Probability and Stochastic Process II: Random Matrix Theory and Applications Lecture 5: Spiked Model

Zhenyu Liao, Tiebin Mi, Caiming Qiu

School of Electronic Information and Communications (EIC) Huazhong University of Science and Technology (HUST)

April 5, 2023

Outline

Low-rank update of SCM: eigenvalues

Low-rank update of SCM: eigenvectors

Limiting fluctuation

Applications

What we will have today

» sample covariance matrix $\hat{\mathbf{C}}=\frac{1}{n} \mathbf{C}^{\frac{1}{2}} \mathbf{Z Z} \mathbf{Z}^{\boldsymbol{T}} \mathbf{C}^{\frac{1}{2}}$ and $\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ for some low-rank matrix \mathbf{P}
» extreme eigenvalues of C and connection to those of the low-rank P
» extreme eigenvectors of \mathbf{C} and connection to those of the low-rank \mathbf{P}
》) nhase transition behavior and debiasing

What we will have today

» sample covariance matrix $\hat{\mathbf{C}}=\frac{1}{n} \mathbf{C}^{\frac{1}{2}} \mathbf{Z Z} \mathbf{Z}^{\boldsymbol{T}} \mathbf{C}^{\frac{1}{2}}$ and $\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ for some low-rank matrix \mathbf{P} » extreme eigenvalues of $\hat{\mathbf{C}}$ and connection to those of the low-rank \mathbf{P}
» extreme eigenvectors of C and connection to those of the low-rank P
» phase transition behavior and debiasing

What we will have today

» sample covariance matrix $\hat{\mathbf{C}}=\frac{1}{n} \mathbf{C}^{\frac{1}{2}} \mathbf{Z Z} \mathbf{Z}^{\boldsymbol{T}} \mathbf{C}^{\frac{1}{2}}$ and $\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ for some low-rank matrix \mathbf{P} » extreme eigenvalues of $\hat{\mathbf{C}}$ and connection to those of the low-rank \mathbf{P}
» extreme eigenvectors of $\hat{\mathbf{C}}$ and connection to those of the low-rank \mathbf{P}
》 phase transition behavior and debiasing

What we will have today

» sample covariance matrix $\hat{\mathbf{C}}=\frac{1}{n} \mathbf{C}^{\frac{1}{2}} \mathbf{Z} \mathbf{Z}^{\boldsymbol{\top}} \mathbf{C}^{\frac{1}{2}}$ and $\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ for some low-rank matrix \mathbf{P} » extreme eigenvalues of $\hat{\mathbf{C}}$ and connection to those of the low-rank \mathbf{P}
» extreme eigenvectors of $\hat{\mathbf{C}}$ and connection to those of the low-rank \mathbf{P}
» phase transition behavior and debiasing

Outline

Low-rank update of SCM: eigenvalues

Low-rank update of SCM: eigenvectors

Limiting fluctuation

Applications

Low-rank perturbation of SCM

We have studied:
»spectral behavior of the $\mathrm{SCM} \hat{\mathbf{C}}=\frac{1}{n} \mathbf{C}^{\frac{1}{2}} \mathbf{Z Z}^{\top} \mathbf{C}^{\frac{1}{2}}$ for generic \mathbf{C} and \mathbf{Z} with i.i.d. entries
» in particular, how the eigenvalue distribution of \mathbf{C} (the previous μ) depends on that of $\mathrm{C}($ denoted $\nu)$ and the dimension ratio $c=\lim p / n$
» characterization via implicit fixed point equation of the Stieltjes transform
» the behavior (e.g., location) of individual eigenvalue, however, remains unclear
» here, assess the behavior of individual eigenvalue and eigenvector via the spiked model analysis, in the simple setting of $\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ with low rank \mathbf{P}

Note that the limiting eigenvalue distribution of $\hat{\mathbf{C}}=\frac{1}{n}\left(\mathrm{I}_{p}+\mathbb{P}\right)^{\frac{1}{2}} \mathbf{Z Z}{ }^{\top}\left(\mathrm{I}_{p}+\mathbb{P}\right)^{\frac{1}{2}}$ is in fact the same as that of $\frac{1}{n} \mathbf{Z Z}{ }^{\top}$, since the addition of low rank matrices asymptotically does not affect the normalized trace of the resolvent, and thus the Stieltjes transform.

Low-rank perturbation of SCM

We have studied:
» spectral behavior of the SCM $\hat{\mathbf{C}}=\frac{1}{n} \mathbf{C}^{\frac{1}{2}} \mathbf{Z Z}^{\top} \mathbf{C}^{\frac{1}{2}}$ for generic \mathbf{C} and \mathbf{Z} with i.i.d. entries
» in particular, how the eigenvalue distribution of $\hat{\mathbf{C}}$ (the previous μ) depends on that of C (denoted $\nu)$ and the dimension ratio $c=\lim p / n$
》 characterization via implicit fixed point equation of the Stieltjes transform
» the behavior (e.g., location) of individual eigenvalue, however, remains unclear
» here, assess the behavior of individual eigenvalue and eigenvector via the spiked model analysis, in the simple setting of $\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ with low rank \mathbf{P}

Note that the limiting eigenvalue distribution of $\hat{\mathbf{C}}=\frac{1}{n}\left(\mathbf{I}_{p}+\mathbb{P}\right)^{\frac{1}{2}} \mathbf{Z} \mathbf{Z}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}}$ is in fact the same as that of $\frac{1}{n} \mathbf{Z Z}{ }^{\top}$, since the addition of low rank matrices asymptotically does not affect the normalized trace of the resolvent, and thus the Stieltjes transform.

Low-rank perturbation of SCM

We have studied:
»spectral behavior of the SCM $\hat{\mathbf{C}}=\frac{1}{n} \mathbf{C}^{\frac{1}{2}} \mathbf{Z} \mathbf{Z}^{\top} \mathbf{C}^{\frac{1}{2}}$ for generic \mathbf{C} and \mathbf{Z} with i.i.d. entries
» in particular, how the eigenvalue distribution of $\hat{\mathbf{C}}$ (the previous μ) depends on that of C (denoted $\nu)$ and the dimension ratio $c=\lim p / n$
» characterization via implicit fixed point equation of the Stieltjes transform
» the behavior (e.g., location) of individual eigenvalue, however, remains unclear
\gg here, assess the behavior of individual eigenvalue and eigenvector via the spiked model analysis, in the simple setting of $\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ with low rank \mathbf{P}

Note that the limiting eigenvalue distribution of $\hat{\mathbf{C}}=\frac{1}{n}\left(\mathbf{I}_{p}+\mathbb{P}\right)^{\frac{1}{2}} \mathbf{Z} \mathbf{Z}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}}$ is in fact the same as that of $\frac{1}{n} \mathbf{Z Z}{ }^{\top}$, since the addition of low rank matrices asymptotically does not affect the normalized trace of the resolvent, and thus the Stieltjes transform

Low-rank perturbation of SCM

We have studied:
» spectral behavior of the SCM $\hat{\mathbf{C}}=\frac{1}{n} \mathbf{C}^{\frac{1}{2}} \mathbf{Z Z}^{\top} \mathbf{C}^{\frac{1}{2}}$ for generic \mathbf{C} and \mathbf{Z} with i.i.d. entries
» in particular, how the eigenvalue distribution of $\hat{\mathbf{C}}$ (the previous μ) depends on that of C (denoted ν) and the dimension ratio $c=\lim p / n$
» characterization via implicit fixed point equation of the Stieltjes transform
»the behavior (e.g., location) of individual eigenvalue, however, remains unclear model analysis, in the simple setting of $\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ with low rank \mathbf{P}

Note that the limiting eigenvalue distribution of $\hat{C}=\frac{1}{n}\left(\mathbf{I}_{p}+\mathbb{P}\right)^{\frac{1}{2}} \mathbf{Z Z} \mathbf{Z}^{\top}\left(\mathbf{I}_{p}+\mathbb{P}\right)^{\frac{1}{2}}$ is in fact the same as that of $\frac{1}{n} \mathbf{Z Z}{ }^{\top}$, since the addition of low rank matrices asymptotically does not affect the normalized trace of the resolvent, and thus the Stieltjes transform.

Low-rank perturbation of SCM

We have studied:
»spectral behavior of the $\mathrm{SCM} \hat{\mathbf{C}}=\frac{1}{n} \mathbf{C}^{\frac{1}{2}} \mathbf{Z Z}^{\top} \mathbf{C}^{\frac{1}{2}}$ for generic \mathbf{C} and \mathbf{Z} with i.i.d. entries
» in particular, how the eigenvalue distribution of $\hat{\mathbf{C}}$ (the previous μ) depends on that of $\mathbf{C}($ denoted $\nu)$ and the dimension ratio $c=\lim p / n$
» characterization via implicit fixed point equation of the Stieltjes transform
» the behavior (e.g., location) of individual eigenvalue, however, remains unclear
» here, assess the behavior of individual eigenvalue and eigenvector via the spiked model analysis, in the simple setting of $\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ with low rank \mathbf{P}

Note that the limiting eigenvalue distribution of $\hat{\mathbf{C}}=\frac{1}{n}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}} \mathbf{Z Z}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}}$ is in fact the same as that of $\frac{1}{n} \mathbf{Z Z}{ }^{\top}$, since the addition of low rank matrices asymptotically does not affect the normalized trace of the resolvent, and thus the Stieltjes transform.

Low-rank perturbation of SCM

We have studied:
»spectral behavior of the $\mathrm{SCM} \hat{\mathbf{C}}=\frac{1}{n} \mathbf{C}^{\frac{1}{2}} \mathbf{Z Z}^{\top} \mathbf{C}^{\frac{1}{2}}$ for generic \mathbf{C} and \mathbf{Z} with i.i.d. entries
» in particular, how the eigenvalue distribution of $\hat{\mathbf{C}}$ (the previous μ) depends on that of $\mathrm{C}($ denoted $\nu)$ and the dimension ratio $c=\lim p / n$
» characterization via implicit fixed point equation of the Stieltjes transform
»the behavior (e.g., location) of individual eigenvalue, however, remains unclear
» here, assess the behavior of individual eigenvalue and eigenvector via the spiked model analysis, in the simple setting of $\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ with low rank \mathbf{P}

Note that the limiting eigenvalue distribution of $\hat{\mathbf{C}}=\frac{1}{n}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}} \mathbf{Z} \mathbf{Z}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}}$ is in fact the same as that of $\frac{1}{n} \mathbf{Z Z}{ }^{\top}$, since the addition of low rank matrices asymptotically does not affect the normalized trace of the resolvent, and thus the Stieltjes transform.

Low-rank perturbation from the Marčenko-Pastur law
Consider $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$ with $\mathbf{x}_{i}=\mathbf{C}^{\frac{1}{2}} \mathbf{z}_{i}, \mathbf{z}_{i} \in \mathbb{R}^{p}$ with standard i.i.d. entries and

$$
\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}, \quad \mathbf{P}=\sum_{i=1}^{k} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}
$$

with k and $\ell_{1} \geq \ldots \geq \ell_{k}>0$ fixed with respect to n, p.
» note that here $\nu \equiv \lim _{p \rightarrow \infty} \mu_{\mathrm{C}}=\lim _{p \rightarrow \infty} \frac{p-k}{p} \delta_{1}+\frac{1}{p} \sum_{i=1}^{k} \delta_{1+\ell_{i}}=\delta_{1}$
»so, while $\mathbf{C} \neq \mathbf{I}_{p}$, the limiting μ still follows the Marčenko-Pastur law
» however, we do not have "no eigenvalue outside the support," since the condition $\operatorname{dist}\left(1+\ell_{i}, \operatorname{supp}(\nu)\right) \nrightarrow 0$ for $i \in\{1, \ldots, k\}$ is violated
》 and one may have some (order $O(1)$ in this setting) the eigenvalues of \hat{C} "jumping" out of the limiting support $\operatorname{supp}(\mu)$
»note for $n \gg p, \hat{\mathbf{C}} \simeq \mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$, so with its eigenvalues connected to those of \mathbf{P}

