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What we will have today

» sample covariance matrix and the generalized Maréenko—Pastur law
» advanced topics for SCM: limiting spectrum, no eigenvalue outside the support
» statistical inference on SCM

» beyond SCM: bi-correlated model (separable covariance model), sample covariance of
mixture models, and generalized semicircle law with a variance profile, etc
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SCM and generalized Marcenko—Pastur law

Let X = C2Z € R/ with symmetric nonnegative definite C € RP*?, Z € RP*" having
independent zero mean and unit variance entries. Then, as n,p — co withp/n — ¢ €
(0,00), for Q(z) = (AXXT —zI,) "' and Q(z) = (AXTX —zI,) 1,

~ 1

Q(z) ¢+ Q(z) = —- (L, + i, (x)C) ', Q(z) & Q) = ity ()1,

z
-1

with 171,(z) unique solution to 7, (z) = (—z + L tr C (1, + 1y (2)C) 1)

If the empirical spectral measure of C converges juc — v asp — oo, then piyyr — K,

pixtx — [ where p, i admitting Stieltjes transforms m(z) and 7(z) such that

m(e) = tin(e) + . in(z) = (‘Z“_/ %) : (1)
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Figure: Histogram of the eigenvalues of %XXT, X = C%Z € RPX" [Z] ij ~ N(0,1), n = 3000; for p = 300 and C having
spectral measure pc = %(61 + 03 + 07) (top) and pc = %(61 + 63 + 95) (bottle).
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SCM: characterization of the limiting spectrum

We focus on the following equation that characterize the limiting spectrum of SCM

in(z) = <—z+c/%> B (2)

with v the limiting spectral measure of C.
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SCM: characterization of the limiting spectrum
We focus on the following equation that characterize the limiting spectrum of SCM
m(z) = (—z + c/ tu(@) B (2)
1+ m(z)t

with v the limiting spectral measure of C

tv dt
+tm

» som(-): C\ supp(ft) = C, z — m(z ) admits the funct1ona1 inverse
z(+) : m(C \ supp(f)) = C

_ 1 /tv(dt)
me— ——+4¢ —.
m 14 tm

» note that this is equivalent to z = — ) +c [ oy

» only formally defined on the domain 7(C \ supp(i)), but can be extended to all values

m € Csuch that0 ¢ 1+ 7 - supp(v).
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the Stieltjes transform m,,(x) = [(t — x) "1 u(dt) of a measure  is well defined and
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so must be its functional inverse x(-) on its restriction to m, (R \ supp(u))

if x(-) admits an extension to some domain S with m,(R \ supp(p)) C S C R, x(-)
should only be increasing on m,, (R \ supp(u))

the complementary R \ supp(u) to the support of 1 can be determined as the union
of the image of all increasing sections of x(-) [This is a non-trivial fact!]
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Consider the extension of the functional inverse on R

» Outside the support:

»

o the Stieltjes transform m,,(x) = [(t — x)~1p(dt) of a measure y is well defined and
an increasing function on its restriction to x € R \ supp(u)

o so must be its functional inverse x(-) on its restriction to m,,(R \ supp(u))

o if x(-) admits an extension to some domain S with m, (R \ supp(r)) C S C R, x(-)
should only be increasing on m,, (R \ supp(u))

o the complementary R \ supp(u) to the support of i can be determined as the union
of the image of all increasing sections of x(-) [This is a non-trivial fact!]

o this formally defines the support of the limiting measure 1 (of f11yy1)

In the support: to determine the density of y, first prove the existence of

m®(x) = lim._, 711(x + 2€). Upon existence, since [m°(x)] > 0 for x € supp(u),

dominated convergence can be applied on the defining equation for 71(z) to find that

1
m°(x) is a solution with positive imaginary part of m°(x) = ( x+cf 1i”m§l€x)t) .
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Define the (extended) function

x(-) : R\ {rm | (=1/m) € supp(v)} — R

. 1 /tu(dt)
me— ——+4c¢ —.
m 1+ mt

Then, fi has a density fonR\ {0} and

» for y € supp(), f(y) = %S[ﬁzo(y)] with m°(y) the unique solution with positive
imaginary part of x(m°(y)) = y;

» the support supp(f) \ {0}, which coincides with supp(yx) \ {0}, is defined by
supp(p) \ {0}
—R\ {x(m) | (—1/fi1) € R\ {supp(v) U {0}} and | (i) > 0 } .

