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About myself
■ Education and experiences:

– 2021 Associated Professor with EIC, HUST, Wuhan, China

– 2020 Postdoctoral Researcher at University of California, Berkeley, USA

– 2019 Ph.D. Statistics and Machine Learning, University of Paris-Saclay, France.

– 2016 M.Sc. Signal and Image Processing, University of Paris-Saclay, France.

– 2014 B.Sc. Optical & Electronic Information Huazhong university of Science and Technology, Wuhan, China.

■ Awards and prizes :

– 2021 Recipient of East Lake Youth Talent Program Fellowship of Huazhong University of Science & Technology, Wuhan, China.

– 2019 ED STIC Ph.D. Student Award of University Paris-Saclay, France.

– 2016: Recipient of the Supélec Foundation Ph.D. Fellowship, France.

■ Academic services:

– Referee of European Research Council (ERC); external reviewer of Natural Sciences and Engineering Research Council of Canada 
(NSERC).

– Reviewer of conferences: NeurIPS, ICML, ICLR, AISTATS, AAAI, etc.

– Reviewer of journals: Journal of Machine Learning Research (JMLR), IEEE Trans. on Pattern Analysis and Machine Intelligence 
(IEEE-TPAMI), IEEE Trans. on Signal Processing (IEEE-TSP), IEEE Trans. on Neural Networks and Learning Systems (IEEE-TNNLS), 
SIAM Journal on Scientific Computing (SISC), Pattern Recognition (PR)

FiberHome Technology Institute, Training center 1



Motivation

■ Big Data era: huge amount of large size data

■ Need of automatic processing of these big data

■ Machine learning (ML) as an answer
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Outline

§ Introduction and background of machine learning: rule-based and data-based

§ Basics of machine learning

§ Machine learning in practice: example of (least-squares) linear regression model

§ More advanced considerations in machine learning

§ Resources and references
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Machine Learning in everyday life
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Applications of machine learning

■ Computer Vision (CV):
– acquiring, processing, analyzing and understanding digital images and videos
– (direct) examples: 

■ face recognition: Face ID (Apple), security services (Britain, USA, China), etc
■ optical character recognition (OCR): data entry, automatic number plate recognition, etc
■ image search (Google)
■ detecting events: visual surveillance or people counting, etc

– play a key role in
■ autonomous vehicle 
■ robotics

– to mimic visual system of human beings
– rather well developed field, superhuman performance!
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Applications of machine learning

■ Natural Language Processing (NLP):
– interactions between computers and human natural languages
– examples: 

■ automated online assistant
– smart speakers: Amazon Echo, Google Home and Apple HomePod
– on smartphones: Siri (Apple) and Cortana (Microsoft Windows OS)
– online chatbots customer service: Taobao, eBay, Burberry

■ automatic machine translation
■ question answering system
■ natural language understanding 

– to mimic reading system of human beings
– less developed, but moving fast forward
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Applications of machine learning

■ Healthcare
– identifying diseases, developing new medicines

■ Robots

■ Finance and economics
– automatic financial trading

■ Educations

■ etc.
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Machine Learning (ML) and Artificiel Intelligence (AI)

A point of history:
■ born in a workshop at Dartmouth College 

in 1956
■ 1970-1980: AI winter
■ 1980s: expert systems, if–then rules
■ 1990s-21st century: rapid growth due to 

increasing computational power
– 1997: Deep Blue (IBM), first chess-

playing computer world champion
■ 2010s-now: age of Deep learning

– 2017: AlphaGo (DeepMind), first 
computer Go-playing system world 
champion
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Example of rule-based expert system
■ Example: housing prices prediction. House No.1: 

■ Rule-based system:
– price = 0
– If HouseStyle=1 Story and LotArea<=8000, then price=LotArea*5
– If HouseStyle=1 Story and LotArea>8000, then price=LotArea*6
– If HouseStyle=2 Story and LotArea<=12000, then price=LotArea*6.5
– …
– if LandContour=Lv1 and Street=Pace, then price=price-6k
– …

■ Data from https://www.kaggle.com/alphaepsilon/housing-prices-dataset.
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Why not expert systems?