Low-rank perturbation from the Marc̆enko-Pastur law

Consider $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$ with $\mathbf{x}_{i}=\mathbf{C}^{\frac{1}{2}} \mathbf{z}_{i}, \mathbf{z}_{i} \in \mathbb{R}^{p}$ with standard i.i.d. entries and

$$
\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}, \quad \mathbf{P}=\sum_{i=1}^{k} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}
$$

with k and $\ell_{1} \geq \ldots \geq \ell_{k}>0$ fixed with respect to n, p.
»note that here $\nu \equiv \lim _{p \rightarrow \infty} \mu_{\mathrm{C}}=\lim _{p \rightarrow \infty} \frac{p-k}{p} \delta_{1}+\frac{1}{p} \sum_{i=1}^{k} \delta_{1+\ell_{i}}=\delta_{1}$
\gg so, while $C \neq I_{p}$, the limiting μ still follows the Marčenko-Pastur law
\gg however, we do not have "no eigenvalue outside the support," since the condition $\operatorname{dist}\left(1+\ell_{i}, \operatorname{supp}(\nu)\right) \nrightarrow 0$ for $i \in\{1, \ldots, k\}$ is violated
》 and one may have some (order $O(1)$ in this setting) the eigenvalues of \hat{C} "jumping" out of the limiting support $\operatorname{supp}(\mu)$
\gg note for $n \gg p, \hat{\mathbf{C}} \simeq \mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$, so with its eigenvalues connected to those of \mathbf{P}

Low-rank perturbation from the Marc̆enko-Pastur law

Consider $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$ with $\mathbf{x}_{i}=\mathbf{C}^{\frac{1}{2}} \mathbf{z}_{i}, \mathbf{z}_{i} \in \mathbb{R}^{p}$ with standard i.i.d. entries and

$$
\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}, \quad \mathbf{P}=\sum_{i=1}^{k} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}
$$

with k and $\ell_{1} \geq \ldots \geq \ell_{k}>0$ fixed with respect to n, p.
»note that here $\nu \equiv \lim _{p \rightarrow \infty} \mu_{\mathbf{C}}=\lim _{p \rightarrow \infty} \frac{p-k}{p} \delta_{1}+\frac{1}{p} \sum_{i=1}^{k} \delta_{1+\ell_{i}}=\delta_{1}$
»so, while $\mathbf{C} \neq \mathbf{I}_{p}$, the limiting μ still follows the Marc̆enko-Pastur law
» however, we do not have "no eigenvalue outside the support," since the condition $\operatorname{dist}\left(1+\ell_{i}, \operatorname{supp}(\nu)\right) \nrightarrow 0$ for $i \in\{1, \ldots, k\}$ is violated
» and one may have some (order $O(1)$ in this setting) the eigenvalues of \hat{C} "jumping" out of the limiting support $\operatorname{supp}(\mu)$
\gg note for $n \gg p, \widehat{C} \simeq \mathbb{C}=\mathbb{I}_{p}+\mathbb{P}$, so with its eigenvalues connected to those of \mathbb{P}

Low-rank perturbation from the Marc̆enko-Pastur law

Consider $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$ with $\mathbf{x}_{i}=\mathbf{C}^{\frac{1}{2}} \mathbf{z}_{i}, \mathbf{z}_{i} \in \mathbb{R}^{p}$ with standard i.i.d. entries and

$$
\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}, \quad \mathbf{P}=\sum_{i=1}^{k} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}
$$

with k and $\ell_{1} \geq \ldots \geq \ell_{k}>0$ fixed with respect to n, p.
»note that here $\nu \equiv \lim _{p \rightarrow \infty} \mu_{\mathbf{C}}=\lim _{p \rightarrow \infty} \frac{p-k}{p} \delta_{1}+\frac{1}{p} \sum_{i=1}^{k} \delta_{1+\ell_{i}}=\delta_{1}$
»so, while $\mathbf{C} \neq \mathbf{I}_{p}$, the limiting μ still follows the Marc̆enko-Pastur law
» however, we do not have "no eigenvalue outside the support," since the condition $\operatorname{dist}\left(1+\ell_{i}, \operatorname{supp}(\nu)\right) \nrightarrow 0$ for $i \in\{1, \ldots, k\}$ is violated
» and one may have some (order $O(1)$ in this setting) the eigenvalues of C "jumping' out of the limiting support $\operatorname{supp}(\mu)$
\gg note for $n \gg p, \hat{\mathbf{C}} \simeq \mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$, so with its eigenvalues connected to those of \mathbf{P}

Low-rank perturbation from the Marc̆enko-Pastur law

Consider $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$ with $\mathbf{x}_{i}=\mathbf{C}^{\frac{1}{2}} \mathbf{z}_{i}, \mathbf{z}_{i} \in \mathbb{R}^{p}$ with standard i.i.d. entries and

$$
\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}, \quad \mathbf{P}=\sum_{i=1}^{k} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}
$$

with k and $\ell_{1} \geq \ldots \geq \ell_{k}>0$ fixed with respect to n, p.
»note that here $\nu \equiv \lim _{p \rightarrow \infty} \mu_{\mathbf{C}}=\lim _{p \rightarrow \infty} \frac{p-k}{p} \delta_{1}+\frac{1}{p} \sum_{i=1}^{k} \delta_{1+\ell_{i}}=\delta_{1}$
»so, while $\mathbf{C} \neq \mathbf{I}_{p}$, the limiting μ still follows the Marc̆enko-Pastur law
» however, we do not have "no eigenvalue outside the support," since the condition $\operatorname{dist}\left(1+\ell_{i}, \operatorname{supp}(\nu)\right) \nrightarrow 0$ for $i \in\{1, \ldots, k\}$ is violated
» and one may have some (order $O(1)$ in this setting) the eigenvalues of $\hat{\mathbf{C}}$ "jumping" out of the limiting support $\operatorname{supp}(\mu)$
\gg note for $n \gg p, \mathrm{C} \simeq \mathrm{C}=\mathrm{I}_{p}+\mathbb{P}$, so with its eigenvalues connected to those of P

Low-rank perturbation from the Marc̆enko-Pastur law

Consider $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$ with $\mathbf{x}_{i}=\mathbf{C}^{\frac{1}{2}} \mathbf{z}_{i}, \mathbf{z}_{i} \in \mathbb{R}^{p}$ with standard i.i.d. entries and

$$
\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}, \quad \mathbf{P}=\sum_{i=1}^{k} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}
$$

with k and $\ell_{1} \geq \ldots \geq \ell_{k}>0$ fixed with respect to n, p.
»note that here $\nu \equiv \lim _{p \rightarrow \infty} \mu_{\mathbf{C}}=\lim _{p \rightarrow \infty} \frac{p-k}{p} \delta_{1}+\frac{1}{p} \sum_{i=1}^{k} \delta_{1+\ell_{i}}=\delta_{1}$
»so, while $\mathbf{C} \neq \mathbf{I}_{p}$, the limiting μ still follows the Marc̆enko-Pastur law
» however, we do not have "no eigenvalue outside the support," since the condition $\operatorname{dist}\left(1+\ell_{i}, \operatorname{supp}(\nu)\right) \nrightarrow 0$ for $i \in\{1, \ldots, k\}$ is violated
» and one may have some (order $O(1)$ in this setting) the eigenvalues of $\hat{\mathbf{C}}$ "jumping" out of the limiting support $\operatorname{supp}(\mu)$
》 note for $n \gg p, \hat{\mathbf{C}} \simeq \mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$, so with its eigenvalues connected to those of \mathbf{P}

Spiked eigenvalues and a phase transition

Here, depending on the values of ℓ_{i} and the ratio $c=\lim p / n$, the i-th largest eigenvalue $\hat{\lambda}_{i}$ of $\hat{\mathbf{C}}$ may indeed isolate from $\operatorname{supp}(\mu)$, due to [2].

For SCM $\hat{\mathbf{C}}=\frac{1}{n} \mathbf{C}^{\frac{1}{2}} \mathbf{Z} \mathbf{Z}^{\top} \mathbf{C}^{\frac{1}{2}}$ with i.i.d. $\mathbb{E}\left[\mathbf{Z}_{i j}^{4}\right]<\infty$, let $\mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ with $\mathbf{P}=\sum_{i=1}^{k} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$ its spectral decomposition, where k and $\ell_{1} \geq \ldots \geq \ell_{k}>0$ are fixed with respect to n, p. Then, denoting $\hat{\lambda}_{1} \geq \ldots \geq \hat{\lambda}_{p}$ the eigenvalues of $\hat{\mathbf{C}}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$,

$$
\hat{\lambda}_{i} \xrightarrow{\text { a.s. }} \begin{cases}\lambda_{i}=1+\ell_{i}+c \frac{1+\ell_{i}}{\ell_{i}}>(1+\sqrt{c})^{2} & , \ell_{i}>\sqrt{c} \\ (1+\sqrt{c})^{2} & , \ell_{i} \leq \sqrt{c} .\end{cases}
$$

Spiked eigenvalues
Jinho Baik and Jack W. Silverstein. "Eigenvalues of large sample covariance matrices of spiked population models". In: Journal of Multivariate Analysis 97.6 (2006), 1382-1408. issn: 0047-259X. Dor:
10.1016/j.jmva.2005.08.003

(a) $p / n=1 / 4$

(b) $p / n=2$

Figure: Eigenvalues of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ (blue crosses), the Marčenko-Pastur law (red solid line), and asymptotic spike locations (red dashed line), for $\mathbf{X}=\mathbf{C}^{\frac{1}{2}} \mathbf{Z}, \mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$ with $\mu_{\mathbf{P}}=\frac{p-4}{p} \delta_{0}+\frac{1}{p}\left(\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}\right)$, for $p=1024$ and different values of n.

Proof

»solve the determinant equation $\operatorname{det}\left(\hat{\mathbf{C}}-\hat{\lambda} \mathbf{I}_{p}\right)=0$ to find "isolated" eigenvalue $\hat{\lambda} \in \mathbb{R}$
》use Sylvester's identity, $\operatorname{det}\left(\mathrm{AB}-\mathrm{I}_{p}\right)=\operatorname{det}\left(\mathrm{BA}-\mathrm{I}_{k}\right)$, to turn the p-dimensional equation into a k-dimensional one
»solve the small-dimensional equation with the deterministic equivalent result
We write, with $\mathbf{X}=\mathbf{C}^{\frac{1}{2}} \mathbf{Z}$,

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-\hat{\lambda} \mathbf{I}_{p}\right)=\operatorname{det}\left(\frac{1}{n}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}} \mathbf{Z} \mathbf{Z}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}}-\hat{\lambda} \mathbf{I}_{p}\right) \\
& =\operatorname{det}\left(\mathbf{I}_{p}+\mathbf{P}\right) \operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\hat{\lambda}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1}\right)=\operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\hat{\lambda}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1}\right)
\end{aligned}
$$

since $\operatorname{det}\left(\mathbf{I}_{p}+\mathbf{P}\right) \neq 0$. Note from the resolvent identity $\left(\mathbf{A}^{-1}-\mathbf{B}^{-1}=\mathbf{A}^{-1}(\mathbf{B}-\mathbf{A}) \mathbf{B}^{-1}\right)$

$$
\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1}=\mathbf{I}_{p}-\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}
$$

Proof

»solve the determinant equation $\operatorname{det}\left(\hat{\mathbf{C}}-\hat{\lambda} \mathbf{I}_{p}\right)=0$ to find "isolated" eigenvalue $\hat{\lambda} \in \mathbb{R}$
$»$ use Sylvester's identity, $\operatorname{det}\left(\mathbf{A B}-\mathbf{I}_{p}\right)=\operatorname{det}\left(\mathbf{B A}-\mathbf{I}_{k}\right)$, to turn the p-dimensional equation into a k-dimensional one
» solve the small-dimensional equation with the deterministic equivalent result
We write, with $\mathbf{X}=\mathbf{C}^{\frac{1}{2}} \mathbf{Z}$,

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-\hat{\lambda} \mathbf{I}_{p}\right)=\operatorname{det}\left(\frac{1}{n}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}} \mathbf{Z} \mathbf{Z}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}}-\hat{\lambda} \mathbf{I}_{p}\right) \\
& =\operatorname{det}\left(\mathbf{I}_{p}+\mathbf{P}\right) \operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\hat{\lambda}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1}\right)=\operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\hat{\lambda}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1}\right),
\end{aligned}
$$

since $\operatorname{det}\left(\mathbf{I}_{p}+\mathbf{P}\right) \neq 0$. Note from the resolvent identity $\left(\mathbf{A}^{-1}-\mathbf{B}^{-1}=\mathbf{A}^{-1}(\mathbf{B}-\mathbf{A}) \mathbf{B}^{-1}\right)$

$$
\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1}=\mathbf{I}_{p}-\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}
$$

