
Probability and Stochastic Processes II:
Estimation

Zhenyu Liao

School of Electronic Information and Communications, HUST

May, 30, 2024

Z. Liao (EIC, HUST) PSP II: Estimation May, 30, 2024 1 / 42



Outline

1 Parametric Models and Method of Moments

2 MMSE Estimation

Z. Liao (EIC, HUST) PSP II: Estimation May, 30, 2024 2 / 42



Estimating the parameters of a distribution

▶ A parametric model is a family of probability distributions that can be described
by a finite number of parameters1

− the family of normal/Gaussian distribution N (µ, σ2), with parameters µ and σ2 ≥ 0;
and

− the family of Bernoulli distribution Bern(p), with parameter p; and
− the family of Gamma distribution Gamma(α, β), with parameters α and β.

▶ PDF/PMF {f (x|θ) : θ ∈ Ω} for general parameter model, with parameters θ ∈ Rk,
Ω ⊂ Rk the parameter space

▶ Example: Gaussian distribution N (µ, σ2), with θ = (
µ

σ2 ), Ω = R × R+, and

f (x|θ) = 1√
2πσ2

e−
(x−µ)2

2σ2 . (1)

▶ Question: given observations X1, . . . , Xn
i.i.d.∼ f (x|θ), how can we estimate the

unknown parameters θ and possibly quantify the quality of the proposed
estimate?

1If the number of parameters increases with the sample size, the “double asymptotic” regime in RMT.
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Method of moments

▶ if θ is a single number, a simple idea to estimate θ is to “MATCH” the theoretical
mean of X ∼ f (x|θ) equals to the sample mean X̄ = 1

n ∑i=1 Xi

Poisson distribution
The Poisson distribution with parameter λ > 0 (denoted Poisson(λ)) is a discrete
distribution over the non-negative integers {0, 1, . . .} having PMF

f (x|λ) = e−λλx

x!
. (2)

▶ if X ∼ Poisson(λ), we have E[X] = λ, so a simple estimate of λ as

λ̂ = X̄ =
1
n ∑

i=1
Xi. (3)

Z. Liao (EIC, HUST) PSP II: Estimation May, 30, 2024 5 / 42



Method of moments

▶ if θ is a single number, a simple idea to estimate θ is to “MATCH” the theoretical
mean of X ∼ f (x|θ) equals to the sample mean X̄ = 1

n ∑i=1 Xi

Exponential distribution

The exponential distribution with parameter λ > 0 (denoted Exp(λ)) is a continuous
distribution over R+ having PDF

f (x|λ) = λe−λx. (4)

▶ if X ∼ Exp(λ), we have E[X] = 1
λ , so a simple estimate of λ as

λ̂ =
1
X̄

=
1

1
n ∑i=1 Xi

. (5)
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Method of moments

▶ more generally, for X ∼ f (x|θ) where θ contains k unknown parameters, the
method of moments estimator proposes to consider the first k moments of the
distribution of X,

µ1 = E[X], µ2 = E[X2], . . . , µk = E[Xk]. (6)

▶ leading to the following empirical estimates

µ̂1 =
1
n

n

∑
i=1

Xi, µ̂2 =
1
n

n

∑
i=1

X2
i , . . . , µ̂k =

1
n

n

∑
i=1

Xk
i . (7)
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Method of moments: Gaussian distribution

Method of moments: Gaussian distribution

Let X1, . . . , Xn
i.i.d.∼ N (µ, σ2), then E[X] = µ and E[X2] = µ2 + σ2. With the method of

moments estimator, we write the empirical estimates

µ̂ = µ̂1 =
1
n

n

∑
i=1

Xi, µ̂2 + σ̂2 =
1
n

n

∑
i=1

X2
i . (8)

Solving for the parameter estimates µ̂ and σ̂2, we get

µ̂ = X̄, σ̂2 =
1
n

n

∑
i=1

X2
i − X̄2 =

1
n

n

∑
i=1

(Xi − X̄)2. (9)

