Probability and Stochastic Processes II: Estimation

Zhenyu Liao

School of Electronic Information and Communications, HUST

May, 30, 2024

Z. Liao (EIC, HUST)

PSP II: Estimation

Outline

1 Parametric Models and Method of Moments

Estimating the parameters of a distribution

- A parametric model is a family of probability distributions that can be described by a finite number of parameters¹
 - the family of normal/Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$, with parameters μ and $\sigma^2 \ge 0$; and
 - the family of Bernoulli distribution Bern(p), with parameter p; and
 - the family of Gamma distribution Gamma(α , β), with parameters α and β .
- ▶ PDF/PMF { $f(x|\theta): \theta \in \Omega$ } for general **parameter model**, with **parameters** $\theta \in \mathbb{R}^k$, $\Omega \subset \mathbb{R}^k$ the **parameter space**
- Example: Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$, with $\theta = \begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix}$, $\Omega = \mathbb{R} \times \mathbb{R}_+$, and

$$f(x|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (1)

• Question: given observations $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} f(x|\theta)$, how can we estimate the **unknown** parameters θ and possibly quantify the quality of the proposed estimate?

¹If the number of parameters **increases** with the sample size, the "double asymptotic" regime in RMT.

Method of moments

• if θ is a single number, a simple idea to estimate θ is to "MATCH" the theoretical mean of $X \sim f(x|\theta)$ equals to the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1} X_i$

Poisson distribution

The Poisson distribution with parameter $\lambda > 0$ (denoted Poisson(λ)) is a discrete distribution over the non-negative integers {0, 1, . . .} having PMF

$$f(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}.$$
(2)

• if $X \sim \text{Poisson}(\lambda)$, we have $\mathbb{E}[X] = \lambda$, so a simple estimate of λ as

$$\hat{\lambda} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$
(3)

Method of moments

• if θ is a single number, a simple idea to estimate θ is to "MATCH" the theoretical mean of $X \sim f(x|\theta)$ equals to the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1} X_i$

Exponential distribution

The exponential distribution with parameter $\lambda > 0$ (denoted $\text{Exp}(\lambda)$) is a continuous distribution over \mathbb{R}_+ having PDF

$$f(x|\lambda) = \lambda e^{-\lambda x}.$$
(4)

• if $X \sim \text{Exp}(\lambda)$, we have $\mathbb{E}[X] = \frac{1}{\lambda}$, so a simple estimate of λ as

$$\hat{\lambda} = \frac{1}{\bar{X}} = \frac{1}{\frac{1}{n}\sum_{i=1}X_i}.$$
(5)

more generally, for X ~ f(x|θ) where θ contains k unknown parameters, the method of moments estimator proposes to consider the first k moments of the distribution of X,

$$\mu_1 = \mathbb{E}[X], \quad \mu_2 = \mathbb{E}[X^2], \quad \dots, \quad \mu_k = \mathbb{E}[X^k]. \tag{6}$$

leading to the following empirical estimates

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n X_i, \quad \hat{\mu}_2 = \frac{1}{n} \sum_{i=1}^n X_i^2, \quad \dots, \quad \hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k.$$
(7)

Method of moments: Gaussian distribution

Method of moments: Gaussian distribution

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, then $\mathbb{E}[X] = \mu$ and $\mathbb{E}[X^2] = \mu^2 + \sigma^2$. With the method of moments estimator, we write the empirical estimates

$$\hat{\mu} = \hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n X_i, \quad \hat{\mu}^2 + \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2.$$
(8)

Solving for the parameter estimates $\hat{\mu}$ and $\hat{\sigma}^2$, we get

$$\hat{\mu} = \bar{X}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$
 (9)

• Question: what can we say about these MoM estimators?

Answer: characterization via the mean-squared-error (MSE)

Bias, variance, and mean-squared-error

- any estimator $\hat{\theta} \equiv \hat{\theta}(X_1, \dots, X_n)$ is a statistics randomness from the data X_1, \dots, X_n
- for $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} f(x|\theta)$, measure the **quality** of the estimator $\hat{\theta}$ as
 - **bias** of $\hat{\theta}$ as $\mathbb{E}[\hat{\theta}] \theta$, the expectation taken with respect to the randomness in X_1, \ldots, X_n
 - the **standard error** of $\hat{\theta}$ is the standard deviation $\sqrt{\text{Var}[\hat{\theta}]}$
 - the mean-squared-error (MSE) of $\hat{\theta}$ given by $\mathbb{E}[(\hat{\theta} \theta)^2]$

Note that

$$\mathbb{E}[(\hat{\theta} - \theta)^2] = \operatorname{Var}[\hat{\theta}] + (\mathbb{E}[\hat{\theta}] - \theta)^2.$$
(10)

This is the bias-variance decomposition of MSE:

$$MSE = Variance + Bias^2.$$
(11)