Proof

»solve the determinant equation $\operatorname{det}\left(\hat{\mathbf{C}}-\hat{\lambda} \mathbf{I}_{p}\right)=0$ to find "isolated" eigenvalue $\hat{\lambda} \in \mathbb{R}$
$»$ use Sylvester's identity, $\operatorname{det}\left(\mathbf{A B}-\mathbf{I}_{p}\right)=\operatorname{det}\left(\mathbf{B A}-\mathbf{I}_{k}\right)$, to turn the p-dimensional equation into a k-dimensional one
» solve the small-dimensional equation with the deterministic equivalent result We write, with $\mathbf{X}=\mathbf{C}^{\frac{1}{2}} \mathbf{Z}$,

$$
\begin{aligned}
0 & =\operatorname{det}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-\hat{\lambda} \mathbf{I}_{p}\right)=\operatorname{det}\left(\frac{1}{n}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}} \mathbf{Z} \mathbf{Z}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}}-\hat{\lambda} \mathbf{I}_{p}\right) \\
& =\operatorname{det}\left(\mathbf{I}_{p}+\mathbf{P}\right) \operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\hat{\lambda}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1}\right)=\operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\hat{\lambda}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1}\right),
\end{aligned}
$$

since $\operatorname{det}\left(\mathbf{I}_{p}+\mathbf{P}\right) \neq 0$. Note from the resolvent identity $\left(\mathbf{A}^{-1}-\mathbf{B}^{-1}=\mathbf{A}^{-1}(\mathbf{B}-\mathbf{A}) \mathbf{B}^{-1}\right)$

$$
\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1}=\mathbf{I}_{p}-\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}
$$

Proof (continue)

» We can then isolate the resolvent of the "whitened" $\operatorname{model} \mathbf{Q}(\hat{\lambda})=\left(\frac{1}{n} \mathbf{Z Z} \mathbf{Z}^{\top}-\hat{\lambda} \mathbf{I}_{p}\right)^{-1}$ and

$$
0=\operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\boldsymbol{\top}}-\hat{\lambda} \mathbf{I}_{p}+\hat{\lambda}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}\right)=\operatorname{det} \mathbf{Q}^{-1}(\hat{\lambda}) \cdot \operatorname{det}\left(\mathbf{I}_{p}+\hat{\lambda} \mathbf{Q}(\hat{\lambda})\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}\right) .
$$

» Using the "no eigenvalue of the support" result and the assumption $\mathbb{E}\left[\mathbb{Z}_{i j}^{4}\right]<\infty$, we are looking for isolated spiked eigenvalues such that $\hat{\lambda}>(1+\sqrt{c})^{2}$, so $\operatorname{det} \mathbf{Q}^{-1}(\hat{\lambda}) \neq 0$ with probability one as $n, p \rightarrow \infty$.
》Consider spectral decomposition $\mathbf{P}=\mathrm{ULU}^{\top}=\sum_{i=1}^{k} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$, then $\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}=\sum_{i=1}^{k} \frac{\ell_{i}}{1+\ell_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}=\mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L} \mathbf{U}^{\top}$ is also of rank k.
"With Sylvester's identity, we get $0=\operatorname{det}\left(\mathbf{I}_{k}+\hat{\lambda} \mathbf{U}^{\top} \mathbf{Q}(\hat{\lambda}) \mathbf{U} \cdot\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L}\right)$.

Proof (continue)

» We can then isolate the resolvent of the "whitened" model $\mathbf{Q}(\hat{\lambda})=\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\hat{\lambda} \mathbf{I}_{p}\right)^{-1}$ and

$$
0=\operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\hat{\lambda} \mathbf{I}_{p}+\hat{\lambda}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}\right)=\operatorname{det} \mathbf{Q}^{-1}(\hat{\lambda}) \cdot \operatorname{det}\left(\mathbf{I}_{p}+\hat{\lambda} \mathbf{Q}(\hat{\lambda})\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}\right)
$$

» Using the "no eigenvalue of the support" result and the assumption $\mathbb{E}\left[\mathbf{Z}_{i j}^{4}\right]<\infty$, we are looking for isolated spiked eigenvalues such that $\hat{\lambda}>(1+\sqrt{c})^{2}$, so $\operatorname{det} \mathbf{Q}^{-1}(\hat{\lambda}) \neq 0$ with probability one as $n, p \rightarrow \infty$.
» Consider spectral decomposition $\mathbf{P}=\mathrm{ULU}^{\top}=\sum_{i=1}^{k} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$, then
$\quad\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}=\sum_{i=1}^{k} \frac{\ell_{i}}{1+\ell_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}=\mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L U}^{\top}$ is also of rank k.
» With Sylvester's identity, we get $0=\operatorname{det}\left(\mathbf{I}_{k}+\hat{\lambda} \mathbf{U}^{\top} \mathbf{Q}(\hat{\lambda}) \mathbf{U} \cdot\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L}\right)$

Proof (continue)

» We can then isolate the resolvent of the "whitened" model $\mathbf{Q}(\hat{\lambda})=\left(\frac{1}{n} \mathbf{Z Z}^{\top}-\hat{\lambda} \mathbf{I}_{p}\right)^{-1}$ and

$$
0=\operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\hat{\lambda} \mathbf{I}_{p}+\hat{\lambda}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}\right)=\operatorname{det} \mathbf{Q}^{-1}(\hat{\lambda}) \cdot \operatorname{det}\left(\mathbf{I}_{p}+\hat{\lambda} \mathbf{Q}(\hat{\lambda})\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}\right)
$$

» Using the "no eigenvalue of the support" result and the assumption $\mathbb{E}\left[\mathbf{Z}_{i j}^{4}\right]<\infty$, we are looking for isolated spiked eigenvalues such that $\hat{\lambda}>(1+\sqrt{c})^{2}$, so $\operatorname{det} \mathbf{Q}^{-1}(\hat{\lambda}) \neq 0$ with probability one as $n, p \rightarrow \infty$.
»Consider spectral decomposition $\mathbf{P}=\mathbf{U L U}{ }^{\top}=\sum_{i=1}^{k} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$, then $\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}=\sum_{i=1}^{k} \frac{\ell_{i}}{1+\ell_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}=\mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L} \mathbf{U}^{\top}$ is also of rank k.
\geqslant With Sylvester's identity, we get $0=\operatorname{det}\left(I_{k}+\hat{\lambda} \mathbf{U}^{\top} \mathbf{Q}(\hat{\lambda}) \mathbf{U} \cdot\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L}\right)$

Proof (continue)

» We can then isolate the resolvent of the "whitened" model $\mathbf{Q}(\hat{\lambda})=\left(\frac{1}{n} \mathbf{Z Z}^{\top}-\hat{\lambda} \mathbf{I}_{p}\right)^{-1}$ and

$$
0=\operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\hat{\lambda} \mathbf{I}_{p}+\hat{\lambda}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}\right)=\operatorname{det} \mathbf{Q}^{-1}(\hat{\lambda}) \cdot \operatorname{det}\left(\mathbf{I}_{p}+\hat{\lambda} \mathbf{Q}(\hat{\lambda})\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}\right)
$$

» Using the "no eigenvalue of the support" result and the assumption $\mathbb{E}\left[\mathbf{Z}_{i j}^{4}\right]<\infty$, we are looking for isolated spiked eigenvalues such that $\hat{\lambda}>(1+\sqrt{c})^{2}$, so $\operatorname{det} \mathbf{Q}^{-1}(\hat{\lambda}) \neq 0$ with probability one as $n, p \rightarrow \infty$.
» Consider spectral decomposition $\mathbf{P}=\mathbf{U L U}{ }^{\top}=\sum_{i=1}^{k} \ell_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$, then $\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}=\sum_{i=1}^{k} \frac{\ell_{i}}{1+\ell_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}=\mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L} \mathbf{U}^{\top}$ is also of rank k.
» With Sylvester's identity, we get $0=\operatorname{det}\left(\mathbf{I}_{k}+\hat{\lambda} \mathbf{U}^{\top} \mathbf{Q}(\hat{\lambda}) \mathbf{U} \cdot\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L}\right)$.

Proof (continue)

For $\mathbf{Z} \in \mathbb{R}^{p \times n}$ with independent zero mean and unit variance random variables and $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right)^{-1}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow(0, \infty)$, we have $\mathbf{Q}(z) \leftrightarrow \overline{\mathbf{Q}}(z)=m(z) \mathbf{I}_{p}$, with $m(z)$ the unique ST solution to $z \mathrm{~cm}^{2}(z)-(1-c-z) m(z)+1=0$.

Deterministic equivalent result for SCM
» Looking for isolated spikes $\hat{\lambda}$ satisfying $0=\operatorname{det}\left(\mathbf{I}_{k}+\hat{\lambda} \mathbf{U}^{\top} \mathbf{Q}(\hat{\lambda}) \mathbf{U} \cdot\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L}\right)$》 With the deterministic equivalent result $\mathbf{Q}(\hat{\lambda}) \leftrightarrow m(\hat{\lambda}) \mathbf{I}_{p}$, leads to

Proof (continue)

For $\mathbf{Z} \in \mathbb{R}^{p \times n}$ with independent zero mean and unit variance random variables and $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right)^{-1}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow(0, \infty)$, we have $\mathbf{Q}(z) \leftrightarrow \overline{\mathbf{Q}}(z)=m(z) \mathbf{I}_{p}$, with $m(z)$ the unique ST solution to $z \mathrm{~cm}^{2}(z)-(1-c-z) m(z)+1=0$.

Deterministic equivalent result for SCM
» Looking for isolated spikes $\hat{\lambda}$ satisfying $0=\operatorname{det}\left(\mathbf{I}_{k}+\hat{\lambda} \mathbf{U}^{\top} \mathbf{Q}(\hat{\lambda}) \mathbf{U} \cdot\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L}\right)$
» With the deterministic equivalent result $\mathbf{Q}(\hat{\lambda}) \leftrightarrow m(\hat{\lambda}) \mathbf{I}_{p}$, leads to

$$
\begin{equation*}
0=\operatorname{det}\left(\mathbf{I}_{k}+\hat{\lambda} m(\hat{\lambda}) \cdot\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L}\right)=\prod_{i=1}^{k}\left(1+\hat{\lambda} m(\hat{\lambda}) \frac{\ell_{i}}{1+\ell_{i}}\right) . \tag{1}
\end{equation*}
$$

Proof (continue)

For $\mathbf{Z} \in \mathbb{R}^{p \times n}$ with independent zero mean and unit variance random variables and $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right)^{-1}$, as $n, p \rightarrow \infty$ with $p / n \rightarrow(0, \infty)$, we have $\mathbf{Q}(z) \leftrightarrow \overline{\mathbf{Q}}(z)=m(z) \mathbf{I}_{p}$, with $m(z)$ the unique ST solution to $z \mathrm{~cm}^{2}(z)-(1-c-z) m(z)+1=0$.

Deterministic equivalent result for SCM
» Looking for isolated spikes $\hat{\lambda}$ satisfying $0=\operatorname{det}\left(\mathbf{I}_{k}+\hat{\lambda} \mathbf{U}^{\top} \mathbf{Q}(\hat{\lambda}) \mathbf{U} \cdot\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L}\right)$
$»$ With the deterministic equivalent result $\mathbf{Q}(\hat{\lambda}) \leftrightarrow m(\hat{\lambda}) \mathbf{I}_{p}$, leads to

$$
\begin{equation*}
0=\operatorname{det}\left(\mathbf{I}_{k}+\hat{\lambda} m(\hat{\lambda}) \cdot\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L}\right)=\prod_{i=1}^{k}\left(1+\hat{\lambda} m(\hat{\lambda}) \frac{\ell_{i}}{1+\ell_{i}}\right) . \tag{1}
\end{equation*}
$$

»If such $\hat{\lambda}$ exists, must satisfy $\hat{\lambda} m(\hat{\lambda})=-\frac{1+\ell_{i}}{\ell_{i}}+o(1)$, for some $i \in\{1, \ldots, k\}$.

