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What we will have today

» sample covariance matrix and the limiting Mar¢enko—Pastur law
» Wigner matrix and the limiting semicircle law

» proof via Bai and Silverstein approach and/or Gaussian tool
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Sample covariance matrix in the large n, p regime

» Problem: estimate covariance C € RP*? from n data samples xq, ..., x, with

X; ~ N(O, C),

» Maximum likelihood sample covariance matrix with entry-wise convergence
1 n
. T .
C=- ;xixi eRPP, [Cly — [Cy
i

almost surely as n — oo: optimal for n > p (or, for p “small”).

» In the regime n ~ p, conventional wisdom breaks down: for C = I, withn < p, C has
at least p — n zero eigenvalues:

|IC—C|| 40, n,p—oc| = eigenvalue mismatch and not consistent!

» dueto [[Allx < [|Al < pl|A]l for A € RP*P and ||A||oc = max; [Ayl.
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SCM and MP law

What about n = 100p? For C = I,,,

I Empirical eigenvalues of el [

Density
|
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0.8 1 1.2
Figure: Eigenvalue distribution of C versus Marcenko-Pastur law, p = 500, n = 50 000.
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SCM and MP law
What about n = 100p? For C =1, as n,p — oo with p/n — ¢ € (0, 00): MP law

(x —E_)*T(E4 —x)Tdx

() = (1 - ) a() +
(1—+/0)? Ex = (1++/c)?and (x)* = max(x,0).
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What about n = 100p? For C =1, as n,p — oo with p/n — ¢ € (0, 00): MP law

(x —E_)*T(E4 —x)Tdx

() = (1 - ) a() +
(1—+/0)? Ex = (1++/c)?and (x)* = max(x,0).

Close match!
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SCM and MP law
What about n = 100p? For C =1, as n,p — oo with p/n — ¢ € (0, 00): MP law

(x —E_)*T(E4 —x)Tdx

1
1 I+
pdx) = (1—c ")"o(x) + Prex
where E_ = (1 —/c)%, E; = (14 /c)? and (x)* = max(x,0). Close match!

I Empirical eigenvalues of Cc
4 Margenko-Pastur law I
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Figure: Eigenvalue distribution of C versus Martenko-Pastur law, p = 500, n = 50 000.

» eigenvalues span on [E_ = (1—/c)?, E4 = (14++/c)?.
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SCM and MP law
What about n = 100p? For C =1, as n,p — oo with p/n — ¢ € (0, 00): MP law

V(x —E_)*(E; —x)tdx

pld) = (1= ) F6(0) + 5

where E_ = (1 —/c)%, E; = (14 /c)? and (x)* = max(x,0). Close match!

B Empirical eigenvalues of Cc
4 Margenko-Pastur law (|

s Population eigenvalue

Density

0

1 1.2
Figure: Eigenvalue distribution of C versus Martenko-Pastur law, p = 500, n = 50 000.

» eigenvalues span on [E_ = (1—/c)?, E4 = (14++/c)?.
» for n = 100p, on a range of £2/c = £0.2 around the population eigenvalue 1.

0.8
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Marcéenko—Pastur law

Let X € RP*" be a random matrix with i.i.d. entries of zero mean and o2 variance.
Then, as n,p — oo with p/n — ¢ € (0, c0), with probability one, the empirical spectral
measure /i1y, of XXT converges weakly to the probability measure p

1

pldx) = (1= ") *o(x) + rcolx

V(x— 02E_ ) (02E, — x)* d, (1)

where E4 = (1 ++/c)? and (x)* = max(0, x). In particular, with 02 = 1,

() = (1) o(0) + g/ (v — E)* (B — )" dx, 2)

which is known as the Marcéenko-Pastur law.

