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What we will have today

» sample covariance matrix C = %C%ZZTC% and C = I, + P for some low-rank matrix P
» extreme eigenvalues of C and connection to those of the low-rank P
» extreme eigenvectors of C and connection to those of the low-rank P

» phase transition behavior and debiasing
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Low-rank perturbation of SCM

We have studied:

» spectral behavior of the SCM C = %C%ZZTC% for generic C and Z with i.i.d. entries

» in particular, how the eigenvalue distribution of C (the previous 1) depends on that of
C (denoted v) and the dimension ratio ¢ = limp/n

» characterization via implicit fixed point equation of the Stieltjes transform

» the behavior (e.g., location) of individual eigenvalue, however, remains unclear

» here, assess the behavior of individual eigenvalue and eigenvector via the spiked
model analysis, in the simple setting of C = I, + P with low rank P

1

Note that the limiting eigenvalue distribution of C = %(Ip + P)%ZZT(IP + P)2 isin fact
the same as that of 1ZZT, since the addition of low rank matrices asymptotically does
not affect the normalized trace of the resolvent, and thus the Stieltjes transform.

Remark on the limiting eigenvalue distribution
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Low-rank perturbation from the Maré¢enko-Pastur law

Consider X = [xq, ..., X,] € RP*" with x; = C2z;, z; € RP with standard i.i.d. entries and
k
C=L,+P, P=) luu]
i=1
with kand ¢1 > ... > ¢, > 0 fixed with respect to n, p.
» note that here v = lim, o uc = limy_oo pr%k(ﬁ + % Zle Ote, = 01
» so, while C # I,, the limiting 1 still follows the Marcenko-Pastur law
» however, we do not have “no eigenvalue outside the support,” since the condition
dist(1 + ¢;, supp(v)) 4 Ofori € {1,...,k} is violated
» and one may have some (order O(1) in this setting) the eigenvalues of C “jumping”
out of the limiting support supp(:)

» note for n > p, C ~ C = I, + P, so with its eigenvalues connected to those of P
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Spiked eigenvalues and a phase transition

Here, depending on the values of {; and the ratio ¢ = lim p/n, the i-th largest eigenvalue
Ai of C may indeed isolate from supp(y), due to [2].

For SCM C = 1C22Z7C: with iid. E[Z}] < oo, let C = I, + P with P = 35 fuuf
its spectral decompos1t1on where k and 61 . > > 0 are fixed with respect to 1, p.
Then, denoting \; > ... > >\ the eigenvalues of C,asn,p — oo withp/n — ¢ € (0, 00),

5, o N=1+Li+cBE > (140 6>/
(14 ve)? , b < /e

Spiked eigenvalues

Jinho Baik and Jack W. Silverstein. “Eigenvalues of large sample covariance matrices of spiked population
models”. In: Journal of Multivariate Analysis 97.6 (2006), 1382-1408. 1ssnx: 0047-259X. por:
10.1016/j . jmva.2005.08.003



https://doi.org/10.1016/j.jmva.2005.08.003
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Figure: Eigenvalues of %XXT (blue crosses), the Martenko-Pastur law (red solid line), and asymptotic spike locations

(red dashed line), for X = C%Z, C=1I,+Pwithup = %60 + %(51 + &2 + 03 + d4), for p = 1024 and different values of n.
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Proof

» solve the determinant equation det(C — ;\IP) = 0 to find “isolated” eigenvalue A € R

We write, with X = C%Z,
1 . 1 A
0 = det <nxxT - )\Ip) = det (n(lp +P)2ZZ" (I, +P)? — A1p>
1 . 1 .
= det (I, + P) det <nzzT — M, + P)—1> = det <nzzT — M, + P)—1> :

since det(I, + P) # 0. Note from the resolvent identity (A~! — B~ = A~!(B— A)B™!)
(I, +P)' =1, — (I, +P)"'P.
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Proof

» solve the determinant equation det(C — ;\IP) = 0 to find “isolated” eigenvalue A € R

» use Sylvester’s identity, det (AB — I,) = det (BA — I), to turn the p-dimensional
equation into a k-dimensional one

» solve the small-dimensional equation with the deterministic equivalent result

We write, with X = C%Z,
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Proof (continue)

» We can then isolate the resolvent of the “whitened” model Q(\) = (%ZZT - 5\Ip)*1 and

0 = det (izzT — AL, + A(I, + P)—1P> = det Q1()) - det (Ip + QN (1, + P)—lp) .
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Proof (continue)

» We can then isolate the resolvent of the “whitened” model Q(\) = (%ZZT - 5\Ip)*1 and
1 . . .
0 = det (nzzT — AL + AL, +P)7! > = det Q1()) - det ( p + AQ(N) (I, + P)—lp) .