Proof (continue)

$$
\begin{equation*}
\hat{\lambda} m(\hat{\lambda})=-\frac{1+\ell_{i}}{\ell_{i}}+o(1) \tag{2}
\end{equation*}
$$

»For such a solution $\hat{\lambda}$ to exist, study the behavior of $x m(x)=\int \frac{x}{t-x} \mu(d t)$ which is increasing on its domain of definition with $x m(x) \rightarrow-1$ as $x \rightarrow \infty$.
» Using the Marčenko-Pastur equation
$z c m^{2}(z)-(1-c-z) m(z)+1=0 \Leftrightarrow z m(z)=-1+\frac{1}{1-z-c \cdot z m(z)}$, so that
$\lim _{x \downarrow(1+\sqrt{c})^{2}}=-\frac{1+\sqrt{c}}{\sqrt{c}}$.
》 so the solution $\hat{\lambda}$ exists if and only if the corresponding $h_{i}>\sqrt{c}$, and

Proof (continue)

$$
\begin{equation*}
\hat{\lambda} m(\hat{\lambda})=-\frac{1+\ell_{i}}{\ell_{i}}+o(1) \tag{2}
\end{equation*}
$$

»For such a solution $\hat{\lambda}$ to exist, study the behavior of $x m(x)=\int \frac{x}{t-x} \mu(d t)$ which is increasing on its domain of definition with $x m(x) \rightarrow-1$ as $x \rightarrow \infty$.
» Using the Marčenko-Pastur equation
$z c m^{2}(z)-(1-c-z) m(z)+1=0 \Leftrightarrow z m(z)=-1+\frac{1}{1-z-c \cdot z m(z)}$, so that
$\lim _{x \downarrow(1+\sqrt{c})^{2}}=-\frac{1+\sqrt{c}}{\sqrt{c}}$.
»so the solution $\hat{\lambda}$ exists if and only if the corresponding $l_{i}>\sqrt{c}$, and

Proof (continue)

$$
\begin{equation*}
\hat{\lambda} m(\hat{\lambda})=-\frac{1+\ell_{i}}{\ell_{i}}+o(1) \tag{2}
\end{equation*}
$$

»For such a solution $\hat{\lambda}$ to exist, study the behavior of $x m(x)=\int \frac{x}{t-x} \mu(d t)$ which is increasing on its domain of definition with $x m(x) \rightarrow-1$ as $x \rightarrow \infty$.
» Using the Marc̆enko-Pastur equation
$z c m^{2}(z)-(1-c-z) m(z)+1=0 \Leftrightarrow z m(z)=-1+\frac{1}{1-z-c \cdot z m(z)}$, so that $\lim _{x \downarrow(1+\sqrt{c})^{2}}=-\frac{1+\sqrt{c}}{\sqrt{c}}$.
》so the solution $\hat{\lambda}$ exists if and only if the corresponding $\ell_{i}>\sqrt{c}$, and

Proof (continue)

$$
\begin{equation*}
\hat{\lambda} m(\hat{\lambda})=-\frac{1+\ell_{i}}{\ell_{i}}+o(1) \tag{2}
\end{equation*}
$$

»For such a solution $\hat{\lambda}$ to exist, study the behavior of $x m(x)=\int \frac{x}{t-x} \mu(d t)$ which is increasing on its domain of definition with $x m(x) \rightarrow-1$ as $x \rightarrow \infty$.
» Using the Marčenko-Pastur equation
$z c m^{2}(z)-(1-c-z) m(z)+1=0 \Leftrightarrow z m(z)=-1+\frac{1}{1-z-c \cdot z m(z)}$, so that $\lim _{x \downarrow(1+\sqrt{c})^{2}}=-\frac{1+\sqrt{c}}{\sqrt{c}}$.
»so the solution $\hat{\lambda}$ exists if and only if the corresponding $\ell_{i}>\sqrt{c}$, and

$$
\begin{equation*}
\hat{\lambda} \rightarrow \lambda_{i}=1+\ell_{i}+c \frac{1+\ell_{i}}{\ell_{i}} . \tag{3}
\end{equation*}
$$

Figure: Phase transition behavior of the largest eigenvalue $\hat{\lambda}_{1}(\hat{\mathbf{C}})$ of $\begin{gathered}\ell_{1} \\ \mathbf{C}\end{gathered}=\frac{1}{n}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}} \mathbf{Z Z}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}}$ as a function of $\ell_{1}=\|\mathbf{P}\|$ with rank one \mathbf{P}, for $p=512$ and $n=1024$. Empirical results obtained by averaging over 50 independent runs.

Outline

Low-rank update of SCM: eigenvalues

Low-rank update of SCM: eigenvectors

Limiting fluctuation

Applications

Spiked eigenvectors of SCM

We would also like to characterize the behavior of the spiked eigenvectors:

Spiked eigenvectors of SCM

We would also like to characterize the behavior of the spiked eigenvectors:
» it makes sense to believe that for $n \gg p, \hat{\mathbf{C}} \simeq \mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$, so its eigenvectors should "close to" those of \mathbf{C} in some way and for sufficient large n / p
\gg formally, how the top eigenvectors $\hat{\mathbf{u}}_{1}, \ldots, \hat{\mathbf{u}}_{k}$ of C close to those $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$ of \mathbf{P}
> some type of phase transition behavior is (again) expected.

In the absence of low-rank perturbation \mathbf{P} and Gaussian \mathbf{Z}, it is known that the eigenvectors of the resulting Wishart matrix $\frac{1}{n} \mathbf{Z Z}^{\top} \in \mathbb{R}^{p \times p}$ are uniformly distributed on the unit sphere \mathbb{S}^{p-1} (also know as the p-dimensional Haar measure), which is close to, for p large, random vector with i.i.d. Gaussian entries.

Spiked eigenvectors of SCM

We would also like to characterize the behavior of the spiked eigenvectors:
» it makes sense to believe that for $n \gg p, \hat{\mathbf{C}} \simeq \mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$, so its eigenvectors should "close to" those of \mathbf{C} in some way and for sufficient large n / p
»formally, how the top eigenvectors $\hat{\mathbf{u}}_{1}, \ldots, \hat{\mathbf{u}}_{k}$ of $\hat{\mathbf{C}}$ close to those $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$ of \mathbf{P}
\gg some type of phase transition behavior is (again) expected.

In the absence of low-rank perturbation \mathbf{P} and Gaussian \mathbf{Z}, it is known that the eigenvectors of the resulting Wishart matrix $\frac{1}{n} \mathbf{Z Z}^{\top} \in \mathbb{R}^{p \times p}$ are uniformly distributed on the unit sphere \mathbb{S}^{p-1} (also know as the p-dimensional Haar measure), which is close to, for p large, random vector with i.i.d. Gaussian entries.

Spiked eigenvectors of SCM

We would also like to characterize the behavior of the spiked eigenvectors:
» it makes sense to believe that for $n \gg p, \hat{\mathbf{C}} \simeq \mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$, so its eigenvectors should "close to" those of \mathbf{C} in some way and for sufficient large n / p
» formally, how the top eigenvectors $\hat{\mathbf{u}}_{1}, \ldots, \hat{\mathbf{u}}_{k}$ of $\hat{\mathbf{C}}$ close to those $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$ of \mathbf{P}
»some type of phase transition behavior is (again) expected.
In the absence of low-rank perturbation \mathbf{P} and Gaussian \mathbf{Z}, it is known that the eigenvectors of the resulting Wishart matrix $\frac{1}{Z} \mathbf{Z}^{\top} \in \mathbb{R}^{p \times p}$ are uniformly distributed on the
unit sphere \mathbb{S}^{p-1} (also know as the p-dimensional Haar measure), which is close to, for p large, random vector with i.i.d. Gaussian entries.

Spiked eigenvectors of SCM

We would also like to characterize the behavior of the spiked eigenvectors:
» it makes sense to believe that for $n \gg p, \hat{\mathbf{C}} \simeq \mathbf{C}=\mathbf{I}_{p}+\mathbf{P}$, so its eigenvectors should "close to" those of \mathbf{C} in some way and for sufficient large n / p
»formally, how the top eigenvectors $\hat{\mathbf{u}}_{1}, \ldots, \hat{\mathbf{u}}_{k}$ of $\hat{\mathbf{C}}$ close to those $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right)$ of \mathbf{P}
»some type of phase transition behavior is (again) expected.
In the absence of low-rank perturbation \mathbf{P} and Gaussian \mathbf{Z}, it is known that the eigenvectors of the resulting Wishart matrix $\frac{1}{n} \mathbf{Z Z}^{\top} \in \mathbb{R}^{p \times p}$ are uniformly distributed on the unit sphere \mathbb{S}^{p-1} (also know as the p-dimensional Haar measure), which is close to, for p large, random vector with i.i.d. Gaussian entries.

Spiked eigenvector alignment

Let $\hat{\mathbf{u}}_{1}, \ldots, \hat{\mathbf{u}}_{k}$ be the eigenvectors associated with the largest k eigenvalues $\hat{\lambda}_{1}>\ldots>$ $\hat{\lambda}_{k}$ of $\hat{\mathbf{C}}$. Further assume that $\ell_{1}>\ldots>\ell_{k}>0$ are all distinct. Then, for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{p}$ unit norm deterministic vectors

$$
\begin{equation*}
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b}-\mathbf{a}^{\top} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{b} \cdot \frac{1-c \ell_{i}^{-2}}{1+c \ell_{i}^{-1}} \cdot 1_{\ell_{i}>\sqrt{c}} \xrightarrow{\text { a.s. }} 0 . \tag{4}
\end{equation*}
$$

In particular, with $\mathbf{a}=\mathbf{b}=\mathbf{u}_{i}$ we obtain

$$
\begin{equation*}
\left(\mathbf{u}_{i}^{\top} \hat{\mathbf{u}}_{i}\right)^{2} \xrightarrow{\text { a.s. }} \zeta_{i} \equiv \frac{1-c \ell_{i}^{-2}}{1+c \ell_{i}^{-1}} \cdot 1_{\ell_{i}>\sqrt{c}} . \tag{5}
\end{equation*}
$$

Population spike ℓ_{1}
Figure: Empirical versus limiting $\left|\hat{\mathbf{u}}_{1}^{\top} \mathbf{u}_{1}\right|^{2}$ for $\mathbf{X}=\mathbf{C}^{\frac{1}{2}} \mathbf{Z}, \mathbf{C}=\mathbf{I}_{p}+\ell_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{\top}$ and standard Gaussian $\mathbf{Z}, p / n=1 / 3$, for different values of ℓ_{1}. Results obtained by averaging over 200 runs. In black dashed line the local behavior around \sqrt{c}.

Proof

»First write that, for all large n, p almost surely and $\ell_{i}>\sqrt{c}$,

$$
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b} d z
$$

for $\Gamma_{\lambda_{i}}$ a small contour enclosing only the almost sure limit $\lambda_{i}=1+\ell_{i}+c \frac{1+\ell_{i}}{\ell_{i}}$ of the eigenvalue $\hat{\lambda}_{i}$ of $\hat{\mathbf{C}}$ that we just determined.

$$
\begin{aligned}
& \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b}=\mathbf{a}^{\top}\left(\frac{1}{n}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}} \mathbf{Z} \mathbf{Z}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{\frac{1}{2}}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b} \\
& =\mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}+z\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}\right)^{-1}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b}
\end{aligned}
$$

Proof (continue)

Denote $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right)^{-1}$, it follows from $\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1}=\mathbf{I}_{p}-\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}$ and the spectral decomposition $\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-1} \mathbf{P}=\mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-1} \mathbf{L} \mathbf{U}^{\top}$ for $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right] \in \mathbb{R}^{p \times k}$ and $\mathbf{L}=\operatorname{diag}\left\{\ell_{i}\right\}_{i=1}^{k}$ that

$$
\begin{aligned}
& \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b} \\
& =\mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b} \\
& -z \mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z) \mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}^{-1}+z \mathbf{U}^{\top} \mathbf{Q}(z) \mathbf{U}\right)^{-1} \mathbf{U}^{\top} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b} \\
& =\mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b} \\
& -z \mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z) \mathbf{U}\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1} \mathbf{U}^{\top} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b}+o(1),
\end{aligned}
$$

where we used Woodbury identity and $\mathbf{U}^{\top} \mathbf{Q}(z) \mathbf{U}=m(z) \mathbf{I}_{k}+o_{\|\cdot\|}(1)$.

Proof (continue)

Objective: $\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b} d z$, with $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ and

$$
\begin{aligned}
& \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b}=\mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b} \\
& -z \mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z) \mathbf{U}\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1} \mathbf{U}^{\top} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b}+o(1)
\end{aligned}
$$

》 complex integration of first term vanishes (looking for spikes with well defined $\mathbf{Q}(z)$) » complex integration of $\mathbf{Q}(z)$ on the contour $\Gamma_{\lambda_{i}}$ only brings a non-trivial residue, due to the inverse $\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}$ which is singular at $z=\lambda_{i}$

Proof (continue)

Objective: $\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b} d z$, with $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ and

$$
\begin{aligned}
& \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b}=\mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b} \\
& -z \mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z) \mathbf{U}\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1} \mathbf{U}^{\top} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b}+o(1)
\end{aligned}
$$

»complex integration of first term vanishes (looking for spikes with well defined $\mathbf{Q}(z)$)

$»$ can be evaluated by residue calculus at $z=\lambda_{i}$.

