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What we will have today

∠ sample covariance matrix Ĉ = 1
nC

1
2ZZTC

1
2 and C = Ip + P for some low-rank matrix P

∠ extreme eigenvalues of Ĉ and connection to those of the low-rank P
∠ extreme eigenvectors of Ĉ and connection to those of the low-rank P
∠ phase transition behavior and debiasing
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Low-rank perturbation of SCM

We have studied:
∠ spectral behavior of the SCM Ĉ = 1

nC
1
2ZZTC

1
2 for generic C and Zwith i.i.d. entries

∠ in particular, how the eigenvalue distribution of Ĉ (the previous µ) depends on that of
C (denoted ν) and the dimension ratio c = lim p/n

∠ characterization via implicit fixed point equation of the Stieltjes transform
∠ the behavior (e.g., location) of individual eigenvalue, however, remains unclear
∠ here, assess the behavior of individual eigenvalue and eigenvector via the spiked

model analysis, in the simple setting of C = Ip + P with low rank P

Remark on the limiting eigenvalue distribution

Note that the limiting eigenvalue distribution of Ĉ = 1
n(Ip + P)

1
2ZZT(Ip + P)

1
2 is in fact

the same as that of 1
nZZ

T, since the addition of low rank matrices asymptotically does
not affect the normalized trace of the resolvent, and thus the Stieltjes transform.
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nC
1
2ZZTC

1
2 for generic C and Zwith i.i.d. entries

∠ in particular, how the eigenvalue distribution of Ĉ (the previous µ) depends on that of
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n(Ip + P)

1
2ZZT(Ip + P)

1
2 is in fact

the same as that of 1
nZZ

T, since the addition of low rank matrices asymptotically does
not affect the normalized trace of the resolvent, and thus the Stieltjes transform.



Low-rank update of SCM: eigenvalues Low-rank update of SCM: eigenvectors Limiting fluctuation Applications ∠ 6/37

Low-rank perturbation from the Marc̆enko-Pastur law

Consider X = [x1, . . . , xn] ∈ Rp×n with xi = C
1
2 zi, zi ∈ Rp with standard i.i.d. entries and

C = Ip + P, P =

k∑
i=1

ℓiuiuT
i

with k and ℓ1 ≥ . . . ≥ ℓk > 0 fixed with respect to n, p.
∠ note that here ν ≡ limp→∞ µC = limp→∞

p−k
p δ1 +

1
p
∑k

i=1 δ1+ℓi = δ1
∠ so, while C ̸= Ip, the limiting µ still follows the Marc̆enko-Pastur law
∠ however, we do not have “no eigenvalue outside the support,” since the condition

dist(1+ ℓi, supp(ν)) ̸→ 0 for i ∈ {1, . . . , k} is violated
∠ and one may have some (order O(1) in this setting) the eigenvalues of Ĉ “jumping”

out of the limiting support supp(µ)
∠ note for n ≫ p, Ĉ ≃ C = Ip + P, so with its eigenvalues connected to those of P
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out of the limiting support supp(µ)
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Spiked eigenvalues and a phase transition

Here, depending on the values of ℓi and the ratio c = lim p/n, the i-th largest eigenvalue
λ̂i of Ĉ may indeed isolate from supp(µ), due to [2].

Spiked eigenvalues

For SCM Ĉ = 1
nC

1
2ZZTC

1
2 with i.i.d. E[Z4

ij] < ∞, let C = Ip + P with P =
∑k

i=1 ℓiuiuT
i

its spectral decomposition, where k and ℓ1 ≥ . . . ≥ ℓk > 0 are fixed with respect to n, p.
Then, denoting λ̂1 ≥ . . . ≥ λ̂p the eigenvalues of Ĉ, as n, p → ∞with p/n → c ∈ (0,∞),

λ̂i
a.s.−−→

{
λi = 1+ ℓi + c 1+ℓi

ℓi
> (1+

√
c)2 , ℓi >

√
c

(1+
√
c)2 , ℓi ≤

√
c.