» Using the “no eigenvalue of the support” result and the assumption IE[Z%] < 00, we are
looking for isolated spiked eigenvalues such that A > (1 + 1/c)2, so det Q' () # 0
with probability one as n,p — oc.

» Consider spectral decomposition P=ULUT = Zle Elul , then
(I, +P)~'P = Zl 1 1+e wu] = U(I; + L)~'LUT is also of rank k.
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Proof (continue)

» We can then isolate the resolvent of the “whitened” model Q(\) = (%ZZT - 5\Ip)*1 and
B 1 T Q N - 3 N -1
0 = det (nzz — AL+ A(I, + P) ! > det Q7 1(A) - det<,,+AQ(A)(Ip+P) P).

» Using the “no eigenvalue of the support” result and the assumption IE[Z%] < 00, we are

looking for isolated spiked eigenvalues such that A > (1 + 1/c)2, so det Q' () # 0
with probability one as n,p — oc.

» Consider spectral decomposition P=ULUT = Zle Elul , then
(I, +P)~'P = Zl 1 1+z wu] = U(I; + L)~'LUT is also of rank k.

» With Sylvester’s identity, we get 0 = det (Ik +AUTQMU - (I + L)_1L>.
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Proof (continue)

For Z € RP*" with independent zero mean and unit variance random variables and
Q(z) = (22Z7—zI,) %, asn,p — cowithp/n — (0, 00), wehave Q(z) +» Q(z) = m(z)1,,
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Proof (continue)

For Z € RP*" with independent zero mean and unit variance random variables and
Q(z) = (22Z7—zI,) %, asn,p — cowithp/n — (0, 00), wehave Q(z) +» Q(z) = m(z)1,,
with m(z) the unique ST solution to zem?(z) — (1 — ¢ — z)m(z) +1 = 0.

Deterministic equivalent result for SCM

» Looking for isolated spikes \ satisfying 0 = det (Ik +AUTQU - (I + L)*IL)
» With the deterministic equivalent result Q()\) « m(S\)Ip, leads to
k

. - .l
_ _ -17) _ i
0= det (Ik 4 Am(A) - (I + L) L) ]1 <1 + dm(3) zi> . (1)
“ ) . ~ A 1+¢; .
» If such X exists, must satisfy | A\m(\) = — 7 +o(1)| forsomei € {1,...,k}.
i
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Proof (continue)
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_1 + ¢;
¢

+0(1)

» For such a solution A to exist, study the behavior of xm(x) = [ 7 u(dt) which is
increasing on its domain of definition with xm(x) — —1 as x — oc.
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Proof (continue)

m(y) = -0
1

» For such a solution A to exist, study the behavior of xm(x) = [ 7 u(dt) which is
increasing on its domain of definition with xm(x) — —1 as x — oc.

» Using the Marcenko-Pastur equation
zem?(z) — (1 —c—z)m(z) +1=0 < zm(z) = -1 + #.Zm(z), so that

. 1
lim, 14 ey = — 2525,

+o(1) (2)
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Proof (continue)

< 1+
Am(N\) = — "gl
1

» For such a solution A to exist, study the behavior of xm(x) = [ 7 u(dt) which is
increasing on its domain of definition with xm(x) — —1 as x — oc.

» Using the Marcenko-Pastur equation
zem?(z) — (1 —c—z)m(z) +1=0 < zm(z) = -1 + #.Zm(z), so that

+o(1) (2)

. 1
lim, 14 ey = — 2525,
» so the solution ) exists if and only if the corresponding /; > +/c, and

< 14+ ¢
Ao N =146+4c "g (3)
i
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Figure: Phase transition behavior of the largest eigenvalue A; (C) of C = %(Ip + P)%ZZT(IV + P)% as a function of
{1 = ||P|| with rank one P, for p = 512 and n = 1024. Empirical results obtained by averaging over 50 independent runs.
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Spiked eigenvectors of SCM

We would also like to characterize the behavior of the spiked eigenvectors:

» it makes sense to believe that for n >> p, C~C= I, + P, so its eigenvectors should
“close to” those of C in some way and for sufficient large n/p

» formally, how the top eigenvectors uy, ..., Gy of C close to those (uy,...,u;) of P

» some type of phase transition behavior is (again) expected.