MSE of MoM for Poisson distribution

Let $X_1, \ldots, X_n \sim \text{Poisson}(\lambda)$, the MoM estimator of λ is

$$\hat{\lambda} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i. \tag{12}$$

The bias-variance decomposition of MSE of $\hat{\lambda}$ can be derived as

► bias
$$\mathbb{E}[\hat{\lambda}] - \lambda = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[X_i] - \lambda = 0$$
: **unbiased!**

- ► variance $\operatorname{Var}[\hat{\lambda}] = \operatorname{Var}[\bar{X}] = \frac{1}{n^2} \sum_{i=1}^{n} \operatorname{Var}[X_i] = \frac{\lambda}{n}$: of vanishing variance (order $O(n^{-1})$)!
- So MSE $[\hat{\lambda}] = 0 + \frac{\lambda}{n} = \frac{\lambda}{n}$.

MMSE Estimation

- We observe some data y, which we assume to be produced as the realization of some RV Y.
- We have that Y is generated as a random transformation $X \mapsto Y$ of another RV X.
- The random transformation is described by a conditional PDF $p_{Y|X}$.
- ▶ *X* is distributed according to some known PDF *p*_{*X*} (i.e., the statistical modeling).
- ► Goal: find an estimator $\hat{X} = g(Y)$ such that $\mathbb{E}[||X \hat{X}||^2]$ is minimized.

Reminder on vector spaces

Definition

A vector space V over \mathbb{R} is a set of elements called *vectors* such that

• For all
$$\mathbf{v}, \mathbf{v}' \in V, \mathbf{v} + \mathbf{v}' \in V$$
.

- **2** \exists **0** \in *V* such that **v** + **0** = **v** for all **v** \in *V*.
- So For all $\mathbf{v} \in V$ there exists an opposite element $-\mathbf{v} \in V$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.
- **9** x**v** \in *V* for all **v** \in *V* and $x \in \mathbb{R}$.
- \mathbf{O} $\mathbf{0}$ $\mathbf{v} = \mathbf{0}$ for all $\mathbf{v} \in V$.
- **0** $1 \mathbf{v} = \mathbf{v} \text{ for all } \mathbf{v} \in V.$
- This implies that *V* is closed with respect to linear combinations with coefficients in \mathbb{R} .

Reminder on norms and normed vector spaces

Definition

A norm is a function $\|\cdot\|: V \to \mathbb{R}_+$ that satisfies the following properties:

$$1 $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$.$$

2
$$\|\mathbf{v} + \mathbf{u}\| \le \|\mathbf{v}\| + \|\mathbf{u}\|$$
 (triangle inequality).

And a normed vector space is a vector space *V* with a norm $\|\cdot\|$.

Notice: a norm is a "distance" function.

▶ For example, one can check that the norm defined as

$$\|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^n v_i^2}$$

where V = ℝⁿ is the standard Euclidean *n*-dimensional vector space over ℝ, defines a distance in the usual sense (length of the vector joining two points in ℝⁿ).
Let v, u ∈ ℝⁿ, then

$$\|\mathbf{v} - \mathbf{u}\|_2 = \sqrt{\sum_{i=1}^{n} (v_i - u_i)^2}$$

is the Euclidean distance between the points (vectors) ${\bf v}$ and ${\bf u}.$

Z. Liao (EIC, HUST)

PSP II: Estimation

Definition

Given a vector space *V* over \mathbb{R} , an inner product is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ with the following properties:

•
$$\langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$$
 (symmetry).

- **2** $\langle x\mathbf{v}, \mathbf{u} \rangle = x \langle \mathbf{v}, \mathbf{u} \rangle$, for all $\mathbf{v}, \mathbf{u} \in V$ and $x \in \mathbb{R}$ (scaling).
- **(a)** $\langle \mathbf{v}_1 + \mathbf{v}_2, \mathbf{u} \rangle = \langle \mathbf{v}_1, \mathbf{u} \rangle + \langle \mathbf{v}_2, \mathbf{u} \rangle$ (linearity).
- **(** $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$, with equality if and only if $\mathbf{v} = \mathbf{0}$.

A vector space with an inner product is called inner product space.

Theorem (Cauchy-Schwarz inequality)

$$\langle \mathbf{v}, \mathbf{u} \rangle^2 \leq \langle \mathbf{v}, \mathbf{v} \rangle \langle \mathbf{u}, \mathbf{u} \rangle$$

with equality if and only if $a\mathbf{v} = b\mathbf{u}$, with $a, b \in \mathbb{R}$ not both zero.

