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Estimating the parameters of a distribution

> A parametric model is a family of probability distributions that can be described
by a finite number of parameters’

— the family of normal/Gaussian distribution N( U, (72), with parameters y and a2 >0;
and
— the family of Bernoulli distribution Bern(p), with parameter p; and
— the family of Gamma distribution Gamma(a, ), with parameters « and p.
» PDF/PMF {f(x|): 8 € Q} for general parameter model, with parameters § € R,
Q C R¥ the parameter space

> Example: Gaussian distribution NV (y, 0?), with 6 = (;2 ), Q=R x R4, and

(Jc—l)2
1 -5 1)

fx10) =

V2mo?
> Question: given observations X, ..., Xy i1d. f(x]0), how can we estimate the
unknown parameters 6 and possibly quantify the quality of the proposed

estimate?

!1f the number of parameters increases with the sample size, the “double asymptotic” regime in RMT.
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Method of moments

> if § is a single number, a simple idea to estimate 6 is to “MATCH” the theoretical
mean of X ~ f(x|0) equals to the sample mean X = 1 ¥, _; X;
Poisson distribution

The Poisson distribution with parameter A > 0 (denoted Poisson(A)) is a discrete
distribution over the non-negative integers {0, 1, ...} having PMF

e MY
Flald) = £ @
> if X ~ Poisson(A), we have E[X] = A, soa simple estimate of A as
=X= ): X;. (3)
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Method of moments

> if § is a single number, a simple idea to estimate 6 is to “MATCH” the theoretical
mean of X ~ f(x|@) equals to the sample mean X = 1y, _; X;

Exponential distribution

The exponential distribution with parameter A > 0 (denoted Exp(A)) is a continuous
distribution over Ry having PDF

F(x|A) = Ae™*. (4)

> if X ~ Exp(A), we have E[X] = }, so a simple estimate of A as

A=g=g—r (5)
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Method of moments

> more generally, for X ~ f(x|6) where 6 contains k unknown parameters, the
method of moments estimator proposes to consider the first k moments of the
distribution of X,

m=EX], m=EX, .., wm=EX (6)

> leading to the following empirical estimates

n 1 n 2 1 n k
}: =V XL = )X @)
i=1 i=1 i

:\H
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Method of moments: Gaussian distribution

Method of moments: Gaussian distribution
iid.

Let Xq,...,Xn "= N(p,0?%), then E[X] = u and E[X?] = p? + 02. With the method of

moments estimator, we write the empirical estimates

fi = 2462 =

S =

Il
Ly
Il
Ly

™-
>
il

=
S| =
=
>
=

Solving for the parameter estimates i and 62, we get

i ffx X)2.

E\H
—

ﬁ:

:

®)

©)

» Question: what can we say about these MoM estimators?

» Answer: characterization via the mean-squared-error (MSE)
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Bias, variance, and mean-squared-error

P> any estimator h=20 (X1,...,Xy) is a statistics — randomness from the data
X1, Xn

> for Xq,..., Xy l%i'f(x|9), measure the quality of the estimator § as

— biasoffasE [9] — 0, the expectation taken with respect to the randomness in Xj, ..., X,

— the standard error of 0 is the standard deviation |/ Var[f]

— the mean-squared-error (MSE) of § given by E[(0 — 6)?]
> Note that

E[(§ — 6)?] = Var[d] + (E[0] — 0)>. (10)

» This is the bias-variance decomposition of MSE:

MSE = Variance + Bias?. (11)
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Example: MSE of MoM for Poisson distribution

MSE of MoM for Poisson distribution
Let X1, ..., X, ~ Poisson(A), the MoM estimator of A is

A o 1Z
A=X=2)X,.
=
The bias-variance decomposition of MSE of A can be derived as
> biasE[A] —A=1y" E[X ] — A = 0: unbiased!
» variance Var[A] = Var[X] = n2 Y, Var[X;] = 2: of vanishing variance (order
O(n=H)!
> SOMSE[A] =0+ 2 =2,

(12)
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MMSE Estimation

v

some RV Y.

vVvyyvyy

bx

X
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Py |x

Y

We observe some data i, which we assume to be produced as the realization of

We have that Y is generated as a random transformation X — Y of another RV X.
The random transformation is described by a conditional PDF pyx.

X is distributed according to some known PDF px (i.e., the statistical modeling).
Goal: find an estimator X = g(Y) such that E[||X — X||?] is minimized.
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Reminder on vector spaces

Definition
A vector space V over R is a set of elements called vectors such that
@ Forallv,v e V,v+v € V.
@ J0¢c Vsuchthatv+0=vforallve V.
@ For all v € V there exists an opposite element —v € V such that v+ (—v) = 0.
Q@ xve Viorallve Vandx € R.
@ Ov=0forallve V.
Q lv=vforallveV.