Proof (continue)

Objective: $\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b} d z$, with $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ and

$$
\begin{aligned}
& \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b}=\mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b} \\
& -z \mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z) \mathbf{U}\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1} \mathbf{U}^{\top} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b}+o(1)
\end{aligned}
$$

»complex integration of first term vanishes (looking for spikes with well defined $\mathbf{Q}(z)$) » complex integration of $\mathbf{Q}(z)$ on the contour $\Gamma_{\lambda_{i}}$ only brings a non-trivial residue, due to the inverse $\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}$ which is singular at $z=\lambda_{i}$

$$
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i} \mathbf{b}=\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} z m^{2}(z) \mathbf{a}^{\top} \mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}}\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}} \mathbf{U}^{\top} \mathbf{b} d z+o(1)
$$

Proof (continue)

Objective: $\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b}=-\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b} d z$, with $\mathbf{Q}(z)=\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-z \mathbf{I}_{p}\right)^{-1}$ and

$$
\begin{aligned}
& \mathbf{a}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{b}=\mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b} \\
& -z \mathbf{a}^{\top}\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{Q}(z) \mathbf{U}\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1} \mathbf{U}^{\top} \mathbf{Q}(z)\left(\mathbf{I}_{p}+\mathbf{P}\right)^{-\frac{1}{2}} \mathbf{b}+o(1)
\end{aligned}
$$

»complex integration of first term vanishes (looking for spikes with well defined $\mathbf{Q}(z)$) » complex integration of $\mathbf{Q}(z)$ on the contour $\Gamma_{\lambda_{i}}$ only brings a non-trivial residue, due to the inverse $\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}$ which is singular at $z=\lambda_{i}$

$$
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i} \mathbf{b}=\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} z m^{2}(z) \mathbf{a}^{\top} \mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}}\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}} \mathbf{U}^{\top} \mathbf{b} d z+o(1)
$$

»can be evaluated by residue calculus at $z=\lambda_{i}$.

Proof (continue)

$$
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i} \mathbf{b}=\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} z m^{2}(z) \mathbf{a}^{\top} \mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}}\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}} \mathbf{U}^{\top} \mathbf{b} d z+o(1)
$$

> residue calculus:

$$
\lim _{z \rightarrow \lambda_{i}}\left(z-\lambda_{i}\right)\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}=\frac{\mathbf{e}_{i} \mathbf{e}_{i}^{\top}}{m\left(\lambda_{i}\right)+\lambda_{i} m^{\prime}\left(\lambda_{i}\right)}
$$

with $\mathbf{e}_{i} \in \mathbb{R}^{k}$ canonical basis vector $\left[\mathbf{e}_{i}\right]_{j}=\delta_{i j}$.

from which we have $m\left(\lambda_{i}\right)=-1 /\left(\ell_{i}+c\right)$ and $m^{\prime}\left(\lambda_{i}\right)=\ell_{i}^{2}\left(\ell_{i}+c\right)^{-2}\left(\ell_{i}^{2}-c\right)^{-1}$

Proof (continue)

$$
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i} \mathbf{b}=\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} z m^{2}(z) \mathbf{a}^{\top} \mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}}\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}} \mathbf{U}^{\top} \mathbf{b} d z+o(1)
$$

» residue calculus:

$$
\lim _{z \rightarrow \lambda_{i}}\left(z-\lambda_{i}\right)\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}=\frac{\mathbf{e}_{i} \mathbf{e}_{i}^{\top}}{m\left(\lambda_{i}\right)+\lambda_{i} m^{\prime}\left(\lambda_{i}\right)}
$$

with $\mathbf{e}_{i} \in \mathbb{R}^{k}$ canonical basis vector $\left[\mathbf{e}_{i}\right]_{j}=\delta_{i j}$.

Proof (continue)

$$
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i} \mathbf{b}=\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} z m^{2}(z) \mathbf{a}^{\top} \mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}}\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}} \mathbf{U}^{\top} \mathbf{b} d z+o(1)
$$

» residue calculus:

$$
\lim _{z \rightarrow \lambda_{i}}\left(z-\lambda_{i}\right)\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}=\frac{\mathbf{e}_{i} \mathbf{e}_{i}^{\top}}{m\left(\lambda_{i}\right)+\lambda_{i} m^{\prime}\left(\lambda_{i}\right)}
$$

with $\mathbf{e}_{i} \in \mathbb{R}^{k}$ canonical basis vector $\left[\mathbf{e}_{i}\right]_{j}=\delta_{i j}$.
» Using the Marc̆enko-Pastur equation $m(z)=\frac{1}{-z+\frac{1}{1+c m(z)}}$, we get $m^{\prime}(z)=\frac{m^{2}(z)}{1-\frac{c m^{2}(z)}{(1+c m(z))^{2}}}$, from which we have $m\left(\lambda_{i}\right)=-1 /\left(\ell_{i}+c\right)$ and $m^{\prime}\left(\lambda_{i}\right)=\ell_{i}^{2}\left(\ell_{i}+c\right)^{-2}\left(\ell_{i}^{2}-c\right)^{-1}$.

Proof (continue)

$$
\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i} \mathbf{b}=\frac{1}{2 \pi \imath} \oint_{\Gamma_{\lambda_{i}}} z m^{2}(z) \mathbf{a}^{\top} \mathbf{U}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}}\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}\left(\mathbf{I}_{k}+\mathbf{L}\right)^{-\frac{1}{2}} \mathbf{U}^{\top} \mathbf{b} d z+o(1)
$$

» residue calculus:

$$
\lim _{z \rightarrow \lambda_{i}}\left(z-\lambda_{i}\right)\left(\mathbf{L}^{-1}+(1+z m(z)) \mathbf{I}_{k}\right)^{-1}=\frac{\mathbf{e}_{i} \mathbf{e}_{i}^{\top}}{m\left(\lambda_{i}\right)+\lambda_{i} m^{\prime}\left(\lambda_{i}\right)}
$$

with $\mathbf{e}_{i} \in \mathbb{R}^{k}$ canonical basis vector $\left[\mathbf{e}_{i}\right]_{j}=\delta_{i j}$.
» Using the Marc̆enko-Pastur equation $m(z)=\frac{1}{-z+\frac{1}{1+c m(z)}}$, we get $m^{\prime}(z)=\frac{m^{2}(z)}{1-\frac{c m^{2}(z)}{(1+c m(z))^{2}}}$,
from which we have $m\left(\lambda_{i}\right)=-1 /\left(\ell_{i}+c\right)$ and $m^{\prime}\left(\lambda_{i}\right)=\ell_{i}^{2}\left(\ell_{i}+c\right)^{-2}\left(\ell_{i}^{2}-c\right)^{-1}$.
\gg We conclude that $\mathbf{a}^{\top} \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}^{\top} \mathbf{b}=\mathbf{a}^{\top} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \mathbf{b} \cdot \frac{1-c \ell_{i}^{-2}}{1+c \ell_{j}^{-1}}+o(1)$.

Outline

Low-rank update of SCM: eigenvalues

Low-rank update of SCM: eigenvectors

Limiting fluctuation

Applications

Limiting fluctuations

»we have seen that the (asymptotic) location of the largest eigenvalue $\hat{\lambda}_{1}(\hat{\mathbf{C}})$ establishes a phase transition behavior if the corresponding population $\ell_{i}>\sqrt{c}$
so below the threshold $\hat{\lambda}_{1}(\hat{C})=(1+\sqrt{c})^{2}+o(1)$ almost surely as n.
» we want to understand more on this $o(1)$ local behavior
Under the same setting, assume $0 \leq l_{k}<\ldots<\ell_{1}<\sqrt{c}$. Then,

in law, where TW_{1} is the (real) Tracy-Widom distribution.

Limiting fluctuations

» we have seen that the (asymptotic) location of the largest eigenvalue $\hat{\lambda}_{1}(\hat{\mathbf{C}})$ establishes a phase transition behavior if the corresponding population $\ell_{i}>\sqrt{c}$
» so below the threshold $\hat{\lambda}_{1}(\hat{\mathbf{C}})=(1+\sqrt{c})^{2}+o(1)$ almost surely as $n, p \rightarrow \infty$》 we want to understand more on this $o(1)$ local behavior

Under the same setting, assume $0 \leq \ell_{k}<\ldots<\ell_{1}<\sqrt{c}$. Then,
in law, where TW_{1} is the (real) Tracy-Widom distribution.

Limiting fluctuations

»we have seen that the (asymptotic) location of the largest eigenvalue $\hat{\lambda}_{1}(\hat{\mathbf{C}})$ establishes a phase transition behavior if the corresponding population $\ell_{i}>\sqrt{c}$
» so below the threshold $\hat{\lambda}_{1}(\hat{\mathbf{C}})=(1+\sqrt{c})^{2}+o(1)$ almost surely as $n, p \rightarrow \infty$
» we want to understand more on this $o(1)$ local behavior
Under the same setting, assume $0 \leq \ell_{k}<\ldots<\ell_{1}<\sqrt{c}$. Then,
in law, where TW_{1} is the (real) Tracy-Widom distribution.

Limiting fluctuations

»we have seen that the (asymptotic) location of the largest eigenvalue $\hat{\lambda}_{1}(\hat{\mathbf{C}})$ establishes a phase transition behavior if the corresponding population $\ell_{i}>\sqrt{c}$
» so below the threshold $\hat{\lambda}_{1}(\hat{\mathbf{C}})=(1+\sqrt{c})^{2}+o(1)$ almost surely as $n, p \rightarrow \infty$
» we want to understand more on this $o(1)$ local behavior
Under the same setting, assume $0 \leq \ell_{k}<\ldots<\ell_{1}<\sqrt{c}$. Then,

$$
n^{\frac{2}{3}} \frac{\hat{\lambda}_{1}-(1+\sqrt{c})^{2}}{(1+\sqrt{c})^{\frac{4}{3}} c^{-\frac{1}{6}}} \rightarrow \mathrm{TW}_{1}
$$

in law, where TW_{1} is the (real) Tracy-Widom distribution.

Limiting fluctuations

»we have seen that the (asymptotic) location of the largest eigenvalue $\hat{\lambda}_{1}(\hat{\mathbf{C}})$ establishes a phase transition behavior if the corresponding population $\ell_{i}>\sqrt{c}$
» so below the threshold $\hat{\lambda}_{1}(\hat{\mathbf{C}})=(1+\sqrt{c})^{2}+o(1)$ almost surely as $n, p \rightarrow \infty$
» we want to understand more on this $o(1)$ local behavior
Under the same setting, assume $0 \leq \ell_{k}<\ldots<\ell_{1}<\sqrt{c}$. Then,

$$
n^{\frac{2}{3}} \frac{\hat{\lambda}_{1}-(1+\sqrt{c})^{2}}{(1+\sqrt{c})^{\frac{4}{3}} c^{-\frac{1}{6}}} \rightarrow \mathrm{TW}_{1}
$$

in law, where TW_{1} is the (real) Tracy-Widom distribution.
Fluctuation of the largest eigenvalue
» below phase transition: $\hat{\lambda}_{1}=(1+\sqrt{c})^{2}+n^{-\frac{2}{3}} T$ where T is a (scaled) Tracy-Widom RV

Centered-scaled largest eigenvalue of $\frac{1}{n} \mathbf{Z Z}^{\top}$
Figure: Empirical histogram of $n^{\frac{2}{3}} \frac{\hat{\lambda}_{1}-(1+\sqrt{c})^{2}}{(1+\sqrt{c})^{\frac{4}{3}} c^{-\frac{1}{6}}}$ for $p=256, n=512$ and standard Gaussian Z, versus the real Tracy-Widom law TW $_{1}$. Histogram obtained over 5000 independent runs.