Theorem (2-norm)

Let V be an inner product space. Then, the following is a norm (called 2-norm, or standard Euclidean norm):

$$\|\mathbf{v}\|_2 = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Least Squares approximation

- ▶ Let be x a point (vector) in some vector space V over ℝ and let y₁,..., y_m be a given collection of vectors:
 we wish to find the "best" approximation of x by a linear combination of the vectors {y_i}.
- We have to give a rigorous meaning to the term "best": if V is an inner product space, we shall consider the minimum distance approximation, that is, we look for

$$\widehat{\mathbf{x}} = \sum_{i=1}^m a_i \mathbf{y}_i$$

such that

$$\|\mathbf{x} - \widehat{\mathbf{x}}\|_2^2 = \langle \mathbf{x} - \widehat{\mathbf{x}}, \mathbf{x} - \widehat{\mathbf{x}} \rangle$$

is minimum.

 This approximation is called (linear) "Least-Squares" (some people call it "linear regression").

LS Solution

• A brute-force approach: we can write, for $\mathbf{a} \in \mathbb{R}^m$,

$$\begin{aligned} \|\mathbf{x} - \widehat{\mathbf{x}}\|_{2}^{2} &= \|\mathbf{x}\|_{2}^{2} - 2\langle \mathbf{x}, \widehat{\mathbf{x}} \rangle + \|\widehat{\mathbf{x}}\|_{2}^{2} \\ &= \|\mathbf{x}\|_{2}^{2} - 2\sum_{i=1}^{m} \langle \mathbf{x}, \mathbf{y}_{i} \rangle a_{i} + \sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} \langle \mathbf{y}_{i}, \mathbf{y}_{j} \rangle a_{j} \\ &= \|\mathbf{x}\|_{2}^{2} - 2\mathbf{r}_{xy}^{\mathsf{T}} \mathbf{a} + \mathbf{a}^{\mathsf{T}} \mathbf{G}_{y} \mathbf{a} \end{aligned}$$

where we define the "cross-correlation vector"

$$\mathbf{r}_{xy} = \left[\langle \mathbf{x}, \mathbf{y}_1 \rangle, \dots, \langle \mathbf{x}, \mathbf{y}_m \rangle \right]^\mathsf{T}$$

and the matrix of inner products (Gram matrix)

$$\mathbf{G}_{y} = \begin{bmatrix} \langle \mathbf{y}_{1}, \mathbf{y}_{1} \rangle & \langle \mathbf{y}_{1}, \mathbf{y}_{2} \rangle & \cdots & \langle \mathbf{y}_{1}, \mathbf{y}_{m} \rangle \\ \langle \mathbf{y}_{2}, \mathbf{y}_{1} \rangle & \langle \mathbf{y}_{2}, \mathbf{y}_{2} \rangle & \vdots \\ \vdots \\ \langle \mathbf{y}_{m}, \mathbf{y}_{1} \rangle & \langle \mathbf{y}_{m}, \mathbf{y}_{2} \rangle & \cdots & \langle \mathbf{y}_{m}, \mathbf{y}_{m} \rangle \end{bmatrix}$$

Notice: this is true independent of the "dimension" of the vector space V!

- Notice that $\mathbf{G}_y \in \mathbb{R}^{m \times m}$ is symmetric and positive semi-definite (WHY?).
- Taking the gradient of the distance function with respect to a, we obtain the equation

$$\mathbf{G}_{y}\mathbf{a}=\mathbf{r}_{xy}$$

- Assuming for simplicity that \mathbf{G}_y is invertible (otherwise, we can eliminate some linearly dependent \mathbf{y}_i and obtain the same subspace), we obtain $\mathbf{a} = \mathbf{G}_y^{-1} \mathbf{r}_{xy}$.
- This leads to the solution $\hat{\mathbf{x}} = \begin{bmatrix} \mathbf{y}_1 & \dots & \mathbf{y}_m \end{bmatrix} \mathbf{a}$, is this the minimal $\|\mathbf{x} \hat{\mathbf{x}}\|$? If yes, WHY?
- OBSERVATION: notice that the solution $\hat{\mathbf{x}}$ satisfies the following orthogonality condition:

$$\langle \mathbf{x} - \widehat{\mathbf{x}}, \mathbf{y}_i \rangle = 0, \quad \forall \ i = 1, \dots, m$$

How to prove this?

- ▶ The space of zero-mean finite covariance RVs forms a vector space.
- Inner product:

$$\langle X, Y \rangle = \mathbb{E}[XY]$$

Induced 2-norm:

$$\|X\|_2 = \sqrt{\mathbb{E}[|X|^2]}$$

▶ In this vector space, distance is expressed by the MSE

$$||X - Y||_2^2 = \mathbb{E}[|X - Y|^2]$$

Generalization to Random Vectors

▶ For zero-mean finite covariance random vectors, we can combine the standard inner product in ℝⁿ with what defined before:

$$\langle \mathbf{X}, \mathbf{Y} \rangle = \mathbb{E}[\mathbf{X}^{\mathsf{T}}\mathbf{Y}] = \sum_{i=1}^{n} \mathbb{E}[X_i Y_i]$$

