mathbf{Q}(z)]$, but simple to evaluate (via a quadratic equation)
$>$ quadratic form close to the trace: high-dimensional concentration (around the
expectation), anything more than LLN and concentration
\gg leave-one-out analysis of large-scale system: $\frac{1}{p} \operatorname{tr} Q(z) \simeq \frac{1}{p} \operatorname{tr} Q_{-i}(z)$ for n, p large.
$»$ low complexity analysis of large random system: joint behavior of p eigenvalues $\xrightarrow{\text { RMT }} \mathrm{a}$ single deterministic (quadratic) equation
> These are the main intuitions and ingredients for almost everything in RMT and high-dimensional statistics!

Some thoughts on the "leave-one-out" proof

» in essence: propose $\overline{\mathbf{Q}}(z)$ as an approximation of $\mathbb{E}[\mathbf{Q}(z)]$, but simple to evaluate (via a quadratic equation)
» quadratic form close to the trace: high-dimensional concentration (around the expectation), anything more than LLN and concentration
» leave-one-out analysis of large-scale system: $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \mathbf{Q}_{-i}(z)$ for n, p large.
» low complexity analysis of large random system: joint behavior of p eigenvalues $\xrightarrow{\text { RMT }} a$ single deterministic (quadratic) equation
» These are the main intuitions and ingredients for almost everything in RMT and high-dimensional statistics!

Some thoughts on the "leave-one-out" proof

» in essence: propose $\overline{\mathbf{Q}}(z)$ as an approximation of $\mathbb{E}[\mathbf{Q}(z)]$, but simple to evaluate (via a quadratic equation)
» quadratic form close to the trace: high-dimensional concentration (around the expectation), anything more than LLN and concentration
» leave-one-out analysis of large-scale system: $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \mathbf{Q}_{-i}(z)$ for n, p large.
» low complexity analysis of large random system: joint behavior of p eigenvalues $\xrightarrow{\text { RMT }} a$ single deterministic (quadratic) equation
» These are the main intuitions and ingredient for almost everything in RMT and high-dimensional statistics!

Some thoughts on the "leave-one-out" proof

» in essence: propose $\overline{\mathbf{Q}}(z)$ as an approximation of $\mathbb{E}[\mathbf{Q}(z)]$, but simple to evaluate (via a quadratic equation)
» quadratic form close to the trace: high-dimensional concentration (around the expectation), anything more than LLN and concentration
» leave-one-out analysis of large-scale system: $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \mathbf{Q}_{-i}(z)$ for n, p large.
» low complexity analysis of large random system: joint behavior of p eigenvalues $\xrightarrow{\text { RMT }} a$ single deterministic (quadratic) equation
» These are the main intuitions and ingredients for almost everything in RMT and high-dimensional statistics!

Some thoughts on the "leave-one-out" proof

» in essence: propose $\overline{\mathbf{Q}}(z)$ as an approximation of $\mathbb{E}[\mathbf{Q}(z)]$, but simple to evaluate (via a quadratic equation)
» quadratic form close to the trace: high-dimensional concentration (around the expectation), anything more than LLN and concentration
» leave-one-out analysis of large-scale system: $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z) \simeq \frac{1}{p} \operatorname{tr} \mathbf{Q}_{-i}(z)$ for n, p large.
$»$ low complexity analysis of large random system: joint behavior of p eigenvalues $\xrightarrow{\text { RMT }} \mathrm{a}$ single deterministic (quadratic) equation
» These are the main intuitions and ingredients for almost everything in RMT and high-dimensional statistics!

Proof of MP law with Gaussian method

Let $x \sim \mathcal{N}(0,1)$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ a continuously differentiable function having at most polynomial growth and such that $\mathbb{E}\left[f^{\prime}(x)\right]<\infty$. Then,

$$
\begin{equation*}
\mathbb{E}[x f(x)]=\mathbb{E}\left[f^{\prime}(x)\right] \tag{7}
\end{equation*}
$$

In particular, for $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$ with $\mathbf{C} \in \mathbb{R}^{p \times p}$ and $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ a continuously differentiable function with derivatives having at most polynomial growth with respect to p,

$$
\begin{equation*}
\mathbb{E}\left[[\mathbf{x}]_{i} f(\mathbf{x})\right]=\sum_{j=1}^{p}[\mathbf{C}]_{i j} \mathbb{E}\left[\frac{\partial f(\mathbf{x})}{\partial[\mathbf{x}]_{j}}\right] \tag{8}
\end{equation*}
$$

where $\partial / \partial[\mathbf{x}]_{i}$ indicates differentiation with respect to the i-th entry of \mathbf{x}; or, in vector form $\mathbb{E}[\mathbf{x} f(\mathbf{x})]=\mathbf{C} \mathbb{E}[\nabla f(\mathbf{x})]$, with $\nabla f(\mathbf{x})$ the gradient of $f(\mathbf{x})$ with respect to \mathbf{x}.