Remarks on Tracy-Widom law

»somewhat surprising: limiting fluctuation of $\hat{\lambda}_{1}$ is not Gaussian but follow the Tracy-Widom distribution and of order $O\left(n^{-2 / 3}\right)\left(\right.$ instead of $O\left(n^{-1 / 2}\right)$ or $O\left(n^{-1}\right)$) » rate related to the following observation:

Remarks on Tracy－Widom law

»somewhat surprising：limiting fluctuation of $\hat{\lambda}_{1}$ is not Gaussian but follow the Tracy－Widom distribution and of order $O\left(n^{-2 / 3}\right)\left(\right.$ instead of $O\left(n^{-1 / 2}\right)$ or $\left.O\left(n^{-1}\right)\right)$
» rate related to the following observation：
》 Marčenko－Pastur law：$\mu(d x)=\frac{1}{2 \pi c x} \sqrt{\left.\left(x-E_{-}\right)+\left(E_{+}-x\right)+d x, \quad E_{ \pm}=(1 \pm \sqrt{c})^{2}\right) .}$
$»$ so near the right edge $E_{+}: \mu(d x) \simeq \simeq_{x \uparrow E_{+}} \frac{c^{1 / 4}}{\pi c(1+\sqrt{c})^{2}} \sqrt{\left|E_{+}-x\right|}$
»so a typical number of eigenvalues in a space of size ϵ near the edge is

》 to have $O(1)$ eigenvalues within $\left[E_{+}-\epsilon, E_{+}\right]$needs $\epsilon=O\left(n^{-\frac{2}{3}}\right)$（this is in fact the ＂spacing＂between eigenvalues，which is of order $O\left(n^{-1}\right)$ away from the edge）》Question：hard－edge setting with $c=1$ ，what happens？

Remarks on Tracy－Widom law

》somewhat surprising：limiting fluctuation of $\hat{\lambda}_{1}$ is not Gaussian but follow the Tracy－Widom distribution and of order $O\left(n^{-2 / 3}\right)\left(\right.$ instead of $O\left(n^{-1 / 2}\right)$ or $\left.O\left(n^{-1}\right)\right)$
» rate related to the following observation：
» Marčenko－Pastur law：$\mu(d x)=\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x, \quad E_{ \pm}=(1 \pm \sqrt{c})^{2}$.
》 so near the right edge E
»so a typical number of eigenvalues in a space of size ϵ near the edge is

» to have $O(1)$ eigenvalues within $\left[E_{+}-\epsilon, E_{+}\right]$needs $\epsilon=O\left(n^{-\frac{2}{3}}\right)$（this is in fact the ＂spacing＂between eigenvalues，which is of order $O\left(n^{-1}\right)$ away from the edge） » Question：hard－edge setting with $c=1$ ，what happens？

Remarks on Tracy－Widom law

》somewhat surprising：limiting fluctuation of $\hat{\lambda}_{1}$ is not Gaussian but follow the Tracy－Widom distribution and of order $O\left(n^{-2 / 3}\right)\left(\right.$ instead of $O\left(n^{-1 / 2}\right)$ or $\left.O\left(n^{-1}\right)\right)$
» rate related to the following observation：
» Marčenko－Pastur law：$\mu(d x)=\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x, \quad E_{ \pm}=(1 \pm \sqrt{c})^{2}$.
$»$ so near the right edge $E_{+}: \mu(d x) \simeq_{x \uparrow E_{+}} \frac{c^{1 / 4}}{\pi c(1+\sqrt{c})^{2}} \sqrt{\left|E_{+}-x\right|}$
$》$ so a typical number of eigenvalues in a space of size ϵ near the edge is
» to have $O(1)$ eigenvalues within $\left[E_{+}-\epsilon, E_{+}\right]$needs $\epsilon=O\left(n^{-\frac{2}{3}}\right)$（this is in fact the ＂spacing＂between eigenvalues，which is of order $O\left(n^{-1}\right)$ away from the edge） » Question：hard－edge setting with $c=1$ ，what happens？

Remarks on Tracy－Widom law

》somewhat surprising：limiting fluctuation of $\hat{\lambda}_{1}$ is not Gaussian but follow the Tracy－Widom distribution and of order $O\left(n^{-2 / 3}\right)\left(\right.$ instead of $O\left(n^{-1 / 2}\right)$ or $\left.O\left(n^{-1}\right)\right)$
» rate related to the following observation：
» Marčenko－Pastur law：$\mu(d x)=\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x, \quad E_{ \pm}=(1 \pm \sqrt{c})^{2}$.
»so near the right edge $E_{+}: \mu(d x) \simeq_{x \uparrow E_{+}} \frac{c^{1 / 4}}{\pi c(1+\sqrt{c})^{2}} \sqrt{\left|E_{+}-x\right|}$
»so a typical number of eigenvalues in a space of size ϵ near the edge is

$$
\begin{equation*}
\int_{(1+\sqrt{c})^{2}-\epsilon}^{(1+\sqrt{c})^{2}} \sqrt{(1+\sqrt{c})^{2}-x} d x \propto \epsilon^{\frac{3}{2}} \tag{6}
\end{equation*}
$$

» to have $O(1)$ eigenvalues within $\left[E_{+}-\epsilon, E_{+}\right]$needs $\epsilon=O\left(n^{-\frac{2}{3}}\right)$（this is in fact the ＂spacing＂between eigenvalues，which is of order $O\left(n^{-1}\right)$ away from the edge）》Question：hard－edge setting with $c=1$ ，what happens？

Remarks on Tracy－Widom law

》somewhat surprising：limiting fluctuation of $\hat{\lambda}_{1}$ is not Gaussian but follow the Tracy－Widom distribution and of order $O\left(n^{-2 / 3}\right)\left(\right.$ instead of $O\left(n^{-1 / 2}\right)$ or $\left.O\left(n^{-1}\right)\right)$
» rate related to the following observation：
» Marčenko－Pastur law：$\mu(d x)=\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x, \quad E_{ \pm}=(1 \pm \sqrt{c})^{2}$ ．
» so near the right edge $E_{+}: \mu(d x) \simeq_{x \uparrow E_{+}} \frac{c^{1 / 4}}{\pi c(1+\sqrt{c})^{2}} \sqrt{\left|E_{+}-x\right|}$
»so a typical number of eigenvalues in a space of size ϵ near the edge is

$$
\begin{equation*}
\int_{(1+\sqrt{c})^{2}-\epsilon}^{(1+\sqrt{c})^{2}} \sqrt{(1+\sqrt{c})^{2}-x} d x \propto \epsilon^{\frac{3}{2}} \tag{6}
\end{equation*}
$$

》 to have $O(1)$ eigenvalues within $\left[E_{+}-\epsilon, E_{+}\right]$needs $\epsilon=O\left(n^{-\frac{2}{3}}\right)$（this is in fact the ＂spacing＂between eigenvalues，which is of order $O\left(n^{-1}\right)$ away from the edge）

[^0]
Remarks on Tracy-Widom law

»somewhat surprising: limiting fluctuation of $\hat{\lambda}_{1}$ is not Gaussian but follow the Tracy-Widom distribution and of order $O\left(n^{-2 / 3}\right)\left(\right.$ instead of $O\left(n^{-1 / 2}\right)$ or $\left.O\left(n^{-1}\right)\right)$
» rate related to the following observation:
» Marčenko-Pastur law: $\mu(d x)=\frac{1}{2 \pi c x} \sqrt{\left(x-E_{-}\right)^{+}\left(E_{+}-x\right)^{+}} d x, \quad E_{ \pm}=(1 \pm \sqrt{c})^{2}$.
$»$ so near the right edge $E_{+}: \mu(d x) \simeq_{x \uparrow E_{+}} \frac{c^{1 / 4}}{\pi c(1+\sqrt{c})^{2}} \sqrt{\left|E_{+}-x\right|}$
»so a typical number of eigenvalues in a space of size ϵ near the edge is

$$
\begin{equation*}
\int_{(1+\sqrt{c})^{2}-\epsilon}^{(1+\sqrt{c})^{2}} \sqrt{(1+\sqrt{c})^{2}-x} d x \propto \epsilon^{\frac{3}{2}} \tag{6}
\end{equation*}
$$

》 to have $O(1)$ eigenvalues within $\left[E_{+}-\epsilon, E_{+}\right]$needs $\epsilon=O\left(n^{-\frac{2}{3}}\right)$ (this is in fact the "spacing" between eigenvalues, which is of order $O\left(n^{-1}\right)$ away from the edge)
» Question: hard-edge setting with $c=1$, what happens?

Remarks on Fluctuation of the largest eigenvalue

»BBP phase transition [1]: named after the authors Jinho Baik, Gerard Ben Arous, Sandrine Peche, says that beyond the phase transition threshold, the fluctuation becomes a standard CLT type of order $O\left(n^{-1 / 2}\right)$, from TW law of order $O\left(n^{-2 / 3}\right)$
> \gg universality for Tracy-Widom, real TW_{1}, complex TW_{2}, and quaternionic TW_{4}, for Wishart and Wigner matrix models, smallest and largest eigenvalues
> » Tracy-Widom distributions connected in the asymptotics of a few growth models in the Kardar-Parisi-Zhang (KPZ) universality class

More spiked models:

Jinho Baik, Gérard Ben Arous and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: The Annals of Probability 33.5 (2005), 1643-1697. Issn: 0091-1798. DOI: $10.1214 / 009117905000000233$

Remarks on Fluctuation of the largest eigenvalue

»BBP phase transition [1]: named after the authors Jinho Baik, Gerard Ben Arous, Sandrine Peche, says that beyond the phase transition threshold, the fluctuation becomes a standard CLT type of order $O\left(n^{-1 / 2}\right)$, from TW law of order $O\left(n^{-2 / 3}\right)$
» universality for Tracy-Widom, real TW_{1}, complex TW_{2}, and quaternionic TW_{4}, for Wishart and Wigner matrix models, smallest and largest eigenvalues

```
> Tracy-Widom distributions connected in the asymptotics of a few growth models in
    the Kardar-Parisi-Zhang (KPZ) universality class
More spiked models:
```

Jinho Baik, Gérard Ben Arous and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: The Annals of Probability 33.5 (2005), 1643-1697. Issn: 0091-1798.

Remarks on Fluctuation of the largest eigenvalue

»BBP phase transition [1]: named after the authors Jinho Baik, Gerard Ben Arous, Sandrine Peche, says that beyond the phase transition threshold, the fluctuation becomes a standard CLT type of order $O\left(n^{-1 / 2}\right)$, from TW law of order $O\left(n^{-2 / 3}\right)$
» universality for Tracy-Widom, real TW_{1}, complex TW_{2}, and quaternionic TW_{4}, for Wishart and Wigner matrix models, smallest and largest eigenvalues
» Tracy-Widom distributions connected in the asymptotics of a few growth models in the Kardar-Parisi-Zhang (KPZ) universality class

More spiked models:

Jinho Baik, Gérard Ben Arous and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: The Annals of Probability 33.5 (2005), 1643-1697. Issn: 0091-1798.
DOI: $10.1214 / 009117905000000233$

Remarks on Fluctuation of the largest eigenvalue

»BBP phase transition [1]: named after the authors Jinho Baik, Gerard Ben Arous, Sandrine Peche, says that beyond the phase transition threshold, the fluctuation becomes a standard CLT type of order $O\left(n^{-1 / 2}\right)$, from TW law of order $O\left(n^{-2 / 3}\right)$
» universality for Tracy-Widom, real TW_{1}, complex TW_{2}, and quaternionic TW_{4}, for Wishart and Wigner matrix models, smallest and largest eigenvalues
» Tracy-Widom distributions connected in the asymptotics of a few growth models in the Kardar-Parisi-Zhang (KPZ) universality class

More spiked models:

》 additive $\mathrm{X}+\mathrm{P}$ for Wishart or Wigner type X
Jinho Baik, Gérard Ben Arous and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: The Annals of Probability 33.5 (2005), 1643-1697. IssN: 0091-1798.
DOI: $10.1214 / 009117905000000233$

Remarks on Fluctuation of the largest eigenvalue

»BBP phase transition [1]: named after the authors Jinho Baik, Gerard Ben Arous, Sandrine Peche, says that beyond the phase transition threshold, the fluctuation becomes a standard CLT type of order $O\left(n^{-1 / 2}\right)$, from TW law of order $O\left(n^{-2 / 3}\right)$
» universality for Tracy-Widom, real TW_{1}, complex TW_{2}, and quaternionic TW_{4}, for Wishart and Wigner matrix models, smallest and largest eigenvalues
» Tracy-Widom distributions connected in the asymptotics of a few growth models in the Kardar-Parisi-Zhang (KPZ) universality class

More spiked models:
» information-plus-noise model of the type $\frac{1}{n}(\mathbf{Z}+\mathbf{P})(\mathbf{Z}+\mathbf{P})^{\top}$
» additive $\mathrm{X}+\mathrm{P}$ for Wishart or Wigner type X
Jinho Baik, Gérard Ben Arous and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: The Annals of Probability 33.5 (2005), 1643-1697. Isss: 0091-1798.
DOI: $10.1214 / 009117905000000233$