Spectral characterization for SCM
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|
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Figure: x(i1) for —1/71 € R \ supp(v), with v = %(61 + 03 + 07) (top) and v = %(61 + 63 + J5) (bottle), with c = 1/10 in
both cases. Local extrema are marked by circles, inflexion points by squares. supp p can be read on the vertical axes.
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Thus, from the previous item, supp(y) is here determined by the union Uy[rz, ", rh,ﬂ for
fiiy <mi <im, <...the successive values of 7it such that x'(7i) = 0. This remark may
however not hold for v with continuous support.
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A few comments on the theorem and figure

» the restriction of x(-), as the functional inverse of 7(+), to its growing sections, is a
growing function

» in the figure, since v is discrete, x(-) presents asymptotes at each —1/t, t € supp(v).
Thus, from the previous item, supp(y) is here determined by the union Uy[rz, ", rh,ﬂ for
fiiy <mi <im, <...the successive values of 7it such that x'(7i) = 0. This remark may
however not hold for v with continuous support.

» the derivative of x(-) is given by
. / v (dt)
=527 | Trmmy

and thus m?x'(7i1) converges to 1 — ¢ as || — oo, while x(7i7) — 0. Thus x(-) is either
decreasing or increasing at 0o depending on whether ¢ < 1 orc > 1.
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Change of variable on the complex plane

» An important consequence of the study above of z(-) (and its restriction x(-) to the real
axis) is that the function

v : C\ {supp(p) U{0}} — C
z =z(m) — —% (3)

provides an injective mapping between points outside the support of 1 and points
outside the support of v with the property that

VC\R) CC\R and ~(R\supp(u)) C R\ supp(v)

but where the inclusion is strict in general.
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Change of variable on the complex plane

» An important consequence of the study above of z(-) (and its restriction x(-) to the real
axis) is that the function

v : C\ {supp(p) U{0}} — C
z =z(m) — —% (3)

provides an injective mapping between points outside the support of 1 and points
outside the support of v with the property that

VC\R) CC\R and ~(R\supp(u)) C R\ supp(v)

but where the inclusion is strict in general.
» This, as we shall see, will play a crucial role in statistical inference (from the empirical
observation p to “infer” v).
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What can we say about the largest eigenvalue of SCM?

Let X = C2Z € R/ with nonnegative definite C € RF*P, Z ¢ RP*" having indepen-
dent zero mean and unit variance entries. Then, as n,p — oo withp/n — c € (0,00),
if the empirical spectral measure of C converges pc — v asp — oo, then piyy v — 1,

pixrx = @ where (i, i admitting Stieltjes transforms m(z) and m(z) such that m(z) =

-1
ei(z) + 155, ﬁi(z):( Z+Cf1f:md(tz)t) :

Generalized Maréenko-Pastur law

» weak convergences for the normalized counting measure v > i1 Ox 1XXT)
» by definition: for every continuous bounded f,

5o (o) o -
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What about the largest eigenvalue?

;izp;f<x,»<xxT)> /f (dt) — 0

» let f be a smoothed version of the indicator 1|, for a,b € supp(u), only says that the
averaged number of eigenvalues of 2XX" within [a, b] converges to p([a, b]);

» in fact, only guarantees that, for [a, b] a connected component of R \ supp(u), the
number of eigenvalues of 1XXT inside [a, b] is asymptotically of order o(p);

» [a,b] may never be empty, even for arbitrarily large n, p (it can contain a fixed finite
number of eigenvalues or even a growing number of eigenvalues, so long that this
number is much less than O(p)).