Jinho Baik and Jack W. Silverstein. “Eigenvalues of large sample covariance matrices of spiked population
models”. In: Journal of Multivariate Analysis 97.6 (2006), 1382–1408. issn: 0047-259X. doi:
10.1016/j.jmva.2005.08.003

https://doi.org/10.1016/j.jmva.2005.08.003
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Figure: Eigenvalues of 1
nXX

T (blue crosses), the Marc̆enko-Pastur law (red solid line), and asymptotic spike locations
(red dashed line), for X = C

1
2 Z, C = Ip +Pwith µP =

p−4
p δ0 +

1
p (δ1 + δ2 + δ3 + δ4), for p = 1024 and different values of n.
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Proof
∠ solve the determinant equation det(Ĉ− λ̂Ip) = 0 to find “isolated” eigenvalue λ̂ ∈ R
∠ use Sylvester’s identity, det

(
AB− Ip

)
= det (BA− Ik), to turn the p-dimensional

equation into a k-dimensional one
∠ solve the small-dimensional equation with the deterministic equivalent result
We write, with X = C

1
2Z,

0 = det

(
1
n
XXT − λ̂Ip

)
= det

(
1
n
(Ip + P)

1
2ZZT(Ip + P)

1
2 − λ̂Ip

)
= det

(
Ip + P

)
det

(
1
n
ZZT − λ̂(Ip + P)−1

)
= det

(
1
n
ZZT − λ̂(Ip + P)−1

)
,

since det(Ip + P) ̸= 0. Note from the resolvent identity (A−1 − B−1 = A−1(B−A)B−1)

(Ip + P)−1 = Ip − (Ip + P)−1P.
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Proof (continue)

∠ We can then isolate the resolvent of the “whitened” modelQ(λ̂) = ( 1nZZ
T − λ̂Ip)−1 and

0 = det

(
1
n
ZZT − λ̂Ip + λ̂(Ip + P)−1P

)
= detQ−1(λ̂) · det

(
Ip + λ̂Q(λ̂)(Ip + P)−1P

)
.

∠ Using the “no eigenvalue of the support” result and the assumption E[Z4
ij] < ∞, we are

looking for isolated spiked eigenvalues such that λ̂ > (1+
√
c)2, so detQ−1(λ̂) ̸= 0

with probability one as n, p → ∞.
∠ Consider spectral decomposition P = ULUT =

∑k
i=1 ℓiuiuT

i , then
(Ip + P)−1P =

∑k
i=1

ℓi
1+ℓi

uiuT
i = U(Ik + L)−1LUT is also of rank k.

∠ With Sylvester’s identity, we get 0 = det
(
Ik + λ̂UTQ(λ̂)U · (Ik + L)−1L

)
.
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Proof (continue)

Deterministic equivalent result for SCM

For Z ∈ Rp×n with independent zero mean and unit variance random variables and
Q(z) = ( 1nZZ

T−zIp)−1, as n, p → ∞with p/n → (0,∞), we haveQ(z) ↔ Q̄(z) = m(z)Ip,
with m(z) the unique ST solution to zcm2(z)− (1− c− z)m(z) + 1 = 0.

∠ Looking for isolated spikes λ̂ satisfying 0 = det
(
Ik + λ̂UTQ(λ̂)U · (Ik + L)−1L

)
∠ With the deterministic equivalent result Q(λ̂) ↔ m(λ̂)Ip, leads to

0 = det
(
Ik + λ̂m(λ̂) · (Ik + L)−1L

)
=

k∏
i=1

(
1+ λ̂m(λ̂)

ℓi
1+ ℓi

)
. (1)

∠ If such λ̂ exists, must satisfy λ̂m(λ̂) = −1+ ℓi
ℓi

+ o(1) , for some i ∈ {1, . . . , k}.
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For Z ∈ Rp×n with independent zero mean and unit variance random variables and
Q(z) = ( 1nZZ

T−zIp)−1, as n, p → ∞with p/n → (0,∞), we haveQ(z) ↔ Q̄(z) = m(z)Ip,
with m(z) the unique ST solution to zcm2(z)− (1− c− z)m(z) + 1 = 0.