Remarks on Fluctuation of the largest eigenvalue

»BBP phase transition [1]: named after the authors Jinho Baik, Gerard Ben Arous, Sandrine Peche, says that beyond the phase transition threshold, the fluctuation becomes a standard CLT type of order $O\left(n^{-1 / 2}\right)$, from TW law of order $O\left(n^{-2 / 3}\right)$
» universality for Tracy-Widom, real TW_{1}, complex TW_{2}, and quaternionic TW_{4}, for Wishart and Wigner matrix models, smallest and largest eigenvalues
» Tracy-Widom distributions connected in the asymptotics of a few growth models in the Kardar-Parisi-Zhang (KPZ) universality class

More spiked models:
» information-plus-noise model of the type $\frac{1}{n}(\mathbf{Z}+\mathbf{P})(\mathbf{Z}+\mathbf{P})^{\top}$
» additive $\mathbf{X}+\mathbf{P}$ for Wishart or Wigner type \mathbf{X}
Jinho Baik, Gérard Ben Arous and Sandrine Péché. "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: The Annals of Probability 33.5 (2005), 1643-1697. Isss: 0091-1798.
DOI: $10.1214 / 009117905000000233$

Outline

Low-rank update of SCM: eigenvalues

Low-rank update of SCM: eigenvectors

Limiting fluctuation

Applications

Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$ with i.i.d. columns $\mathbf{x}_{i} \in \mathbb{R}^{p}$ received by array of p sensors, signal decision as the following binary hypothesis test:

$$
\mathbf{X}= \begin{cases}\sigma \mathbf{Z}, & \mathcal{H}_{0} \\ \mathbf{a s}^{\top}+\sigma \mathbf{Z}, & \mathcal{H}_{1}\end{cases}
$$

where $\mathbf{Z}=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right] \in \mathbb{R}^{p \times n}, \mathbf{z}_{i} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{p}\right)$, a $\in \mathbb{R}^{p}$ deterministic of unit norm $\|\mathbf{a}\|=1$, signal $\mathbf{s}=\left[s_{1}, \ldots, s_{n}\right]^{\top} \in \mathbb{R}^{n}$ with s_{i} i.i.d. random, and $\sigma>0$. Denote $c=p / n>0$.

> 》 observation of either zero-mean Gaussian noise $\sigma \mathbf{z}_{i}$ of power σ^{2}, or deterministic
> information vector a modulated by an added scalar (random) signal s_{i} (e.g., ± 1) » If \mathbf{a}, σ, and statistics of s_{i} are known, the decision-optimal Neyman-Pearson () test:

Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$ with i.i.d. columns $\mathbf{x}_{i} \in \mathbb{R}^{p}$ received by array of p sensors, signal decision as the following binary hypothesis test:

$$
\mathbf{X}= \begin{cases}\sigma \mathbf{Z}, & \mathcal{H}_{0} \\ \mathbf{a s}^{\top}+\sigma \mathbf{Z}, & \mathcal{H}_{1}\end{cases}
$$

where $\mathbf{Z}=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right] \in \mathbb{R}^{p \times n}, \mathbf{z}_{i} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{p}\right), \mathbf{a} \in \mathbb{R}^{p}$ deterministic of unit norm $\|\mathbf{a}\|=1$, signal $\mathbf{s}=\left[s_{1}, \ldots, s_{n}\right]^{\top} \in \mathbb{R}^{n}$ with s_{i} i.i.d. random, and $\sigma>0$. Denote $c=p / n>0$. » observation of either zero-mean Gaussian noise $\sigma \mathbf{z}_{i}$ of power σ^{2}, or deterministic information vector a modulated by an added scalar (random) signal $s_{i}($ e.g., $\pm 1)$.

[^1]

Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{p \times n}$ with i.i.d. columns $\mathbf{x}_{i} \in \mathbb{R}^{p}$ received by array of p sensors, signal decision as the following binary hypothesis test:

$$
\mathbf{X}= \begin{cases}\sigma \mathbf{Z}, & \mathcal{H}_{0} \\ \mathbf{a s} \mathbf{s}^{\top}+\sigma \mathbf{Z}, & \mathcal{H}_{1}\end{cases}
$$

where $\mathbf{Z}=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right] \in \mathbb{R}^{p \times n}, \mathbf{z}_{i} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{p}\right)$, a $\in \mathbb{R}^{p}$ deterministic of unit norm $\|\mathbf{a}\|=1$, signal $\mathbf{s}=\left[s_{1}, \ldots, s_{n}\right]^{\top} \in \mathbb{R}^{n}$ with s_{i} i.i.d. random, and $\sigma>0$. Denote $c=p / n>0$. » observation of either zero-mean Gaussian noise $\sigma \mathbf{z}_{i}$ of power σ^{2}, or deterministic information vector a modulated by an added scalar (random) signal s_{i} (e.g., ± 1). » If \mathbf{a}, σ, and statistics of s_{i} are known, the decision-optimal Neyman-Pearson () test:

$$
\begin{equation*}
\frac{\mathbb{P}\left(\mathbf{X} \mid \mathcal{H}_{1}\right)}{\mathbb{P}\left(\mathbf{X} \mid \mathcal{H}_{0}\right)} \underset{\mathcal{H}_{0}}{\stackrel{\mathcal{H}_{1}}{\gtrless}} \alpha \tag{7}
\end{equation*}
$$

for some $\alpha>0$ controlling the Type I and II error rates.

Hypothesis testing via GLRT

» However, in practice, we do not know σ, nor the information vector $\mathrm{a} \in \mathbb{R}^{p}$ (to be recovered)
» in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

» Gaussian noise and signal s_{i}, GLRT has an explicit expression as a monotonous increasing function of $\left\|\mathbf{X} \mathbf{X}^{\top}\right\| / \operatorname{tr}\left(\mathbf{X} \mathbf{X}^{\top}\right)$, test equivalent to, for some known f,

$$
T_{p} \equiv \frac{\left\|\mathbf{X} \mathbf{X}^{\top}\right\|}{\operatorname{tr}\left(\mathbf{X X}^{\top}\right)} \underset{\mathcal{H}_{0}}{\stackrel{\mathcal{H}_{1}}{\gtrless}} f(\alpha) .
$$

» to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM $\frac{1}{n} \mathbf{X X}^{\top}$

Hypothesis testing via GLRT

»However, in practice, we do not know σ, nor the information vector $\mathbf{a} \in \mathbb{R}^{p}$ (to be recovered)
\gg in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

» Gaussian noise and signal s_{i}, GLRT has an explicit expression as a monotonous increasing function of $\left\|\mathbf{X} \mathbf{X}^{\top}\right\| / \operatorname{tr}\left(\mathbf{X} \mathbf{X}^{\top}\right)$, test equivalent to, for some known f,

» to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$

Hypothesis testing via GLRT

»However, in practice, we do not know σ, nor the information vector $\mathbf{a} \in \mathbb{R}^{p}$ (to be recovered)
» in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

$$
\frac{\sup _{\sigma, \mathbf{a}} \mathbb{P}\left(\mathbf{X} \mid \sigma, \mathbf{a}, \mathcal{H}_{1}\right)}{\sup _{\sigma, \mathbf{a}} \mathbb{P}\left(\mathbf{X} \mid \sigma, \mathcal{H}_{0}\right)} \underset{\mathcal{H}_{0}}{\stackrel{\mathcal{H}_{1}}{\gtrless}} \alpha .
$$

》 Gaussian noise and signal s_{i}, GLRT has an explicit expression as a monotonous increasing function of $\left\|\mathbf{X} \mathbf{X}^{\top}\right\| / \operatorname{tr}\left(\mathbf{X} \mathbf{X}^{\top}\right)$, test equivalent to, for some known f,

» to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM

Hypothesis testing via GLRT

» However, in practice, we do not know σ, nor the information vector $\mathbf{a} \in \mathbb{R}^{p}$ (to be recovered)
» in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

$$
\frac{\sup _{\sigma, \mathbf{a}} \mathbb{P}\left(\mathbf{X} \mid \sigma, \mathbf{a}, \mathcal{H}_{1}\right)}{\sup _{\sigma, \mathbf{a}} \mathbb{P}\left(\mathbf{X} \mid \sigma, \mathcal{H}_{0}\right)} \underset{\mathcal{H}_{0}}{\stackrel{\mathcal{H}_{1}}{\gtrless}} \alpha .
$$

» Gaussian noise and signal s_{i}, GLRT has an explicit expression as a monotonous increasing function of $\left\|\mathbf{X X}^{\top}\right\| / \operatorname{tr}\left(\mathbf{X X}^{\top}\right)$, test equivalent to, for some known f,

$$
T_{p} \equiv \frac{\left\|\mathbf{X} \mathbf{X}^{\top}\right\|}{\operatorname{tr}\left(\mathbf{X X}^{\top}\right)} \underset{\mathcal{H}_{0}}{\stackrel{\mathcal{H}_{1}}{\gtrless}} f(\alpha) .
$$

» to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$

Hypothesis testing via GLRT

» However, in practice, we do not know σ, nor the information vector $\mathbf{a} \in \mathbb{R}^{p}$ (to be recovered)
» in the case of a fully unknown, one may resort to a generalized likelihood ratio test (GLRT) defined as

$$
\frac{\sup _{\sigma, \mathbf{a}} \mathbb{P}\left(\mathbf{X} \mid \sigma, \mathbf{a}, \mathcal{H}_{1}\right)}{\sup _{\sigma, \mathbf{a}} \mathbb{P}\left(\mathbf{X} \mid \sigma, \mathcal{H}_{0}\right)} \underset{\mathcal{H}_{0}}{\stackrel{\mathcal{H}_{1}}{\gtrless}} \alpha .
$$

» Gaussian noise and signal s_{i}, GLRT has an explicit expression as a monotonous increasing function of $\left\|\mathbf{X} \mathbf{X}^{\top}\right\| / \operatorname{tr}\left(\mathbf{X X}^{\top}\right)$, test equivalent to, for some known f,

$$
T_{p} \equiv \frac{\left\|\mathbf{X X}^{\top}\right\|}{\operatorname{tr}\left(\mathbf{X} \mathbf{X}^{\top}\right)} \underset{\mathcal{H}_{0}}{\stackrel{\mathcal{H}_{1}}{\gtrless}} f(\alpha) .
$$

» to evaluate the power of GLRT above, we need to assess the max and mean eigenvalues of SCM $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$

Hypothesis testing in a signal-plus-noise model via GLRT

To set a maximum false alarm rate (or Type I error) of $r>0$ for large n, p, according to RMT, one must choose a threshold $f(\alpha)$ for T_{p} :

$$
\begin{equation*}
\mathbb{P}\left(T_{p} \geq f(\alpha)\right)=r \Leftrightarrow \mu_{\mathrm{TW}_{1}}\left(\left[A_{p},+\infty\right)\right)=r, \quad A_{p}=\left(f(\alpha)-(1+\sqrt{c})^{2}\right)(1+\sqrt{c})^{-\frac{4}{3}} c^{\frac{1}{6}} n^{\frac{2}{3}} \tag{8}
\end{equation*}
$$

Figure: Comparison between empirical false alarm rates and $1-\mathrm{TW}_{1}\left(A_{p}\right)$ for A_{p} of the form in (8), as a function of the threshold $f(\alpha) \in\left[(1+\sqrt{c})^{2}-5 n^{-2 / 3},(1+\sqrt{c})^{2}+5 n^{-2 / 3}\right]$, for $p=256, n=1024$ and $\sigma=1$.

