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What we will have today

∠ sample covariance matrix and the generalized Marc̆enko–Pastur law
∠ advanced topics for SCM: limiting spectrum, no eigenvalue outside the support
∠ statistical inference on SCM
∠ beyond SCM: bi-correlated model (separable covariance model), sample covariance of

mixture models, and generalized semicircle law with a variance profile, etc
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SCM and generalized Marc̆enko–Pastur law

General sample covariance matrix

Let X = C
1
2Z ∈ Rp×n with symmetric nonnegative definite C ∈ Rp×p, Z ∈ Rp×n having

independent zero mean and unit variance entries. Then, as n, p → ∞ with p/n → c ∈
(0,∞), for Q(z) = ( 1nXX

T − zIp)−1 and Q̃(z) = ( 1nX
TX− zIn)−1,

Q(z) ↔ Q̄(z) = −1
z
(
Ip + m̃p(z)C

)−1
, Q̃(z) ↔ ¯̃Q(z) = m̃p(z)In,

with m̃p(z) unique solution to m̃p(z) =
(
−z+ 1

n trC
(
Ip + m̃p(z)C

)−1
)−1

.
If the empirical spectral measure of C converges µC → ν as p → ∞, then µ 1

nXXT → µ,
µ 1

nXTX → µ̃where µ, µ̃ admitting Stieltjes transforms m(z) and m̃(z) such that

m(z) = 1
c
m̃(z) + 1− c

cz
, m̃(z) =

(
−z+ c

∫ tν(dt)
1+ m̃(z)t

)−1
. (1)
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Figure: Histogram of the eigenvalues of 1
nXX

T, X = C
1
2 Z ∈ Rp×n, [Z]ij ∼ N (0, 1), n = 3 000; for p = 300 and C having

spectral measure µC = 1
3 (δ1 + δ3 + δ7) (top) and µC = 1

3 (δ1 + δ3 + δ5) (bottle).



Generalized MP for SCM Spectrum characterization No eigenvalue outside the support Statistical inference ∠ 7/29

Outline

Generalized MP for SCM

Spectrum characterization

No eigenvalue outside the support

Statistical inference



Generalized MP for SCM Spectrum characterization No eigenvalue outside the support Statistical inference ∠ 8/29

SCM: characterization of the limiting spectrum

We focus on the following equation that characterize the limiting spectrum of SCM

m̃(z) =
(
−z+ c

∫ tν(dt)
1+ m̃(z)t

)−1
(2)

with ν the limiting spectral measure of C.
∠ note that this is equivalent to z = − 1

m̃(z) + c
∫ tν(dt)

1+tm̃(z)
∠ so m̃(·) : C \ supp(µ̃) → C, z 7→ m̃(z) admits the functional inverse

z(·) : m̃(C \ supp(µ̃)) → C

m̃ 7→ − 1
m̃

+ c
∫ tν(dt)

1+ tm̃
.

∠ only formally defined on the domain m̃(C \ supp(µ̃)), but can be extended to all values
m̃ ∈ C such that 0 /∈ 1+ m̃ · supp(ν).
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Consider the extension of the functional inverse on R
∠ Outside the support:

○␣ the Stieltjes transform mµ(x) =
∫
(t− x)−1µ(dt) of a measure µ is well defined and

an increasing function on its restriction to x ∈ R \ supp(µ)
○␣ so must be its functional inverse x(·) on its restriction to mµ(R \ supp(µ))
○␣ if x(·) admits an extension to some domain S with mµ(R \ supp(µ)) ⊂ S ⊂ R, x(·)
should only be increasing on mµ(R \ supp(µ))

○␣ the complementary R \ supp(µ) to the support of µ can be determined as the union
of the image of all increasing sections of x(·) [This is a non-trivial fact!]

○␣ this formally defines the support of the limiting measure µ (of µ 1
nXXT)

∠ In the support: to determine the density of µ, first prove the existence of
m̃◦(x) = limϵ→0 m̃(x + ıϵ). Upon existence, since ℑ[m̃◦(x)] > 0 for x ∈ supp(µ),
dominated convergence can be applied on the defining equation for m̃(z) to find that

m̃◦(x) is a solution with positive imaginary part of m̃◦(x) =
(
−x + c

∫ tν(dt)
1+m̃◦(x)t

)−1
.
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Spectral characterization for SCM

Define the (extended) function

x(·) : R \ {m̃ | (−1/m̃) ∈ supp(ν)} → R

m̃ 7→ − 1
m̃

+ c
∫ tν(dt)

1+ m̃t
.

