INTRODUCTION TO MACHINE LEARNING

Zhenyu Liao Associated Professor at EIC HUST <u>https://zhenyu-liao.github.io/</u>

FiberHome Technology Institute, Training center

About myself

- Education and experiences:
 - 2021 Associated Professor with EIC, HUST, Wuhan, China
 - 2020 Postdoctoral Researcher at University of California, Berkeley, USA
 - 2019 Ph.D. Statistics and Machine Learning, University of Paris-Saclay, France.
 - 2016 M.Sc. Signal and Image Processing, University of Paris-Saclay, France.
 - 2014 B.Sc. Optical & Electronic Information Huazhong university of Science and Technology, Wuhan, China.
- Awards and prizes :
 - 2021 Recipient of East Lake Youth Talent Program Fellowship of Huazhong University of Science & Technology, Wuhan, China.
 - 2019 ED STIC Ph.D. Student Award of University Paris-Saclay, France.
 - 2016: Recipient of the Supélec Foundation Ph.D. Fellowship, France.
- Academic services:
 - Referee of European Research Council (ERC); external reviewer of Natural Sciences and Engineering Research Council of Canada (NSERC).
 - Reviewer of conferences: NeurIPS, ICML, ICLR, AISTATS, AAAI, etc.
 - Reviewer of journals: Journal of Machine Learning Research (JMLR), IEEE Trans. on Pattern Analysis and Machine Intelligence (IEEE-TPAMI), IEEE Trans. on Signal Processing (IEEE-TSP), IEEE Trans. on Neural Networks and Learning Systems (IEEE-TNNLS), SIAM Journal on Scientific Computing (SISC), Pattern Recognition (PR)

Motivation

- Big Data era: huge amount of large size data
- Need of **automatic processing** of these big data
- Machine learning (ML) as an answer

Outline

- Introduction and background of machine learning: rule-based and data-based
- Basics of machine learning
- Machine learning in practice: example of (least-squares) linear regression model
- More advanced considerations in machine learning
- Resources and references

Outline

- Introduction and background of machine learning: rule-based and data-based
- Basics of machine learning
- Machine learning in practice: example of least-squares linear regression model
- More advanced considerations in machine learning
- Resources and references

Machine Learning in everyday life

Applications of machine learning

■ <u>Computer Vision</u> (CV):

- acquiring, processing, analyzing and understanding digital images and videos
- (direct) examples:
 - face recognition: Face ID (Apple), security services (Britain, USA, China), etc
 - optical character recognition (OCR): data entry, automatic number plate recognition, etc
 - image search (Google)
 - detecting events: visual surveillance or people counting, etc
- play a key role in
 - autonomous vehicle
 - robotics
- to mimic visual system of human beings
- rather well developed field, superhuman performance!

Image: wikipedia

Applications of machine learning

■ Natural Language Processing (NLP):

- interactions between computers and human natural languages
- examples:
 - automated online assistant
 - smart speakers: Amazon Echo, Google Home and Apple HomePod
 - on smartphones: Siri (Apple) and Cortana (Microsoft Windows OS)
 - online chatbots customer service: Taobao, eBay, Burberry
 - automatic machine translation
 - question answering system
 - natural language understanding
- to mimic reading system of human beings
- less developed, but moving fast forward

ojects is available.	_
	CD or DVD
	There is a
1 million and	series of
	CD+DVD+with
	belected
	Wikipedia content being
	produced by Wikipedians and
	SOS Children.
	Downloading
	Downloading content from
	Wikipedia is
	tes of charge.
Hi. I'm your automated onlin	ne All text content
assistant. How may I help yo	NU? a towned
Ask	under the ONU
	Free

Image: wikipedia

Applications of machine learning

- Healthcare
 - identifying diseases, developing new medicines
- Robots
- Finance and economics
 - automatic financial trading
- Educations
- etc.

Image: wikipedia

Machine Learning (ML) and Artificiel Intelligence (AI)

A point of history:

- born in a workshop at Dartmouth College in 1956
- 1970-1980: AI winter
- 1980s: expert systems, *if-then* rules
- 1990s-21st century: rapid growth due to increasing computational power
 - 1997: Deep Blue (IBM), first chessplaying computer world champion
- 2010s-now: age of <u>Deep learning</u>
 - 2017: AlphaGo (DeepMind), first computer Go-playing system world champion

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

Image: LinkedIn | Machine Learning vs Deep learning

Example of rule-based expert system

Example: housing prices prediction. House No.1:

MSSub Class	MSZoning	LotFro ntage	LotArea	Street	Alley	LotShape	LandCo ntour	Utilities	HouseStyl e	Price
20	RH	80	11622	Pave	NA	Reg	Lv1	AllPub	1 Story	65k

- Rule-based system:
 - price = 0
 - If HouseStyle=1 Story and LotArea<=8000, then price=LotArea*5
 - If HouseStyle=1 Story and LotArea>8000, then price=LotArea*6
 - If HouseStyle=2 Story and LotArea<=12000, then price=LotArea*6.5
 - ...
 - if LandContour=Lv1 and Street=Pace, then price=price-6k
 - ...
- Data from https://www.kaggle.com/alphaepsilon/housing-prices-dataset.