Proof of MP law with Gaussian method

First observe that $\mathbf{Q}=\frac{1}{\frac{1}{2}} \mathbf{n} \mathbf{X} \mathbf{X}^{\top} \mathbf{Q}-\frac{1}{z} \mathbf{I}_{p}$, so that $\mathbb{E}\left[\mathbf{Q}_{i j}\right]=\frac{1}{z n} \sum_{k=1}^{n} \mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]-\frac{1}{z} \delta_{i j}$, in which $\mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]=\mathbb{E}[x f(x)]$ for $x=\mathbf{X}_{i k}$ and $f(x)=\left[\mathbf{X}^{\top} \mathbf{Q} \mathbf{Q}_{k j}\right.$. Therefore, from Stein's lemma and the fact that $\partial \mathrm{Q}=-\frac{1}{n} \mathrm{Q} \partial\left(X X^{\top}\right) \mathrm{Q}$,

for $\mathbf{E}_{i j}$ the indicator matrix with entry $\left[\mathbf{E}_{i j}\right]_{l m}=\delta_{i l} \delta_{j m}$, so that, summing over k,

Proof of MP law with Gaussian method

First observe that $\mathbf{Q}=\frac{1}{z} \frac{1}{n} \mathbf{X} \mathbf{X}^{\top} \mathbf{Q}-\frac{1}{z} \mathbf{I}_{p}$, so that $\mathbb{E}\left[\mathbf{Q}_{i j}\right]=\frac{1}{z n} \sum_{k=1}^{n} \mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]-\frac{1}{z} \delta_{i j}$, in which $\mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]=\mathbb{E}[x f(x)]$ for $x=\mathbf{X}_{i k}$ and $f(x)=\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}$. Therefore, from Stein's lemma and the fact that $\partial \mathbf{Q}=-\frac{1}{n} \mathbf{Q} \partial\left(\mathbf{X X}^{\top}\right) \mathbf{Q},{ }^{[a]}$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right] & =\mathbb{E}\left[\frac{\partial\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}}{\partial \mathbf{X}_{i k}}\right]=\mathbb{E}\left[\mathbf{E}_{i k}^{\top} \mathbf{Q}\right]_{k j}-\mathbb{E}\left[\frac{1}{n} \mathbf{X}^{\top} \mathbf{Q}\left(\mathbf{E}_{i k} \mathbf{X}^{\top}+\mathbf{X} \mathbf{E}_{i k}^{\top}\right) \mathbf{Q}\right]_{k j} \\
& =\mathbb{E}\left[\mathbf{Q}_{i j}\right]-\mathbb{E}\left[\frac{1}{n}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k i}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]-\mathbb{E}\left[\frac{1}{n}\left[\mathbf{X}^{\top} \mathbf{Q} \mathbf{X}\right]_{k k} \mathbf{Q}_{i j}\right]
\end{aligned}
$$

for $\mathbf{E}_{i j}$ the indicator matrix with entry $\left[\mathbf{E}_{i j}\right]_{l m}=\delta_{i l} \delta_{j m}$, so that, summing over k,

[a] This is the matrix version of $d(1 / x)=-d x / x^{2}$.