In the absence of low-rank perturbation P and Gaussian Z, it is known that the eigen-
vectors of the resulting Wishart matrix 1ZZT € RF*? are uniformly distributed on the
unit sphere sp—1 (also know as the p-dimensional Haar measure), which is close to, for
p large, random vector with i.i.d. Gaussian entries.

Absence of P
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Spiked eigenvector alignment

Let @11, ..., Uy be the eigenvectors associated with the largest k eigenvalues 5\1 >0 >
A, of C. Further assume that /1 > ... > £, > 0 are all distinct. Then, for a,b € R? unit
norm deterministic vectors

1—cl;?
Ta T T, T as.
a'uua;b—a uiuib-TCé_l-lgi>ﬁ—>0. (4)
In particular, with a = b = u; we obtain
1—cl?
Ta\2 85 ~ _
(v, 0;)° — ¢ = W oo e 5)

Spiked eigenvector alignment
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Low-rank update of SCM: eigenvectors
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Figure: Empirical versus limiting \ﬁ;rm | for X = C%Z, C=1I,+ €1u1u1'— and standard Gaussian Z, p/n = 1/3, for
different values of ¢;. Results obtained by averaging over 200 runs. In black dashed line the local behavior around +/c.
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Proof
» First write that, for all large 1, p almost surely and ¢; > +/c,

1 1 -
a't4b = 5 a' <nxxT - zlp> bdz,
e FAi

for Iy, a small contour enclosing only the almost sure limit A\; =1+ ¢; +¢ 12&' of the

eigenvalue 5\1’ of C that we just determined.

1 -1 1 1 1 -
a' <nxxT - z1p> b=a' (n(lp +P)2ZZ" (I, +P)z —zL,) b

1 -1
—a"(I, + P) > <nzzT —zI, +z(I, + P)—lp) (I, + P)"2b
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Proof (continue)

Denote Q(z) = (1ZZT — zI,) 7!, it follows from (I, + P)~! = I, — (I, + P)"'P and the
spectral decomposition (I, + P)"'P = U(I; + L) "'LU" for U = [uy,...,w] € R"*F and
L = diag{¢;}5_, that

-1
T ClxxT — z1p> b
T(I, + P)"2Q(z)(I, + P) 2
—za' (I, + P)_EQ(z) I+ L1 4+2U07Q(z )U)_l UTQ(2)(I, + P) b
—a"(I, + P)"2Q(z)(I, + P) b
—za"(I, + P)"2Q(z)U (L' + (1 + zm(2))k) " UTQ(2)(I, + P)"2b + o(1),
where we used Woodbury identity and UTQ(z)U = m(z)Ix 4 o) (1).

=a
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Proof (continue)
Objective: a';4/b = —5L j’ﬂm. al (IxxT - zIp)_1 bdz, with Q(z) = (1ZZ" —zI,) ! and
1
a' (rllxxT — z1p> b=a"(I,+ P)2Q(z)(I, + P) b

—za"(I, + P)"2Q(z)U (L' + (1 + zm(2)L) ' UTQ(2)(I, + P)"2b + o(1),



Low-rank update of SCM: eigenvectors «20/37

Proof (continue)

Objective: a'wt/b = 5 §. a’ (;XXT - zIp)_1 bdz, with Q(z) = (1ZZ" —zI,) ! and

-1
a' (rllxxT — z1p> b=a"(I,+ P)2Q(z)(I, + P) b

—za"(I, + P)"2Q(z)U (L' + (1 + zm(2)L) ' UTQ(2)(I, + P)"2b + o(1),

» complex integration of first term vanishes (looking for spikes with well defined Q(z))



Low-rank update of SCM: eigenvectors «20/37

Proof (continue)

Objective: a'wt/b = 5 §. a’ (;XXT - zIp)_1 bdz, with Q(z) = (1ZZ" —zI,) ! and

-1
a' (rllxxT — z1p> b=a"(I,+ P)2Q(z)(I, + P) b

—za"(I, + P)"2Q(z)U (L' + (1 + zm(2)L) ' UTQ(2)(I, + P)"2b + o(1),

» complex integration of first term vanishes (looking for spikes with well defined Q(z))
» complex integration of Q(z) on the contour I'y, only brings a non-trivial residue, due
to the inverse (L~! + (1 4 zm(z))Iy)~! which is singular at z = )