» in particular, does not prevent a few eigenvalues of :XXT from “leaking” from the
limiting support of p, which, e.g., may cause problems in statistical inference.
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No eigenvalue outside the support

Let || C|| be bounded with uc — v and max dist(X\i(C), supp(v)) — 0, as p — oo |. Con-
<i<p

sider —oo < a < b < cosuch thata,b € R™ \ supp(p). Then,
» if E[|Z;|*] < oo, then, for |A| the cardinality of set A and (-) the change-of-variable

function,

n

{x (x7) € Bt} |- 1@ € hianao] 20 (4)

If [a, b] is a connected component of R \ supp(u), then H)\i (%XXT) € [a,b] }‘ 2250.

a.s.

» if E[Z;ﬂ = 00, then maxi<i<p i (%XXT) — 0o0.

No eigenvalue outside the support
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Inference of the LSS of population covariance

Estimate the population linear eigenvalue statistics of the form % P f(\(C)) from
sample observations X = [x1, ..., X,], with x; = C%zi and z; with standard i.i.d. entries.

LSS Inference

Needs to “invert” the following characterization of SCM C = 1XXT from C,

m(z) = <—z+c/%> B (5)

with v the limiting spectral measure of C, equivalent to

m, <—~1> = —zm(z)m(z). (6)

m(z)
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Eigen-inference

For f: C — C analytic in a neighborhood of the eigenvalues of C, by Cauchy’s integral
formula, the LSS % S f(M(C)) of population covariance C writes

;if;fwc»: Jrowtan = [ |5 § LEE v
B sz%f [/f—z}d :_Zm?{f o

where I', C Cis a positive contour encircling the support of v but no singularity of f,
which we would like to further relate to the observable 1(z) using the (asymptotic)

relation m,, | — = —zm(z)m(z) via the change of variable z — —1/m(z).
e &



Statistical inference «22/29

Is the change of variable z — —1/71(z) allowed throughout the Cauchy’s integral? Only
possible if there exists a I', C C such thatI', = —1/m(I’,,) for some well defined I',.

Licit change of variable?

Assume I', is indeed well defined as I', = —1/m(I",,) for some valid I',,. Then,

Jrowan == 7 (<o me (<) e
1

ROV >m<w>w
= J(mw a

2m

_1 c
Jrowan =g fiﬂf <-m3w>) e
)

- 2c1m }éuf (‘m(lw)
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For X = C2Z with Z € RP*" having iid. entries with E[|Z;[*] < oo and
maxi <j<p dist(A\:(C),supp(v)) — 0, let f: C — C be a complex function analytic on
the complement of (C \ supp(u)) in C with y defined in (3). Then,

P
;Z FOM(Q)) — ZClm %F f <—1> oy ey ()des 55 0,

mlex(W)
n

for some complex positively oriented contour I', C C surrounding supp(u) \ {0}. In
particular, if ¢ < 1, the result holds for any f analytic on {z € C, R[z] > 0} with T,
chosen as any such contour within {z € C, R[z] > 0}.

Theorem: LSS inference

To estimate population eigenvalues of large multiplicity, use f(z) = z and change I, into
Fff), a contour circling around the a-th connected component of supp(u) only.
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Application: estimate population eigenvalues of large multiplicity

Consider then the following setting of SCM inference,

k k
1
v = — § pide, — E Cidy,
P i=1

for ¢1 > ... > 4 > 0, k fixed with respect to n,p, and p;/p — ¢; > 0 as p — oo (i.e., each
eigenvalue has a large multiplicity of order O(p)). Consider the fully separable case and
each eigenvalue of C is “mapped” to a single connected component of supp(y), then

/

~ ~ 1 Myt (w)

Go— by 2550, b=t XX g, 7)
Pa2m Jr@ " miyry(w)
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/
A A 1 Myt (W)
Go— 0y %550, 0= —”7{ w—XX g (8)
Pa 2m0 Jr@® m%xTx(w)

» miyry(w) (and its derivative) are rational functions, leads to simple residue calculus.
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/

~ ~ 1 Myt (W)

Go— 0y %550, 0= —”7{ w—XX g (8)
Pa 2m0 Jr@® m%xTx(w)

» miyry(w) (and its derivative) are rational functions, leads to simple residue calculus.