▶ Question: what can we say about these MoM estimators?
▶ Answer: characterization via the mean-squared-error (MSE)
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Bias, variance, and mean-squared-error

▶ any estimator θ̂ ≡ θ̂(X1, . . . , Xn) is a statistics – randomness from the data
X1, . . . , Xn

▶ for X1, . . . , Xn
i.i.d.∼ f (x|θ), measure the quality of the estimator θ̂ as

− bias of θ̂ as E[θ̂]− θ, the expectation taken with respect to the randomness in X1, . . . , Xn

− the standard error of θ̂ is the standard deviation
√

Var[θ̂]

− the mean-squared-error (MSE) of θ̂ given by E[(θ̂ − θ)2]

▶ Note that
E[(θ̂ − θ)2] = Var[θ̂] + (E[θ̂]− θ)2. (10)

▶ This is the bias-variance decomposition of MSE:

MSE = Variance + Bias2. (11)
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Example: MSE of MoM for Poisson distribution

MSE of MoM for Poisson distribution
Let X1, . . . , Xn ∼ Poisson(λ), the MoM estimator of λ is

λ̂ = X̄ =
1
n

n

∑
i=1

Xi. (12)

The bias-variance decomposition of MSE of λ̂ can be derived as
▶ bias E[λ̂]− λ = 1

n ∑n
i=1 E[Xi]− λ = 0: unbiased!

▶ variance Var[λ̂] = Var[X̄] = 1
n2 ∑n

i=1 Var[Xi] =
λ
n : of vanishing variance (order

O(n−1))!
▶ So MSE[λ̂] = 0 + λ

n = λ
n .
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MMSE Estimation

▶ We observe some data y, which we assume to be produced as the realization of
some RV Y.

▶ We have that Y is generated as a random transformation X 7→ Y of another RV X.
▶ The random transformation is described by a conditional PDF pY|X.
▶ X is distributed according to some known PDF pX (i.e., the statistical modeling).

▶ Goal: find an estimator X̂ = g(Y) such that E[∥X − X̂∥2] is minimized.

pY |XpX
X Y bX
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Reminder on vector spaces

Definition
A vector space V over R is a set of elements called vectors such that

1 For all v, v′ ∈ V, v + v′ ∈ V.
2 ∃ 0 ∈ V such that v + 0 = v for all v ∈ V.
3 For all v ∈ V there exists an opposite element −v ∈ V such that v + (−v) = 0.
4 xv ∈ V for all v ∈ V and x ∈ R.
5 0v = 0 for all v ∈ V.
6 1v = v for all v ∈ V.

▶ This implies that V is closed with respect to linear combinations with coefficients
in R.
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Reminder on norms and normed vector spaces

Definition
A norm is a function ∥ · ∥ : V → R+ that satisfies the following properties:

1 ∥v∥ = 0 if and only if v = 0.
2 ∥v + u∥ ≤ ∥v∥+ ∥u∥ (triangle inequality).
3 ∥xv∥ = |x| · ∥v∥ for all v ∈ V and x ∈ R.

And a normed vector space is a vector space V with a norm ∥ · ∥.

Notice: a norm is a “distance” function.
▶ For example, one can check that the norm defined as

∥v∥2 =

√
n

∑
i=1

v2
i

where V = Rn is the standard Euclidean n-dimensional vector space over R,
defines a distance in the usual sense (length of the vector joining two points in Rn).

▶ Let v, u ∈ Rn, then

∥v − u∥2 =

√
n

∑
i=1

(vi − ui)2

is the Euclidean distance between the points (vectors) v and u.
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Reminder on inner product

Definition
Given a vector space V over R, an inner product is a function ⟨·, ·⟩ : V × V → R with
the following properties:

1 ⟨v, u⟩ = ⟨u, v⟩ (symmetry).
2 ⟨xv, u⟩ = x⟨v, u⟩, for all v, u ∈ V and x ∈ R (scaling).
3 ⟨v1 + v2, u⟩ = ⟨v1, u⟩+ ⟨v2, u⟩ (linearity).
4 ⟨v, v⟩ ≥ 0, with equality if and only if v = 0.