1

aTi,b = o 7{ zm?(z)a" UL + L) 2 (L) + (1 + zm(z))L) " (I + L) "2 UTbdz + o(1).
T F>‘i
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Proof (continue)

Objective: a'wt/b = 5 §. a’ (;XXT - zIp)_1 bdz, with Q(z) = (1ZZ" —zI,) ! and

-1
a' (rllxxT — z1p> b=a"(I,+ P)2Q(z)(I, + P) b

—za"(I, + P)"2Q(z)U (L' + (1 + zm(2)L) ' UTQ(2)(I, + P)"2b + o(1),

» complex integration of first term vanishes (looking for spikes with well defined Q(z))
» complex integration of Q(z) on the contour I'y, only brings a non-trivial residue, due
to the inverse (L~! + (1 4 zm(z))Iy)~! which is singular at z = )
1

aTi,b = o 7{ zm?(z)a" UL + L) 2 (L) + (1 + zm(z))L) " (I + L) "2 UTbdz + o(1).
T F>‘i

» can be evaluated by residue calculus at z = \;.
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Proof (continue)

a'w;ab = ZL j{ zm?(z)a' U(I; + L)’%(L’1 + (1 +zm(z)) (I + L)’%UTb dz+o(1)|
e F>‘i
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Proof (continue)

a'w;ab = ZL j{ zm?(z)a' U(I; + L)’%(L’1 + (1 +zm(z)) (I + L)’%UTb dz+o(1)|
e F>‘i
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Proof (continue)
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e F>‘i

» residue calculus:

al
lim (z — A\)(L7" + (1 L)l = &€,

with e; € R canonical basis vector [e;]; = d;:.
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Proof (continue)

a'w;ab = ZL j{ zm?(z)a' U(I; + L)’%(L’1 + (1 +zm(z)) (I + L)’%UTb dz+o(1)|
e F>‘i

» residue calculus:

al
lim (z — A\)(L7" + (1 L)l = &€,

with e; € R¥ canonical basis vector [e;]; = J;.
] ]

» Using the Marcenko-Pastur equation m(z) = — T, weget m'(z) = %,
1+4-cm(z) - (1+cm(z))2
from which we have m(\;) = —1/(¢; + c) and m’(\;) = 2(¢; + ¢)72(¢2 — ¢) 7.
1—ct?
» We conclude that aTﬁiﬁsz = aTuiu;rb i +o0(1) |

14ctt
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» we have seen that the (asymptotic) location of the largest eigenvalue \; (C) establishes
a phase transition behavior if the corresponding population ¢; > /¢

» so below the threshold A1 (C) = (1 4 v/c)? + o(1) almost surely as 1, p — oo

» we want to understand more on this o(1) local behavior

Under the same setting, assume 0 < ¢ < ... < {1 < /c. Then,

in law, where TW is the (real) Tracy-Widom distribution.

Fluctuation of the largest eigenvalue

» below phase transition: \; = (14 /)% + n=3T where T is a (scaled) Tracy-Widom RV
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I T T T
041 mmm Centered-scaled eigenvalues |
—_— TW; law
0.3
0.2
0.1
0

—4 -2 0 2 4

Centered-scaled largest eigenvalue of 1ZZ"

X 2

Figure: Empirical histogram of nd % for p = 256, n = 512 and standard Gaussian Z, versus the real
(140376

Tracy-Widom law TW;. Histogram obtained over 5000 independent runs.
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Remarks on Tracy-Widom law

» somewhat surprising: limiting fluctuation of \; is not Gaussian but follow the
Tracy-Widom distribution and of order O(n~%/3) (instead of O(n~'/?) or O(n™1))
» rate related to the following observation:
» Maréenko-Pastur law: u(dx) = »~—+/(x — E_)*(E; —x)*dx, Ei = (1+./c)2

2mwex

» so near the right edge E : pu(dx) ~y£, m(lﬁf VIE+ — x|
» so a typical number of eigenvalues in a space of size € near the edge is

