Probability and Stochastic Processes II: Estimation

Zhenyu Liao

School of Electronic Information and Communications, HUST
May, 30, 2024

Outline

(1) Parametric Models and Method of Moments
(2) MMSE Estimation

Estimating the parameters of a distribution

- A parametric model is a family of probability distributions that can be described by a finite number of parameters ${ }^{1}$
- the family of normal/Gaussian distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$, with parameters μ and $\sigma^{2} \geq 0$; and
- the family of Bernoulli distribution $\operatorname{Bern}(p)$, with parameter p; and
- the family of Gamma distribution $\operatorname{Gamma}(\alpha, \beta)$, with parameters α and β.
- PDF/PMF $\{f(x \mid \theta): \theta \in \Omega\}$ for general parameter model, with parameters $\theta \in \mathbb{R}^{k}$, $\Omega \subset \mathbb{R}^{k}$ the parameter space
- Example: Gaussian distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$, with $\theta=\binom{\mu}{\sigma^{2}}, \Omega=\mathbb{R} \times \mathbb{R}_{+}$, and

$$
\begin{equation*}
f(x \mid \theta)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{1}
\end{equation*}
$$

- Question: given observations $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} f(x \mid \theta)$, how can we estimate the unknown parameters θ and possibly quantify the quality of the proposed estimate?

[^0]
Method of moments

- if θ is a single number, a simple idea to estimate θ is to "MATCH" the theoretical mean of $X \sim f(x \mid \theta)$ equals to the sample mean $\bar{X}=\frac{1}{n} \sum_{i=1} X_{i}$

Poisson distribution

The Poisson distribution with parameter $\lambda>0$ (denoted Poisson (λ)) is a discrete distribution over the non-negative integers $\{0,1, \ldots\}$ having PMF

$$
\begin{equation*}
f(x \mid \lambda)=\frac{e^{-\lambda} \lambda^{x}}{x!} \tag{2}
\end{equation*}
$$

- if $X \sim \operatorname{Poisson}(\lambda)$, we have $\mathbb{E}[X]=\lambda$, so a simple estimate of λ as

$$
\begin{equation*}
\hat{\lambda}=\bar{X}=\frac{1}{n} \sum_{i=1} X_{i} \tag{3}
\end{equation*}
$$

Method of moments

- if θ is a single number, a simple idea to estimate θ is to "MATCH" the theoretical mean of $X \sim f(x \mid \theta)$ equals to the sample mean $\bar{X}=\frac{1}{n} \sum_{i=1} X_{i}$

Exponential distribution

The exponential distribution with parameter $\lambda>0$ (denoted $\operatorname{Exp}(\lambda))$ is a continuous distribution over \mathbb{R}_{+}having PDF

$$
\begin{equation*}
f(x \mid \lambda)=\lambda e^{-\lambda x} \tag{4}
\end{equation*}
$$

- if $X \sim \operatorname{Exp}(\lambda)$, we have $\mathbb{E}[X]=\frac{1}{\lambda}$, so a simple estimate of λ as

$$
\begin{equation*}
\hat{\lambda}=\frac{1}{\bar{X}}=\frac{1}{\frac{1}{n} \sum_{i=1} X_{i}} \tag{5}
\end{equation*}
$$

Method of moments

- more generally, for $X \sim f(x \mid \theta)$ where θ contains k unknown parameters, the method of moments estimator proposes to consider the first k moments of the distribution of X,

$$
\begin{equation*}
\mu_{1}=\mathbb{E}[X], \quad \mu_{2}=\mathbb{E}\left[X^{2}\right], \quad \ldots, \quad \mu_{k}=\mathbb{E}\left[X^{k}\right] . \tag{6}
\end{equation*}
$$

- leading to the following empirical estimates

$$
\begin{equation*}
\hat{\mu}_{1}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \hat{\mu}_{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}, \quad \ldots, \quad \hat{\mu}_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} . \tag{7}
\end{equation*}
$$

Method of moments: Gaussian distribution

Method of moments: Gaussian distribution

Let $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\mathbb{E}[X]=\mu$ and $\mathbb{E}\left[X^{2}\right]=\mu^{2}+\sigma^{2}$. With the method of moments estimator, we write the empirical estimates

$$
\begin{equation*}
\hat{\mu}=\hat{\mu}_{1}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \hat{\mu}^{2}+\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} . \tag{8}
\end{equation*}
$$

Solving for the parameter estimates $\hat{\mu}$ and $\hat{\sigma}^{2}$, we get

$$
\begin{equation*}
\hat{\mu}=\bar{X}, \quad \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} . \tag{9}
\end{equation*}
$$

- Question: what can we say about these MoM estimators?
- Answer: characterization via the mean-squared-error (MSE)