∠ Looking for isolated spikes λ̂ satisfying 0 = det
(
Ik + λ̂UTQ(λ̂)U · (Ik + L)−1L

)
∠ With the deterministic equivalent result Q(λ̂) ↔ m(λ̂)Ip, leads to

0 = det
(
Ik + λ̂m(λ̂) · (Ik + L)−1L

)
=

k∏
i=1

(
1+ λ̂m(λ̂)

ℓi
1+ ℓi

)
. (1)

∠ If such λ̂ exists, must satisfy λ̂m(λ̂) = −1+ ℓi
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+ o(1) , for some i ∈ {1, . . . , k}.
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Proof (continue)

λ̂m(λ̂) = −1+ ℓi
ℓi

+ o(1) (2)

∠ For such a solution λ̂ to exist, study the behavior of xm(x) =
∫ x

t−xµ(dt)which is
increasing on its domain of definition with xm(x) → −1 as x → ∞.

∠ Using the Marc̆enko-Pastur equation
zcm2(z)− (1− c− z)m(z) + 1 = 0 ⇔ zm(z) = −1+ 1

1−z−c·zm(z) , so that
limx↓(1+

√
c)2 = −1+

√
c√

c .
∠ so the solution λ̂ exists if and only if the corresponding ℓi >

√
c, and

λ̂ → λi = 1+ ℓi + c1+ ℓi
ℓi

. (3)
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Spiked eigenvectors of SCM

We would also like to characterize the behavior of the spiked eigenvectors:
∠ it makes sense to believe that for n ≫ p, Ĉ ≃ C = Ip + P, so its eigenvectors should

“close to” those of C in some way and for sufficient large n/p
∠ formally, how the top eigenvectors û1, . . . , ûk of Ĉ close to those (u1, . . . ,uk) of P
∠ some type of phase transition behavior is (again) expected.

Absence of P

In the absence of low-rank perturbation P and Gaussian Z, it is known that the eigen-
vectors of the resulting Wishart matrix 1

nZZ
T ∈ Rp×p are uniformly distributed on the

unit sphere Sp−1 (also know as the p-dimensional Haar measure), which is close to, for
p large, random vector with i.i.d. Gaussian entries.
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“close to” those of C in some way and for sufficient large n/p
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Spiked eigenvector alignment

Spiked eigenvector alignment

Let û1, . . . , ûk be the eigenvectors associated with the largest k eigenvalues λ̂1 > . . . >
λ̂k of Ĉ. Further assume that ℓ1 > . . . > ℓk > 0 are all distinct. Then, for a,b ∈ Rp unit
norm deterministic vectors

aTûiûT
i b− aTuiuT

i b · 1− cℓ−2
i

1+ cℓ−1
i

· 1ℓi>√
c

a.s.−−→ 0. (4)

In particular, with a = b = ui we obtain

(uT
i ûi)

2 a.s.−−→ ζi ≡
1− cℓ−2

i
1+ cℓ−1

i
· 1ℓi>√

c. (5)
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Proof
∠ First write that, for all large n, p almost surely and ℓi >

√
c,

aTûiûT
i b = − 1

2πı

∮
Γλi

aT
(
1
n
XXT − zIp

)−1
b dz,

for Γλi a small contour enclosing only the almost sure limit λi = 1+ ℓi + c 1+ℓi
ℓi

of the
eigenvalue λ̂i of Ĉ that we just determined.

aT
(
1
n
XXT − zIp

)−1
b = aT

(
1
n
(Ip + P)

1
2ZZT(Ip + P)

1
2 − zIp

)−1
b

= aT(Ip + P)−
1
2

(
1
n
ZZT − zIp + z(Ip + P)−1P

)−1
(Ip + P)−

1
2b
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Proof (continue)