A vector space with an inner product is called inner product space.
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Theorem (Cauchy-Schwarz inequality)

⟨v, u⟩2 ≤ ⟨v, v⟩⟨u, u⟩
with equality if and only if av = bu, with a, b ∈ R not both zero. □

Theorem (2-norm)
Let V be an inner product space. Then, the following is a norm (called 2-norm, or standard
Euclidean norm):

∥v∥2 =
√
⟨v, v⟩
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Least Squares approximation

▶ Let be x a point (vector) in some vector space V over R and let y1, . . . , ym be a
given collection of vectors:
we wish to find the “best” approximation of x by a linear combination of the
vectors {yi}.

▶ We have to give a rigorous meaning to the term “best”: if V is an inner product
space, we shall consider the minimum distance approximation, that is, we look for

x̂ =
m

∑
i=1

aiyi

such that
∥x − x̂∥2

2 = ⟨x − x̂, x − x̂⟩
is minimum.

▶ This approximation is called (linear) “Least-Squares” (some people call it “linear
regression”).
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LS Solution

▶ A brute-force approach: we can write, for a ∈ Rm,

∥x − x̂∥2
2 = ∥x∥2

2 − 2⟨x, x̂⟩+ ∥x̂∥2
2

= ∥x∥2
2 − 2

m

∑
i=1

⟨x, yi⟩ai +
m

∑
i=1

m

∑
j=1

ai⟨yi, yj⟩aj

= ∥x∥2
2 − 2rTxya + aTGya

where we define the “cross-correlation vector”

rxy =
[⟨x, y1⟩, . . . , ⟨x, ym⟩

]T

and the matrix of inner products (Gram matrix)

Gy =




⟨y1, y1⟩ ⟨y1, y2⟩ · · · ⟨y1, ym⟩

⟨y2, y1⟩ ⟨y2, y2⟩
...

...
⟨ym, y1⟩ ⟨ym, y2⟩ · · · ⟨ym, ym⟩




Notice: this is true independent of the “dimension” of the vector space V!
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▶ Notice that Gy ∈ Rm×m is symmetric and positive semi-definite (WHY?).
▶ Taking the gradient of the distance function with respect to a, we obtain the

equation
Gya = rxy

▶ Assuming for simplicity that Gy is invertible (otherwise, we can eliminate some
linearly dependent yi and obtain the same subspace), we obtain a = G−1

y rxy.

▶ This leads to the solution x̂ =
[
y1 . . . ym

]
a, is this the minimal ∥x − x̂∥? If yes,

WHY?
▶ OBSERVATION: notice that the solution x̂ satisfies the following orthogonality

condition:
⟨x − x̂, yi⟩ = 0, ∀ i = 1, . . . , m

How to prove this?
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Zero-mean Finite Covariance RVs

▶ The space of zero-mean finite covariance RVs forms a vector space.
▶ Inner product:

⟨X, Y⟩ = E[XY]

▶ Induced 2-norm:
∥X∥2 =

√
E[|X|2]

▶ In this vector space, distance is expressed by the MSE

∥X − Y∥2
2 = E[|X − Y|2]
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Generalization to Random Vectors

▶ For zero-mean finite covariance random vectors, we can combine the standard
inner product in Rn with what defined before:

⟨X, Y⟩ = E[XTY] =
n

∑
i=1

E[XiYi]

▶ The induced 2-norm is given by
√
(X, X) =

√
E [XTX] =

√
tr (E [XXT]) =

√
tr(Σx)

▶ Then, the MSE for the vector case is given by

MSE = E
[
∥X − Y∥2

]
=

n

∑
i=1

E[|Xi − Yi|2] = tr (Cov(X − Y))
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A remark about notation

▶ Unfortunately, the same symbol ∥ · ∥2 takes on different meanings depending on
the inner product space it is referred to.