Why not expert systems?

- Expert systems: human experts teach computers *rules*
 - computationally impossible even for the simple Go game
 - played across a 19 x 19 grid
 - search space = 19 x 19 = 361 for each move
 - 15 turns: 361^30 = 5.3^e76 possible configurations
 - approximately 1^e80 atoms in the universe
 - even worse for continuous search space
 - driving: turn the steering wheel at any time for any degree
- Finding efficient rules are **difficult**: dogs vs. cats

Image: The Verge

How modern machine learning works?

- learn from (a huge number of) data
- try to find "rules" (or the so-called features) from the data
- with large amount of **data**, may find **better rules** than human experts

FiberHome Technology Institute, Training center

Why things are working now?

1. Big data

- International Data Corporation (IDC) reports the global data volume from 4.4 ZB (1 ZB=10^9 TB = 10^12 GB) to 44 ZB between 2013 and 2020, and predicts 163 ZB by 2025
- continue to grow with development of Internet of things devices
- 2. Rapid growth of modern computational systems
 - Moore's law: the number of transistors in a dense integrated circuit (IC) doubles about every two years, named after Gordon Moore.
 - Graphics processing unit (GPU): large-scale parallel computing
- 3. More advanced models/algorithms (deep neural network models)

Expert system versus ML approach

- Explicitly programmed to solve problem
- Rules not defined by humans, learned from data/examples
- Decision rules are clearly defined by humans
- Highly complex, often not understandable or interpretable

When to use data-driven machine learning?

- For **complicated** tasks: when efficient rules (by human) are hardly accessible
- when it is easy to get a lot of data! (perhaps not the case in healthcare applications)
- When **automatization** is needed
 - extremely large-scale problems, impossible for human: analyze reviews and provide recommendations for film websites (Netflix)
 - high labor costs: manufacturing in Europe (BMW)
- Looking for **higher efficiency** and higher quality products
 - face recognition in security systems

What do we need to do ML?

- 1. Clearly formulate your problem:
 - **input? output**? how can we use (input data) to decide (output)?
- 2. Large amount of data!
 - in general, data are more important than algorithms/models
 - the more data, the better!
 - not only the data, but also the **correct** labels!
- 3. Find efficient criterion to evaluate your machine learning model
- 4. Find significant representation/features from data with algorithms

Outline

- Introduction and background of machine learning: rule-based and data-based
- Basics of machine learning
- Machine learning in practice: example of least-squares linear regression model
- More advanced considerations in machine learning
- Resources and references

Basics of machine learning:

- 1. Supervised learning (need labels/targets): classification, regression
- 2. Semi-supervised learning (less labels/targets): useful in practice
- 3. Unsupervised learning (no labels/targets): find clusters/communities within data

4. Reinforcement learning (RL): learn to make decisions (the chess and Go games, robotics)

Basics of machine learning: supervised

■ Classification: e.g., cats versus dogs, face recognition, anomaly detection

Regression: housing prices prediction, consumer prediction

FiberHome Technology Institute, Training center

- 1. Is this A or B?
- 2. Is this normal?
- 3. How many? How much?
- 4. How is this organized? What is the structure of?
- 5. What should we do?

Based on slides of Prof. Ling Yu: lingyu@fhxy.net.cn

- **Question**: Is this A or B?
- Answer: classification!

Example:

- Will this tire fail in the next 1,000 miles: Yes or no?
- Which brings in more customers: a \$5 coupon or a 25% discount?

- **Question**: Is this normal?
- Answer: anomaly detection (one-versus-rest classification)!

Example:

- Credit card fraud analysis
- when purchase at a store that is geographically "weird"

- Question: How many? How much?
- Answer: regression analysis!

Example:

– How much should one offer for a 180m² area house?

- **Question:** How is this organized? What is the structure of?
- Answer: unsupervised methods, e.g., clustering, community detection and dimension reduction!

- Example:
 - What is the structure of your Facebook social network?
 - Which viewers like the same types of movies?

FiberHome Technology Institute, Training center

- What should we do?
- Reinforcement learning!

