Probability and Stochastic Processes: Decision/Detection

Zhenyu Liao

School of Electronic Information and Communications, HUST

May, 23, 2024

Outline

(1) Recap on Stochastic Convergence
(2) Bayesian Hypothesis Testing: Null Hypothesis H0
(3) Bayesian Hypothesis Testing: H0 versus H1

44 Neyman-Pearson Hypothesis Testing

Recap on stochastic convergence

Example: if your friend cheating you in dice?
Statistical modeling:

- for $n=500$ trials, $Y \sim \operatorname{Multinomial}(n, p)$
- compute the squared difference as a test $T_{n}=\sum_{i=1}^{6}\left(\frac{Y_{i}}{n}-\frac{1}{6}\right)^{2}$

```
close all; clear; clc
n_trials = 10000;
T = zeros(n_trials,1);
n = 500;
p =ones (1,6)/6;
for i = 1:n_trials
    X = mnrnd(n,p);
    T(i) = sum( (X/n - p). 2 ) ;
end
figure
histogram(T,30,'Normalization','probability')
```


Recap on stochastic convergence

Example: if your friend cheating you in dice?
Analysis:

- test $T_{n}=\sum_{i=1}^{6}\left(\frac{Y_{i}}{n}-\frac{1}{6}\right)^{2}$
- multivariate view: $\left(Y_{1}, \ldots, Y_{6}\right)=\sum_{i=1}^{n} \mathbf{X}_{i}, \mathbf{X}_{i}=\left(X_{1}, \ldots, X_{6}\right)$ with

$$
\begin{equation*}
\mathbb{E}\left[X_{i}\right]=\frac{1}{6}, \quad \operatorname{Var}\left[X_{i}\right]=\frac{1}{6}-\left(\frac{1}{6}\right)^{2}=\frac{5}{36}, \quad \operatorname{Cov}\left[X_{i}, X_{j}\right]=-\frac{1}{36}, \tag{1}
\end{equation*}
$$

- by the LLN, as $n \rightarrow \infty$, we have $\left(Y_{1}, \ldots, Y_{6}\right) \rightarrow\left(\frac{1}{6}, \ldots, \frac{1}{6}\right)$ a.s. or in probability, and by the CLT

$$
\begin{equation*}
\sqrt{n}\left(\frac{Y_{1}}{n}-\frac{1}{6}, \ldots, \frac{Y_{6}}{n}-\frac{1}{6}\right) \rightarrow \mathcal{N}(0, \Sigma) \tag{2}
\end{equation*}
$$

in distribution, with

$$
\begin{equation*}
\Sigma=\frac{1}{6} \mathbf{I}_{6}-\frac{1}{36} \mathbf{1}_{\mathbf{1}} \mathbf{1}_{6}^{\top} \in \mathbb{R}^{6 \times 6} . \tag{3}
\end{equation*}
$$

Example: if your friend cheating you in dice?
Analysis:

- for $n T_{n}=n \sum_{i=1}^{6}\left(\frac{Y_{i}}{n}-\frac{1}{6}\right)^{2}$ with $\sqrt{n}\left(\frac{Y_{1}}{n}-\frac{1}{6}, \ldots, \frac{Y_{6}}{n}-\frac{1}{6}\right) \rightarrow \mathcal{N}(0, \Sigma)$
- the function $g\left(x_{1}, \ldots, x_{6}\right)=\sum_{i=1} x_{i}^{2}$ is continuous (continuous mapping!), so

$$
\begin{equation*}
n T_{n} \rightarrow \sum_{i=1}^{6} Z_{i}^{2} \tag{4}
\end{equation*}
$$

in distribution as $n \rightarrow \infty$, with $\left(Z_{1}, \ldots, Z_{6}\right) \sim \mathcal{N}(0, \Sigma)$

- then, for n large, the distribution of T_{n} approximately the same as that of $\frac{1}{n} \sum_{i=1}^{6} Z_{i}^{2}$ (has distribution $\frac{1}{6} \chi_{5}^{2}$)

Today

- Testing a Simple Null Hypothesis: null hypothesis, type-I error, significant level, p-value
- Hypothesis Testing:
- Bayesian Hypothesis Testing: average error probability, Likelihood Ratio Test (LRT), Maximum A-Posteriori Probability (MAP), etc.
- Neyman-Pearson Hypothesis Testing

Null distribution and type I error

- A hypothesis test is a binary question about the "data" distribution
- our goal is to either accept a null hypothesis H0 (i.e., some specifications about the distribution), or to reject it in favor of an (known or unknown) alternative hypothesis H 1
Suppose that we've chosen our test statistics T_{n}, how large (or small) should T_{n} be, before we can "confidently" assert that the hypothesis H0 is false?