▶ In our case, for all ω ∈ Ω, X(ω) is an element of Rn, but when defining the vector
space V of finite-dimensional random vectors with mean zero and finite
per-component variance, we need to be careful!

▶ We shall use

∥X∥2 =
n

∑
i=1

|Xi|2

to denote the standard squared 2-norm in Rn. Since X is a random vector, ∥X∥2 is
a random variable.

▶ Instead, we use
∥X∥2

2 = E[∥X∥2]

to denote the squared norm in V. This is a non-random quantity (expectation).
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Linear Minimum Mean-Square Error estimation

▶ We have two jointly distributed random vectors X ∈ Rn and Y ∈ Rm.

▶ We observe Y and we with to “guess” the value of X by some estimator X̂ = g(Y)
in order to minimize the Mean-Square-Error sense:

MSE = E
[
∥X − X̂∥2

]

▶ For now, we seek an estimator X̂ in the form of a linear function of the observation
Y, that is,

X̂ = AY
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Orthogonality principle

▶ The approximation error X − X̂ must be orthogonal with respect to the space of
linear functions of Y.

▶ This means that for any matrix B ∈ Cn×m is must be:

E[(X − X̂)TBY] = 0

for all linear functions BY of the observation.

Span{Y}

X

bX
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▶ The orthogonality principle yields the condition

⟨X − X̂, BY⟩ = E
[
(X − X̂)TBY

]
= tr

(
E
[
BY(X − X̂)T

])
= 0

for all B ∈ Rn×m.
▶ In turns, by replacing X̂ = AY, we find the condition that, for all B, it must be

tr
(

B
(

E
[
YXT

]
− E

[
YYT

]
AT

))
= 0

▶ This yields the equation

AE
[
YYT

]
= E[XYT]
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LMMSE estimator

▶ Solving for A (under the assumption that the covariance E
[
YYT] is strictly

positive definite), we find:

AE
[
YYT

]
= E

[
XYT

]
⇒ A = E

[
XYT

] (
E
[
YYT

])−1

▶ In the general case of non-zero mean vectors, we define the centralized RVs
X0 = X − mx and Y0 = Y − my, and notice that X̂ is the LMMSE estimator for X if
and only if X̂0 = X̂ − mx is the LMMSE estimator for X0:

E
[
∥X − X̂∥2

]
= E

[
∥X0 − (X̂ − mx)︸ ︷︷ ︸

X̂0

∥2
]

▶ Furthermore, X̂0 must be a (linear) function of Ŷ0, since my is just an (arbitrary)
constant.
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▶ Letting

Σxy = Cov(X, Y) = E[(X − mx)(Y − my)
T]

Σy = Cov(Y) = E[(Y − my)(Y − my)
T]

we obtain

X̂0 = ΣxyΣ−1
y Y0

and for the non-zero mean case

X̂ = mx + X̂0 = mx + ΣxyΣ−1
y

(
Y − my

)
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MMSE Covariance Matrix

▶ The MMSE covariance matrix is given by

Cov(X − X̂) = Σx − ΣxyΣ−1
y ΣT

xy

▶ The resulting MMSE, is given by E[∥X − X̂∥2] = tr(Cov(X − X̂)).
▶ Notice: The estimation error vector X − X̂ is uncorrelated with any linear function

of the observation vector Y.
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MMSE estimator: the general case

▶ With the same setting as before, we now seek an estimator X̂ = g∗(Y), in the space
of all (measurable, so not necessarily linear) functions of the observation Y.