The induced 2-norm is given by

$$\sqrt{(\mathbf{X}, \mathbf{X})} = \sqrt{\mathbb{E}\left[\mathbf{X}^{\mathsf{T}} \mathbf{X}\right]} = \sqrt{\operatorname{tr}\left(\mathbb{E}\left[\mathbf{X} \mathbf{X}^{\mathsf{T}}\right]\right)} = \sqrt{\operatorname{tr}(\boldsymbol{\Sigma}_{x})}$$

Then, the MSE for the vector case is given by

$$\mathsf{MSE} = \mathbb{E}\left[\|\mathbf{X} - \mathbf{Y}\|^2\right] = \sum_{i=1}^n \mathbb{E}[|X_i - Y_i|^2] = \mathrm{tr}\left(\mathrm{Cov}(\mathbf{X} - \mathbf{Y})\right)$$

A remark about notation

- Unfortunately, the same symbol $\|\cdot\|_2$ takes on different meanings depending on the inner product space it is referred to.
- In our case, for all ω ∈ Ω, X(ω) is an element of ℝⁿ, but when defining the vector space V of finite-dimensional random vectors with mean zero and finite per-component variance, we need to be careful!

We shall use

$$\|\mathbf{X}\|^2 = \sum_{i=1}^n |X_i|^2$$

to denote the standard squared 2-norm in \mathbb{R}^n . Since **X** is a random vector, $\|\mathbf{X}\|^2$ is a random variable.

Instead, we use

$$\|{\bf X}\|_2^2 = \mathbb{E}[\|{\bf X}\|^2]$$

to denote the squared norm in V. This is a non-random quantity (expectation).

- We have two jointly distributed random vectors $\mathbf{X} \in \mathbb{R}^n$ and $\mathbf{Y} \in \mathbb{R}^m$.
- We observe **Y** and we with to "guess" the value of **X** by some estimator $\hat{\mathbf{X}} = g(\mathbf{Y})$ in order to minimize the Mean-Square-Error sense:

$$\mathsf{MSE} = \mathbb{E}\left[\|\mathbf{X} - \widehat{\mathbf{X}}\|^2
ight]$$

For now, we seek an estimator $\hat{\mathbf{X}}$ in the form of a **linear** function of the observation \mathbf{Y} , that is,

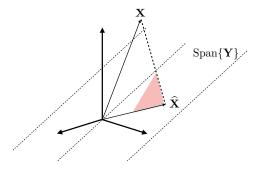
$$\widehat{\mathbf{X}} = \mathbf{A}\mathbf{Y}$$

Orthogonality principle

- The approximation error $\mathbf{X} \hat{\mathbf{X}}$ must be orthogonal with respect to the space of linear functions of \mathbf{Y} .
- This means that for any matrix $\mathbf{B} \in \mathbb{C}^{n \times m}$ is must be:

$$\mathbb{E}[(\mathbf{X} - \widehat{\mathbf{X}})^{\mathsf{T}} \mathbf{B} \mathbf{Y}] = 0$$

for all linear functions **BY** of the observation.



The orthogonality principle yields the condition

$$\langle \mathbf{X} - \widehat{\mathbf{X}}, \mathbf{B}\mathbf{Y} \rangle = \mathbb{E}\left[(\mathbf{X} - \widehat{\mathbf{X}})^{\mathsf{T}} \mathbf{B}\mathbf{Y} \right] = \operatorname{tr}\left(\mathbb{E}\left[\mathbf{B}\mathbf{Y} (\mathbf{X} - \widehat{\mathbf{X}})^{\mathsf{T}} \right] \right) = 0$$

for all $\mathbf{B} \in \mathbb{R}^{n \times m}$.

• In turns, by replacing $\hat{\mathbf{X}} = \mathbf{A}\mathbf{Y}$, we find the condition that, for all **B**, it must be

$$\operatorname{tr}\left(\mathbf{B}\left(\mathbb{E}\left[\mathbf{Y}\mathbf{X}^{\mathsf{T}}\right] - \mathbb{E}\left[\mathbf{Y}\mathbf{Y}^{\mathsf{T}}\right]\mathbf{A}^{\mathsf{T}}\right)\right) = 0$$

This yields the equation

 $\mathbf{A}\mathbb{E}\left[\mathbf{Y}\mathbf{Y}^\mathsf{T}\right] = \mathbb{E}[\mathbf{X}\mathbf{Y}^\mathsf{T}]$

LMMSE estimator

Solving for A (under the assumption that the covariance E [YY^T] is strictly positive definite), we find:

$$\mathbf{A}\mathbb{E}\left[\mathbf{Y}\mathbf{Y}^{\mathsf{T}}\right] = \mathbb{E}\left[\mathbf{X}\mathbf{Y}^{\mathsf{T}}\right] \; \Rightarrow \; \mathbf{A} = \mathbb{E}\left[\mathbf{X}\mathbf{Y}^{\mathsf{T}}\right]\left(\mathbb{E}\left[\mathbf{Y}\mathbf{Y}^{\mathsf{T}}\right]\right)^{-1}$$