(1+/c)? 5
/ (14 V)2 —xdx o €2 (6)
(1+v/e)?—e
» to have O(1) eigenvalues within [E; — ¢, E;] needs € = O(n*%) (this is in fact the
“spacing” between eigenvalues, which is of order O(n~!) away from the edge)
» Question: hard-edge setting with ¢ = 1, what happens?
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Remarks on Fluctuation of the largest eigenvalue

» BBP phase transition [ | ]: named after the authors Jinho Baik, Gerard Ben Arous,
Sandrine Peche, says that beyond the phase transition threshold, the fluctuation
becomes a standard CLT type of order O(n~'/2), from TW law of order O(n=2/3)

Jinho Baik, Gérard Ben Arous and Sandrine Péché. “Phase transition of the largest eigenvalue for nonnull
complex sample covariance matrices”. In: The Annals of Probability 33.5 (2005), 1643-1697. 1ssn: 0091-1798.
por: 10.1214/009117905000000233
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» BBP phase transition [ | ]: named after the authors Jinho Baik, Gerard Ben Arous,
Sandrine Peche, says that beyond the phase transition threshold, the fluctuation
becomes a standard CLT type of order O(n~'/2), from TW law of order O(n=2/3)

» universality for Tracy-Widom, real TW1, complex TW,, and quaternionic TWy, for
Wishart and Wigner matrix models, smallest and largest eigenvalues

» Tracy-Widom distributions connected in the asymptotics of a few growth models in
the Kardar—Parisi-Zhang (KPZ) universality class

More spiked models:

» information-plus-noise model of the type 1(Z + P)(Z +P)"

» additive X + P for Wishart or Wigner type X
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Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let X = [xq,...,x,] € RP*" with i.i.d. columns x; € R? received by array of
p sensors, signal decision as the following binary hypothesis test:
X — oZ, Ho
) as'+o0Z, Hi
where Z = [z1,...,2,] € RP*", z; ~ N(0,1,), a € RP deterministic of unit norm [|a]| =1,

signal s = [sq,. .. ,51]T € R" with s; i.i.d. random, and ¢ > 0. Denote c = p/n > 0.
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Hypothesis testing in a signal-plus-noise model for cognitive radios

System model: let X = [xq,...,x,] € RP*" with i.i.d. columns x; € R? received by array of
p sensors, signal decision as the following binary hypothesis test:
X — oZ, Ho
) as'+o0Z, Hi
where Z = [z1,...,2,] € RP*", z; ~ N(0,1,), a € RP deterministic of unit norm [|a]| =1,
signal s = [sq,. .. ,51]T € R" with s; i.i.d. random, and ¢ > 0. Denote c = p/n > 0.

» observation of either zero-mean Gaussian noise oz; of power o2, or deterministic
information vector a modulated by an added scalar (random) signal s; (e.g., £1).
» If a, 0, and statistics of s; are known, the decision-optimal Neyman-Pearson () test:
P(X | H1) H1
( ’ 1) 2 o (7)
P(X| Ho) #,

for some « > 0 controlling the Type I and II error rates.
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Hypothesis testing via GLRT

»

»

»

»

However, in practice, we do not know o, nor the information vector a € R? (to be
recovered )

in the case of a fully unknown, one may resort to a generalized likelihood ratio test
(GLRT) defined as

sup,., P(X | 7,a, Hy)
z

sup, , P(X | 0, Ho) 74,
Gaussian noise and signal s;, GLRT has an explicit expression as a monotonous
increasing function of || XXT||/ tr(XXT), test equivalent to, for some known f,
pocT| 7
——— Q).
tr (XXT) 75,
to evaluate the power of GLRT above, we need to assess the max and mean
eigenvalues of SCM 1 XXT

T, =
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Hypothesis testing in a signal-plus-noise model via GLRT

To set a maximum false alarm rate (or Type I error) of r > 0 for large n, p, according to
RMT, one must choose a threshold f («) for T):

(T, > f(a) =7 & prw, ([Ap, +00) =7, Ay = (f(@) = (1+ VO)(1 +/e) Teans (8)

0.8 h x  Empirical false alarm rate |
.;; ---- 1—TW,(A,) defined in (8)

[ \*(
E 06 ey
£ *X
i= e
< 0.4
2 x
£ A

0.2 RS

% I “’%‘""‘xﬂm
A4 (14 v2)? 2.6

Decision threshold f ()
Figure: Comparison between empirical false alarm rates and 1 — TW1(Ap) for A, of the form in (8), as a function of the

threshold f () € [(1 + v/c)? —5n=2/3, (1 + 1/c)? +5n=2/3], forp = 256,n = 1024 and o = 1.
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Reminder on kernel spectral clustering

Two-step classification of n data points with distance kernel K = {f (||x; — xjH2 /p) Pj=1:

0 isolated eigenvalues

|} Top eigenvectors |
I ] I I




Applications «32/37

Reminder on kernel spectral clustering




Applications «32/37
Reminder on kernel spectral clustering

Eig. 2
T
b 4
!