Proof of MP law with Gaussian method

First observe that $\mathbf{Q}=\frac{1}{z} \frac{1}{n} \mathbf{X} \mathbf{X}^{\top} \mathbf{Q}-\frac{1}{z} \mathbf{I}_{p}$, so that $\mathbb{E}\left[\mathbf{Q}_{i j}\right]=\frac{1}{z n} \sum_{k=1}^{n} \mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]-\frac{1}{z} \delta_{i j}$, in which $\mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]=\mathbb{E}[x f(x)]$ for $x=\mathbf{X}_{i k}$ and $f(x)=\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}$. Therefore, from Stein's lemma and the fact that $\partial \mathbf{Q}=-\frac{1}{n} \mathbf{Q} \partial\left(\mathbf{X X}^{\top}\right) \mathbf{Q},{ }^{[a]}$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right] & =\mathbb{E}\left[\frac{\partial\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}}{\partial \mathbf{X}_{i k}}\right]=\mathbb{E}\left[\mathbf{E}_{i k}^{\top} \mathbf{Q}\right]_{k j}-\mathbb{E}\left[\frac{1}{n} \mathbf{X}^{\top} \mathbf{Q}\left(\mathbf{E}_{i k} \mathbf{X}^{\top}+\mathbf{X} \mathbf{E}_{i k}^{\top}\right) \mathbf{Q}\right]_{k j} \\
& =\mathbb{E}\left[\mathbf{Q}_{i j}\right]-\mathbb{E}\left[\frac{1}{n}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k i}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]-\mathbb{E}\left[\frac{1}{n}\left[\mathbf{X}^{\top} \mathbf{Q} \mathbf{X}_{k k} \mathbf{Q}_{i j}\right]\right.
\end{aligned}
$$

for $\mathbf{E}_{i j}$ the indicator matrix with entry $\left[\mathbf{E}_{i j}\right]_{l m}=\delta_{i l} \delta_{j m}$, so that, summing over k,

$$
\frac{1}{z} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]=\frac{1}{z} \mathbb{E}\left[\mathbf{Q}_{i j}\right]-\frac{1}{z} \frac{1}{n^{2}} \mathbb{E}\left[\mathbf{Q}_{i j} \operatorname{tr}\left(\mathbf{Q} \mathbf{X} \mathbf{X}^{\top}\right)\right]-\frac{1}{z} \frac{1}{n^{2}} \mathbb{E}\left[\mathbf{Q X} \mathbf{X}^{\top} \mathbf{Q}\right]_{i j}
$$

[a] This is the matrix version of $d(1 / x)=-d x / x^{2}$.

Proof of MP law with Gaussian method

We have

$$
\frac{1}{z} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]=\frac{1}{z} \mathbb{E}\left[\mathbf{Q}_{i j}\right]-\frac{1}{z} \frac{1}{n^{2}} \mathbb{E}\left[\mathbf{Q}_{i j} \operatorname{tr}\left(\mathbf{Q} \mathbf{X} \mathbf{X}^{\top}\right)\right]-\frac{1}{z} \frac{1}{n^{2}} \mathbb{E}\left[\mathbf{Q} \mathbf{X} \mathbf{X}^{\top} \mathbf{Q}\right]_{i j}
$$

The term in the second line has vanishing operator norm (of order $O\left(n^{-1}\right)$) as $n, p \rightarrow \infty$.
Also, $\operatorname{tr}\left(\mathbf{Q X X}{ }^{\top}\right)=n p+z n \operatorname{tr} \mathbf{Q}$. As a result, matrix-wise, we obtain

$$
\mathbb{E}[\mathbf{Q}]+\frac{1}{z} \mathbf{I}_{p}=\mathbb{E}\left[\mathbf{X}_{\cdot k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k \cdot}\right]=\frac{1}{z} \mathbb{E}[\mathbf{Q}]-\frac{1}{z} \frac{1}{n} \mathbb{E}[\mathbf{Q}(p+z \operatorname{tr} \mathbf{Q})]+o_{\|\cdot\|}(1),
$$

where $\mathbf{X}_{\cdot k}$ and \mathbf{X}_{k}. is the k-th column and row of \mathbf{X}, respectively. As the random $\frac{1}{p} \operatorname{tr} \mathbf{Q} \rightarrow m(z)$ as $n, p \rightarrow \infty$, take it out of the expectation in the limit and

Proof of MP law with Gaussian method

We have

$$
\frac{1}{z} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]=\frac{1}{z} \mathbb{E}\left[\mathbf{Q}_{i j}\right]-\frac{1}{z} \frac{1}{n^{2}} \mathbb{E}\left[\mathbf{Q}_{i j} \operatorname{tr}\left(\mathbf{Q} \mathbf{X X}^{\top}\right)\right]-\frac{1}{z} \frac{1}{n^{2}} \mathbb{E}\left[\mathbf{Q} \mathbf{X} \mathbf{X}^{\top} \mathbf{Q}\right]_{i j}
$$