■ Expert systems: human experts teach computers rules
– computationally impossible even for the simple Go game
■ played across a 19 x 19 grid
■ search space = 19 x 19 = 361 for each move
■ 15 turns: 361^30 = 5.3e76 possible configurations
■ approximately 1e80 atoms in the universe

– even worse for continuous search space
■ driving: turn the steering wheel at any time for any degree

■ Finding efficient rules are difficult: dogs vs. cats
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How modern machine learning works?
■ learn from (a huge number of) data

■ try to find ‘‘rules’’ (or the so-called features) from the data

■ with large amount of data, may find better rules than human experts
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ML

Labels:
§ dogs
§ cats
§ trains
§ aircrafts
§ etc.



Why things are working now?

1. Big data
– International Data Corporation (IDC) reports the global data volume from 4.4 

ZB (1 ZB=10^9 TB = 10^12 GB) to 44 ZB between 2013 and 2020, and 
predicts 163 ZB by 2025

– continue to grow with development of Internet of things devices
2. Rapid growth of modern computational systems

– Moore’s law: the number of transistors in a dense integrated circuit (IC) 
doubles about every two years, named after Gordon Moore.

– Graphics processing unit (GPU): large-scale parallel computing
3. More advanced models/algorithms (deep neural network models)
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Expert system versus ML approach
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§ Explicitly programmed to solve problem
§ Decision rules are clearly defined by humans

§ Rules not defined by humans, learned from data/examples
§ Highly complex, often not understandable or interpretable



When to use data-driven machine 
learning?
■ For complicated tasks: when efficient rules (by human) are hardly accessible

■ when it is easy to get a lot of data! (perhaps not the case in healthcare applications)

■ When automatization is needed
– extremely large-scale problems, impossible for human: analyze reviews and 

provide recommendations for film websites (Netflix)
– high labor costs: manufacturing in Europe (BMW)

■ Looking for higher efficiency and higher quality products
– face recognition in security systems
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What do we need to do ML?

1. Clearly formulate your problem:
– input? output? how can we use (input data) to decide (output)? 

2. Large amount of data!
– in general, data are more important than algorithms/models
– the more data, the better! 
– not only the data, but also the correct labels!

3. Find efficient criterion to evaluate your machine learning model

4. Find significant representation/features from data with algorithms
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Basics of machine learning:
1. Supervised learning (need labels/targets): classification, regression

2. Semi-supervised learning (less labels/targets): useful in practice

3. Unsupervised learning (no labels/targets): find clusters/communities within data

4. Reinforcement learning (RL): learn to make decisions (the chess and Go games, robotics)
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Basics of machine learning: supervised
■ Classification: e.g., cats versus dogs, face recognition, anomaly detection

■ Regression: housing prices prediction, consumer prediction
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Five typical questions ML can answer

1. Is this A or B?

2. Is this normal?

3. How many? How much?

4. How is this organized? What is the structure of? 

5. What should we do? 
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Five typical questions ML can answer

■ Question: Is this A or B?
■ Answer: classification!

■ Example:
– Will this tire fail in the next 1,000 miles: Yes or no?
– Which brings in more customers: a $5 coupon or a 25% discount?
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Five typical questions ML can answer

■ Question: Is this normal?

■ Answer: anomaly detection (one-versus-rest classification)!

■ Example: 
– Credit card fraud analysis 
– when purchase at a store that is geographically “weird”

FiberHome Technology Institute, Training center 22



Five typical questions ML can answer

■ Question: How many? How much?

■ Answer: regression analysis!

■ Example:
– How much should one offer for a 180m^2 area house? 
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Five typical questions ML can answer
■ Question: How is this organized? What is the structure of? 

■ Answer: unsupervised methods, e.g., clustering, community detection and dimension 
reduction!

■ Example:
– What is the structure of your Facebook social network?
– Which viewers like the same types of movies?
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Five typical questions ML can answer

■ What should we do? 

■ Reinforcement learning!

■ Example:
– for a self-driving car: at a yellow light, brake or accelerate?
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Essence of machine learning

■ Build predictive model from historical data to make future decision!
1. collect historical data
2. choose appropriate model and train/fit it with data
3. make prediction based on the well-trained model and make your decision!