Applications «32/37
Reminder on kernel spectral clustering

Eig. 2
T
¥
|

- sl
d

Eig. 1

4

EM or k-means clustering
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Application to “compressed” spectral clustering

n

Iy with

Entry-wise nonlinear transformation of X™X: K = { f (x;rxj /v/P)/ \/ﬁ}
Sparsification: fi(t)=t- 1\t\>\/§s
Quantization: fo(t) =22 M([t-2M72/V/2s] +1/2) - Ly<yas + sign(f) - Ly vas

Binarization:  f3(f) = sign(f) - 1, . /5

L N —h
of |
-1 = | wreennn f3
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Notations: For each f and £ ~ N(0, 1), define the (generalized) moments
a0 =E[f(©)] =0, a1 =E[f (9], a=EEf(O)/V2, v=E[f()]=a+a. (9
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f H al \ v
erfe(s) + 2se=5 /\/7 erfe(s) + 2se=5 /\/7
f fo(s) +2se™ /\/m (s) /T
— 77 - -
f ﬂ M1 4= 4 32 Pl ) | ] Bl enf(s) — Y2, ! kerflle 2T
f3 6*52\/2/77 erfc(s)
X

with a, = 0, erf(x) = % IN etdt, erfc(x) = 1 — erf(x) error/complementary error function.
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Notations: For each f and £ ~ N(0, 1), define the (generalized) moments
a0 =E[f(©)] =0, a1 =E[f (9], a=EEf(O)/V2, v=E[f()]=a+a. (9

£ a | v
erfe(s) + 2se=5 /\/7 erfe(s) + 2se=5 /\/7
f (s) / (s) /
M—2 257 M=2_ 1 orf(ks.22—M
b ﬁ M1 e 3 e i) | 1 2 enf(s) — Y2, kertle2 D)
f3 6*52\/2/77 erfc(s)

with a, = 0, erf(x) = % fox etdt, erfc(x) = 1 — erf(x) error/complementary error function.

Asn,p — oo withp/n — c € (0, 00), the empirical spectral measure wix = % >t On(K)
can be asymptotically determined by m(z) = [(t — z) ~w(dt) solution to

1 v —ap? a12m(z)

Z=———— m(z)

m(z) c Cc+mm(z)

(10)

Limiting spectral measure
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For a; > 0 and a, = 0, similarly define F(x) = x* 4 223 + (1 — ;—’é) x% — 2cx — ¢ and

G(x)=2(1+x)+5+ ”;—flz ﬁ and let «y be the largest real solution to F(y) = 0. Then,

F(p)

A\ = G(p), P>’V’ 1\0Tv\2—>a: ke P20 (11)
G(y), p<n n 0, p<~

asn,p — oo with p/n — ¢ € (0,00), for SNR p = lim || ||?.

Informative spike and a phase transition




Applications «36/37

“Compressed” spectral clustering: practical implications

Leta; > 0,ap = 0, and Ci = sign([V];) be the estimate of class C; of the datum x;, with
v'v > 0 for v the top eigenvector of K. Then, the misclassification rate satisfies

1 ¢ 1 1
. Z 0,20, = 5 erfe(v/a/(2 - 2a)), a= lim —|vTv[%
i=1

n,p—oo N

Performance of spectral clustering
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Leta; > 0,ap = 0, and Ci = sign([V];) be the estimate of class C; of the datum x;, with
v'v > 0 for v the top eigenvector of K. Then, the misclassification rate satisfies

n,p—oo N

1 ¢ 1 1
. Z 0,20, = 5 erfe(v/a/(2 - 2a)), a= lim —|vTv[%
i=1

Performance of spectral clustering
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Consequence: optimal quantization/binarization threshold

0.1

0.08

Misclassif. rate

0.06 ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 1.2

Truncation threshold s
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