Example:

$$
\begin{equation*}
H_{0}: X_{1}, \ldots, X_{n} \sim \mathcal{N}\left(0,2.23 \times 10^{-7}\right) \tag{5}
\end{equation*}
$$

so that under H_{0}, we have $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(0,2.23 \times 10^{-7} / n\right)$.

Example: case I

For $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(0,2.23 \times 10^{-7} / n\right)$, here's the PDF for $n=30$.
Null distribution of Xbar

- if we observe $\bar{X}=0.5 \times 10^{-4}$, this does NOT provide strong evidence against (i.e., to reject) H_{0}
- we might accept H_{0} in this case

Example: case II

For $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(0,2.23 \times 10^{-7} / n\right)$, here's the PDF for $n=30$.
Null distribution of Xbar

- if we observe $\bar{X}=2.5 \times 10^{-4}$, this does provide strong evidence against (i.e., to reject) H_{0}
- we might reject H_{0} in this case

Null distribution and type I error

- rejection regime is the set of values of T_{n} for which we choose to reject H_{0}
- acceptance regime is the set of values of T_{n} for which we choose to accept H_{0}
- choose the rejection regime so as to control the probability of the type I error

$$
\begin{equation*}
\alpha=\mathbb{P}\left(\text { reject } H_{0} \mid H_{0}\right) \tag{6}
\end{equation*}
$$

value α also the significance level of the test T_{n}

- if, under its null distribution $\mathrm{H} 0, T_{n}$ belong to the rejection region with probability α, the test T_{n} is said to be level- α

Null distribution of Xbar

P-values

- p-value: smallest significance level at which the test T_{n} would have rejected H_{0}
- for a one-sided test that rejects for large T_{n}, let $t_{\text {obs }}$ denote the observed value of T_{n}, the p -value is $\mathbb{P}\left(T_{n}>t_{\mathrm{obs}} \mid H_{0}\right)$
- for two-sided test, the p -value is 2 times the smaller of
- p-values provide a quantitative measure of the extent to which the observations supports (or against) H0

Example: testing the fairness of a coin

- null hypothesis H0: the coin is fair, with \mathbb{P} (heads) $=0.5$
- test statistics T_{n} : number of heads after $n=20$ flips
- α-level: 0.05 (what does this mean?)
- observation: 14 out of 20 flips
- two-sided p-values of the observation $=2 \times 0.058=0.115>0.05$
- what does this mean?: meaning that the observation falls within the range of what would happen 95% of the time, if the coin were fair (H 0)
- decision: not to reject H0
- however, if one more head, resulting p-value $=0.0414<0.05$, then decide to reject H 0

Bayes' Theorem

Theorem

Bayes' Theorem For two events A, B with $\mathbb{P}(B) \neq 0$, we have

$$
\begin{equation*}
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}, \tag{7}
\end{equation*}
$$

with conditional probabilities $\mathbb{P}(A \mid B), \mathbb{P}(B \mid A)$, and marginal probabilities $\mathbb{P}(A), \mathbb{P}(B)$.

Bayesian Hypothesis Testing

- We observe some data y, which we assume to be produced as the realization of some RV Y.
- However, we do not know the distribution of Y.
- We only know that Y may be distributed according to two possible distributions: F_{0} or F_{1}.
- These two hypotheses, referred to as H 0 and H 1 , are known to occur with prior probabilities p_{0}, p_{1}, with obviously $p_{1}=1-p_{0}$.
- We have $H_{0}: Y \sim F_{0}$ and $H_{1}: Y \sim F_{1}$
- Bayes Risk: for a given decision rule $g: \mathbb{R} \rightarrow\{0,1\}$, we define the Bayes risk

$$
r(g)=p_{0} r_{0}(g)+p_{1} r_{1}(g)
$$

where we define the conditional risks

$$
\begin{aligned}
r_{0}(g) & =c_{00} \mathbb{P}(g(Y)=0 \mid \mathrm{H} 0)+c_{10} \mathbb{P}(g(Y)=1 \mid \mathrm{H} 0) \\
r_{1}(g) & =c_{01} \mathbb{P}(g(Y)=0 \mid \mathrm{H} 1)+c_{11} \mathbb{P}(g(Y)=1 \mid \mathrm{H} 1)
\end{aligned}
$$