Denote Q(z) = ( 1nZZ
T − zIp)−1, it follows from (Ip + P)−1 = Ip − (Ip + P)−1P and the

spectral decomposition (Ip + P)−1P = U(Ik + L)−1LUT for U = [u1, . . . ,uk] ∈ Rp×k and
L = diag{ℓi}ki=1 that

aT
(
1
n
XXT − zIp

)−1
b

= aT(Ip + P)−
1
2Q(z)(Ip + P)−

1
2b

− zaT(Ip + P)−
1
2Q(z)U

(
Ik + L−1 + zUTQ(z)U

)−1
UTQ(z)(Ip + P)−

1
2b

= aT(Ip + P)−
1
2Q(z)(Ip + P)−

1
2b

− zaT(Ip + P)−
1
2Q(z)U

(
L−1 + (1+ zm(z))Ik

)−1UTQ(z)(Ip + P)−
1
2b+ o(1),

where we used Woodbury identity and UTQ(z)U = m(z)Ik + o∥·∥(1).
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Proof (continue)

Objective: aTûiûT
i b = − 1

2πı
∮
Γλi

aT ( 1
nXX

T − zIp
)−1 b dz, with Q(z) = ( 1nZZ

T − zIp)−1 and

aT
(
1
n
XXT − zIp

)−1
b = aT(Ip + P)−

1
2Q(z)(Ip + P)−

1
2b

− zaT(Ip + P)−
1
2Q(z)U

(
L−1 + (1+ zm(z))Ik

)−1UTQ(z)(Ip + P)−
1
2b+ o(1),

∠ complex integration of first term vanishes (looking for spikes with well definedQ(z))
∠ complex integration of Q(z) on the contour Γλi only brings a non-trivial residue, due

to the inverse (L−1 + (1+ zm(z))Ik)−1 which is singular at z = λi

aTûiûib =
1
2πı

∮
Γλi

zm2(z)aTU(Ik + L)−
1
2 (L−1 + (1+ zm(z))Ik)−1(Ik + L)−

1
2UTb dz+ o(1).

∠ can be evaluated by residue calculus at z = λi.
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Proof (continue)

aTûiûib =
1
2πı

∮
Γλi

zm2(z)aTU(Ik + L)−
1
2 (L−1 + (1+ zm(z))Ik)−1(Ik + L)−

1
2UTb dz+ o(1) .

∠ residue calculus:

lim
z→λi

(z− λi)(L−1 + (1+ zm(z))Ik)−1 =
eieT

i
m(λi) + λim′(λi)

with ei ∈ Rk canonical basis vector [ei]j = δij.
∠ Using the Marc̆enko-Pastur equation m(z) = 1

−z+ 1
1+cm(z)

, we get m′(z) = m2(z)
1− cm2(z)

(1+cm(z))2
,

from which we have m(λi) = −1/(ℓi + c) and m′(λi) = ℓ2i (ℓi + c)−2(ℓ2i − c)−1.

∠ We conclude that aTûiûT
i b = aTuiuT

i b · 1− cℓ−2
i

1+ cℓ−1
i

+ o(1) .
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Limiting fluctuations

∠ we have seen that the (asymptotic) location of the largest eigenvalue λ̂1(Ĉ) establishes
a phase transition behavior if the corresponding population ℓi >

√
c

∠ so below the threshold λ̂1(Ĉ) = (1+
√
c)2 + o(1) almost surely as n, p → ∞

∠ we want to understand more on this o(1) local behavior

Fluctuation of the largest eigenvalue

Under the same setting, assume 0 ≤ ℓk < . . . < ℓ1 <
√
c. Then,

n
2
3
λ̂1 − (1+

√
c)2

(1+
√
c)

4
3 c−

1
6

→ TW1

in law, where TW1 is the (real) Tracy-Widom distribution.

∠ below phase transition: λ̂1 = (1+
√
c)2 + n−

2
3T where T is a (scaled) Tracy-Widom RV
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Remarks on Tracy-Widom law

∠ somewhat surprising: limiting fluctuation of λ̂1 is not Gaussian but follow the
Tracy-Widom distribution and of order O(n−2/3) (instead of O(n−1/2) or O(n−1))

∠ rate related to the following observation:
∠ Marc̆enko-Pastur law: µ(dx) = 1

2πcx
√
(x − E−)+(E+ − x)+ dx, E± = (1±

√
c)2.