Then, µ̃ has a density f̃ on R \ {0} and
∠ for y ∈ supp(µ̃), f̃ (y) = 1

πℑ[m̃
◦(y)] with m̃◦(y) the unique solution with positive

imaginary part of x(m̃◦(y)) = y;
∠ the support supp(µ̃) \ {0}, which coincides with supp(µ) \ {0}, is defined by

supp(µ) \ {0}

= R \
{
x(m̃) | (−1/m̃) ∈ R \ {supp(ν) ∪ {0}} and x′(m̃) > 0

}
.
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Figure: x(m̃) for −1/m̃ ∈ R \ supp(ν), with ν = 1
3 (δ1 + δ3 + δ7) (top) and ν = 1

3 (δ1 + δ3 + δ5) (bottle), with c = 1/10 in
both cases. Local extrema are marked by circles, inflexion points by squares. suppµ can be read on the vertical axes.
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A few comments on the theorem and figure

∠ the restriction of x(·), as the functional inverse of m̃(·), to its growing sections, is a
growing function

∠ in the figure, since ν is discrete, x(·) presents asymptotes at each −1/t, t ∈ supp(ν).
Thus, from the previous item, supp(µ) is here determined by the union ∪k[m̃−

k , m̃
+
k ] for

m̃−
1 < m̃+

1 < m̃−
2 < . . . the successive values of m̃ such that x′(m̃) = 0. This remark may

however not hold for ν with continuous support.
∠ the derivative of x(·) is given by

x′(m̃) =
1
m̃2 − c

∫ t2ν(dt)
(1+ tm̃)2

and thus m̃2x′(m̃) converges to 1− c as |m̃| → ∞, while x(m̃) → 0. Thus x(·) is either
decreasing or increasing at ±∞ depending on whether c < 1 or c > 1.
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Change of variable on the complex plane

∠ An important consequence of the study above of z(·) (and its restriction x(·) to the real
axis) is that the function

γ : C \ {supp(µ) ∪ {0}} → C

z = z(m̃) 7→ − 1
m̃

(3)

provides an injective mapping between points outside the support of µ and points
outside the support of ν with the property that

γ(C \ R) ⊂ C \ R and γ(R \ supp(µ)) ⊂ R \ supp(ν)

but where the inclusion is strict in general.
∠ This, as we shall see, will play a crucial role in statistical inference (from the empirical

observation µ to “infer” ν).
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What can we say about the largest eigenvalue of SCM?

Generalized Marc̆enko–Pastur law

Let X = C
1
2Z ∈ Rp×n with nonnegative definite C ∈ Rp×p, Z ∈ Rp×n having indepen-

dent zero mean and unit variance entries. Then, as n, p → ∞ with p/n → c ∈ (0,∞),
if the empirical spectral measure of C converges µC → ν as p → ∞, then µ 1

nXXT → µ,
µ 1

nXTX → µ̃ where µ, µ̃ admitting Stieltjes transforms m(z) and m̃(z) such that m(z) =
1
c m̃(z) + 1−c

cz , m̃(z) =
(
−z+ c

∫ tν(dt)
1+m̃(z)t

)−1
.

∠ weak convergences for the normalized counting measure 1
p
∑p

i=1 δλi(
1
nXXT)

∠ by definition: for every continuous bounded f ,

1
p

p∑
i=1

f
(
λi

(
1
n
XXT

))
−
∫

f (t)µ(dt) → 0.
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What about the largest eigenvalue?

1
p

p∑
i=1

f
(
λi

(
1
n
XXT

))
−
∫

f (t)µ(dt) → 0.

∠ let f be a smoothed version of the indicator 1[a,b] for a, b ∈ supp(µ), only says that the
averaged number of eigenvalues of 1

nXX
T within [a, b] converges to µ([a, b]);

∠ in fact, only guarantees that, for [a, b] a connected component of R \ supp(µ), the
number of eigenvalues of 1

nXX
T inside [a, b] is asymptotically of order o(p);

∠ [a, b]may never be empty, even for arbitrarily large n, p (it can contain a fixed finite
number of eigenvalues or even a growing number of eigenvalues, so long that this
number is much less than O(p)).

∠ in particular, does not prevent a few eigenvalues of 1
nXX

T from “leaking” from the
limiting support of µ, which, e.g., may cause problems in statistical inference.
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No eigenvalue outside the support

No eigenvalue outside the support

Let ∥C∥ be bounded with µC → ν and max
1≤i≤p

dist(λi(C), supp(ν)) → 0, as p → ∞ . Con-

sider −∞ ≤ a < b ≤ ∞ such that a, b ∈ R+ \ supp(µ). Then,
∠ if E[|Zij|4] < ∞, then, for |A| the cardinality of set A and γ(·) the change-of-variable

function, ∣∣∣∣{λi

(
1
n
XXT

)
∈ [a, b]

}∣∣∣∣− |{λi(C) ∈ [γ(a), γ(b)]}| a.s.−−→ 0 (4)

If [a, b] is a connected component of R+ \ supp(µ), then
∣∣{λi

( 1
nXX

T) ∈ [a, b]
}∣∣ a.s.−−→ 0.