In the general case of non-zero mean vectors, we define the centralized RVs $X_0 = X - m_x$ and $Y_0 = Y - m_y$, and notice that \hat{X} is the LMMSE estimator for X if and only if $\hat{X}_0 = \hat{X} - m_x$ is the LMMSE estimator for X₀:

$$\mathbb{E}\Big[\|\mathbf{X} - \widehat{\mathbf{X}}\|^2\Big] = \mathbb{E}\Big[\|\mathbf{X}_0 - \underbrace{(\widehat{\mathbf{X}} - \mathbf{m}_x)}_{\widehat{\mathbf{X}}_0}\|^2\Big]$$

Furthermore, $\hat{\mathbf{X}}_0$ must be a (linear) function of $\hat{\mathbf{Y}}_0$, since \mathbf{m}_y is just an (arbitrary) constant.

Letting

$$\begin{split} \boldsymbol{\Sigma}_{xy} &= \quad \operatorname{Cov}(\boldsymbol{X},\boldsymbol{Y}) = \mathbb{E}[(\boldsymbol{X} - \boldsymbol{m}_x)(\boldsymbol{Y} - \boldsymbol{m}_y)^\mathsf{T}] \\ \boldsymbol{\Sigma}_y &= \quad \operatorname{Cov}(\boldsymbol{Y}) = \mathbb{E}[(\boldsymbol{Y} - \boldsymbol{m}_y)(\boldsymbol{Y} - \boldsymbol{m}_y)^\mathsf{T}] \end{split}$$

we obtain

$$\widehat{\mathbf{X}}_0 = \mathbf{\Sigma}_{xy} \mathbf{\Sigma}_y^{-1} \mathbf{Y}_0$$

and for the non-zero mean case

$$\widehat{\mathbf{X}} = \mathbf{m}_x + \widehat{\mathbf{X}}_0 = \mathbf{m}_x + \mathbf{\Sigma}_{xy} \mathbf{\Sigma}_y^{-1} \left(\mathbf{Y} - \mathbf{m}_y \right)$$

The MMSE covariance matrix is given by

$$\operatorname{Cov}(\mathbf{X} - \widehat{\mathbf{X}}) = \mathbf{\Sigma}_x - \mathbf{\Sigma}_{xy} \mathbf{\Sigma}_y^{-1} \mathbf{\Sigma}_{xy}^{\mathsf{T}}$$

- ► The resulting MMSE, is given by $\mathbb{E}[\|\mathbf{X} \widehat{\mathbf{X}}\|^2] = tr(Cov(\mathbf{X} \widehat{\mathbf{X}})).$
- Notice: The estimation error vector $\mathbf{X} \hat{\mathbf{X}}$ is uncorrelated with any linear function of the observation vector \mathbf{Y} .

With the same setting as before, we now seek an estimator $\hat{\mathbf{X}} = g^*(\mathbf{Y})$, in the space of all (measurable, so **not** necessarily linear) functions of the observation \mathbf{Y} .

Theorem

The MMSE estimator of **X** given **Y** is the conditional mean

 $\widehat{\mathbf{X}} = g^*(\mathbf{Y}) = \mathbb{E}[\mathbf{X}|\mathbf{Y}]$

Proof

We use the orthogonality principle: the optimal estimator $\hat{\mathbf{X}}$ must satisfy

$$\mathbb{E}\left[(\mathbf{X} - \widehat{\mathbf{X}})^{\mathsf{T}} g(\mathbf{Y}) \right] = 0, \text{ for all functions } g$$

Letting $\widehat{\mathbf{X}} = \mathbb{E}[\mathbf{X}|\mathbf{Y}]$ and using the iterated expectation theorem², we find:

$$\mathbb{E}\left[(\mathbf{X} - \mathbb{E}[\mathbf{X}|\mathbf{Y}])^{\mathsf{T}}g(\mathbf{Y}) \right] = \mathbb{E}\left[\mathbb{E}\left[(\mathbf{X} - \mathbb{E}[\mathbf{X}|\mathbf{Y}])^{\mathsf{T}}g(\mathbf{Y})|\mathbf{Y} \right] \right]$$
$$= \mathbb{E}\left[\mathbb{E}\left[\mathbf{X}^{\mathsf{T}}g(\mathbf{Y})|\mathbf{Y} \right] - \mathbb{E}[\mathbf{X}|\mathbf{Y}]^{\mathsf{T}}g(\mathbf{Y}) \right]$$
$$= \mathbb{E}\left[\mathbb{E}\left[\mathbf{X}|\mathbf{Y}]^{\mathsf{T}}g(\mathbf{Y}) - \mathbb{E}[\mathbf{X}|\mathbf{Y}]^{\mathsf{T}}g(\mathbf{Y}) \right]$$
$$= 0$$