- $c_{i j}$ is the cost associated to deciding for hypothesis $\mathrm{H} i$ when $\mathrm{H} j$ is true.
- We should have $c_{00}<c_{10}$ and $c_{11}<c_{10}$
- The optimal Bayesian decision rule (or Bayesian hypothesis test) is a rule minimizing the Bayes risk:

$$
g^{*}=\arg \min r(g)
$$

Example: average error probability

- A typical Bayes risk function (design of $\operatorname{cost} c$) is the average error probability.
- This is obtained by letting $c_{00}=c_{11}=0$ and $c_{10}=c_{01}=1$, i.e.,

$$
\begin{aligned}
P_{e}(g) & =\mathbb{P}(g(Y)=1 \mid \mathrm{H} 0) p_{0}+\mathbb{P}(g(Y)=0 \mid \mathrm{H} 1) p_{1} \\
& =\mathbb{P}(g(Y)=1, \mathrm{H} 0)+\mathbb{P}(g(Y)=0, \mathrm{H} 1) \\
& =\mathbb{P}(g(Y) \neq \mathrm{H})
\end{aligned}
$$

where H denotes a binary RV taking on the hypothesis value H 0 and H 1 with probabilities p_{0} and p_{1}, respectively.

Decision regions

- Any function $g: \mathbb{R} \rightarrow\{0,1\}$ is defined by the two decision regions

$$
D_{0}=\{y \in \mathbb{R}: g(y)=0\}, \quad D_{1}=\{y \in \mathbb{R}: g(y)=1\}
$$

- We can write:

$$
\mathbb{P}(g(Y)=i \mid \mathrm{H} j)=\int_{D_{i}} d F_{j}(y)
$$

- We can write

$$
\begin{aligned}
r(g) & =\sum_{j=0}^{1} p_{j}\left(c_{0 j}\left(1-\int_{D_{1}} d F_{j}(y)\right)+c_{1 j} \int_{D_{1}} d F_{j}(y)\right) \\
& =\sum_{j=0}^{1} p_{j} c_{0 j}+\int_{D_{1}} \sum_{j=0}^{1} p_{j}\left(c_{1 j}-c_{0 j}\right) d F_{j}(y)
\end{aligned}
$$

Optimal decision regions (continuous)

- Suppose that Y is continuous with respect to all hypotheses, and let $d F_{j}(y)=f_{j}(y) d y$.
- $r(g)$ is minimized by letting (we are in fact determining the decision rule $g(y)$)

$$
D_{1}=\left\{y \in \mathbb{R}: \sum_{j=0}^{1} p_{j}\left(c_{1 j}-c_{0 j}\right) f_{j}(y) \leq 0\right\}
$$

- Explicitly, we find the following threshold rule

$$
D_{1}=\{y \in \mathbb{R}: L(y) \geq \tau\}
$$

where $L(y)=\frac{f_{1}(y)}{f_{0}(y)}$ is called Likelihood Ratio, and the threshold is given by

$$
\tau=\frac{p_{0}\left(c_{10}-c_{00}\right)}{p_{1}\left(c_{01}-c_{11}\right)}
$$

- This is known under the name of Likelihood Ratio Test (LRT)
- Of course, if $L(y)<\tau$, then y is allocated to D_{0}.
- Notice that the boundary region $L(y)=\tau$, i.e., $f_{1}(y)=\tau f_{0}(y)$ does not contribute to the Bayes risk, and therefore it can be arbitrarily allocated to D_{0} or to D_{1}.
- Note: For discrete RVs, just replace the conditional pdfs with the conditional pmfs.

Example

- Consider X taking values in $\mathcal{X}=\{+1,-1\}$ with equal probability, and the observation

$$
Y=a X+Z
$$

where $a \in \mathbb{R}_{+}$and $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

- We let H0 and H1 denote the hypotheses of $X=-1$ and $X=+1$, respectively, and we wish to find the optimal decision rule (i.e., the regions D_{0}, D_{1}), such that the average error probability $P_{e}(g)$ is minimized ($c_{00}=c_{11}=0$ and $c_{10}=c_{01}=1$).
- In this case $\tau=p_{0} / p_{1}$, and the two conditional pdfs are

$$
f_{0}(y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{|y+a|^{2}}{2 \sigma^{2}}}, \quad f_{1}(y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{|y-a|^{2}}{2 \sigma^{2}}}
$$

with Likelihood ratio

$$
L(y)=e^{\frac{2 a}{\sigma^{2}} y}
$$

- The decision region D_{1} can be expressed as

$$
D_{1}=\left\{y \in \mathbb{R}: y \geq \frac{\sigma^{2}}{2 a} \log \frac{p_{0}}{p_{1}}\right\}
$$

- More explicitly, we notice that the regions are the two intervals

$$
D_{1}=\left[\frac{\sigma^{2}}{2 a} \log \frac{p_{0}}{p_{1}},+\infty\right), \quad D_{0}=\left(-\infty, \frac{\sigma^{2}}{2 a} \log \frac{p_{0}}{p_{1}}\right)
$$

- The resulting minimum average error probability is given by

$$
P_{e}=p_{0} \int_{D_{1}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{|y+a|^{2}}{2 \sigma^{2}}} d y+p_{1} \int_{D_{0}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{|y-a|^{2}}{2 \sigma^{2}}} d y
$$

- As a consequence, we obtain

$$
P_{e}=p_{0}\left(1-\Phi\left(\frac{\sigma}{2 a} \log \frac{p_{0}}{p_{1}}+\frac{a}{\sigma}\right)\right)+p_{1} \Phi\left(\frac{\sigma}{2 a} \log \frac{p_{0}}{p_{1}}-\frac{a}{\sigma}\right)
$$

where $\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u$.

- In the equiprobable hypothesis case, $\log \left(p_{0} / p_{1}\right)=0$, and we can use the fact that $\Phi(-x)=1-\Phi(x)$, such that

$$
P_{e}=1-\Phi\left(\frac{a}{\sigma}\right)=Q\left(\frac{a}{\sigma}\right)
$$

where we define the Gaussian complementary CDF as $Q(x)=1-\Phi(x)=\int_{x}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u$ (also known as the Gaussian Q function).

M-ary Bayesian Hypothesis Testing

- The same idea can be generalized to the case where Y can be distributed according to M possible hypotheses, where $\mathrm{H} j$ is $Y \sim F_{j}(y)$ for $j=1,2, \ldots, M$, with a priori probabilities $p_{1}, p_{2}, \ldots, p_{M}$.
- In this case $g: \mathbb{R} \rightarrow\{1,2, \ldots, M\}$ is defined by M decision regions.
- In the case of average error probability, we have the simple explicit characterization

$$
D_{j}=\left\{y \in \mathbb{R}: p_{j} f_{j}(y) \geq p_{k} f_{k}(y) \quad \forall k \neq j, k=1, \ldots, M\right\}
$$

Maximum a posteriori probability (MAP)

- The a posteriori conditional probability of hypothesis Hj given the observation $Y=y$ is given by:

$$
\mathbb{P}\left(\mathrm{H}|\mid Y=y)=\frac{p_{j} f_{j}(y)}{\sum_{k=1}^{M} p_{k} f_{k}(y)}\right.
$$

- The decision region D_{j} can be equivalently expressed as

$$
D_{j}=\{y \in \mathbb{R}: \mathbb{P}(\mathrm{H} j \mid Y=y) \geq \mathbb{P}(\mathrm{H} k \mid Y=y) \quad \forall k \neq j, k=1, \ldots, M\}
$$

- For this reason, the Bayesian M-ary hypothesis test that minimizes the average error probability is called Maximum A-Posteriori Probability (MAP) decision rule.

Exact expression of P_{e}

- In general, the probability of error is given by

$$
\begin{aligned}
P_{e} & =\sum_{i=1}^{M} p_{i} \mathbb{P}\left(Y \in \bigcup_{j \neq i} D_{j} \mid \mathrm{H} i\right) \\
& =1-\sum_{i=1}^{M} p_{i} \mathbb{P}\left(Y \in D_{i} \mid \mathrm{H} i\right) \\
& =1-\sum_{i=1}^{M} p_{i} \int_{D_{i}} f_{i}(y) d y
\end{aligned}
$$

Upper and lower bounds on P_{e}

- We can find a simpler and general upper bound to P_{e} as follows: for any given pair of hypotheses i, j we define the pairwise error event

$$
\{i \rightarrow j\}=\left\{y \in \mathbb{R}: p_{i} f_{i}(y) \leq p_{j} f_{j}(y)\right\}
$$

- The corresponding pairwise error probability (PEP) is given by

$$
\begin{aligned}
& P(i \rightarrow j)=\mathbb{P}(Y \in\{i \rightarrow j\} \mid \mathrm{H} i)=\int_{\{i \rightarrow j\}} f_{i}(y) d y \\
P_{e} & =\sum_{i=1}^{M} p_{i} \mathbb{P}\left(Y \in \bigcup_{j \neq i} D_{j} \mid \mathrm{H} i\right) \\
& =\sum_{i=1}^{M} p_{i} \mathbb{P}\left(Y \in \bigcup_{j \neq i}\{i \rightarrow j\} \mid \mathrm{H} i\right) \\
& \leq \sum_{i=1}^{M} p_{i} \sum_{j \neq i} \mathbb{P}(Y \in\{i \rightarrow j\} \mid \mathrm{H} i) \\
& =\sum_{i=1}^{M} \sum_{j \neq i} p_{i} \int_{\{i \rightarrow j\}} f_{i}(y) d y=\sum_{i=1}^{M} \sum_{j \neq i} p_{i} P(i \rightarrow j)
\end{aligned}
$$

- Next, we consider a lower bound on the error probability:

$$
\begin{aligned}
P_{e} & =\sum_{i=1}^{M} p_{i} \mathbb{P}\left(Y \in \bigcup_{j \neq i} D_{j} \mid \mathrm{H} i\right) \\
& =\sum_{i=1}^{M} p_{i} \mathbb{P}\left(Y \in \bigcup_{j \neq i}\{i \rightarrow j\} \mid \mathrm{H} i\right) \\
& \geq \sum_{i=1}^{M} p_{i} \max _{j \neq i} \mathbb{P}(Y \in\{i \rightarrow j\} \mid \mathrm{H} i) \\
& =\sum_{i=1}^{M} p_{i} \max _{j \neq i} P(i \rightarrow j)
\end{aligned}
$$

Example: M-QAM modulation

- Digital modulation (discrete-time complex baseband equivalent model)

$$
Y=X+Z
$$

with $Z \sim \mathcal{C N}\left(0, N_{0}\right)$ and $X \sim$ Uniform on \mathcal{X}.

- \mathcal{X} is a squared QAM (Quadrature-Amplitude Modulation) signal constellation, of the form

$$
\mathcal{X}=\left\{\frac{\Delta}{2}[(2 m-\sqrt{M}+1)+\jmath(2 n-\sqrt{M}+1)]: m, n=0, \ldots, \sqrt{M}-1\right\}
$$

Example: 16-QAM constellation

- EXERCISE: check that $E_{s}=\frac{1}{M} \sum_{x \in \mathcal{X}}|x|^{2}=\frac{\Delta^{2}}{6}(M-1)$, i.e., for given energy per symbol E_{S}, the minimum squared distance between the constellation points is

$$
d_{\min }^{2}=\Delta^{2}=\frac{6 E_{s}}{M-1}
$$

- EXERCISE: find the MAP rule for this problem.
- EXERCISE: find upper and lower bounds and an exact closed-form expression of P_{e} in terms of the Signal to Noise Ratio $\mathrm{SNR}=E_{s} / N_{0}$.

Neyman-Pearson Hypothesis Testing

- In this context we have no a priori probabilities for the hypotheses.
- H 0 and H 1 are fundamentally asymmetric. Example in radar detection: H 0 is "there is no enemy bomber" H 1 is "there is an enemy bomber".
- Type I error (false alarm or false positive): falsely reject H0.
- Type II error (miss or false negative): falsely reject H1.
- This is in sharp contrast with the average error probability framework (with $c_{00}=c_{11}=0$ and $c_{01}=c_{10}=1$)
- For a given decision rule g, we have the false alarm probability and the successful detection probability

$$
P_{f}(g)=\mathbb{P}(g(Y)=1 \mid \mathrm{H} 0), \quad P_{d}(g)=\mathbb{P}(g(Y)=1 \mid \mathrm{H} 1)
$$

- REMARK: the same type I error discussed in null hypothesis, which defines the significance level of a test; here, for the type II error, let $\beta=\mathbb{P}\left(\right.$ reject $\left.H_{1} \mid H_{1}\right), 1-\beta$ is called the power of the test.

Neyman-Pearson Criterion

- Neyman-Pearson Hypothesis Testing Problem: for some fixed $\alpha \in[0,1]$ find g^{*} solution of:

$$
\max _{g} P_{d}(g) \text { subject to } P_{f}(g) \leq \alpha
$$

Any rule solving this constrained maximization problem is called an α-NP rule.

- Randomized decision rule: for $g(y) \in[0,1]$ we can interpret $g(y)$ as the probability of accepting H1 given $Y=y$. Hence,

$$
P_{d}(g)=\mathbb{E}[g(Y) \mid \mathrm{H} 1]=\int g(y) f_{1}(y) d y
$$

and

$$
P_{f}(g)=\mathbb{E}[g(Y) \mid \mathrm{H} 0]=\int g(y) f_{0}(y) d y
$$

Neyman-Pearson Lemma

Theorem (Neyman-Pearson)

In the problem setting defined above, the optimal decision rule (Neyman-Pearson rule) is given by

$$
g^{*}(y)= \begin{cases}1 & \text { if } L(y)>\eta^{*} \\ \gamma^{*} & \text { if } L(y)=\eta^{*} \\ 0 & \text { if } L(y)<\eta^{*}\end{cases}
$$

where $L(y)=\frac{f_{1}(y)}{f_{0}(y)}$ is the Likelihood Ratio, the threshold $\eta^{*} \geq 0$ and the probability $\gamma^{*} \in[0,1]$ are chosen such that $P_{f}\left(g^{*}\right)=\alpha$.

Implications:

- let the likelihood ratio test $g(y)$ be designed so that H 0 is rejected with significance level α
- then, for any other test of H 0 with significance level at most α, its power against H 1 is at most the power of this likelihood ratio test (optimality)

Proof of Neyman-Pearson

Form of the NP rule

- By construction, for any randomized decision rule $g(y)$ with $P_{f}(g) \leq \alpha$, we have

$$
\left(g^{*}(y)-g(y)\right)\left(f_{1}(y)-\eta^{*} f_{0}(y)\right) \geq 0, \quad \forall y \in \mathbb{R}
$$

- Integrating over \mathbb{R} and separating terms we get

$$
\int g^{*}(y) f_{1}(y) d y-\int g(y) f_{1}(y) d y \geq \eta^{*}\left(\int g^{*}(y) f_{0}(y) d y-\int g(y) f_{0}(y) d y\right)
$$

- Using the definitions of P_{f} and P_{d}, we can write

$$
P_{d}\left(g^{*}\right)-P_{d}(g) \geq \eta^{*}\left(P_{f}\left(g^{*}\right)-P_{f}(g)\right)=\eta^{*}\left(\alpha-P_{f}(g)\right) \geq 0
$$

Explicit expression of the NP-rule (existence)

- Let η^{*} denote the smallest number such that $\mathbb{P}\left(L(Y)>\eta^{*} \mid \mathrm{H} 0\right) \leq \alpha$.
- If the inequality is strict, then let

$$
\gamma^{*}=\frac{\alpha-\mathbb{P}\left(L(Y)>\eta^{*} \mid \mathrm{H} 0\right)}{\mathbb{P}\left(L(Y)=\eta^{*} \mid \mathrm{H} 0\right)}
$$

- Then, the NP-rule g^{*} with threshold η^{*} and boundary randomization γ^{*} achieves

$$
P_{f}\left(g^{*}\right)=\mathbb{P}\left(L(Y)>\eta^{*} \mid \mathrm{H} 0\right)+\gamma^{*} \mathbb{P}\left(L(Y)=\eta^{*} \mid \mathrm{H} 0\right)=\alpha
$$

Example: Likelihood Ratio Test

Consider data X_{1}, \ldots, X_{n} and the following null and alternative hypotheses:

$$
\begin{aligned}
& H_{0}: X_{1}, \ldots, X_{n} \sim \mathcal{N}(0,1), \\
& H_{1}: X_{1}, \ldots, X_{n} \sim \mathcal{N}(\mu, 1),
\end{aligned}
$$

for some known $\mu \neq 0$ (which may be positive or negative). The joint PDF of $\left(X_{1}, \ldots, X_{n}\right)$ under H_{0} and H_{1} :

$$
\begin{aligned}
& f_{H_{0}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x_{i}^{2}}{2}}=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \exp \left(-\frac{x_{1}^{2}+\ldots+x_{n}^{2}}{2}\right) \\
& f_{H_{1}}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\mu\right)^{2}}{2}}=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \exp \left(-\frac{\left(x_{1}-\mu\right)^{2}+\ldots+\left(x_{n}-\mu\right)^{2}}{2}\right)
\end{aligned}
$$

so likelihood ratio test:

$$
\begin{equation*}
L\left(X_{1}, \ldots, X_{n}\right)=\exp \left(\frac{-2 \mu\left(\sum_{i=1}^{n} X_{i}\right)+n \mu^{2}}{2}\right)=\exp \left(-n \mu \bar{X}+\frac{n \mu^{2}}{2}\right), \tag{8}
\end{equation*}
$$

that is, for $\mu>0$, a strictly decreasing function of $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.

Example: Likelihood Ratio Test

$$
\begin{equation*}
L\left(X_{1}, \ldots, X_{n}\right)=\exp \left(-n \mu \bar{X}+\frac{n \mu^{2}}{2}\right) . \tag{9}
\end{equation*}
$$

- reject small values of $L\left(X_{1}, \ldots, X_{n}\right)$ is equivalent, for $\mu>0$, to reject for large values of $\bar{X} \sim \mathcal{N}\left(0, \frac{1}{n}\right)$ under H_{0}
- Neyman-Pearson lemma tells us that the most powerful (1-type II) test should reject when $\bar{X}>c$ for some threshold c chosen so that the significant level (type I) is α under H_{0}
- NOTE: the most powerful test against the alternative $H_{1}: X_{1}, \ldots, X_{n} \sim \mathcal{N}(\mu, 1)$, is the SAME for any $\mu>0$, and neither the (expression of the) test statistic nor the rejections region depend on the parameter μ
- that is, this test is uniformly most powerful against the (one-sided) composite (i.e., combination of) alternative

$$
\begin{equation*}
H_{1}: X_{1}, \ldots, X_{n} \sim \mathcal{N}(\mu, 1), \text { for some } \mu>0 . \tag{10}
\end{equation*}
$$

- Question: what happens if $\mu<0$? Reject large positive values or "large" negative values? And, is there a single most powerful test for the two-sided composite alternative

$$
\begin{equation*}
H_{1}: X_{1}, \ldots, X_{n} \sim \mathcal{N}(\mu, 1), \text { for some } \mu \neq 0 \text { ? } \tag{11}
\end{equation*}
$$

Thank you!

Thank you! Q \& A?

Exercises

Location testing with Gaussian error

- The two hypotheses are:

$$
\begin{cases}\mathrm{H} 0: & Y=\mu_{0}+Z \\ \mathrm{H} 1: & Y=\mu_{1}+Z\end{cases}
$$

where $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and the two hypotheses are equiprobable.

- We wish to find the optimal decision regions such that the average error probability $P_{e}(g)$ is minimized.

Location testing with Gaussian error: Neyman-Pearson

- The two hypotheses are:

$$
\begin{cases}\mathrm{H} 0: & Y=\mu_{0}+Z \\ \mathrm{H} 1: & Y=\mu_{1}+Z\end{cases}
$$

where $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and the two hypotheses are equiprobable.

- We wish to find the α-NP rule and expression the corresponding optimal probability P_{d} as a function of $\alpha \in[0,1]$.