∠ if E[Z4
ij] = ∞, then max1≤i≤p λi

( 1
nXX

T) a.s.−−→∞.
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Inference of the LSS of population covariance

LSS Inference

Estimate the population linear eigenvalue statistics of the form 1
p
∑p

i=1 f (λi(C)) from
sample observations X = [x1, . . . , xn], with xi = C

1
2 zi and zi with standard i.i.d. entries.

Needs to “invert” the following characterization of SCM Ĉ = 1
nXX

T from C,

m̃(z) =
(
−z+ c

∫ tν(dt)
1+ m̃(z)t

)−1
(5)

with ν the limiting spectral measure of C, equivalent to

mν

(
− 1
m̃(z)

)
= −zm(z)m̃(z). (6)
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Eigen-inference

For f : C → C analytic in a neighborhood of the eigenvalues of C, by Cauchy’s integral
formula, the LSS 1

p
∑p

i=1 f (λi(C)) of population covariance C writes

1
p

p∑
i=1

f (λi(C)) ≃
∫

f (t)ν(dt) =
∫ [

1
2πı

∮
Γν

f (z) dz
z− t

]
ν(dt)

= − 1
2πı

∮
Γν

f (z)
[∫

ν(dt)
t− z

]
dz = − 1

2πı

∮
Γν

f (z)mν(z) dz

where Γν ⊂ C is a positive contour encircling the support of ν but no singularity of f ,
which we would like to further relate to the observable m̃(z) using the (asymptotic)
relation mν

(
− 1

m̃(z)

)
= −zm(z)m̃(z) via the change of variable z 7→ −1/m̃(z).
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Licit change of variable?

Is the change of variable z 7→ −1/m̃(z) allowed throughout the Cauchy’s integral? Only
possible if there exists a Γν ⊂ C such that Γν = −1/m̃(Γµ) for some well defined Γµ.

Assume Γν is indeed well defined as Γν = −1/m̃(Γµ) for some valid Γµ. Then,∫
f (t)ν(dt) = − 1

2πı

∮
Γµ

f
(
− 1
m̃(ω)

)
mν

(
− 1
m̃(ω)

)
m̃′(ω)

m̃2(ω)
dω

=
1
2πı

∮
Γµ

f
(
− 1
m̃(ω)

)
ω
m(ω)m̃′(ω)

m̃(ω)
dω

where we wrote z = −1/m̃(ω). With m(ω) = 1
c m̃(ω) + (1− c)/(cω),∫

f (t)ν(dt) = 1
2cπı

∮
Γµ

f
(
− 1
m̃(ω)

)
(ωm̃(ω) + (1− c)) m̃′(ω)

m̃(ω)
dω

=
1

2cπı

∮
Γµ

f
(
− 1
m̃(ω)

)
ωm̃′(ω)dω − 1− c

c
f (0) · 1{0∈Γ◦

ν}

where Γ◦
ν is the inside of Γν , and where for the last equality we used

1
2πı

∮
Γµ

f
(
− 1
m̃(ω)

)
m̃′(ω)

m̃(ω)
dω = − 1

2πı

∮
Γν

z−1f (z) dz = −f (0) · 1{0∈Γ◦
ν}

by residue calculus, assuming again that f is analytic on a sufficiently large region (in
particular here around zero).
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Theorem: LSS inference

For X = C
1
2Z with Z ∈ Rp×n having i.i.d. entries with E[|Zij|4] < ∞ and

max1≤i≤p dist(λi(C), supp(ν)) → 0, let f : C → C be a complex function analytic on
the complement of γ(C \ supp(µ)) in C with γ defined in (3). Then,

1
p

p∑
i=1

f (λi(C))−
1

2cπı

∮
Γµ

f
(

−1
m 1

nXTX(ω)

)
ωm′

1
nXTX(ω)dω

a.s.−−→ 0,

for some complex positively oriented contour Γµ ⊂ C surrounding supp(µ) \ {0}. In
particular, if c < 1, the result holds for any f analytic on {z ∈ C, ℜ[z] > 0} with Γµ

chosen as any such contour within {z ∈ C, ℜ[z] > 0}.