The term in the second line has vanishing operator norm (of order $O\left(n^{-1}\right)$) as $n, p \rightarrow \infty$. Also, $\operatorname{tr}\left(\mathbf{Q X X}{ }^{\boldsymbol{\top}}\right)=n p+z n \operatorname{tr} \mathbf{Q}$. As a result, matrix-wise, we obtain

$$
\mathbb{E}[\mathbf{Q}]+\frac{1}{z} \mathbf{I}_{p}=\mathbb{E}\left[\mathbf{X}_{\cdot k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k}\right]=\frac{1}{z} \mathbb{E}[\mathbf{Q}]-\frac{1}{z} \frac{1}{n} \mathbb{E}[\mathbf{Q}(p+z \operatorname{tr} \mathbf{Q})]+o_{\|\cdot\|}(1),
$$

where $\mathbf{X}_{\cdot k}$ and \mathbf{X}_{k}. is the k-th column and row of \mathbf{X}, respectively. As the random
$\frac{1}{p} \operatorname{tr} Q \rightarrow m(z)$ as $n, p \rightarrow \infty$, take it out of the expectation in the limit and

$$
\mathbb{E}[\mathbf{Q}](1-p / n-z-p / n \cdot z m(z))=\mathbf{I}_{p}+o_{\|\cdot\|}(1)
$$

Proof of MP law with Gaussian method

We have

$$
\frac{1}{z} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\mathbf{X}_{i k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k j}\right]=\frac{1}{z} \mathbb{E}\left[\mathbf{Q}_{i j}\right]-\frac{1}{z} \frac{1}{n^{2}} \mathbb{E}\left[\mathbf{Q}_{i j} \operatorname{tr}\left(\mathbf{Q} \mathbf{X X}^{\top}\right)\right]-\frac{1}{z} \frac{1}{n^{2}} \mathbb{E}\left[\mathbf{Q} \mathbf{X} \mathbf{X}^{\top} \mathbf{Q}\right]_{i j}
$$

The term in the second line has vanishing operator norm (of order $O\left(n^{-1}\right)$) as $n, p \rightarrow \infty$. Also, $\operatorname{tr}\left(\mathbf{Q X X}{ }^{\boldsymbol{\top}}\right)=n p+z n \operatorname{tr} \mathbf{Q}$. As a result, matrix-wise, we obtain

$$
\mathbb{E}[\mathbf{Q}]+\frac{1}{z} \mathbf{I}_{p}=\mathbb{E}\left[\mathbf{X}_{\cdot k}\left[\mathbf{X}^{\top} \mathbf{Q}\right]_{k}\right]=\frac{1}{z} \mathbb{E}[\mathbf{Q}]-\frac{1}{z} \frac{1}{n} \mathbb{E}[\mathbf{Q}(p+z \operatorname{tr} \mathbf{Q})]+o_{\|\cdot\|}(1),
$$

where $\mathbf{X}_{\cdot k}$ and \mathbf{X}_{k}. is the k-th column and row of \mathbf{X}, respectively. As the random $\frac{1}{p} \operatorname{tr} \mathbf{Q} \rightarrow m(z)$ as $n, p \rightarrow \infty$, take it out of the expectation in the limit and

$$
\mathbb{E}[\mathbf{Q}](1-p / n-z-p / n \cdot z m(z))=\mathbf{I}_{p}+o_{\|\cdot\|}(1)
$$

which, taking the trace to identify $m(z)$, concludes the proof.

For $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$ with $\mathbf{C} \in \mathbb{R}^{p \times p}$ and $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ continuously differentiable with derivatives having at most polynomial growth with respect to p,

$$
\operatorname{Var}[f(\mathbf{x})] \leq \sum_{i, j=1}^{p}[\mathbf{C}]_{i j} \mathbb{E}\left[\frac{\partial f(\mathbf{x})}{\partial[\mathbf{x}]_{i}} \frac{\partial f(\mathbf{x})}{\partial[\mathbf{x}]_{j}}\right]=\mathbb{E}\left[(\nabla f(\mathbf{x}))^{\top} \mathbf{C} \nabla f(\mathbf{x})\right],
$$

where we denote $\nabla f(\mathbf{x})$ the gradient of $f(\mathbf{x})$ with respect to \mathbf{x}.
Nash-Poincaré inequality

> allow to bound the "fluctuation" of random functionals, e.g., the ST $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z)$, etc.