Maréenko—Pastur law
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SCM and MP law
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Figure: Marcenko-Pastur distribution for different values of c.
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Outline
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Proof of Marcenko—Pastur law

Workflow: random matrix X of interest = resolvent Qx(z) and ST % tr Qx(z) = mx(z)
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the normalized counting measure of the eigenvalues A1 (X), ..., \y(X) of X, i.e., ux =

% Zle dx(x), Where dy represents the Dirac measure at x.

Empirical Spectral Distribution (ESD)
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Proof of Marcenko—Pastur law

Workflow: random matrix X of interest = resolvent Qx(z) and ST % tr Qx(z) = mx(z)
= study the limiting ST mx(z) — m(z) = inverse ST to get limiting pix — p.

For symmetric X € RP*?, the empirical spectral distribution (ESD) px of X is defined as
the normalized counting measure of the eigenvalues A1 (X), ..., \y(X) of X, i.e., ux =
LS 6 xi(x), where dy represents the Dirac measure at x.

p
Empirical Spectral Distribution (ESD)

For a real probability measure ; with support supp(s), the Stieltjes transform m,,(z) is
defined, for all z € C \ supp(u), as

m(z) = [ 4 3)

t—z'

Stieltjes transform
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Heuristic proof of MP law via “leave-one-out” approach
» “guess” Q(z) = F~'(z) for some F(z) such that E[Q] ~ Q and , tr Q(z) =~ ; tr Q(2).
» for X = [x1, .. ., Xa),

Q) - Q) = Q) (Fa) + 21, - XXT) Q)

= Q(z) <F(z) +zI, — iixﬂ) Q(z).

» for Q(z) + Q(z) a DE for Q(z), look for 1 t(Q(z) - Q(lzz)l) )

(R +21)Q(EQ() — 3" LTo@a@x -0 (4)

n
i=1 P
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Heuristic proof of MP law via “leave-one-out” approach

» “guess” Q(z) = F~1(z) for some F(z) such that E[Q] ~ Q and %tr Q(z) ~ %tr Q(2).
» for X = [xq,...,Xy],

Q) - Q) = Q) (Fa) + 21, - XXT) Q)
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Heuristic proof of MP law via “leave-one-out” approach

» “guess” Q(z) = F~1(z) for some F(z) such that E[Q] ~ Q and %tr Q(z) ~ %tr Q(2).
» for X = [xq,...,Xy],

Q) - Q) = Q) (Fa) + 21, - XXT) Q)

= Q(z) <F(z) + 21, — TlleixiT> Q(z2).
i=1
» for Q(z) <+ Q(z) a DE for Q(z), look for %tr(Q(z) —Q(z)) =0,
| (F(E) +21,)Q10) — 1 > Q0RO @)
i=1

» x] Q(z)Q(z)x;/p as a quadratic form close to a trace form independent of x;.
» cannot be applied directly as Q(z) depends on x;.
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Heuristic proof of MP law via “leave-one-out”

Objective: “guess” the form of Q(z) = F~!(z) for some F(z) so that % trQ(z) ~

» use Sherman-Morrison to write Q(z)x; = — Qi@

1+%X1TQ,,'(Z)X,' ’

» now Q_;(z) = (% Dz xjx]T — zI,)~! is independent of x;,

» quadratic form close to the trace:

;xfc‘z(z)Q(z)xi _

1xTQ(2)Q_(2)x;

~

LrQ(2)Q-i(2)

1+ IxTQ_i(z)x:

1

n

trQ_i(z)

%trQ(z).

(5)
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Heuristic proof of MP law via “leave-one-out”

Objective: “guess” the form of Q(z) = F~!(z) for some F(z) so that % trQ(z) ~ % tr Q(z).
» use Sherman—-Morrison to write Q(z)x; = %
» now Q_;(z) = (% Dz xjx — zI,)~! is independent of x;,
» quadratic form close to the trace:
N ®)
p 1+ IxTQ i(z)x;: ~ 1+ 1itrQ_i(z)
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Heuristic proof of MP law via “leave-one-out”

Objective: “guess” the form of Q(z) = F~!(z) for some F(z) so that % trQ(z) ~ % tr Q(z).
» use Sherman-Morrison to write Q(z)x; = %%;’7(%,
s o el ) e ndependent of
Lroi0u - P ey r QD8 ®
p 1+ ExiTQ_i(z)xi 14 Lgr Q_i(2)

n

= , 10(2)Q(z)
» So %tr(F(z) +2z1,)Q(2)Q(z) ~ pl—&-%tirQ(z)

» self-consistent equation of limiting ST m(z) as

, and “guess” F(z) ~ <_Z + 1+1t1rQ(Z)> -

1 1 1
—trQ(z) =~ m(z) = — 1 = — pa—— (6)
P ETIITRQRE T Tl
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Heuristic proof of MP law via “leave-one-out”
Objective: “guess” the form of Q(z) = F~!(z) for some F(z ) 5 LtrQ(z) ~ % rQ(z).

» we haVe F(Z) = ( zZ+ Htl@()) IP'
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Heuristic proof of MP law via “leave-one-out”

Objective: “guess” the form of Q(z) = F~!(z) for some F(z) % trQ(z) ~ % tr Q(z).
» we have F(Z) = (Z + w) IP'
» and Q(z) = m(z)I, with m(z) unique Stieltjes transform solution to
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Heuristic proof of MP law via “leave-one-out”

Objective: “guess” the form of Q(z) = F~!(z) for some F(z) % trQ(z) ~ % tr Q(z).
» we have F(Z) = (Z + w) IP'
» and Q(z) = m(z)I, with m(z) unique Stieltjes transform solution to
1 - )
m(z) ( z+ 7 n cm(z)> ,orzem”(z) — (1 —c—z)m(z) + 0

» has two solutions defined via the two values of the complex square root function
(letting z = pe*? for p > 0 and 6 € [0,27), vz € {£/pe'?/?})

, VO VP2 VP —2)
2cz 2cz ’
only one of which is such that [z][m(z)] > 0 by definition of Stieltjes transforms.

m(z)zl—c—z
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Heuristic proof of MP law via “leave-one-out”

Objective: “guess” the form of Q(z) = F~!(z) for some F(z) % trQ(z) ~ % tr Q(z).
» we have F(Z) = (Z + w) IP'
» and Q(z) = m(z)I, with m(z) unique Stieltjes transform solution to
1 - )
m(z) ( z+ 7 n cm(z)> ,orzem”(z) — (1 —c—z)m(z) + 0

» has two solutions defined via the two values of the complex square root function
(letting z = pe*? for p > 0 and 6 € [0,27), vz € {£/pe'?/?})

l—c—z 0+ -1V’ —2)
= +
2cz 2cz
only one of which is such that [z][m(z)] > 0 by definition of Stieltjes transforms.
» apply inverse Stieltjes transform we conclude the proof.

m(z)

9
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Some thoughts on the “leave-one-out” proof

» in essence: propose Q(z) as an approximation of E[Q(z)], but simple to evaluate (via a
quadratic equation)

» quadratic form close to the trace: high-dimensional concentration (around the
expectation), anything more than LLN and concentration

» leave-one-out analysis of large-scale system: % trQ(z) ~ % tr Q_;(z) for n, p large.
» low complexity analysis of large random system: joint behavior of p eigenvalues M a
single deterministic (quadratic) equation

» These are the main intuitions and ingredients for almost everything in RMT and
high-dimensional statistics!
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Proof of MP law with Gaussian method

Letx ~ N(0,1) and f : R — R a continuously differentiable function having at most
polynomial growth and such that E[f’(x)] < co. Then,

Elxf (x)] = E[f'(x)]. (7)

In particular, for x ~ A(0,C) with C € RP*? and f: R” — R a continuously differen-
tiable function with derivatives having at most polynomial growth with respect to p,

P
Bl 0] = Y_ICKE | 7 ®)

=1

where 0/0[x]; indicates differentiation with respect to the i-th entry of x; or, in vector
form E[xf (x)] = CE[Vf(x)], with Vf(x) the gradient of f(x) with respect to x.

Stein’s Lemma
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Proof of MP law with Gaussian method

First observe that Q = 11XXTQ — 11, so that E[Q;] = L >} E[Xy[X" Qlijl — 7045, in
which E[Xz[X"Qlyj] = E[xf (x)] for x = X and f (x) = [X"Qls;
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Proof of MP law with Gaussian method

First observe that Q = 11XXTQ — 11, so that E[Q;] = L 3"} | E[Xj XTQJy] — 154, in
which E[Xy[X"QJi] = E[xf (x)] for x = Xj and f (x) = [XTQ] kj- Therefore, from Stein’s
lemma and the fact that 90Q = — %Q@(XXT)Q,[E‘]

AXTQly;

E[Xx[X' Q] = E X,

1
E[E;Qly — E [nXTQ(EikXT + XE;)Q}

g
~EIQ)] - B | {XTQLIXTQly| - | 1XT0X 0]

for E; the indicator matrix with entry [Ej];,, = di0jm,

[a] This is the matrix version of d(1/x) = —dx/xZA
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Proof of MP law with Gaussian method

First observe that Q = 11XXTQ — 11, so that E[Q;] = L 3"} | E[Xj XTQJy] — 154, in
which E[Xy[X"QJi] = E[xf (x)] for x = Xj and f (x) = [XTQ] kj- Therefore, from Stein’s
lemma and the fact that 90Q = — %Q@(XXT)Q,[E‘]

AXTQly;

E[Xx[X' Q] = E X,

E[E;Qly — E [iXTQ(EikxT + XE;)Q}

kj
1 1
~EIQ)] - B | {XTQLIXTQly| - | 1XT0X 0]
for E; the indicator matrix with entry [E;;, = 830, so that, summing over k,

11 & 1 11 11
=7 ;E[Xik XTQJy] = EE[Qij] P E[Qj tr(QXXT)] — ZﬁE[QXXTQL‘j-

[a] This is the matrix version of d(1/x) = —dx/xZA
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Proof of MP law with Gaussian method
We have

11 < 1 11
P > EXxXTQly] = EE[QZ']'] -
k=1

11
~—5E[Qy tr(QXXT)] - ——5E[QXX"Qlj.

The term in the second line has vanishing operator norm (of order O(n~!)) as n,p — oc.
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Proof of MP law with Gaussian method

We have

11 < 1 11
P > EXxXTQly] = EE[QZ']'] -
k=1

11
~—5E[Qy tr(QXXT)] - ——5E[QXX"Qlj.

The term in the second line has vanishing operator norm (of order O(n~!)) as n,p — oc.
Also, tr(QXXT) = np + zntr Q. As a result, matrix-wise, we obtain

EIQ] + _1, = EX:XTQlk] = 1E[Q] — . EIQ(p +2tr Q)] + 0y (1)

where X and X. is the k-th column and row of X, respectively.
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Proof of MP law with Gaussian method

We have
115 T ‘_1 _ll 3 T _11 TAI.
anE:1 E[Xx[X Q]k]] = EE[Q’]] zan[Ql] tr(QXX")] Zn2E[QXX QJ;.

The term in the second line has vanishing operator norm (of order O(n~!)) as n,p — oc.
Also, tr(QXXT) = np + zntr Q. As a result, matrix-wise, we obtain

EIQ] + _1, = EX:XTQlk] = 1E[Q] — . EIQ(p +2tr Q)] + 0y (1)

where X and X;. is the k-th column and row of X, respectively. As the random
% tr Q — m(z) as n,p — oo, take it out of the expectation in the limit and

EQJ(1 —p/n—z—p/n-zm(z)) =1, + o (1),
which, taking the trace to identify m(z), concludes the proof.
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For x ~ N (0,C) with C € RP*? and f: R” — R continuously differentiable with deriva-
tives having at most polynomial growth with respect to p,

P
var ] < 31 = | T | = B lvroTevseo)]

where we denote Vf(x) the gradient of f(x) with respect to x.

Nash-Poincaré inequality
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For x ~ N (0,C) with C € RP*? and f: R” — R continuously differentiable with deriva-
tives having at most polynomial growth with respect to p,

P
var ] < 31 = | T | = B lvroTevseo)]

where we denote Vf(x) the gradient of f(x) with respect to x.

Nash-Poincaré inequality

» allow to bound the “fluctuation” of random functionals, e.g., the ST % tr Q(z), etc.

» to further establish stochastic convergence (in probability or almost surely) as
n,p — oo.



Proof of Maréenko—Pastur law «19/29

Extension to non-Gaussian case

For x € R a random variable with zero mean and unit variance, y ~ N (0,1), and f a
(k 4 2)-times differentiable function with bounded derivatives,

Elf (x)] — E[f (y)] F&;Zl / E[fCDx(0)) D24t + ¢,

where kg is the /' cumulant of x, x(t) = Vtx + (1 — V1)y, and |e| < CE[Jx[F+?] -
sup; |[f**2)(t)| for some constant Cy only dependent on k.

Interpolation trick
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Proof of semicircle law «21/29

Wigner semicircle law

Let X € R"*" be symmetric and such that the X;; € R, j > i, are independent zero mean
and unit variance random variables. Then, for Q(z) = (X/v/n —zI,) ™!, as n — oo,

Q(z) « Q(z), Q(z) =m(z)L, (9)
with m(z) the unique ST solution to
m?(z) +zm(z) +1 =0. (10)

The function m(z) is the Stieltjes transform of the probability measure

uldx) = 5[4 )+, (11)

known as the Wigner semicircle law.



Proof of semicircle law «22/29

Proof of semicircle law: leave one out heuristic

Let Q = (X/y/n — zI,,) ! be the resolvent, by diagonal entries of matrix inverse lemma,

Qi = (Xiz’/\/ﬁ —z- XiTQ—in'/Yl) o :

with [Q]_; = (X_;/vn — zI,_1)~!, X_; € R*=Dx("=1) the matrix obtained by deleting the
i-th row and column from X, and x; € R"~! the i-th column/row of X with its i-th entry
removed. Summing over 7,

01y e LY e
n n< ﬁxii —z— 3 Qx  n= —z—xTQ X 7

since ﬁxﬁ vanishes as n — oco. By quadratic form close to the trace, for large n,

(trQ/n)* +ztrQ/n+1~o(1).

This is m?(z) + zm(z) + 1 = 0 and thus the conclusion.



Proof of semicircle law «23/29
Proof of semicircle law: Gaussian method
Similar to the proof of the Maréenko-Pastur law, for Q = (X/y/n — zI,,) !
1
WE[XQ] =1, +zE[Q], (12)
so that by integration by parts and the fact that 0Q = —%Q(@X)Q,
& an] 1
E[Qj] = Z E[XxQy] — E 0jj = Z [8X1k] - djf
11 11 1
== E[ka’Qk/ + QuQy] — E(Sij =—_E Q%) + Qyj - tr Q] — 20

k=1



Proof of semicircle law «24/29

Proof of semicircle law: Gaussian method

So in matrix form

BQ] = L | B[Q?] ~ LE[Q] | trE[Q] ~ 1y + o), (13)

where we used the fact that 1 tr Q — 1 trEQ “* 0 as n — oo and thus be asymptotically
“taken out of the expectation” (again high-dimensional concentration).
First RHS matrix has asymptotically vanishing operator norm as n,p — oo,

1
E[Q] = —1 <1 + %% trE[Q]) I, + 0||.||(1)

z
which, after taking the trace and using 1 tr E[Q(z)] — m(z) — 0, gives the limiting formula

m?(z) + zm(z) +1 = 0.
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Figure: Histogram of the eigenvalues of X/+/n versus Wigner semicircle law, for standard Gaussian X and n = 1000.



Generalized MP for SCM «26/29

Outline

Generalized MP for SCM



Generalized MP for SCM «27/29

SCM and generalized Marc¢enko—Pastur law

Let X = C2Z € RP" with symmetric nonnegative definite C € RP*?, Z € RP*" having
independent zero mean and unit variance entries. Then, as n,p — oo withp/n — c €
(0,00), for Q(z) = (A1XXT —zI,)"!and Q(z) = (:X"X —zI,,) 7},

U

Q(z) ¢ Q(z) = —= (I, + 7, (z)C) ', Q(2) > Q(2) = 7ty ()L,

-1
with 171,(z) unique solution to 7, (z) = (—z + Ltr C (1, + 7y (2)C) 1)
If the empirical spectral measure of C converges jc — v asp — oo, then piyyr — 1,
pixtx — [ where p, fi admitting Stieltjes transforms m(z) and 71(z) such that

-1
me) = i)+ 10 ) = (e [ (el (14)




Generalized MP for SCM «28/29

A few remarks on the generalized MP law

» different from the explicit MP law, the generalized MP is in general implicit



Generalized MP for SCM «28/29

A few remarks on the generalized MP law

» different from the explicit MP law, the generalized MP is in general implicit
» we have explicitness in essence due to with C = I, the implicit equation boils down to
a quadratic equation that has explicit solution



Generalized MP for SCM «28/29

A few remarks on the generalized MP law

» different from the explicit MP law, the generalized MP is in general implicit

» we have explicitness in essence due to with C = I, the implicit equation boils down to
a quadratic equation that has explicit solution

» if C has discrete eigenvalues, e.g., jic = %(51 + d3 + 05), then becomes a (possibly
higher-order) polynomial equation, which may admit explicit solution (up to fourth
order) using radicals



Generalized MP for SCM «28/29

A few remarks on the generalized MP law

» different from the explicit MP law, the generalized MP is in general implicit

» we have explicitness in essence due to with C = I, the implicit equation boils down to
a quadratic equation that has explicit solution

» if C has discrete eigenvalues, e.g., jic = %(51 + d3 + 05), then becomes a (possibly
higher-order) polynomial equation, which may admit explicit solution (up to fourth
order) using radicals

» the uniqueness of (Stieltjes transform) solution is ensured within a certain region on
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Generalized MP for SCM «28/29

A few remarks on the generalized MP law

»
»

»

»

»

different from the explicit MP law, the generalized MP is in general implicit

we have explicitness in essence due to with C = I, the implicit equation boils down to
a quadratic equation that has explicit solution

if C has discrete eigenvalues, e.g., uc = %(51 + d3 + 05), then becomes a (possibly
higher-order) polynomial equation, which may admit explicit solution (up to fourth
order) using radicals

the uniqueness of (Stieltjes transform) solution is ensured within a certain region on
the complex plane, there may exist solutions 72(z) with negative imaginary parts
numerical evaluation of 771(z): note that the equation

-1
fity(z) = <—z + %trC (I, + mp(z)c)‘1> (15)

naturally defines a fixed-point equation.



SCM and MP law  Proof of Marcenko-Pastur law  Proof of semicircle law  Generalized MP for SCM «29/29

0.6 | B Empirical spectrum | |
—— Limiting law

04| |

0.2 |

1 3 7
T

0.6 - mmm Empirical spectrum | |
—— Limiting law

04 |

0.2} |

0

1 3 5
Figure: Histogram of the eigenvalues of %XXT, X=ClZeRP *n,[Z];; ~ N(0,1), n = 3000; for p = 300 and C having
spectral measure pc = %(61 + 03 + 07) (top) and pc = %(61 + 03 + 05) (bottle).
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