» This implies that V is closed with respect to linear combinations with coefficients
in R.
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Reminder on norms and normed vector spaces

Definition

A norm is a function || - || : V — R4 that satisfies the following properties:
Q ||v]| =0ifand only if v = 0.
Q |[v+u| < ||v]| + |lu| (triangle inequality).
@ |[xv| = |x|-||v| forallv € Vand x € R.

And a normed vector space is a vector space V with a norm || - ||.

Notice: a norm is a “distance” function.
» For example, one can check that the norm defined as

n
Ivl2 = szz
Viz

where V = R" is the standard Euclidean n-dimensional vector space over R,
defines a distance in the usual sense (length of the vector joining two points in IR").
» Letv,u € R”, then
n
[v—ul2= Z(Ui - Mi)2
i=1
is the Euclidean distance between the points (vectors) v and u.
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Reminder on inner product

Definition
Given a vector space V over R, an inner product is a function (-,-): V x V — R with
the following properties:

Q (v,u) = (u,v) (symmetry).

@ (xv,u) =x(v,u), forall v,u € V and x € R (scaling).

@ (vi+ vy u) = (vq,u) + (vp,u) (linearity).

Q (v,v) > 0, with equality if and only if v = 0.

A vector space with an inner product is called inner product space.
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Theorem (Cauchy-Schwarz inequality)

(v,u)? < (v, v)(u,u)

with equality if and only if av = bu, with a,b € R not both zero. O

Theorem (2-norm)

Let V be an inner product space. Then, the following is a norm (called 2-norm, or standard
Euclidean norm):

IVllz = 4/ (v, v)
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Least Squares approximation

> Let be x a point (vector) in some vector space V over R and letyy, ...,y bea
given collection of vectors:
we wish to find the “best” approximation of x by a linear combination of the
vectors {y;}.

» We have to give a rigorous meaning to the term “best”: if V is an inner product
space, we shall consider the minimum distance approximation, that is, we look for

such that
is minimum.

» This approximation is called (linear) “Least-Squares” (some people call it “linear
regression”).
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LS Solution

> A brute-force approach: we can write, for a € R",
Ix[13 = 206 %) + [IX]5

2 m m m
= |xlz-2Y (oynai+ Y, Y ailyiyjaj
= i=1j=1

o2
[x —x]I3

= |IxI3- 2r;rya + aTGya
where we define the “cross-correlation vector”

ty = [0 y1) - (o ym)]T

and the matrix of inner products (Gram matrix)

(yvyn)  (yuy2) - Yuym)
Gy = <Yz/. y1)  (y2,y2) :
Yory1) Gy o Yoy

Notice: this is true independent of the “dimension” of the vector space V!
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> Notice that G, € R”*"™ is symmetric and positive semi-definite (WHY?).

> Taking the gradient of the distance function with respect to a, we obtain the
equation
Gya =1y
> Assuming for simplicity that Gy is invertible (otherwise, we can eliminate some
linearly dependent y; and obtain the same subspace), we obtaina = G, 1rxy.

> This leads to the solutionX = [y; ... yu] a, is this the minimal ||x — X||? If yes,
WHY?

> OBSERVATION: notice that the solution X satisfies the following orthogonality
condition:

(x—Xy;)=0 Vi=1...,m

How to prove this?
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Zero-mean Finite Covariance RVs

» The space of zero-mean finite covariance RVs forms a vector space.

» Inner product:
(X,Y) = E[XY]

» Induced 2-norm:
Xl = /E[|X|?]

» In this vector space, distance is expressed by the MSE

1X = Y3 = E[|X — Y[’
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Generalization to Random Vectors

» For zero-mean finite covariance random vectors, we can combine the standard
inner product in R” with what defined before:

XY) = EXTY] = ) E[XY]

i=1

» The induced 2-norm is given by

VEX) = EXTX) = \/ir (EXXT]) = \/r(Z)

» Then, the MSE for the vector case is given by

MSE = E Mx - YHZ] - ilE[Xi — Y% = tr (Cov(X —Y))
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A remark about notation

» Unfortunately, the same symbol || - ||, takes on different meanings depending on
the inner product space it is referred to.

> In our case, for all w € 3, X(w) is an element of R”, but when defining the vector
space V of finite-dimensional random vectors with mean zero and finite
per-component variance, we need to be careful!

» We shall use
n
IX|1> =Y X
i=1

to denote the standard squared 2-norm in IR”. Since X is a random vector, ||X||? is
a random variable.