> to further establish stochastic convergence (in probability or almost surely) as
$n, p \rightarrow \infty$.

For $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$ with $\mathbf{C} \in \mathbb{R}^{p \times p}$ and $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ continuously differentiable with derivatives having at most polynomial growth with respect to p,

$$
\operatorname{Var}[f(\mathbf{x})] \leq \sum_{i, j=1}^{p}[\mathbf{C}]_{i j} \mathbb{E}\left[\frac{\partial f(\mathbf{x})}{\partial[\mathbf{x}]_{i}} \frac{\partial f(\mathbf{x})}{\partial[\mathbf{x}]_{j}}\right]=\mathbb{E}\left[(\nabla f(\mathbf{x}))^{\top} \mathbf{C} \nabla f(\mathbf{x})\right],
$$

where we denote $\nabla f(\mathbf{x})$ the gradient of $f(\mathbf{x})$ with respect to \mathbf{x}.
Nash-Poincaré inequality
» allow to bound the "fluctuation" of random functionals, e.g., the ST $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z)$, etc.
\gg to further establish stochastic convergence (in probability or almost surely) as
$n, p \rightarrow \infty$.

For $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$ with $\mathbf{C} \in \mathbb{R}^{p \times p}$ and $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ continuously differentiable with derivatives having at most polynomial growth with respect to p,

$$
\operatorname{Var}[f(\mathbf{x})] \leq \sum_{i, j=1}^{p}[\mathbf{C}]_{i j} \mathbb{E}\left[\frac{\partial f(\mathbf{x})}{\partial[\mathbf{x}]_{i}} \frac{\partial f(\mathbf{x})}{\partial[\mathbf{x}]_{j}}\right]=\mathbb{E}\left[(\nabla f(\mathbf{x}))^{\top} \mathbf{C} \nabla f(\mathbf{x})\right],
$$

where we denote $\nabla f(\mathbf{x})$ the gradient of $f(\mathbf{x})$ with respect to \mathbf{x}.

> Nash-Poincaré inequality
» allow to bound the "fluctuation" of random functionals, e.g., the ST $\frac{1}{p} \operatorname{tr} \mathbf{Q}(z)$, etc.
» to further establish stochastic convergence (in probability or almost surely) as $n, p \rightarrow \infty$.

Extension to non-Gaussian case

For $x \in \mathbb{R}$ a random variable with zero mean and unit variance, $y \sim \mathcal{N}(0,1)$, and f a $(k+2)$-times differentiable function with bounded derivatives,

$$
\mathbb{E}[f(x)]-\mathbb{E}[f(y)]=\sum_{\ell=2}^{k} \frac{\kappa_{\ell+1}}{2 \ell!} \int_{0}^{1} \mathbb{E}\left[f^{(\ell+1)} x(t)\right] t^{(\ell-1) / 2} d t+\epsilon_{k},
$$

where κ_{ℓ} is the $\ell^{\text {th }}$ cumulant of $x, x(t)=\sqrt{t} x+(1-\sqrt{t}) y$, and $\left|\epsilon_{k}\right| \leq C_{k} \mathbb{E}\left[|x|^{k+2}\right]$. $\sup _{t}\left|f^{(k+2)}(t)\right|$ for some constant C_{k} only dependent on k.

Outline

SCM and MP law

Proof of Marc̆enko-Pastur law

Proof of semicircle law

Generalized MP for SCM

Wigner semicircle law

Let $\mathbf{X} \in \mathbb{R}^{n \times n}$ be symmetric and such that the $\mathbf{X}_{i j} \in \mathbb{R}, j \geq i$, are independent zero mean and unit variance random variables. Then, for $\mathbf{Q}(z)=\left(\mathbf{X} / \sqrt{n}-z \mathbf{I}_{n}\right)^{-1}$, as $n \rightarrow \infty$,

$$
\begin{equation*}
\mathbf{Q}(z) \leftrightarrow \overline{\mathbf{Q}}(z), \quad \overline{\mathbf{Q}}(z)=m(z) \mathbf{I}_{n}, \tag{9}
\end{equation*}
$$

with $m(z)$ the unique ST solution to

$$
\begin{equation*}
m^{2}(z)+z m(z)+1=0 . \tag{10}
\end{equation*}
$$

The function $m(z)$ is the Stieltjes transform of the probability measure

$$
\begin{equation*}
\mu(d x)=\frac{1}{2 \pi} \sqrt{\left(4-x^{2}\right)^{+}} d x \tag{11}
\end{equation*}
$$

known as the Wigner semicircle law.