- Example:
 - for a self-driving car: at a yellow light, brake or accelerate?

Outline

- Introduction and background of machine learning: rule-based and data-based
- Basics of machine learning
- Machine learning in practice: example of least-squares linear regression model
- More advanced considerations in machine learning
- Resources and references

Essence of machine learning

Build predictive model from historical data to make future decision!

- 1. collect historical data
- 2. choose appropriate model and train/fit it with data
- 3. make prediction based on the well-trained model and make your decision!
- Three key steps to successful machine learning:
 - 1. collet good and massive amount of data
 - 2. which model to use: linear regression, logistic regression or deep learning?
 - 3. use (powerful) algorithms to train your model

Example: housing prices prediction

• Question: for a 180 m^2 house, how much should we offer for?

- 1. collect historical data
- 2. choose your own model
- 3. fit the model with data (algorithm)
- 4. make prediction

Data from: <u>https://www.kaggle.com/alphaepsilon/housing-prices-dataset</u>

FiberHome Technology Institute, Training center

Step 1+2: data and model

	Ν	Area (m^2):	Price (10^4 RMB): y				
	0.	X					
	1	78.50	145.95				
	2	88.72	98.00				
	3	93.68	214.90				
F	Flow diagram						

- Get in total n (historical) data (area, price)
 x_i: data/feature (input)
 - y_i: target (output)
- Objective:
 - for new input \hat{x} , predict its output \hat{y}

Making prediction: $\hat{x} \rightarrow \mathcal{M} \rightarrow \hat{y}$

Linear regression model

y: $\mathcal{M}_{\theta}(x) = \theta_0 + \theta_1 x$

- describe a linear relation between input x and output y
- model \mathcal{M}_{θ} determined by (θ_0, θ_1)
- how to decide if a model \mathcal{M}_{θ} is good?

=>objective function!

Mean squared error objective function

- linear regression $\mathcal{M}_{\theta}(x) = \theta_0 + \theta_1 x$, determined by two parameters (θ_0, θ_1)
- for data $\{(x_i, y_i)\}_{i=1}^n$, <u>objective/loss function</u> $L(\theta_0, \theta_1)$ tells us how model (parameter) fits the data

$$L(\theta_0, \theta_1) = \frac{1}{n} \sum_{i=1}^n (y_i - \mathcal{M}_{\theta}(x_i))^2$$
$$= \frac{1}{n} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

- $L(\theta_0, \theta_1)$ ↑, **larger difference** between model output and historical data
- find the best $(\theta_0, \theta_1) \Rightarrow \min_{\theta_0, \theta_1} L(\theta_0, \theta_1)$

Learning model by minimization

For a given dataset $\{(x_i, y_i)\}_{i=1}^n$, plot $L(\theta_0, \theta_1)$ as follows

wish to reach the bottom (black) point of $L(\theta_0, \theta_1)$, get the corresponding (θ_0^*, θ_1^*) value

Learning model with gradient descent

Algorithm

- Start from any point (θ_0^0, θ_1^0) , **update** (θ_0^k, θ_1^k) to minimize $L(\theta_0, \theta_1)$, to reach the minimum (θ_0^*, θ_1^*) : $L(\theta_0^{k+1}, \theta_1^{k+1}) \le L(\theta_0^k, \theta_1^k)$.
- iterations update according to $\theta_j^{k+1} = \theta_j^k \alpha \nabla_{\theta_j} L(\theta_0, \theta_1), j = 0, 1$, until convergence.

Example: housing prices prediction

 $\Rightarrow \theta_0^* = 83.5384, \theta_1^* = 0.4734.$

- For a 180 m^2 house, our model predicts $\mathcal{M}_{\theta^*}(180) = \theta_0^* + 180 \theta_1^* = 168.75 \times 10^4 \text{RMB}.$
- Interpretation: price= θ_0^* (for all)+ θ_1^* ×area.

FiberHome Technology Institute, Training center

Sum-up and further discussions

- Three steps of machine learning:
 - 1. define your model
 - 2. choose your *metric* (objective function)
 - 3. train/optimize the model and make prediction!
- Here we discuss the example of
 - 1. linear regression model: input-output linear relation
 - 2. mean squared error: for regression problem
 - 3. gradient descent optimization method
- Many many more choices:
 - 1. for nonlinear input-output relation: polynomial regression, SVM, neural nets
 - 2. for classification problem: 0-1 error, cross-entropy error, hinge loss, etc.
 - 3. more and more advanced optimization methods

Outline

- Introduction and background of machine learning: rule-based and data-based
- Basics of machine learning
- Machine learning in practice: example of least-squares linear regression model
- More advanced considerations in machine learning
- Resources and references

Training is important, but what really matters is test and future prediction!