Reminder on kernel spectral clustering

Two-step classification of n data points with distance kernel $\mathbf{K} \equiv\left\{f\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / p\right)\right\}_{i, j=1}^{n}$:

0 isolated eigenvalues
\downarrow Top eigenvectors \downarrow

Reminder on kernel spectral clustering

Two-step classification of n data points with distance kernel $\mathbf{K} \equiv\left\{f\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / p\right)\right\}_{i, j=1}^{n}$:

Reminder on kernel spectral clustering

\Downarrow K-dimensional representation \Downarrow

$$
\text { Eig. } 1
$$

Reminder on kernel spectral clustering

$\Downarrow K$-dimensional representation \Downarrow

Eig. 1

Reminder on kernel spectral clustering

$\Downarrow K$-dimensional representation \Downarrow

$$
\text { Eig. } 1
$$

\Downarrow
EM or k-means clustering

Application to "compressed" spectral clustering

Entry-wise nonlinear transformation of $\mathbf{X}^{\top} \mathbf{X}: \mathbf{K}=\left\{f\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} / \sqrt{p}\right) / \sqrt{p}\right\}_{i, j=1}^{n}$, with
Sparsification:
Quantization:
Binarization:
$f_{3}(t)=\operatorname{sign}(t) \cdot 1_{|t|>\sqrt{2} s}$

Application to "compressed" spectral clustering

Entry-wise nonlinear transformation of $\mathbf{X}^{\top} \mathbf{X}: \mathbf{K}=\left\{f\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} / \sqrt{p}\right) / \sqrt{p}\right\}_{i, j=1}^{n}$, with
Sparsification:
Quantization:
Binarization:
$f_{3}(t)=\operatorname{sign}(t) \cdot 1_{|t|>\sqrt{2} s}$

Application to "compressed" spectral clustering

Entry-wise nonlinear transformation of $\mathbf{X}^{\top} \mathbf{X}: \mathbf{K}=\left\{f\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} / \sqrt{p}\right) / \sqrt{p}\right\}_{i, j=1}^{n}$, with

$$
\text { Sparsification: } \quad f_{1}(t)=t \cdot 1_{|t|>\sqrt{2} s}
$$

Quantization:
Binarization:
$f_{3}(t)=\operatorname{sign}(t) \cdot 1_{|t|>\sqrt{2} s}$

Application to "compressed" spectral clustering
Entry-wise nonlinear transformation of $\mathbf{X}^{\top} \mathbf{X}: \mathbf{K}=\left\{f\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} / \sqrt{p}\right) / \sqrt{p}\right\}_{i, j=1}^{n}$, with
Sparsification: $\quad f_{1}(t)=t \cdot 1_{|t|>\sqrt{2} s}$
Quantization: $\quad f_{2}(t)=2^{2-M}\left(\left\lfloor t \cdot 2^{M-2} / \sqrt{2} s\right\rfloor+1 / 2\right) \cdot 1_{|t| \leq \sqrt{2} s}+\operatorname{sign}(t) \cdot 1_{|t|>\sqrt{2} s}$
Binarization: $\quad f_{3}(t)=\operatorname{sign}(t) \cdot 1_{|t|>\sqrt{2} s}$

Application to "compressed" spectral clustering

Entry-wise nonlinear transformation of $\mathbf{X}^{\top} \mathbf{X}: \mathbf{K}=\left\{f\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} / \sqrt{p}\right) / \sqrt{p}\right\}_{i, j=1}^{n}$, with
Sparsification: $\quad f_{1}(t)=t \cdot 1_{|t|>\sqrt{2} s}$
Quantization: $\quad f_{2}(t)=2^{2-M}\left(\left\lfloor t \cdot 2^{M-2} / \sqrt{2} s\right\rfloor+1 / 2\right) \cdot 1_{|t| \leq \sqrt{2} s}+\operatorname{sign}(t) \cdot 1_{|t|>\sqrt{2} s}$
Binarization: $\quad f_{3}(t)=\operatorname{sign}(t) \cdot 1_{|t|>\sqrt{2} s}$

Application to "compressed" spectral clustering

Entry-wise nonlinear transformation of $\mathbf{X}^{\top} \mathbf{X}: \mathbf{K}=\left\{f\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j} / \sqrt{p}\right) / \sqrt{p}\right\}_{i, j=1}^{n}$, with
Sparsification: $\quad f_{1}(t)=t \cdot 1_{|t|>\sqrt{2} s}$
Quantization: $\quad f_{2}(t)=2^{2-M}\left(\left\lfloor t \cdot 2^{M-2} / \sqrt{2} s\right\rfloor+1 / 2\right) \cdot 1_{|t| \leq \sqrt{2} s}+\operatorname{sign}(t) \cdot 1_{|t|>\sqrt{2} s}$
Binarization: $\quad f_{3}(t)=\operatorname{sign}(t) \cdot 1_{|t|>\sqrt{2} s}$

Notations: For each f and $\xi \sim \mathcal{N}(0,1)$, define the (generalized) moments

$$
\begin{equation*}
a_{0}=\mathbb{E}[f(\xi)]=0, \quad \mathbf{a}_{\mathbf{1}}=\mathbb{E}[\xi f(\xi)], \quad \mathbf{a}_{\mathbf{2}}=\mathbb{E}\left[\xi^{2} f(\xi)\right] / \sqrt{2}, \quad \boldsymbol{\nu}=\mathbb{E}\left[f^{2}(\xi)\right] \geq a_{1}^{2}+a_{2}^{2} \tag{9}
\end{equation*}
$$

with $\mathrm{a}_{2}=0, \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t, \operatorname{erfc}(x)=1-\operatorname{erf}(x)$ error/complementary error function.

As $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, the empirical spectral measure $\omega_{\mathrm{K}}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(\mathrm{~K})}$ can be asymptotically determined by $m(z)=\int(t-z)^{-1} \omega(d t)$ solution to

Notations: For each f and $\xi \sim \mathcal{N}(0,1)$, define the (generalized) moments

$$
\begin{equation*}
a_{0}=\mathbb{E}[f(\xi)]=0, \quad \mathbf{a}_{\mathbf{1}}=\mathbb{E}[\xi f(\xi)], \quad \mathbf{a}_{\mathbf{2}}=\mathbb{E}\left[\xi^{2} f(\xi)\right] / \sqrt{2}, \quad \boldsymbol{\nu}=\mathbb{E}\left[f^{2}(\xi)\right] \geq a_{1}^{2}+a_{2}^{2} \tag{9}
\end{equation*}
$$

f	$\mathbf{a}_{\mathbf{1}}$	ν
f_{1}	$\operatorname{erfc}(s)+2 s e^{-s^{2}} / \sqrt{\pi}$	$\operatorname{erfc}(s)+2 s e^{-s^{2}} / \sqrt{\pi}$
f_{2}	$\sqrt{\frac{2}{\pi}} \cdot 2^{1-M}\left(1+e^{-s^{2}}+\sum_{k=1}^{2^{M-2}-1} 2 e^{-\frac{k^{2} s^{2}}{4 M-2}}\right)$	$1-\frac{2^{M}-1}{4^{M-1}} \operatorname{erf}(s)-\sum_{k=1}^{2^{M-2}-1} \frac{k \operatorname{erf}\left(k \cdot \cdot^{2-M}\right)}{2^{2 M-5}}$
f_{3}	$e^{-s^{2}} \sqrt{2 / \pi}$	$\operatorname{erfc}(s)$

with $\mathbf{a}_{\mathbf{2}}=0, \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t, \operatorname{erfc}(x)=1-\operatorname{erf}(x)$ error/complementary error function.
As $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, the empirical spectral measure $\omega_{\mathrm{K}}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(\mathrm{~K})}$ can be asymptotically determined by $m(z)=\int(t-z)^{-1} \omega(d t)$ solution to

Notations: For each f and $\xi \sim \mathcal{N}(0,1)$, define the (generalized) moments

$$
\begin{equation*}
a_{0}=\mathbb{E}[f(\xi)]=0, \quad \mathbf{a}_{\mathbf{1}}=\mathbb{E}[\xi f(\xi)], \quad \mathbf{a}_{\mathbf{2}}=\mathbb{E}\left[\xi^{2} f(\xi)\right] / \sqrt{2}, \quad \boldsymbol{\nu}=\mathbb{E}\left[f^{2}(\xi)\right] \geq a_{1}^{2}+a_{2}^{2} \tag{9}
\end{equation*}
$$

f	\mathbf{a}_{1}	$\boldsymbol{\nu}$
f_{1}	$\operatorname{erfc}(s)+2 s e^{-s^{2}} / \sqrt{\pi}$	$\operatorname{erfc}(s)+2 s e^{-s^{2}} / \sqrt{\pi}$
f_{2}	$\sqrt{\frac{2}{\pi}} \cdot 2^{1-M}\left(1+e^{-s^{2}}+\sum_{k=1}^{2^{M-2}-1} 2 e^{-\frac{k^{2} s^{2}}{4^{M-2}}}\right)$	$1-\frac{2^{M}-1}{4^{M-1}} \operatorname{erf}(s)-\sum_{k=1}^{2^{M-2}-1} \frac{k \operatorname{erf}\left(k s \cdot 2^{2-M}\right)}{2^{2 M-5}}$
f_{3}	$e^{-s^{2}} \sqrt{2 / \pi}$	$\operatorname{erfc}(s)$

with $\mathbf{a}_{\mathbf{2}}=0, \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t, \operatorname{erfc}(x)=1-\operatorname{erf}(x)$ error/complementary error function.
As $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, the empirical spectral measure $\omega_{\mathbf{K}}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(\mathbf{K})}$ can be asymptotically determined by $m(z)=\int(t-z)^{-1} \omega(d t)$ solution to

$$
\begin{equation*}
z=-\frac{1}{m(z)}-\frac{\nu-a_{1}^{2}}{c} m(z)-\frac{a_{1}^{2} m(z)}{c+a_{1} m(z)} \tag{10}
\end{equation*}
$$

For $a_{1}>0$ and $\mathbf{a}_{2}=0$, similarly define $F(x)=x^{4}+2 x^{3}+\left(1-\frac{c \nu}{a_{1}{ }^{2}}\right) x^{2}-2 c x-c$ and $G(x)=\frac{a_{1}}{c}(1+x)+\frac{a_{1}}{x}+\frac{\nu-a_{1}^{2}}{a_{1}} \frac{1}{1+x}$ and let γ be the largest real solution to $F(\gamma)=0$. Then,

$$
\hat{\lambda} \rightarrow \lambda=\left\{\begin{array}{ll}
G(\rho), & \rho>\gamma \tag{11}\\
G(\gamma), & \rho \leq \gamma
\end{array}, \quad \frac{1}{n}\left|\hat{\mathbf{v}}^{\top} \mathbf{v}\right|^{2} \rightarrow \alpha= \begin{cases}\frac{F(\rho)}{\rho(1+\rho)^{3}}, & \rho>\gamma \\
0, & \rho \leq \gamma\end{cases}\right.
$$

as $n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$, for $\operatorname{SNR} \rho=\lim \|\boldsymbol{\mu}\|^{2}$.
Informative spike and a phase transition

"Compressed" spectral clustering: practical implications

Let $a_{1}>0, a_{2}=0$, and $\hat{\mathcal{C}_{i}}=\operatorname{sign}\left([\hat{\mathbf{v}}]_{i}\right)$ be the estimate of class \mathcal{C}_{i} of the datum \mathbf{x}_{i}, with $\hat{\mathbf{v}}^{\top} \mathbf{v} \geq 0$ for $\hat{\mathbf{v}}$ the top eigenvector of \mathbf{K}. Then, the misclassification rate satisfies

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{\hat{\mathcal{C}}_{i} \neq \mathcal{C}_{i}} \rightarrow \frac{1}{2} \operatorname{erfc}(\sqrt{\alpha /(2-2 \alpha)}), \quad \alpha=\lim _{n, p \rightarrow \infty} \frac{1}{n}\left|\hat{\mathbf{v}}^{\top} \mathbf{v}\right|^{2} .
$$

Performance of spectral clustering

"Compressed" spectral clustering: practical implications

Let $a_{1}>0, a_{2}=0$, and $\hat{\mathcal{C}_{i}}=\operatorname{sign}\left([\hat{\mathbf{v}}]_{i}\right)$ be the estimate of class \mathcal{C}_{i} of the datum \mathbf{x}_{i}, with $\hat{\mathbf{v}}^{\top} \mathbf{v} \geq 0$ for $\hat{\mathbf{v}}$ the top eigenvector of \mathbf{K}. Then, the misclassification rate satisfies

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{\hat{\mathcal{C}}_{i} \neq \mathcal{C}_{i}} \rightarrow \frac{1}{2} \operatorname{erfc}(\sqrt{\alpha /(2-2 \alpha)}), \quad \alpha=\lim _{n, p \rightarrow \infty} \frac{1}{n}\left|\hat{\mathbf{v}}^{\top} \mathbf{v}\right|^{2} .
$$

Performance of spectral clustering

Consequence: optimal quantization/binarization threshold

[^0]: 》 Question：hard－edge setting with $c=1$ ，what happens？

[^1]: » If a, σ, and statistics of s_{i} are known, the decision-optimal Neyman-Pearson () test:

