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Recap on stochastic convergence

Example: if your friend cheating you in dice?
Statistical modeling:
▶ for n = 500 trials, Y ∼ Multinomial(n, p)

▶ compute the squared difference as a test Tn = ∑6
i=1

(
Yi
n − 1

6

)2

close all; clear; clc

n_trials = 10000;
T = zeros(n_trials,1);
n = 500;
p = ones(1,6)/6;
for i = 1:n_trials

X = mnrnd(n,p);
T(i) = sum( (X/n - p).^2 );

end
figure
histogram(T,30,’Normalization’,’probability’)
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Recap on stochastic convergence

Example: if your friend cheating you in dice?
Analysis:

▶ test Tn = ∑6
i=1

(
Yi
n − 1

6

)2

▶ multivariate view: (Y1, . . . , Y6) = ∑n
i=1 Xi, Xi = (X1, . . . , X6) with

E[Xi] =
1
6

, Var[Xi] =
1
6
−
(

1
6

)2
=

5
36

, Cov[Xi, Xj] = − 1
36

, (1)

▶ by the LLN, as n → ∞, we have (Y1, . . . , Y6) →
(

1
6 , . . . , 1

6

)
a.s. or in probability,

and by the CLT
√

n
(

Y1
n

− 1
6

, . . . ,
Y6
n

− 1
6

)
→ N (0, Σ) (2)

in distribution, with

Σ =
1
6

I6 −
1

36
161T

6 ∈ R6×6. (3)
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Example: if your friend cheating you in dice?
Analysis:

▶ for nTn = n ∑6
i=1

(
Yi
n − 1

6

)2
with

√
n
(

Y1
n − 1

6 , . . . , Y6
n − 1

6

)
→ N (0, Σ)

▶ the function g(x1, . . . , x6) = ∑i=1 x2
i is continuous (continuous mapping!), so

nTn →
6

∑
i=1

Z2
i , (4)

in distribution as n → ∞, with (Z1, . . . , Z6) ∼ N (0, Σ)
▶ then, for n large, the distribution of Tn approximately the same as that of

1
n ∑6

i=1 Z2
i (has distribution 1

6 χ2
5)
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Today

▶ Testing a Simple Null Hypothesis: null hypothesis, type-I error, significant level,
p-value

▶ Hypothesis Testing:
− Bayesian Hypothesis Testing: average error probability, Likelihood Ratio Test (LRT),

Maximum A-Posteriori Probability (MAP), etc.
− Neyman-Pearson Hypothesis Testing
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Null distribution and type I error

▶ A hypothesis test is a binary question about the “data” distribution
▶ our goal is to either accept a null hypothesis H0 (i.e., some specifications about

the distribution), or to reject it in favor of an (known or unknown) alternative
hypothesis H1

Suppose that we’ve chosen our test statistics Tn, how large (or small) should Tn be,
before we can “confidently” assert that the hypothesis H0 is false?

Example:
H0 : X1, . . . , Xn ∼ N (0, 2.23 × 10−7), (5)

so that under H0, we have X̄ = 1
n ∑n

i=1 Xi ∼ N (0, 2.23 × 10−7/n).
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Example: case I

For X̄ = 1
n ∑n

i=1 Xi ∼ N (0, 2.23 × 10−7/n), here’s the PDF for n = 30.

▶ if we observe X̄ = 0.5 × 10−4, this does NOT provide strong evidence against (i.e.,
to reject) H0

▶ we might accept H0 in this case
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Example: case II

For X̄ = 1
n ∑n

i=1 Xi ∼ N (0, 2.23 × 10−7/n), here’s the PDF for n = 30.

▶ if we observe X̄ = 2.5 × 10−4, this does provide strong evidence against (i.e., to
reject) H0

▶ we might reject H0 in this case
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Null distribution and type I error

▶ rejection regime is the set of values of Tn for which we choose to reject H0
▶ acceptance regime is the set of values of Tn for which we choose to accept H0
▶ choose the rejection regime so as to control the probability of the type I error

α = P(reject H0|H0) (6)

value α also the significance level of the test Tn
▶ if, under its null distribution H0, Tn belong to the rejection region with probability

α, the test Tn is said to be level-α
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P-values

▶ p-value: smallest significance level at which the test Tn would have rejected H0

▶ for a one-sided test that rejects for large Tn, let tobs denote the observed value of
Tn, the p-value is P(Tn > tobs|H0)

▶ for two-sided test, the p-value is 2 times the smaller of
▶ p-values provide a quantitative measure of the extent to which the observations

supports (or against) H0
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Example: testing the fairness of a coin

▶ null hypothesis H0: the coin is fair, with P(heads) = 0.5
▶ test statistics Tn: number of heads after n = 20 flips
▶ α-level: 0.05 (what does this mean?)
▶ observation: 14 out of 20 flips
▶ two-sided p-values of the observation = 2 × 0.058 = 0.115 > 0.05
▶ what does this mean?: meaning that the observation falls within the range of what

would happen 95% of the time, if the coin were fair (H0)
▶ decision: not to reject H0
▶ however, if one more head, resulting p-value = 0.0414 < 0.05, then decide to

reject H0
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Bayes’ Theorem

Theorem
Bayes’ Theorem For two events A, B with P(B) ̸= 0, we have

P(A|B) = P(B|A)P(A)

P(B)
, (7)

with conditional probabilities P(A|B), P(B|A), and marginal probabilities P(A), P(B).

Z. Liao (EIC, HUST) PSP II May, 23, 2024 16 / 39



Bayesian Hypothesis Testing

▶ We observe some data y, which we assume to be produced as the realization of
some RV Y.

▶ However, we do not know the distribution of Y.
▶ We only know that Y may be distributed according to two possible distributions:

F0 or F1.
▶ These two hypotheses, referred to as H0 and H1, are known to occur with prior

probabilities p0, p1, with obviously p1 = 1 − p0.
▶ We have H0 : Y ∼ F0 and H1 : Y ∼ F1
▶ Bayes Risk: for a given decision rule g : R → {0, 1}, we define the Bayes risk

r(g) = p0r0(g) + p1r1(g)

where we define the conditional risks

r0(g) = c00P(g(Y) = 0|H0) + c10P(g(Y) = 1|H0)

r1(g) = c01P(g(Y) = 0|H1) + c11P(g(Y) = 1|H1)

▶ cij is the cost associated to deciding for hypothesis Hi when Hj is true.
▶ We should have c00 < c10 and c11 < c10
▶ The optimal Bayesian decision rule (or Bayesian hypothesis test) is a rule

minimizing the Bayes risk:
g∗ = arg min r(g)
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Example: average error probability

▶ A typical Bayes risk function (design of cost c) is the average error probability.
▶ This is obtained by letting c00 = c11 = 0 and c10 = c01 = 1, i.e.,

Pe(g) = P(g(Y) = 1|H0)p0 + P(g(Y) = 0|H1)p1

= P(g(Y) = 1, H0) + P(g(Y) = 0, H1)

= P(g(Y) ̸= H)

where H denotes a binary RV taking on the hypothesis value H0 and H1 with
probabilities p0 and p1, respectively.
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Decision regions

▶ Any function g : R → {0, 1} is defined by the two decision regions

D0 = {y ∈ R : g(y) = 0}, D1 = {y ∈ R : g(y) = 1}

▶ We can write:
P(g(Y) = i|Hj) =

∫
Di

dFj(y)

▶ We can write

r(g) =
1

∑
j=0

pj

(
c0j

(
1 −

∫
D1

dFj(y)
)
+ c1j

∫
D1

dFj(y)
)

=
1

∑
j=0

pjc0j +
∫

D1

1

∑
j=0

pj(c1j − c0j)dFj(y)

Z. Liao (EIC, HUST) PSP II May, 23, 2024 19 / 39



Optimal decision regions (continuous)

▶ Suppose that Y is continuous with respect to all hypotheses, and let
dFj(y) = fj(y)dy.

▶ r(g) is minimized by letting (we are in fact determining the decision rule g(y))

D1 =

y ∈ R :
1

∑
j=0

pj(c1j − c0j)fj(y) ≤ 0


▶ Explicitly, we find the following threshold rule

D1 = {y ∈ R : L(y) ≥ τ}

where L(y) = f1(y)
f0(y)

is called Likelihood Ratio, and the threshold is given by

τ =
p0(c10 − c00)

p1(c01 − c11)
.

▶ This is known under the name of Likelihood Ratio Test (LRT)
▶ Of course, if L(y) < τ, then y is allocated to D0.
▶ Notice that the boundary region L(y) = τ, i.e., f1(y) = τf0(y) does not contribute

to the Bayes risk, and therefore it can be arbitrarily allocated to D0 or to D1.
▶ Note: For discrete RVs, just replace the conditional pdfs with the conditional pmfs.
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Example

▶ Consider X taking values in X = {+1,−1} with equal probability, and the
observation

Y = aX + Z

where a ∈ R+ and Z ∼ N (0, σ2).
▶ We let H0 and H1 denote the hypotheses of X = −1 and X = +1, respectively, and

we wish to find the optimal decision rule (i.e., the regions D0, D1), such that the
average error probability Pe(g) is minimized (c00 = c11 = 0 and c10 = c01 = 1).

▶ In this case τ = p0/p1, and the two conditional pdfs are

f0(y) =
1√
2πσ

e−
|y+a|2

2σ2 , f1(y) =
1√
2πσ

e−
|y−a|2

2σ2

with Likelihood ratio
L(y) = e

2a
σ2 y
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▶ The decision region D1 can be expressed as

D1 =

{
y ∈ R : y ≥ σ2

2a
log

p0
p1

}
▶ More explicitly, we notice that the regions are the two intervals

D1 =

[
σ2

2a
log

p0
p1

,+∞
)

, D0 =

(
−∞,

σ2

2a
log

p0
p1

)
▶ The resulting minimum average error probability is given by

Pe = p0

∫
D1

1√
2πσ

e−
|y+a|2

2σ2 dy + p1

∫
D0

1√
2πσ

e−
|y−a|2

2σ2 dy

▶ As a consequence, we obtain

Pe = p0

(
1 − Φ

(
σ

2a
log

p0
p1

+
a
σ

))
+ p1Φ

(
σ

2a
log

p0
p1

− a
σ

)
where Φ(x) =

∫ x
−∞

1√
2π

e−u2/2du.
▶ In the equiprobable hypothesis case, log(p0/p1) = 0, and we can use the fact that

Φ(−x) = 1 − Φ(x), such that

Pe = 1 − Φ
( a

σ

)
= Q

( a
σ

)
where we define the Gaussian complementary CDF as
Q(x) = 1 − Φ(x) =

∫ +∞
x

1√
2π

e−u2/2du (also known as the Gaussian Q function).

Z. Liao (EIC, HUST) PSP II May, 23, 2024 22 / 39



M-ary Bayesian Hypothesis Testing

▶ The same idea can be generalized to the case where Y can be distributed according
to M possible hypotheses, where Hj is Y ∼ Fj(y) for j = 1, 2, . . . , M, with a priori
probabilities p1, p2, . . . , pM.

▶ In this case g : R → {1, 2, . . . , M} is defined by M decision regions.
▶ In the case of average error probability, we have the simple explicit

characterization

Dj =
{

y ∈ R : pjfj(y) ≥ pkfk(y) ∀k ̸= j, k = 1, . . . , M
}
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Maximum a posteriori probability (MAP)

▶ The a posteriori conditional probability of hypothesis Hj given the observation
Y = y is given by:

P(Hj|Y = y) =
pjfj(y)

∑M
k=1 pkfk(y)

▶ The decision region Dj can be equivalently expressed as

Dj = {y ∈ R : P(Hj|Y = y) ≥ P(Hk|Y = y) ∀ k ̸= j, k = 1, . . . , M}

▶ For this reason, the Bayesian M-ary hypothesis test that minimizes the average
error probability is called Maximum A-Posteriori Probability (MAP) decision rule.
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Exact expression of Pe

▶ In general, the probability of error is given by

Pe =
M

∑
i=1

piP

Y ∈
⋃
j ̸=i

Dj

∣∣∣∣∣∣Hi


= 1 −

M

∑
i=1

piP(Y ∈ Di|Hi)

= 1 −
M

∑
i=1

pi

∫
Di

fi(y)dy
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Upper and lower bounds on Pe

▶ We can find a simpler and general upper bound to Pe as follows: for any given
pair of hypotheses i, j we define the pairwise error event

{i → j} =
{

y ∈ R : pifi(y) ≤ pjfj(y)
}

▶ The corresponding pairwise error probability (PEP) is given by

P(i → j) = P (Y ∈ {i → j}|Hi) =
∫
{i→j}

fi(y)dy

Pe =
M

∑
i=1

piP

Y ∈
⋃
j ̸=i

Dj

∣∣∣∣∣∣Hi


=

M

∑
i=1

piP

Y ∈
⋃
j ̸=i

{i → j}

∣∣∣∣∣∣Hi


≤

M

∑
i=1

pi ∑
j ̸=i

P (Y ∈ {i → j}|Hi)

=
M

∑
i=1

∑
j ̸=i

pi

∫
{i→j}

fi(y)dy =
M

∑
i=1

∑
j ̸=i

pi P(i → j)
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▶ Next, we consider a lower bound on the error probability:

Pe =
M

∑
i=1

piP

Y ∈
⋃
j ̸=i

Dj

∣∣∣∣∣∣Hi


=

M

∑
i=1

piP

Y ∈
⋃
j ̸=i

{i → j}

∣∣∣∣∣∣Hi


≥

M

∑
i=1

pi max
j ̸=i

P (Y ∈ {i → j}|Hi)

=
M

∑
i=1

pi max
j ̸=i

P (i → j)
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Example: M-QAM modulation

▶ Digital modulation (discrete-time complex baseband equivalent model)

Y = X + Z

with Z ∼ CN (0, N0) and X ∼Uniform on X .
▶ X is a squared QAM (Quadrature-Amplitude Modulation) signal constellation, of

the form

X =

{
∆
2
[(2m −

√
M + 1) + ȷ(2n −

√
M + 1)] : m, n = 0, . . . ,

√
M − 1

}
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Example: 16-QAM constellation
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▶ EXERCISE: check that Es =
1
M ∑x∈X |x|2 = ∆2

6 (M − 1), i.e., for given energy per
symbol Es, the minimum squared distance between the constellation points is

d2
min = ∆2 =

6Es

M − 1

▶ EXERCISE: find the MAP rule for this problem.
▶ EXERCISE: find upper and lower bounds and an exact closed-form expression of

Pe in terms of the Signal to Noise Ratio SNR = Es/N0.
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Neyman-Pearson Hypothesis Testing

▶ In this context we have no a priori probabilities for the hypotheses.
▶ H0 and H1 are fundamentally asymmetric. Example in radar detection:

H0 is “there is no enemy bomber”
H1 is “there is an enemy bomber”.

▶ Type I error (false alarm or false positive): falsely reject H0.
▶ Type II error (miss or false negative): falsely reject H1.
▶ This is in sharp contrast with the average error probability framework (with

c00 = c11 = 0 and c01 = c10 = 1)
▶ For a given decision rule g, we have the false alarm probability and the successful

detection probability

Pf (g) = P(g(Y) = 1|H0), Pd(g) = P(g(Y) = 1|H1)

▶ REMARK: the same type I error discussed in null hypothesis, which defines the
significance level of a test; here, for the type II error, let β = P(reject H1|H1), 1 − β
is called the power of the test.
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Neyman-Pearson Criterion

▶ Neyman-Pearson Hypothesis Testing Problem: for some fixed α ∈ [0, 1] find g∗

solution of:
max

g
Pd(g) subject to Pf (g) ≤ α

Any rule solving this constrained maximization problem is called an α-NP rule.
▶ Randomized decision rule: for g(y) ∈ [0, 1] we can interpret g(y) as the probability

of accepting H1 given Y = y. Hence,

Pd(g) = E[g(Y)|H1] =
∫

g(y)f1(y)dy

and
Pf (g) = E[g(Y)|H0] =

∫
g(y)f0(y)dy
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Neyman-Pearson Lemma

Theorem (Neyman-Pearson)

In the problem setting defined above, the optimal decision rule (Neyman-Pearson rule) is given
by

g∗(y) =


1 if L(y) > η∗

γ∗ if L(y) = η∗

0 if L(y) < η∗

where L(y) = f1(y)
f0(y)

is the Likelihood Ratio, the threshold η∗ ≥ 0 and the probability γ∗ ∈ [0, 1]
are chosen such that Pf (g∗) = α.

Implications:
▶ let the likelihood ratio test g(y) be designed so that H0 is rejected with significance

level α

▶ then, for any other test of H0 with significance level at most α, its power against
H1 is at most the power of this likelihood ratio test (optimality)
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Proof of Neyman-Pearson

Form of the NP rule
▶ By construction, for any randomized decision rule g(y) with Pf (g) ≤ α, we have

(g∗(y)− g(y))(f1(y)− η∗f0(y)) ≥ 0, ∀ y ∈ R

▶ Integrating over R and separating terms we get∫
g∗(y)f1(y)dy −

∫
g(y)f1(y)dy ≥ η∗

(∫
g∗(y)f0(y)dy −

∫
g(y)f0(y)dy

)
▶ Using the definitions of Pf and Pd, we can write

Pd(g
∗)− Pd(g) ≥ η∗(Pf (g

∗)− Pf (g)) = η∗(α − Pf (g)) ≥ 0

Explicit expression of the NP-rule (existence)
▶ Let η∗ denote the smallest number such that P(L(Y) > η∗|H0) ≤ α.
▶ If the inequality is strict, then let

γ∗ =
α − P(L(Y) > η∗|H0)

P(L(Y) = η∗|H0)

▶ Then, the NP-rule g∗ with threshold η∗ and boundary randomization γ∗ achieves

Pf (g
∗) = P(L(Y) > η∗|H0) + γ∗P(L(Y) = η∗|H0) = α
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Example: Likelihood Ratio Test

Consider data X1, . . . , Xn and the following null and alternative hypotheses:

H0 : X1, . . . , Xn ∼ N (0, 1),

H1 : X1, . . . , Xn ∼ N (µ, 1),

for some known µ ̸= 0 (which may be positive or negative).
The joint PDF of (X1, . . . , Xn) under H0 and H1:

fH0 (x1, . . . , xn) =
n

∏
i=1

1√
2π

e−
x2
i
2 =

(
1√
2π

)n
exp

(
−

x2
1 + . . . + x2

n
2

)

fH1 (x1, . . . , xn) =
n

∏
i=1

1√
2π

e−
(xi−µ)2

2 =

(
1√
2π

)n
exp

(
− (x1 − µ)2 + . . . + (xn − µ)2

2

)
,

so likelihood ratio test:

L(X1, . . . , Xn) = exp

(
−2µ(∑n

i=1 Xi) + nµ2

2

)
= exp

(
−nµX̄ +

nµ2

2

)
, (8)

that is, for µ > 0, a strictly decreasing function of X̄ = 1
n ∑n

i=1 Xi.

Z. Liao (EIC, HUST) PSP II May, 23, 2024 36 / 39



Example: Likelihood Ratio Test

L(X1, . . . , Xn) = exp
(
−nµX̄ +

nµ2

2

)
. (9)

▶ reject small values of L(X1, . . . , Xn) is equivalent, for µ > 0, to reject for large
values of X̄ ∼ N (0, 1

n ) under H0
▶ Neyman–Pearson lemma tells us that the most powerful (1 - type II) test should

reject when X̄ > c for some threshold c chosen so that the significant level (type I)
is α under H0

▶ NOTE: the most powerful test against the alternative H1 : X1, . . . , Xn ∼ N (µ, 1), is
the SAME for any µ > 0, and neither the (expression of the) test statistic nor the
rejections region depend on the parameter µ

▶ that is, this test is uniformly most powerful against the (one-sided) composite
(i.e., combination of) alternative

H1 : X1, . . . , Xn ∼ N (µ, 1), for some µ > 0. (10)

▶ Question: what happens if µ < 0? Reject large positive values or “large” negative
values? And, is there a single most powerful test for the two-sided composite
alternative

H1 : X1, . . . , Xn ∼ N (µ, 1), for some µ ̸= 0? (11)
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Thank you!

Thank you! Q & A?
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Exercises

Location testing with Gaussian error
▶ The two hypotheses are: {

H0 : Y = µ0 + Z
H1 : Y = µ1 + Z

where Z ∼ N (0, σ2) and the two hypotheses are equiprobable.
▶ We wish to find the optimal decision regions such that the average error

probability Pe(g) is minimized.

Location testing with Gaussian error: Neyman-Pearson
▶ The two hypotheses are: {

H0 : Y = µ0 + Z
H1 : Y = µ1 + Z

where Z ∼ N (0, σ2) and the two hypotheses are equiprobable.
▶ We wish to find the α-NP rule and expression the corresponding optimal

probability Pd as a function of α ∈ [0, 1].
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