${}^{2}\mathbb{E}[f(X,Y)] =$	$= \mathbb{E}[\mathbb{E}[f(X,$	Y)[Y]].
------------------------------	--------------------------------	---------

Z. Liao (EIC, HUST)

Reminder on Conditional Gaussian distribution

- Consider a random vector with n + m components, denoted for simplicity by (\mathbf{X}, \mathbf{Y}) .
- A very important problem in statistics is to find the conditional distribution of a group of components given the other group. Without loss of generality, we are interested in the conditional distribution of X given Y.

• In particular, suppose that $(X, Y) \sim \mathcal{N}(\mathbf{m}, \Sigma)$, with

$$\mathbf{m} = \left[\begin{array}{cc} \mathbf{m}_{x} \\ \mathbf{m}_{y} \end{array} \right], \quad \mathbf{\Sigma} = \left[\begin{array}{cc} \mathbf{\Sigma}_{x} & \mathbf{\Sigma}_{xy} \\ \mathbf{\Sigma}_{yx} & \mathbf{\Sigma}_{y} \end{array} \right]$$

with $\mathbf{m}_x = \mathbb{E}[\mathbf{X}], \mathbf{m}_y = \mathbb{E}[\mathbf{Y}], \mathbf{\Sigma}_x = \operatorname{cov}(\mathbf{X}), \mathbf{\Sigma}_y = \operatorname{cov}(\mathbf{Y})$ and

$$\Sigma_{xy} = \operatorname{cov}(\mathbf{X}, \mathbf{Y}) = \mathbb{E}\left[(\mathbf{X} - \mathbf{m}_x)(\mathbf{Y} - \mathbf{m}_y)^{\mathsf{T}} \right]$$

with $\Sigma_{yx} = \Sigma_{xy}^{\mathsf{T}}$.

Reminder on Conditional Gaussian distribution

With the notation defined before,

$$f_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{\Sigma}_{x|y})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m}_{x|y})^\mathsf{T} \mathbf{\Sigma}_{x|y}^{-1}(\mathbf{x} - \mathbf{m}_{x|y})\right)$$

where the conditional mean value is given by

$$\mathbf{m}_{x|y} = \mathbb{E}[\mathbf{X}|\mathbf{Y} = \mathbf{y}] = \mathbf{m}_x + \mathbf{\Sigma}_{xy}\mathbf{\Sigma}_y^{-1} \left(\mathbf{y} - \mathbf{m}_y\right)$$

and the conditional covariance matrix is given by

$$\boldsymbol{\Sigma}_{x|y} = \mathbb{E}[(\mathbf{X} - \mathbf{m}_{x|y})(\mathbf{X} - \mathbf{m}_{x|y})^{\mathsf{T}} | \mathbf{Y} = \mathbf{y}] = \boldsymbol{\Sigma}_{x} - \boldsymbol{\Sigma}_{xy} \boldsymbol{\Sigma}_{y}^{-1} \boldsymbol{\Sigma}_{yx}$$

Notice: given jointly Gaussian X, Y, X given Y is Gaussian, with conditional mean affine function of Y and conditional covariance constant with Y.

MMSE estimation for Gaussian vectors

- If X, Y are jointly Gaussian, then the linear MMSE estimator and the optimal MMSE estimator coincide.
- In order to see this, recall

$$f_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{\Sigma}_{x|y})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m}_{x|y})^\mathsf{T} \mathbf{\Sigma}_{x|y}^{-1}(\mathbf{x} - \mathbf{m}_{x|y})\right)$$

where the conditional mean value is given by

$$\mathbf{m}_{x|y} = \mathbb{E}[\mathbf{X}|\mathbf{Y} = \mathbf{y}] = \mathbf{m}_x + \mathbf{\Sigma}_{xy}\mathbf{\Sigma}_y^{-1}(\mathbf{y} - \mathbf{m}_y)$$

and the conditional covariance matrix is given by

$$\boldsymbol{\Sigma}_{x|y} = \mathbb{E}[(\mathbf{X} - \mathbf{m}_{x|y})(\mathbf{X} - \mathbf{m}_{x|y})^{\mathsf{T}} | \mathbf{Y} = \mathbf{y}] = \boldsymbol{\Sigma}_{x} - \boldsymbol{\Sigma}_{xy} \boldsymbol{\Sigma}_{y}^{-1} \boldsymbol{\Sigma}_{yx}$$

Hence, in the Gaussian case, the (general) MMSE estimator of X given Y coincides with the LMMSE estimator (Wiener filter):

$$\widehat{\mathbf{X}} = \mathbb{E}[\mathbf{X}|\mathbf{Y}] = \mathbf{m}_x + \mathbf{\Sigma}_{xy}\mathbf{\Sigma}_y^{-1}\left(\mathbf{Y} - \mathbf{m}_y\right)$$

MMSE decomposition:

$$\mathbf{X} = \widehat{\mathbf{X}} + (\mathbf{X} - \widehat{\mathbf{X}}) = \widehat{\mathbf{X}} + \mathbf{V}$$

where the MMSE estimator $\hat{\mathbf{X}}$ and the estimation error vector \mathbf{V} are uncorrelated, and therefore independent (in the Gaussian case), where we have

$$\widehat{\mathbf{X}} \sim \mathcal{N}(\mathbf{m}_x, \mathbf{\Sigma}_{xy}\mathbf{\Sigma}_y^{-1}\mathbf{\Sigma}_{yx}), \quad \mathbf{V} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{x|y})$$

Application to proper Gaussian random vectors

If X and Y are proper jointly Gaussian, i.e.,

$$\left(\begin{array}{c} \mathbf{X} \\ \mathbf{Y} \end{array}\right) \sim \mathcal{CN}\left(\left[\begin{array}{c} \mathbf{m}_{x} \\ \mathbf{m}_{y} \end{array}\right], \left[\begin{array}{cc} \mathbf{\Sigma}_{x} & \mathbf{\Sigma}_{xy} \\ \mathbf{\Sigma}_{yx} & \mathbf{\Sigma}_{y} \end{array}\right]\right)$$

where

$$\begin{split} \boldsymbol{\Sigma}_{x} &= \mathbb{E}[(\mathbf{X} - \mathbf{m}_{x})(\mathbf{X} - \mathbf{m}_{x})^{\mathsf{H}}], \quad \boldsymbol{\Sigma}_{y} = \mathbb{E}[(\mathbf{Y} - \mathbf{m}_{y})(\mathbf{Y} - \mathbf{m}_{y})^{\mathsf{H}}]\\ \boldsymbol{\Sigma}_{xy} &= \mathbb{E}[(\mathbf{X} - \mathbf{m}_{x})(\mathbf{Y} - \mathbf{m}_{y})^{\mathsf{H}}] \end{split}$$

we define the MSE as

$$\mathsf{MSE} = \mathbb{E}[\|\boldsymbol{X} - \widehat{\boldsymbol{X}}\|^2] = \mathbb{E}[(\boldsymbol{X} - \widehat{\boldsymbol{X}})^\mathsf{H}(\boldsymbol{X} - \widehat{\boldsymbol{X}})]$$

Result: all the derivations and results found before are still valid when replacing "transpose" with "Hermitian transpose".

Gaussian signal in Gaussian noise

Often we need to estimate a signal observed through a linear transformation H in additive noise:

$$\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{Z}$$

where
$$\mathbf{X} \sim \mathcal{CN}(\mathbf{0}, \mathbf{\Sigma}_x)$$
 and $\mathbf{Z} = \mathcal{CN}(\mathbf{0}, \mathbf{\Sigma}_z)$.

In this case, we have

$$\widehat{\mathbf{X}} = \mathbf{\Sigma}_{x} \mathbf{H}^{\mathsf{H}} \left(\mathbf{H} \mathbf{\Sigma}_{x} \mathbf{H}^{\mathsf{H}} + \mathbf{\Sigma}_{z} \right)^{-1} \mathbf{Y}$$

a

with estimation error covariance

$$\boldsymbol{\Sigma}_{x|y} = \boldsymbol{\Sigma}_{x} - \boldsymbol{\Sigma}_{x} \mathbf{H}^{\mathsf{H}} \left(\mathbf{H} \boldsymbol{\Sigma}_{x} \mathbf{H}^{\mathsf{H}} + \boldsymbol{\Sigma}_{z} \right)^{-1} \mathbf{H} \boldsymbol{\Sigma}_{x}$$

Example: MMSE Multi-user Detection

A Gaussian Multiple Access Channel can be represented as

$$\mathbf{Y} = \sum_{k=1}^{K} \sqrt{P_k} \mathbf{s}_k X_k + \mathbf{Z} = \mathbf{S} \mathbf{P}^{1/2} \mathbf{X} + \mathbf{Z}$$

where $\mathbf{s}_k = (s_{1,k}, \dots, s_{N,k})^\mathsf{T}$ is the vector formed by the samples of user k waveform, P_k is the received power of user k, X_k are information symbols from a unit energy signal constellation (e.g., QAM), and $\mathbf{Z} \sim \mathcal{CN}(\mathbf{0}, N_0 \mathbf{I})$.