■ Three key steps to successful machine learning:
1. collet good and massive amount of data
2. which model to use: linear regression, logistic regression or deep learning?
3. use (powerful) algorithms to train your model
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Example: housing prices prediction
■ Question: for a 180 𝑚! house, how much should we offer for?

1. collect historical data

2. choose your own model
3. fit the model with data (algorithm)
4. make prediction

Data from: https://www.kaggle.com/alphaepsilon/housing-prices-dataset
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Step 1+2: data and model 
N
o.

Area (m^2):
x

Price (10^4 RMB): y

1 78.50 145.95
2 88.72 98.00
3 93.68 214.90
… … …
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§ Get in total 𝑛 (historical) data (area, price)
§ 𝑥!: data/feature (input)
§ 𝑦!: target (output)
§ Objective: 

§ for new input $𝑥, predict its output $𝑦

Data (𝑥! , 𝑦!) !"#
$ Learning

algorithm

Machine
learning
modelℳ

Flow diagram

Making prediction: !𝑥 → ℳ → !𝑦



Linear regression model

𝑦: ℳ" 𝑥 = 𝜃# + 𝜃$𝑥

■ describe a linear relation between input 𝑥 and output 𝑦

■ model ℳ" determined by (𝜃#, 𝜃$)

■ how to decide if a model ℳ" is good? 

=>objective function!
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Mean squared error objective function

■ linear regression ℳ" 𝑥 = 𝜃# + 𝜃$𝑥, determined 
by two parameters 𝜃#, 𝜃$

■ for data (𝑥%, 𝑦%) %&$
' , objective/loss function 

𝐿(𝜃#, 𝜃$) tells us how model (parameter) fits the 
data

𝐿 𝜃#, 𝜃$ =
1
𝑛
1

%&$

'
(𝑦% −ℳ" 𝑥% )!

= $
'
∑%&$' (𝑦% − 𝜃# − 𝜃$𝑥%)!

■ 𝐿 𝜃#, 𝜃$ ↑, larger difference between model 
output and historical data

■ find the best 𝜃#, 𝜃$ ⟹ min
"!,""

𝐿 𝜃#, 𝜃$
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Learning model by minimization

■ For a given dataset (𝑥! , 𝑦!) !"#
$ , plot 𝐿 𝜃%, 𝜃# as follows

■ wish to reach the bottom (black) point of 𝐿 𝜃%, 𝜃# , get the corresponding (𝜃%∗, 𝜃#∗ ) value 
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Learning model with gradient descent

Algorithm

■ Start from any point (𝜃##, 𝜃$# ), update (𝜃#), 𝜃$) ) to minimize 𝐿 𝜃#, 𝜃$ , to reach the minimum 
(𝜃#∗, 𝜃$∗ ): 𝐿(𝜃#)+$, 𝜃$)+$ ) ≤ 𝐿(𝜃#), 𝜃$) ).

■ iterations update according to 𝜃,)+$ = 𝜃,) − 𝛼∇"#𝐿 𝜃#, 𝜃$ , 𝑗 = 0,1, until convergence.
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Example: housing prices prediction

⟹ 𝜃%∗ = 83.5384, 𝜃#∗ = 0.4734.

■ For a 180 𝑚' house, our model predicts ℳ(∗ 180 = 𝜃%∗+180 𝜃#∗ = 168.75×10)RMB.

■ Interpretation: price= 𝜃%∗(for all)+ 𝜃#∗×area.
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Sum-up and further discussions
■ Three steps of machine learning: 

1. define your model
2. choose your metric (objective function)
3. train/optimize the model and make prediction!

■ Here we discuss the example of
1. linear regression model: input-output linear relation
2. mean squared error: for regression problem
3. gradient descent optimization method

■ Many many more choices:
1. for nonlinear input-output relation: polynomial regression, SVM, neural nets
2. for classification problem: 0-1 error, cross-entropy error, hinge loss, etc.
3. more and more advanced optimization methods
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About model fitting
Training is important, but what really matters is test and future prediction!

■ Model versus task complexity: over- and under-fitting

■ Example: real data can be noisy
– a underlying simple model (quadratic function 𝑦 = −𝑥' + 10𝑥 + 1) + small noise
– if fit with a too complex function (cubic function 𝑦 = 𝜃*𝑥* + 𝜃'𝑥'+ 𝜃#𝑥#+ 𝜃%)

■ bias and variance trade-off
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About model fitting
Training is important, but what really matters is test and future prediction!