» the integrand in /, has two types of poles: (i) the \; = Ai(1XTX) falling inside the

surface described by I‘Ef), since in the neighborhood of ;,

/ 1 n 1
n m%XTX(w) n o n 21:1 Di—w)? n w
= — T Nw~)

—m T =y
Pa m%xTx(w) Pa % Z?:l )\,%w

p:)\i—w

and (ii) the zeros of m 1y falling within Fff).
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/

~ ~ 1 Myt (W)

Go— 0y %550, 0= —”7{ w—XX g (8)
Pa 2m0 Jr@® m%xTx(w)

» miyry(w) (and its derivative) are rational functions, leads to simple residue calculus.

» the integrand in /, has two types of poles: (i) the \; = Ai(1XTX) falling inside the

surface described by I‘Ef), since in the neighborhood of ;,

/ 1 n 1
n m%XTX(w) n o n 21:1 Di—w)? n w
= — T Nw~)

—m T =y
Pa m%xTx(w) Pa % Z?:l )\,%w

p:)\i—w

and (ii) the zeros of m 1y falling within Fff).
» sort the eigenvalues of 1XTX as A\; > ... > \,, the first type of poles is easy: the \;
falling within FE}) are precisely the p; largest, within F,(f) the next p, largest, etc.,

n —w n

lim (w — )\i)

i = )\
WA Pahi—wW Py
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» The second set of poles is less immediate to retrieve.
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» The second set of poles is less immediate to retrieve.
» Remark that the zeros 7; (sorted as 1 > 72 > ...) of mi1yry(w) are real and satisfy

1< 1
- =0.

>\i_77] -
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» The second set of poles is less immediate to retrieve.
» Remark that the zeros 7; (sorted as 1 > 72 > ...) of mi1yry(w) are real and satisfy

g1
na A

» Since the function x — 1 371 5z is increasing and has oo and —oco asymptotes at
x=XN—0andx =\ + O respectlvely, each 7); falls exactly in one of the intervals
[Ai, Ait1] and thus each \; pole is accompanied by its 7; pole (if sorted similarly). The
residue calculus then gives, by Taylor expanding the denominator,

1

Jimn ( )n wmleX( w) n
im (w— = ——n;.
ol Pa 0+ mlex(H])( 77/) Pa K
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» The second set of poles is less immediate to retrieve.
» Remark that the zeros 7; (sorted as 1 > 72 > ...) of mi1yry(w) are real and satisfy

g1
na A

» Since the function x — 1 371 5z is increasing and has oo and —oco asymptotes at
x=XN—0andx =\ + O respectlvely, each 7); falls exactly in one of the intervals
[Ai, Ait1] and thus each \; pole is accompanied by its 7; pole (if sorted similarly). The
residue calculus then gives, by Taylor expanding the denominator,

1

Jimn ( )n wmleX( w) n

im (w — = ——.

w1 Pa 0+ mlex(H])( 77/) Pa !
. . _ n \P1tetpa ;.

» we finally have the estimator 0, = o Zi:m tpa1 Ai — i
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<0/ o o -
s )\i—l )\l’
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Figure: Illustration of the zeros (7;) and poles (\;) of the (restriction to the real axis of the) Stieltjes transform nx (x).
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For X € R™" symmetric with eigenvalues A\ > ... > A, the zeros 1 > 17 > ... of
mx(z) satisfy the following equivalence relations

n

T 1 )\l
1 1 1 L
n ; )\1‘ — Z AZ Z )\z 0
*\f (A = L)' VA =1 =0=det (iﬁ\ﬁT(A - 1n>
& det <n\5‘\5‘ —A+ 77jIn> —0

where we denoted VA € R? the vector of v/\;’s and A = diag{\;}/_,, and used the fact
that det(A — n;1,;) # 0.The zeros of mx are exactly the eigenvalues of

A— %foﬁAT.

Exnlicit exnression for the 7zeros of v (7)
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—— Naive estimator
—o— RMT-improved estimator ||
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Figure: Eigenvalue estimation errors with naive and RMT-improved approach, as a function of A\, for 41 =1,
) =1+ AX p =256 and n = 1024. Results averaged over 30 runs.
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