» Instead, we use
IX|I5 = E[|IX]1*]

to denote the squared norm in V. This is a non-random quantity (expectation).
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Linear Minimum Mean-Square Error estimation

> We have two jointly distributed random vectors X € R” and Y € R™.

> We observe Y and we with to “guess” the value of X by some estimator X = g(Y)
in order to minimize the Mean-Square-Error sense:

MSE = E [||x - §<||2]
» For now, we seek an estimator X in the form of a linear function of the observation

Y, that is, R
X =AY
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Orthogonality principle

» The approximation error X — X must be orthogonal with respect to the space of
linear functions of Y.

» This means that for any matrix B € C"*™ is must be:

E[(X—-X)"BY] =0

for all linear functions BY of the observation.
X
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» The orthogonality principle yields the condition
(X—-X,BY) =E [(x - X)TBY] —tr (IE [BY(X - f()TD =0

for all B € R"*™,
» In turns, by replacing X = AY, we find the condition that, for all B, it must be

tr (B (IE [YXT] ~E {YYT} AT)) =0

» This yields the equation
AE {YYT} = E[XYT]
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LMMSE estimator

> Solving for A (under the assumption that the covariance E [YY'] is strictly
positive definite), we find:

AE [YYT] =E [XYT] = A=E [XYT] (JE [YYTD%

» In the general case of non-zero mean vectors, we define the centralized RVs
Xp = X —my and Yy = Y — my, and notice that X is the LMMSE estimator for X if
and only if )A(O = X — m, is the LMMSE estimator for Xo:

E[IX - X|2] = E[IXo - (X—m,) ||

Xo

» Furthermore, )/Zo must be a (linear) function of YO, since my, is just an (arbitrary)
constant.
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> Letting

Ty = Cov(X,Y) = E[(X —my)(Y — my)T]
Cov(Y) = E[(Y —my)(Y — my)T}

[l
<
Il

we obtain

Xo = EnZy Yo
and for the non-zero mean case

f(:mx+)?0=mx+2xy2;1 (Y —m,)

Z.Liao (EIC, HUST) PSP II: Estimation May, 30, 2024 27 /42



MMSE Covariance Matrix

» The MMSE covariance matrix is given by

Cov(X—X) = ZIy—EyZ, 'L}

> The resulting MMSE, is given by E[||X — X||2] = tr(Cov(X — X)).

> Notice: The estimation error vector X — X is uncorrelated with any linear function
of the observation vector Y.
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MMSE estimator: the general case

> With the same setting as before, we now seek an estimator X = £*(Y), in the space
of all (measurable, so not necessarily linear) functions of the observation Y.

Theorem
The MMSE estimator of X given Y is the conditional mean

X =g*(Y) = EXY]
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Proof

We use the orthogonality principle: the optimal estimator X must satisfy
E [(X - )A()Tg(Y)] =0, forall functions g

Letting X = [E[X]Y] and using the iterated expectation theorem?, we find:

E[X-EXY)Tg(Y)] = E[E[X-EXY)T2MIY|]
= E[E XY - EXIY]"g(Y)]

= E[EXY]Tg(Y) — EX|Y|]Tg(Y)]
= 0

*E[f(X,Y)] = E[E[f(X, Y)|Y]].
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Reminder on Conditional Gaussian distribution

» Consider a random vector with n 4+ m components, denoted for simplicity by
(X Y).

> A very important problem in statistics is to find the conditional distribution of a
group of components given the other group. Without loss of generality, we are
interested in the conditional distribution of X given Y.

» In particular, suppose that (X,Y) ~ N (m, Z), with
_ | My _ Ly ny
mi{my}' Zi[zyx Zy }
with my = E[X], my = E[Y], Z; = cov(X), £, = cov(Y) and
Ly = cov(X,Y) = E [(x —my)(Y— my)T]

with Eyx = ):xTy.
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Reminder on Conditional Gaussian distribution

With the notation defined before,

X :—1 X —lx—m Te lx—m
fxpy(xly) ) det (Zx‘y)e p< 5 xly) Ty x\y))

where the conditional mean value is given by
my, = EX|Y =y] = my + nyzgl (y—my)
and the conditional covariance matrix is given by
Ly = E[(X - mx\y)(x - mx|y)T|Y =yl =Zx - Exyzjlzyx

Notice: given jointly Gaussian X, Y, X given Y is Gaussian, with conditional mean
affine function of Y and conditional covariance constant with Y.
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MMSE estimation for Gaussian vectors

> If X, Y are jointly Gaussian, then the linear MMSE estimator and the optimal
MMSE estimator coincide.