■ Model versus task complexity: over- and under-fitting, the bias and variance trade-
off

■ Task: −𝑥! + 10𝑥 + 1 + small noise

■ Model:
– 𝜃$𝑥$+ 𝜃# too simple
– 𝜃-𝑥- + 𝜃!𝑥!+ 𝜃$𝑥$+ 𝜃# too complex
– good fit 𝜃!𝑥!+ 𝜃$𝑥$+ 𝜃#
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Training 
error

Test error Bias Variance

Underfitting large large large small

Overfitting small (≈ 0) large small large

Good fit small small small small



About model fitting
■ Model versus task complexity: bias and variance trade-off

– model too simple: unable to fit the training data
■ high bias between model and target

– model too complex: contains many sub-models almost perfectly fit the data
■ high variance between sub-models
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complex model

simple model

test error

training error

model complexity

underfit
high bias

overfit
high variancegood fit



About model fitting
■ To avoid overfitting: training, cross-validation and test sets

■ regularization with a prior knowledge

■ model ensembling
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Doing SotA ML can be expensive
■ State-of-the-Art (SotA) Machine Learning models for various applications:

■ source: https://www.stateoftheart.ai/

■ Tensor Processing Unit (TPU) of Google
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Applications Algorithms Accuracies Size Time

CV: multi-class (10,000+) 
image classification

PolyNet 
(2017)

91.3% (top 1)
95.75% (top 5)
almost human

92 M 3700 hours 
in total

NLP: question answering BERT 93.2 Test F1 340M 100 hours
in Google

RL: game playing AlphaGo 
Lee (2016)

superhuman 4-6 weeks
in Google

https://www.stateoftheart.ai/


Good news: transfer learning
■ Transfer existing knowledge/model/structure to solve my problem!

■ Example: using pre-trained model for image classifcation, with Microsoft ResNet150
(trained on ImageNet dataset http://www.image-net.org/)

■ Edges --- contour --- high-level features --- classifier
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Good news: transfer learning
■ Transfer existing knowledge/model/structure to solve my problem!

FiberHome Technology Institute, Training center 43

fix more 
layers and 
retrain the 

very last ones
(data aug)

retrain a 
model from 

scratch

fixe all layers 
but the last 

one 
(classifier)

fix first layers 
and retrain 

the rest

more dataless data

different

similar



ML in practice: further needs

■ Confidence interval: statistical estimates or Bayes methods
– security services, autonomous vehicle, how much can we trust the model?

■ Model interpretability: much harder for large-scale problems
– investment, to customer bussiness, why should we make this decision?
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ML in practice: datasets

■ Popular publics datasets for MLers:
– UCI machine learning repository: https://archive.ics.uci.edu/ml/datasets.php
– Kaggle datasets and competitions: https://www.kaggle.com/datasets
– https://en.wikipedia.org/wiki/List_of_datasets_for_machine-

learning_research
– Scikit-learn: https://scikit-learn.org/stable/datasets/index.html

FiberHome Technology Institute, Training center 46

https://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/datasets
https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
https://scikit-learn.org/stable/datasets/index.html


ML in practice: various frameworks

■ Tensorflow https://www.tensorflow.org/

■ Pytorch https://pytorch.org/

■ Scikit-learn https://scikit-learn.org/stable/

■ all based on Python

■ many others...

FiberHome Technology Institute, Training center 47

https://www.tensorflow.org/
https://pytorch.org/
https://scikit-learn.org/stable/


ML in practice: online courses

■ Udacity Introduction to machine learning: https://www.udacity.com/course/intro-to-
machine-learning--ud120

■ Coursera Machine Learning: https://www.coursera.org/learn/machine-learning

■ edX Machine Learning: https://www.edx.org/course/machine-learning

■ Stanford CS231n Convolutional Neural Networks for Visual Recognition: 
https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
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ML in practice: references

■ More math/stats and theory textbooks:
– Pattern Recognition and Machine Learning
– Deep Learning 2015: http://www.deeplearningbook.org/

■ More hands-on and application-oriented:
– Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: 

Concepts, Tools, and Techniques to Build Intelligent Systems
– Deep Learning with Python
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