Theorem

The MMSE estimator of X given Y is the conditional mean

X̂ = g∗(Y) = E[X|Y]
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Proof

We use the orthogonality principle: the optimal estimator X̂ must satisfy

E
[
(X − X̂)Tg(Y)

]
= 0, for all functions g

Letting X̂ = E[X|Y] and using the iterated expectation theorem2, we find:

E
[
(X − E[X|Y])Tg(Y)

]
= E

[
E
[
(X − E[X|Y])Tg(Y)|Y

]]

= E
[
E
[
XTg(Y)|Y

]
− E[X|Y]Tg(Y)

]

= E
[
E [X|Y]T g(Y)− E[X|Y]Tg(Y)

]

= 0

2E[f (X, Y)] = E[E[f (X, Y)|Y]].
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Reminder on Conditional Gaussian distribution

▶ Consider a random vector with n + m components, denoted for simplicity by
(X, Y).

▶ A very important problem in statistics is to find the conditional distribution of a
group of components given the other group. Without loss of generality, we are
interested in the conditional distribution of X given Y.

▶ In particular, suppose that (X, Y) ∼ N (m, Σ), with

m =

[
mx
my

]
, Σ =

[
Σx Σxy
Σyx Σy

]

with mx = E[X], my = E[Y], Σx = cov(X), Σy = cov(Y) and

Σxy = cov(X, Y) = E
[
(X − mx)(Y − my)

T
]

with Σyx = ΣT
xy.
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Reminder on Conditional Gaussian distribution

With the notation defined before,

fX|Y(x|y) =
1√

(2π)n det(Σx|y)
exp

(
−1

2
(x − mx|y)

TΣ−1
x|y(x − mx|y)

)

where the conditional mean value is given by

mx|y = E[X|Y = y] = mx + ΣxyΣ−1
y

(
y − my

)

and the conditional covariance matrix is given by

Σx|y = E[(X − mx|y)(X − mx|y)
T|Y = y] = Σx − ΣxyΣ−1

y Σyx

Notice: given jointly Gaussian X, Y, X given Y is Gaussian, with conditional mean
affine function of Y and conditional covariance constant with Y.
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MMSE estimation for Gaussian vectors

▶ If X, Y are jointly Gaussian, then the linear MMSE estimator and the optimal
MMSE estimator coincide.

▶ In order to see this, recall

fX|Y(x|y) =
1√

(2π)n det(Σx|y)
exp

(
−1

2
(x − mx|y)

TΣ−1
x|y(x − mx|y)

)

where the conditional mean value is given by

mx|y = E[X|Y = y] = mx + ΣxyΣ−1
y

(
y − my

)

and the conditional covariance matrix is given by

Σx|y = E[(X − mx|y)(X − mx|y)
T|Y = y] = Σx − ΣxyΣ−1

y Σyx
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▶ Hence, in the Gaussian case, the (general) MMSE estimator of X given Y coincides
with the LMMSE estimator (Wiener filter):

X̂ = E[X|Y] = mx + ΣxyΣ−1
y

(
Y − my

)

▶ MMSE decomposition:
X = X̂ + (X − X̂) = X̂ + V

where the MMSE estimator X̂ and the estimation error vector V are uncorrelated,
and therefore independent (in the Gaussian case), where we have

X̂ ∼ N (mx, ΣxyΣ−1
y Σyx), V ∼ N (0, Σx|y)
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Application to proper Gaussian random vectors

▶ If X and Y are proper jointly Gaussian, i.e.,
(

X
Y

)
∼ CN

([
mx
my

]
,
[

Σx Σxy
Σyx Σy

])

where

Σx = E[(X − mx)(X − mx)
H], Σy = E[(Y − my)(Y − my)

H]

Σxy = E[(X − mx)(Y − my)
H]

we define the MSE as

MSE = E[∥X − X̂∥2] = E[(X − X̂)H(X − X̂)]

▶ Result: all the derivations and results found before are still valid when replacing
“transpose” with “Hermitian transpose”.
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Gaussian signal in Gaussian noise

▶ Often we need to estimate a signal observed through a linear transformation H in
additive noise:

Y = HX + Z

where X ∼ CN (0, Σx) and Z = CN (0, Σz).
▶ In this case, we have

X̂ = ΣxHH
(

HΣxHH + Σz

)−1
Y

with estimation error covariance

Σx|y = Σx − ΣxHH
(

HΣxHH + Σz

)−1
HΣx
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Example: MMSE Multi-user Detection

▶ A Gaussian Multiple Access Channel can be represented as

Y =
K

∑
k=1

√
PkskXk + Z = SP1/2X + Z

where sk = (s1,k, . . . , sN,k)
T is the vector formed by the samples of user k

waveform, Pk is the received power of user k, Xk are information symbols from a
unit energy signal constellation (e.g., QAM), and Z ∼ CN (0, N0I).

▶ A linear detector for user k consists of a projection of Y onto a unit vector uk,
forming the scalar observation X̂k = uH

k Y.
▶ We define the Signal to Interference plus Noise Ratio (SINR) as

SINRk =

∣∣uH
k sk

∣∣2 Pk

N0 + ∑j ̸=k

∣∣∣uH
k sj

∣∣∣
2

Pj
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▶ It can be shown that the SINR is maximized over all linear detectors by choosing

uk = αk


N0I +

K

∑
j=1

Pjsjs
H
j




−1

sk

where αk is a normalization constant in order to have ∥uk∥ = 1.
▶ Notice that this SINR-maximizing detector is proportional to the MMSE estimator

of Xk given Y.
▶ The resulting maximum SINR can be compactly written as

SINRk = PksH
k


N0I + ∑

j ̸=k
Pjsjs

H
j




−1

sk.
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Thank you!

Thank you! Q & A?
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Exercises

Method of moments: Gamma distribution

Let X1, . . . , Xn
i.i.d.∼ Gamma(α, β), derive the corresponding MoM estimators α̂, β̂ for the

parameters α and β, and try to derive the bias-variance decomposition of their MSE.

Binary Signal in Gaussian noise

Consider X taking values in X = {+1,−1} with equal probability, and the observation

Y = hX + Z

where h ∈ R+ and Z ∼ N (0, σ2). Show that
▶ the linear MMSE estimator is given by X̂lin = h

h2+σ2 Y; and
▶ the optimal MMSE estimator is

X̂opt = tanh
(

hY
σ2

)
.
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Exercises

Method of moments: Gamma distribution

Let X1, . . . , Xn
i.i.d.∼ Gamma(α, β), derive the corresponding MoM estimators α̂, β̂ for the

parameters α and β, and try to derive the bias-variance decomposition of their MSE.

▶ For XGamma ∼ (α, β), we have

E[X] =
α

β
, E[X2] =

α2 + α

β2 . (13)

▶ This leads to the MoM estimators as

α̂ =, β̂ =, (14)

with corresponding bias and variance given by

E[α̂]− α =, E[α̂]− α =, Var[α̂] =, Var[β̂] = (15)

so that MSE as
E[(α̂ − α)2] =, E[(β̂ − β)2] =, (16)
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Exercises

Binary Signal in Gaussian noise

Consider X taking values in X = {+1,−1} with equal probability, and the observation

Y = hX + Z

where h ∈ R+ and Z ∼ N (0, σ2). Show that
▶ the linear MMSE estimator is given by X̂lin = h

h2+σ2 Y; and
▶ the optimal MMSE estimator is

X̂opt = tanh
(

hY
σ2

)
.

▶ for LMMSE, consider X̂lin = aY, and it suffices to determine α ∈ R that minimizes
E[(X − X̂)2] = E[X2 − 2XX̂ + X̂2] = E[X2]− 2aE[X(hX + Z)] + a2E[(hX + Z)2] =
1 − 2a(h + 0) + a2(h2 + σ2).

▶ This leads to a = h
h2+σ2 and thus the conclusion.

▶ To derive the optimal MMSE estimator, we use the conclusion that X̂opt = E[X|Y].
▶ For given Y, we have that X = Y−Z

h , for Z ∼ N (0, σ2),
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