∠ so near the right edge E+: µ(dx) ≃x↑E+
c1/4

πc(1+
√
c)2

√
|E+ − x|

∠ so a typical number of eigenvalues in a space of size ϵ near the edge is∫ (1+
√
c)2

(1+
√
c)2−ϵ

√
(1+

√
c)2 − x dx ∝ ϵ

3
2 (6)

∠ to have O(1) eigenvalues within [E+ − ϵ,E+] needs ϵ = O(n−
2
3 ) (this is in fact the

“spacing” between eigenvalues, which is of order O(n−1) away from the edge)
∠ Question: hard-edge setting with c = 1, what happens?
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Remarks on Fluctuation of the largest eigenvalue

∠ BBP phase transition [1]: named after the authors Jinho Baik, Gerard Ben Arous,
Sandrine Peche, says that beyond the phase transition threshold, the fluctuation
becomes a standard CLT type of order O(n−1/2), from TW law of order O(n−2/3)

∠ universality for Tracy-Widom, real TW1, complex TW2, and quaternionic TW4, for
Wishart and Wigner matrix models, smallest and largest eigenvalues

∠ Tracy–Widom distributions connected in the asymptotics of a few growth models in
the Kardar–Parisi–Zhang (KPZ) universality class

More spiked models:
∠ information-plus-noise model of the type 1

n(Z+ P)(Z+ P)T
∠ additive X+ P for Wishart or Wigner type X
Jinho Baik, Gérard Ben Arous and Sandrine Péché. “Phase transition of the largest eigenvalue for nonnull
complex sample covariance matrices”. In: The Annals of Probability 33.5 (2005), 1643–1697. issn: 0091-1798.
doi: 10.1214/009117905000000233

https://doi.org/10.1214/009117905000000233
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Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let X = [x1, . . . , xn] ∈ Rp×n with i.i.d. columns xi ∈ Rp received by array of
p sensors, signal decision as the following binary hypothesis test:

X =

{
σZ, H0
asT + σZ, H1

where Z = [z1, . . . , zn] ∈ Rp×n, zi ∼ N (0, Ip), a ∈ Rp deterministic of unit norm ∥a∥ = 1,
signal s = [s1, . . . , sn]T ∈ Rn with si i.i.d. random, and σ > 0. Denote c = p/n > 0.
∠ observation of either zero-mean Gaussian noise σzi of power σ2, or deterministic

information vector a modulated by an added scalar (random) signal si (e.g., ±1).
∠ If a, σ, and statistics of si are known, the decision-optimal Neyman-Pearson () test:

P(X | H1)

P(X | H0)

H1
≷
H0

α (7)

for some α > 0 controlling the Type I and II error rates.
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Hypothesis testing via GLRT

∠ However, in practice, we do not know σ, nor the information vector a ∈ Rp (to be
recovered)

∠ in the case of a fully unknown, one may resort to a generalized likelihood ratio test
(GLRT) defined as

supσ,a P(X | σ, a,H1)

supσ,a P(X | σ,H0)

H1
≷
H0

α.

∠ Gaussian noise and signal si, GLRT has an explicit expression as a monotonous
increasing function of ∥XXT∥/ tr(XXT), test equivalent to, for some known f ,

Tp ≡
∥∥XXT

∥∥
tr (XXT)

H1
≷
H0

f (α).

∠ to evaluate the power of GLRT above, we need to assess the max and mean
eigenvalues of SCM 1

nXX
T
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H1
≷
H0

f (α).