To estimate population eigenvalues of large multiplicity, use f (z) = z and change Γµ into
Γ
(a)
µ , a contour circling around the a-th connected component of supp(µ) only.
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Application: estimate population eigenvalues of large multiplicity

Consider then the following setting of SCM inference,

νC =
1
p

k∑
i=1

piδℓi →
k∑

i=1
ciδℓi

for ℓ1 > . . . > ℓk > 0, k fixed with respect to n, p, and pi/p → ci > 0 as p → ∞ (i.e., each
eigenvalue has a large multiplicity of order O(p)). Consider the fully separable case and
each eigenvalue of C is “mapped” to a single connected component of supp(µ), then

ℓa − ℓ̂a
a.s.−−→ 0, ℓ̂a = − n

pa
1
2πı

∮
Γ
(a)
µ

ω
m′

1
nXTX(ω)

m 1
nXTX(ω)

dω. (7)
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ℓa − ℓ̂a
a.s.−−→ 0, ℓ̂a = − n

pa
1
2πı

∮
Γ
(a)
µ

ω
m′

1
nXTX(ω)

m 1
nXTX(ω)

dω. (8)

∠ m 1
nXTX(ω) (and its derivative) are rational functions, leads to simple residue calculus.

∠ the integrand in ℓ̂a has two types of poles: (i) the λi = λi(
1
nX

TX) falling inside the
surface described by Γ

(a)
µ , since in the neighborhood of λi,

− n
pa
ω
m′

1
nXTX(ω)

m 1
nXTX(ω)

= − n
pa
ω

1
n
∑n

i=1
1

(λi−ω)2

1
n
∑n

i=1
1

λi−ω

∼ω∼λi −
n
pa

ω

λi − ω

and (ii) the zeros of m 1
nXTX falling within Γ

(a)
µ .

∠ sort the eigenvalues of 1
nX

TX as λ1 ≥ . . . ≥ λn, the first type of poles is easy: the λi

falling within Γ
(1)
µ are precisely the p1 largest, within Γ

(2)
µ the next p2 largest, etc.,

lim
ω→λi

(ω − λi)
n
pa

−ω

λi − ω
=

n
pa
λi.
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∠ The second set of poles is less immediate to retrieve.
∠ Remark that the zeros ηj (sorted as η1 ≥ η2 ≥ . . .) of m 1

nXTX(ω) are real and satisfy

1
n

n∑
i=1

1
λi − ηj

= 0.

∠ Since the function x 7→ 1
n
∑n

i=1
1

λi−x is increasing and has∞ and −∞ asymptotes at
x = λi − 0 and x = λi + 0, respectively, each ηj falls exactly in one of the intervals
[λi, λi+1] and thus each λi pole is accompanied by its ηi pole (if sorted similarly). The
residue calculus then gives, by Taylor expanding the denominator,

lim
ω→ηj

(ω − ηj)
n
pa

−ωm′
1
nXTX(ω)

0+m′
1
nXTX(ηj)(ω − ηj)

= − n
pa
ηj.

∠ we finally have the estimator ℓ̂a = n
pa
∑p1+...+pa

i=p1+...+pa−1+1 λi − ηi.
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Figure: Illustration of the zeros (ηi) and poles (λi) of the (restriction to the real axis of the) Stieltjes transform mX(x).
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Explicit expression for the zeros of mX(z)

For X ∈ Rn×n symmetric with eigenvalues λ1 > . . . > λn, the zeros η1 > η2 > . . . of
mX(z) satisfy the following equivalence relations

1
n

n∑
i=1

1
λi − ηj

= 0 ⇔ 1
n

n∑
i=1

−ηj

λi − ηj
= 0 ⇔ 1

n

n∑
i=1

λi
λi − ηj

− 1 = 0

⇔ 1
n
√
λ

T
(Λ− ηjIn)−1√λ− 1 = 0 = det

(
1
n
√
λ
√
λ

T
(Λ− ηjIn)−1 − In

)
⇔ det

(
1
n
√
λ
√
λ

T
−Λ+ ηjIn

)
= 0

where we denoted
√
λ ∈ Rp the vector of

√
λi’s andΛ ≡ diag{λi}

p
i=1, and used the fact

that det(Λ− ηjIn) ̸= 0.The zeros of mX are exactly the eigenvalues of

Λ− 1
n
√
λ
√
λ

T
.
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Figure: Eigenvalue estimation errors with naive and RMT-improved approach, as a function of∆λ, for ℓ1 = 1,
ℓ2 = 1+∆λ, p = 256 and n = 1 024. Results averaged over 30 runs.
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