- A linear detector for user k consists of a projection of Y onto a unit vector u_k, forming the scalar observation X_k = u_k^HY.
- We define the Signal to Interference plus Noise Ratio (SINR) as

$$\mathrm{SINR}_{k} = \frac{\left|\mathbf{u}_{k}^{\mathsf{H}}\mathbf{s}_{k}\right|^{2} P_{k}}{N_{0} + \sum_{j \neq k} \left|\mathbf{u}_{k}^{\mathsf{H}}\mathbf{s}_{j}\right|^{2} P_{j}}$$

It can be shown that the SINR is maximized over all linear detectors by choosing

$$\mathbf{u}_k = lpha_k \left(N_0 \mathbf{I} + \sum_{j=1}^K P_j \mathbf{s}_j \mathbf{s}_j^{\mathsf{H}}
ight)^{-1} \mathbf{s}_k$$

where α_k is a normalization constant in order to have $\|\mathbf{u}_k\| = 1$.

- Notice that this SINR-maximizing detector is proportional to the MMSE estimator of X_k given Y.
- The resulting maximum SINR can be compactly written as

$$\mathrm{SINR}_{k} = P_{k}\mathbf{s}_{k}^{\mathsf{H}}\left(N_{0}\mathbf{I} + \sum_{j \neq k} P_{j}\mathbf{s}_{j}\mathbf{s}_{j}^{\mathsf{H}}\right)^{-1}\mathbf{s}_{k}.$$

Thank you! Q & A?

Exercises

Method of moments: Gamma distribution

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim}$ Gamma(α, β), derive the corresponding MoM estimators $\hat{\alpha}, \hat{\beta}$ for the parameters α and β , and **try** to derive the bias-variance decomposition of their MSE.

Binary Signal in Gaussian noise

Consider *X* taking values in $\mathcal{X} = \{+1, -1\}$ with equal probability, and the observation

$$Y = hX + Z$$

where $h \in \mathbb{R}_+$ and $Z \sim \mathcal{N}(0, \sigma^2)$. Show that

- the linear MMSE estimator is given by $\hat{X}_{\text{lin}} = \frac{h}{h^2 + \sigma^2} Y$; and
- the optimal MMSE estimator is

$$\widehat{X}_{\text{opt}} = \tanh\left(\frac{hY}{\sigma^2}\right).$$

Exercises

Method of moments: Gamma distribution

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim}$ Gamma(α, β), derive the corresponding MoM estimators $\hat{\alpha}, \hat{\beta}$ for the parameters α and β , and **try** to derive the bias-variance decomposition of their MSE.

For XGamma $\sim (\alpha, \beta)$, we have

$$\mathbb{E}[X] = \frac{\alpha}{\beta}, \quad \mathbb{E}[X^2] = \frac{\alpha^2 + \alpha}{\beta^2}.$$
 (13)

This leads to the MoM estimators as

$$\hat{\alpha} =, \quad \hat{\beta} =, \tag{14}$$

with corresponding bias and variance given by

$$\mathbb{E}[\hat{\alpha}] - \alpha =, \quad \mathbb{E}[\hat{\alpha}] - \alpha =, \quad \operatorname{Var}[\hat{\alpha}] =, \quad \operatorname{Var}[\hat{\beta}] =$$
(15)

so that MSE as

$$\mathbb{E}[(\hat{\alpha} - \alpha)^2] =, \quad \mathbb{E}[(\hat{\beta} - \beta)^2] =, \tag{16}$$

Exercises

Binary Signal in Gaussian noise

Consider X taking values in $\mathcal{X} = \{+1, -1\}$ with equal probability, and the observation

$$Y = hX + Z$$

where $h \in \mathbb{R}_+$ and $Z \sim \mathcal{N}(0, \sigma^2)$. Show that

- the linear MMSE estimator is given by $\hat{X}_{\text{lin}} = \frac{h}{h^2 + \sigma^2} Y$; and
- the optimal MMSE estimator is

$$\widehat{X}_{\text{opt}} = \tanh\left(\frac{hY}{\sigma^2}\right)$$

- ► for LMMSE, consider $\widehat{X}_{\text{lin}} = aY$, and it suffices to determine $\alpha \in \mathbb{R}$ that minimizes $\mathbb{E}[(X \widehat{X})^2] = \mathbb{E}[X^2 2X\widehat{X} + \widehat{X}^2] = \mathbb{E}[X^2] 2a\mathbb{E}[X(hX + Z)] + a^2\mathbb{E}[(hX + Z)^2] = 1 2a(h+0) + a^2(h^2 + \sigma^2).$
- This leads to $a = \frac{h}{h^2 + \sigma^2}$ and thus the conclusion.
- To derive the optimal MMSE estimator, we use the conclusion that $\widehat{X}_{opt} = \mathbb{E}[X|Y]$.
- ► For given *Y*, we have that $X = \frac{Y-Z}{h}$, for $Z \sim \mathcal{N}(0, \sigma^2)$,

42 / 42