Proof of semicircle law: leave one out heuristic

Let $\mathbf{Q}=\left(\mathbf{X} / \sqrt{n}-z \mathbf{I}_{n}\right)^{-1}$ be the resolvent, by diagonal entries of matrix inverse lemma,

$$
\mathbf{Q}_{i i}=\left(\mathbf{X}_{i i} / \sqrt{n}-z-\mathbf{x}_{i}^{\top} \mathbf{Q}_{-i} \mathbf{x}_{i} / n\right)^{-1}
$$

with $[\mathbf{Q}]_{-i}=\left(\mathbf{X}_{-i} / \sqrt{n}-z \mathbf{I}_{n-1}\right)^{-1}, \mathbf{X}_{-i} \in \mathbb{R}^{(n-1) \times(n-1)}$ the matrix obtained by deleting the i-th row and column from \mathbf{X}, and $\mathbf{x}_{i} \in \mathbb{R}^{n-1}$ the i-th column/row of \mathbf{X} with its i-th entry removed. Summing over i,

$$
\frac{1}{n} \operatorname{tr} \mathbf{Q}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\frac{1}{\sqrt{n}} \mathbf{X}_{i i}-z-\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i} \mathbf{x}_{i}}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{-z-\frac{1}{n} \mathbf{x}_{i}^{\top} \mathbf{Q}_{-i} \mathbf{x}_{i}}+o(1)
$$

since $\frac{1}{\sqrt{n}} \boldsymbol{X}_{i i}$ vanishes as $n \rightarrow \infty$. By quadratic form close to the trace, for large n,

$$
(\operatorname{tr} \mathbf{Q} / n)^{2}+z \operatorname{tr} \mathbf{Q} / n+1 \simeq o(1)
$$

This is $m^{2}(z)+z m(z)+1=0$ and thus the conclusion.

Proof of semicircle law: Gaussian method

Similar to the proof of the Marčenko-Pastur law, for $\mathbf{Q}=\left(\mathbf{X} / \sqrt{n}-z \mathbf{I}_{n}\right)^{-1}$,

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \mathbb{E}[\mathbf{X Q}]=\mathbf{I}_{n}+z \mathbb{E}[\mathbf{Q}] \tag{12}
\end{equation*}
$$

so that by integration by parts and the fact that $\partial \mathbf{Q}=-\frac{1}{\sqrt{n}} \mathbf{Q}(\partial \mathbf{X}) \mathbf{Q}$,

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{Q}_{i j}\right] & =\frac{1}{z} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \mathbb{E}\left[\mathbf{X}_{i k} \mathbf{Q}_{k j}\right]-\frac{1}{z} \delta_{i j}=\frac{1}{z} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \mathbb{E}\left[\frac{\partial \mathbf{Q}_{k j}}{\partial \mathbf{X}_{i k}}\right]-\frac{1}{z} \delta_{i j} \\
& =-\frac{1}{z} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\mathbf{Q}_{k i} \mathbf{Q}_{k j}+\mathbf{Q}_{k k} \mathbf{Q}_{i j}\right]-\frac{1}{z} \delta_{i j}=-\frac{1}{z} \frac{1}{n} \mathbb{E}\left[\left[\mathbf{Q}^{2}\right]_{i j}+\mathbf{Q}_{i j} \cdot \operatorname{tr} \mathbf{Q}\right]-\frac{1}{z} \delta_{i j} .
\end{aligned}
$$