∠ to evaluate the power of GLRT above, we need to assess the max and mean
eigenvalues of SCM 1

nXX
T
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Hypothesis testing in a signal-plus-noise model via GLRT

To set a maximum false alarm rate (or Type I error) of r > 0 for large n, p, according to
RMT, one must choose a threshold f (α) for Tp:

P(Tp ≥ f (α)) = r ⇔ µTW1([Ap,+∞)) = r, Ap = (f (α)− (1+
√
c)2)(1+

√
c)−

4
3 c

1
6n

2
3 (8)

2.4 (1+
√
c)2 2.60
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Decision threshold f (α)
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e
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m
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te

Empirical false alarm rate

1− TW1(Ap) defined in (8)

Figure: Comparison between empirical false alarm rates and 1− TW1(Ap) for Ap of the form in (8), as a function of the
threshold f (α) ∈ [(1+

√
c)2 − 5n−2/3, (1+

√
c)2 + 5n−2/3], for p = 256, n = 1 024 and σ = 1.
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Reminder on kernel spectral clustering

Two-step classification of n data points with distance kernel K ≡ {f (∥xi − xj∥2/p)}ni,j=1:

0 isolated eigenvalues

⇓ Top eigenvectors ⇓
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Reminder on kernel spectral clustering

⇓ K-dimensional representation ⇓

Eig. 1

Ei
g.

2

⇓
EM or k-means clustering
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Application to “compressed” spectral clustering

Entry-wise nonlinear transformation of XTX: K =
{
f (xT

i xj/
√p)/√p

}n
i,j=1, with

Sparsification: f1(t) = t · 1|t|>√
2s

Quantization: f2(t) = 22−M(⌊t · 2M−2/
√
2s⌋+ 1/2) · 1|t|≤√

2s + sign(t) · 1|t|>√
2s

Binarization: f3(t) = sign(t) · 1|t|>√
2s

−
√
2s 0 √

2s

−1
0
1

f1
f2
f3
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Notations: For each f and ξ ∼ N (0, 1), define the (generalized) moments

a0 = E[f (ξ)] = 0, a1 = E[ξf (ξ)], a2 = E[ξ2f (ξ)]/
√
2, ν = E[f 2(ξ)] ≥ a21 + a22. (9)

f a1 ν

f1 erfc(s) + 2se−s2/
√
π erfc(s) + 2se−s2/

√
π

f2
√

2
π · 21−M(1+ e−s2 +

∑2M−2−1
k=1 2e−

k2s2
4M−2 ) 1− 2M−1

4M−1 erf(s)−
∑2M−2−1

k=1
k erf(ks·22−M)

22M−5

f3 e−s2
√
2/π erfc(s)

with a2 = 0, erf(x) = 2√
π

∫ x
0 e−t2dt, erfc(x) = 1− erf(x) error/complementary error function.

Limiting spectral measure

As n, p → ∞with p/n → c ∈ (0,∞), the empirical spectral measure ωK = 1
n
∑n

i=1 δλi(K)

can be asymptotically determined by m(z) =
∫
(t− z)−1ω(dt) solution to

z = − 1
m(z)

− ν − a12

c
m(z)− a12m(z)

c+ a1m(z)
. (10)
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Informative spike and a phase transition

For a1 > 0 and a2 = 0, similarly define F(x) = x4 + 2x3 +
(
1− cν

a12

)
x2 − 2cx − c and

G(x) = a1
c (1+x)+ a1

x + ν−a12
a1

1
1+x and let γ be the largest real solution to F(γ) = 0. Then,

λ̂ → λ =

{
G(ρ), ρ > γ

G(γ), ρ ≤ γ
,

1
n
|v̂Tv|2 → α =

{ F(ρ)
ρ(1+ρ)3

, ρ > γ

0, ρ ≤ γ
(11)

as n, p → ∞with p/n → c ∈ (0,∞), for SNR ρ = lim ∥µ∥2.
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“Compressed” spectral clustering: practical implications

Performance of spectral clustering

Let a1 > 0, a2 = 0, and Ĉi = sign([v̂]i) be the estimate of class Ci of the datum xi, with
v̂Tv ≥ 0 for v̂ the top eigenvector of K. Then, the misclassification rate satisfies

1
n

n∑
i=1

δĈi ̸=Ci →
1
2 erfc(

√
α/(2− 2α)), α = lim

n,p→∞

1
n
|v̂Tv|2.
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Consequence: optimal quantization/binarization threshold
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