» In order to see this, recall

X :—1 X —lx—m Te-lx—m
) = e p (30— ma)TE (- my))

where the conditional mean value is given by
m,, = EX|Y =y] = my + ny)ly*l (y —my)
and the conditional covariance matrix is given by

z‘x|y =E[(X— mx|y)(X - mx\y)T‘Y =y] =Ly~ nyzglzyx
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» Hence, in the Gaussian case, the (general) MMSE estimator of X given Y coincides
with the LMMSE estimator (Wiener filter):

X =EX|Y] =m, + ZyZ, ! (Y —m,)

» MMSE decomposition:
X=X+X-X)=X+V

where the MMSE estimator X and the estimation error vector V are uncorrelated,
and therefore independent (in the Gaussian case), where we have

X ~ N (my, Ly Zy 'Zyx), Vo~ N(0,Zy)
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Application to proper Gaussian random vectors

> If X and Y are proper jointly Gaussian, i.e.,
X my Ty ny
e Le 2 )

Iy = E[(X — my) (X — my)"], Iy =E[(Y —m,)(Y— my)H]

where

T = E[(X — my) (Y — my)"]
we define the MSE as
MSE = E[|X - X[?] = E[(X — X)"(X ~ X)]

> Result: all the derivations and results found before are still valid when replacing
“transpose” with “Hermitian transpose”.
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Gaussian signal in Gaussian noise

> Often we need to estimate a signal observed through a linear transformation H in
additive noise:
Y=HX+Z

where X ~ CN(0,Zy) and Z = CN (0, Z;).
» In this case, we have
. H " 1
X = Z.H (HZ‘.XH 4 zz) Y

with estimation error covariance

H H -1
Ty = Lx — IH (HZxH + zz) HE,
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Example: MMSE Multi-user Detection

» A Gaussian Multiple Access Channel can be represented as

K
Y=Y VDX +Z=SP/>X+7Z
k=1
where s = (s14, ..., SN,k)T is the vector formed by the samples of user k

waveform, Py is the received power of user k, Xy are information symbols from a
unit energy signal constellation (e.g., QAM), and Z ~ CN (0, NyI).

> A linear detector for user k consists of a projection of Y onto a unit vector uy,
forming the scalar observation Xj = u,'jY.

> We define the Signal to Interference plus Noise Ratio (SINR) as

|u's|” Py

SINR;, =

P:

p

No + Tz [u's;
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» It can be shown that the SINR is maximized over all linear detectors by choosing
—1
K
u; = oy | NoI+ ZP]-sjst Sk
j=1

where ay, is a normalization constant in order to have |Juy|| = 1.

> Notice that this SINR-maximizing detector is proportional to the MMSE estimator
of Xj given'Y.

» The resulting maximum SINR can be compactly written as
-1
SINR; = Pisi! [ NoI+ ) Pjsjs' | sp
j#k
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Thank you!

Thank you! Q & A?
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Exercises

Method of moments: Gamma distribution

LetXy,..., X, i1d. Gamma(a, B), derive the corresponding MoM estimators &,B for the
parameters & and 3, and try to derive the bias-variance decomposition of their MSE.

Binary Signal in Gaussian noise
Consider X taking values in X = {41, —1} with equal probability, and the observation
Y=hX+Z

where i € R and Z ~ N(0,02). Show that
» the linear MMSE estimator is given by f(hn = hzﬁ—azY; and
> the optimal MMSE estimator is

~ hY
Xopt = tanh (;) .
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Exercises

Method of moments: Gamma distribution

LetXy,..., Xy i1d. Gamma(a, B), derive the corresponding MoM estimators &,B for the
parameters & and 3, and try to derive the bias-variance decomposition of their MSE.

> For XGamma ~ (&, §), we have

ElX] =%, E[XY=
p
» This leads to the MoM estimators as
5‘ = ,B =

with corresponding bias and variance given by

E[d] —a=, E[a]—a=,
so that MSE as

Var[&] =, Var[f] =

E[(a -a)’| =, E[(B-p)’ =,
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Exercises

Binary Signal in Gaussian noise
Consider X taking values in X = {41, —1} with equal probability, and the observation
Y=hX+2Z

where 1 € R4 and Z ~ N(0,02). Show that
» the linear MMSE estimator is given by )A(lin =
» the optimal MMSE estimator is

S hY
XOpt = tanh (ﬁ) °

h .
2to? Y, and

» for LMMSE, consider X, = aY, and it suffices to determine a € R that minimizes
E[(X — X)?] = E[X? — 2XX + X?] = E[X?] — 2aE[X(hX + Z)] + a®E[(hX + Z)?] =
1—2a(h+0) +a*(h? + o?).

» This leads toa = hzﬁ—gz and thus the conclusion.
» To derive the optimal MMSE estimator, we use the conclusion that }A(opt = E[X]Y].
> For given Y, we have that X = %, for Z ~ N(0,02),
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