Proof of semicircle law: Gaussian method

So in matrix form

$$
\begin{equation*}
\mathbb{E}[\mathbf{Q}]=-\frac{1}{z} \frac{1}{n} \mathbb{E}\left[\mathbf{Q}^{2}\right]-\frac{1}{z} \mathbb{E}[\mathbf{Q}] \cdot \frac{1}{n} \operatorname{tr} \mathbb{E}[\mathbf{Q}]-\frac{1}{z} \mathbf{I}_{n}+o_{\|\cdot\|}(1), \tag{13}
\end{equation*}
$$

where we used the fact that $\frac{1}{n} \operatorname{tr} \mathbf{Q}-\frac{1}{n} \operatorname{tr} \mathbb{E} \mathbf{Q} \xrightarrow{\text { a.s. }} 0$ as $n \rightarrow \infty$ and thus be asymptotically "taken out of the expectation" (again high-dimensional concentration).
First RHS matrix has asymptotically vanishing operator norm as $n, p \rightarrow \infty$,

$$
\mathbb{E}[\mathbf{Q}]=-\frac{1}{z}\left(1+\frac{1}{z} \frac{1}{n} \operatorname{tr} \mathbb{E}[\mathbf{Q}]\right)^{-1} \mathbf{I}_{n}+o_{\|\cdot\|}(1)
$$

which, after taking the trace and using $\frac{1}{n} \operatorname{tr} \mathbb{E}[\mathbf{Q}(z)]-m(z) \rightarrow 0$, gives the limiting formula

$$
m^{2}(z)+z m(z)+1=0 .
$$

Figure: Histogram of the eigenvalues of \mathbf{X} / \sqrt{n} versus Wigner semicircle law, for standard Gaussian \mathbf{X} and $n=1000$.

Outline

SCM and MP law

Proof of Marčenko-Pastur law

Proof of semicircle law

Generalized MP for SCM

SCM and generalized Marčenko-Pastur law

Let $\mathbf{X}=\mathbf{C}^{\frac{1}{2}} \mathbf{Z} \in \mathbb{R}^{p \times n}$ with symmetric nonnegative definite $\mathbf{C} \in \mathbb{R}^{p \times p}, \mathbf{Z} \in \mathbb{R}^{p \times n}$ having independent zero mean and unit variance entries. Then, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in$ $(0, \infty)$, for $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ and $\tilde{\mathbf{Q}}(z)=\left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}-z \mathbf{I}_{n}\right)^{-1}$,

$$
\mathbf{Q}(z) \leftrightarrow \overline{\mathbf{Q}}(z)=-\frac{1}{z}\left(\mathbf{I}_{p}+\tilde{m}_{p}(z) \mathbf{C}\right)^{-1}, \quad \tilde{\mathbf{Q}}(z) \leftrightarrow \overline{\tilde{\mathbf{Q}}}(z)=\tilde{m}_{p}(z) \mathbf{I}_{n},
$$

with $\tilde{m}_{p}(z)$ unique solution to $\tilde{m}_{p}(z)=\left(-z+\frac{1}{n} \operatorname{tr} \mathbf{C}\left(\mathbf{I}_{p}+\tilde{m}_{p}(z) \mathbf{C}\right)^{-1}\right)^{-1}$.
If the empirical spectral measure of \mathbf{C} converges $\mu_{\mathbf{C}} \rightarrow \nu$ as $p \rightarrow \infty$, then $\mu_{\frac{1}{n}} \mathbf{X} \mathbf{X}^{\top} \rightarrow \mu$, $\mu_{\frac{1}{n}} \mathbf{X}^{\top} \mathbf{X} \rightarrow \tilde{\mu}$ where $\mu, \tilde{\mu}$ admitting Stieltjes transforms $m(z)$ and $\tilde{m}(z)$ such that

$$
\begin{equation*}
m(z)=\frac{1}{c} \tilde{m}(z)+\frac{1-c}{c z}, \quad \tilde{m}(z)=\left(-z+c \int \frac{t \nu(d t)}{1+\tilde{m}(z) t}\right)^{-1} \tag{14}
\end{equation*}
$$

A few remarks on the generalized MP law

»different from the explicit MP law, the generalized MP is in general implicit
> > we have explicitness in essence due to with $\mathbf{C}=\mathbf{I}_{p}$, the implicit equation boils down to a quadratic equation that has explicit solution
> » if \mathbf{C} has discrete eigenvalues, e.g., $\mu_{\mathrm{C}}=\frac{1}{3}\left(\delta_{1}+\delta_{3}+\delta_{5}\right)$, then becomes a (possibly higher-order) polynomial equation, which may admit explicit solution (up to fourth order) using radicals
> » the uniqueness of (Stieltes transform) solution is ensured within a certain region on the complex plane, there may exist solutions $\tilde{m}(z)$ with negative imaginary parts »numerical evaluation of $\tilde{m}(z)$: note that the equation