Model versus task complexity: over- and under-fitting

- Example: real data can be noisy
 - a underlying simple model (quadratic function $y = -x^2 + 10x + 1$) + small noise
 - if fit with a too <u>complex</u> function (cubic function $y = \theta_3 x^3 + \theta_2 x^2 + \theta_1 x^1 + \theta_0$)
- bias and variance trade-off

Training is important, but what really matters is test and future prediction!

- Model versus task complexity: over- and under-fitting, the bias and variance tradeoff Underfitting Overfitting
- Task: $-x^2 + 10x + 1 + \text{small noise}$
- Model:
 - $\theta_1 x^1 + \theta_0$ too simple
 - $\theta_3 x^3 + \theta_2 x^2 + \theta_1 x^1 + \theta_0$ too complex
 - $rand fit 0 u^2 + 0 u^1 + 0$

$- 2000 \Pi \theta_{2} x^{-} + \theta_{1} x^{-} + \theta_{0}$					
	Training	Test error	Bias	Variance	Low Varia
	error				12 5 20
Underfitting	large	large	large	small	
Overfitting	small (≈ 0)	large	small	large	8
Good fit	small	small	small	small	7 19 3

FiberHome Technology Institute, Training center

- Model versus task complexity: bias and variance trade-off
 - model too simple: **unable** to fit the training data
 - high bias between model and target
 - model too complex: contains many sub-models almost perfectly fit the data
 - high variance between sub-models

complex model

simple model

FiberHome Technology Institute, Training center

To avoid overfitting: training, cross-validation and test sets

- regularization with a prior knowledge
- model ensembling

Doing SotA ML can be expensive

State-of-the-Art (SotA) Machine Learning models for various applications:

Applications	Algorithms	Accuracies	Size	Time
CV: multi-class (10,000+) image classification	PolyNet (2017)	91.3% (top 1) 95.75% (top 5) almost human	92 M	3700 hours in total
NLP: question answering	BERT	93.2 Test F1	340M	100 hours in Google
RL: game playing	AlphaGo Lee (2016)	superhuman		4-6 weeks in Google

- source: <u>https://www.stateoftheart.ai/</u>
- Tensor Processing Unit (TPU) of Google

Good news: transfer learning

- Transfer existing knowledge/model/structure to solve my problem!
- Example: using pre-trained model for image classifcation, with Microsoft ResNet150 (trained on ImageNet dataset <u>http://www.image-net.org/</u>)

Edges --- contour --- high-level features --- classifier

FiberHome Technology Institute, Training center

Good news: transfer learning

Transfer existing knowledge/model/structure to solve my problem!

ML in practice: further needs

- Confidence interval: statistical estimates or Bayes methods
 - security services, autonomous vehicle, how much can we trust the model?
- Model interpretability: much harder for large-scale problems
 - investment, to customer bussiness, why should we make this decision?

Outline

- Introduction and background of machine learning: rule-based and data-based
- Basics of machine learning
- Machine learning in practice: example of least-squares linear regression model
- More advanced considerations in machine learning
- Resources and references

ML in practice: datasets

- Popular publics datasets for MLers:
 - UCI machine learning repository: <u>https://archive.ics.uci.edu/ml/datasets.php</u>
 - Kaggle datasets and competitions: <u>https://www.kaggle.com/datasets</u>
 - <u>https://en.wikipedia.org/wiki/List_of_datasets_for_machine-</u> <u>learning_research</u>
 - Scikit-learn: <u>https://scikit-learn.org/stable/datasets/index.html</u>

ML in practice: various frameworks

- Tensorflow <u>https://www.tensorflow.org/</u>
- Pytorch <u>https://pytorch.org/</u>
- Scikit-learn <u>https://scikit-learn.org/stable/</u>
- all based on Python
- many others...

ML in practice: online courses

- Udacity Introduction to machine learning: <u>https://www.udacity.com/course/intro-to-machine-learning--ud120</u>
- Coursera Machine Learning: <u>https://www.coursera.org/learn/machine-learning</u>
- edX Machine Learning: <u>https://www.edx.org/course/machine-learning</u>
- Stanford CS231n Convolutional Neural Networks for Visual Recognition: <u>https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3E08sYv</u>

ML in practice: references

- More math/stats and theory textbooks:
 - Pattern Recognition and Machine Learning
 - Deep Learning 2015: <u>http://www.deeplearningbook.org/</u>
- More hands-on and application-oriented:
 - Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
 - Deep Learning with Python