A few remarks on the generalized MP law

»different from the explicit MP law, the generalized MP is in general implicit
» we have explicitness in essence due to with $\mathbf{C}=\mathbf{I}_{p}$, the implicit equation boils down to a quadratic equation that has explicit solution
$>$ if Chas discrete eigenvalues, e.g., $\mu \mathrm{C}=\frac{1}{3}\left(\delta_{1}+\delta_{3}+\delta_{5}\right)$, then becomes a (possibly
higher-order) polynomial equation, which may admit explicit solution (up to fourth
order) using radicals
\gg the uniqueness of (Stieltjes transform) solution is ensured within a certain region on
the complexplane, there may exist solutions $\tilde{m}(z)$ with negative imaginary parts
\gg numerical evaluation of $m(z)$: note that the equation

A few remarks on the generalized MP law

»different from the explicit MP law, the generalized MP is in general implicit
» we have explicitness in essence due to with $\mathbf{C}=\mathbf{I}_{p}$, the implicit equation boils down to a quadratic equation that has explicit solution
» if \mathbf{C} has discrete eigenvalues, e.g., $\mu_{\mathbf{C}}=\frac{1}{3}\left(\delta_{1}+\delta_{3}+\delta_{5}\right)$, then becomes a (possibly higher-order) polynomial equation, which may admit explicit solution (up to fourth order) using radicals
\gg the uniqueness of (Stieltjes transform) solution is ensured within a certain region on the complex plane, there may exist solutions $\tilde{m}(z)$ with negative imaginary parts > numerical evaluation of $\tilde{m}(z)$: note that the equation

A few remarks on the generalized MP law

»different from the explicit MP law, the generalized MP is in general implicit
» we have explicitness in essence due to with $\mathbf{C}=\mathbf{I}_{p}$, the implicit equation boils down to a quadratic equation that has explicit solution
» if \mathbf{C} has discrete eigenvalues, e.g., $\mu_{\mathbf{C}}=\frac{1}{3}\left(\delta_{1}+\delta_{3}+\delta_{5}\right)$, then becomes a (possibly higher-order) polynomial equation, which may admit explicit solution (up to fourth order) using radicals
» the uniqueness of (Stieltjes transform) solution is ensured within a certain region on the complex plane, there may exist solutions $\tilde{m}(z)$ with negative imaginary parts
》 numerical evaluation of $\tilde{m}(z)$: note that the equation

A few remarks on the generalized MP law

»different from the explicit MP law, the generalized MP is in general implicit
» we have explicitness in essence due to with $\mathbf{C}=\mathbf{I}_{p}$, the implicit equation boils down to a quadratic equation that has explicit solution
» if \mathbf{C} has discrete eigenvalues, e.g., $\mu_{\mathbf{C}}=\frac{1}{3}\left(\delta_{1}+\delta_{3}+\delta_{5}\right)$, then becomes a (possibly higher-order) polynomial equation, which may admit explicit solution (up to fourth order) using radicals
» the uniqueness of (Stieltjes transform) solution is ensured within a certain region on the complex plane, there may exist solutions $\tilde{m}(z)$ with negative imaginary parts
»numerical evaluation of $\tilde{m}(z)$: note that the equation

$$
\begin{equation*}
\tilde{m}_{p}(z)=\left(-z+\frac{1}{n} \operatorname{tr} \mathbf{C}\left(\mathbf{I}_{p}+\tilde{m}_{p}(z) \mathbf{C}\right)^{-1}\right)^{-1} \tag{15}
\end{equation*}
$$

naturally defines a fixed-point equation.

Figure: Histogram of the eigenvalues of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}, \mathbf{X}=\mathbf{C}^{\frac{1}{2}} \mathbf{Z} \in \mathbb{R}^{p \times n},[\mathbf{Z}]_{i j} \sim \mathcal{N}(0,1), n=3000$; for $p=300$ and \mathbf{C} having spectral measure $\mu_{\mathbf{C}}=\frac{1}{3}\left(\delta_{1}+\delta_{3}+\delta_{7}\right)($ top $)$ and $\mu_{\mathbf{C}}=\frac{1}{3}\left(\delta_{1}+\delta_{3}+\delta_{5}\right)$ (bottle).