Bias, variance, and mean-squared-error

- any estimator $\hat{\theta} \equiv \hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ is a statistics - randomness from the data X_{1}, \ldots, X_{n}
- for $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} f(x \mid \theta)$, measure the quality of the estimator $\hat{\theta}$ as
- bias of $\hat{\theta}$ as $\mathbb{E}[\hat{\theta}]-\theta$, the expectation taken with respect to the randomness in X_{1}, \ldots, X_{n}
- the standard error of $\hat{\theta}$ is the standard deviation $\sqrt{\operatorname{Var}[\hat{\theta}]}$
- the mean-squared-error (MSE) of $\hat{\theta}$ given by $\mathbb{E}\left[(\hat{\theta}-\theta)^{2}\right]$
- Note that

$$
\begin{equation*}
\mathbb{E}\left[(\hat{\theta}-\theta)^{2}\right]=\operatorname{Var}[\hat{\theta}]+(\mathbb{E}[\hat{\theta}]-\theta)^{2} \tag{10}
\end{equation*}
$$

- This is the bias-variance decomposition of MSE:

$$
\begin{equation*}
\text { MSE }=\text { Variance }+ \text { Bias }^{2} \tag{11}
\end{equation*}
$$

Example: MSE of MoM for Poisson distribution

MSE of MoM for Poisson distribution

Let $X_{1}, \ldots, X_{n} \sim \operatorname{Poisson}(\lambda)$, the MoM estimator of λ is

$$
\begin{equation*}
\hat{\lambda}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} . \tag{12}
\end{equation*}
$$

The bias-variance decomposition of MSE of $\hat{\lambda}$ can be derived as

- bias $\mathbb{E}[\hat{\lambda}]-\lambda=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]-\lambda=0$: unbiased!
- variance $\operatorname{Var}[\hat{\lambda}]=\operatorname{Var}[\bar{X}]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]=\frac{\lambda}{n}$: of vanishing variance (order $O\left(n^{-1}\right)$)!
- $\operatorname{SoMSE}[\hat{\lambda}]=0+\frac{\lambda}{n}=\frac{\lambda}{n}$.

MMSE Estimation

- We observe some data y, which we assume to be produced as the realization of some RV Y.
- We have that Y is generated as a random transformation $X \mapsto Y$ of another RV X.
- The random transformation is described by a conditional PDF $p_{Y \mid X}$.
- X is distributed according to some known PDF p_{X} (i.e., the statistical modeling).
- Goal: find an estimator $\widehat{X}=g(Y)$ such that $\mathbb{E}\left[\|X-\widehat{X}\|^{2}\right]$ is minimized.

Reminder on vector spaces

Definition

A vector space V over \mathbb{R} is a set of elements called vectors such that
(1) For all $\mathbf{v}, \mathbf{v}^{\prime} \in V, \mathbf{v}+\mathbf{v}^{\prime} \in V$.
(2) $\exists \mathbf{0} \in V$ such that $\mathbf{v}+\mathbf{0}=\mathbf{v}$ for all $\mathbf{v} \in V$.

- For all $\mathbf{v} \in V$ there exists an opposite element $-\mathbf{v} \in V$ such that $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$.
(-) $x \mathbf{v} \in V$ for all $\mathbf{v} \in V$ and $x \in \mathbb{R}$.
(0) $0 \mathbf{v}=\mathbf{0}$ for all $\mathbf{v} \in V$.
(-) $1 \mathbf{v}=\mathbf{v}$ for all $\mathbf{v} \in V$.
- This implies that V is closed with respect to linear combinations with coefficients in \mathbb{R}.

Reminder on norms and normed vector spaces

Definition

A norm is a function $\|\cdot\|: V \rightarrow \mathbb{R}_{+}$that satisfies the following properties:
(1) $\|\mathbf{v}\|=0$ if and only if $\mathbf{v}=\mathbf{0}$.
(2) $\|\mathbf{v}+\mathbf{u}\| \leq\|\mathbf{v}\|+\|\mathbf{u}\|$ (triangle inequality).

- $\|x \mathbf{v}\|=|x| \cdot\|\mathbf{v}\|$ for all $\mathbf{v} \in V$ and $x \in \mathbb{R}$.

And a normed vector space is a vector space V with a norm $\|\cdot\|$.
Notice: a norm is a "distance" function.

- For example, one can check that the norm defined as

$$
\|\mathbf{v}\|_{2}=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}
$$

where $V=\mathbb{R}^{n}$ is the standard Euclidean n-dimensional vector space over \mathbb{R}, defines a distance in the usual sense (length of the vector joining two points in \mathbb{R}^{n}).

- Let $\mathbf{v}, \mathbf{u} \in \mathbb{R}^{n}$, then

$$
\|\mathbf{v}-\mathbf{u}\|_{2}=\sqrt{\sum_{i=1}^{n}\left(v_{i}-u_{i}\right)^{2}}
$$

is the Euclidean distance between the points (vectors) \mathbf{v} and \mathbf{u}.

Reminder on inner product

Definition

Given a vector space V over \mathbb{R}, an inner product is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ with the following properties:
(1) $\langle\mathbf{v}, \mathbf{u}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle$ (symmetry).
(2) $\langle x \mathbf{v}, \mathbf{u}\rangle=x\langle\mathbf{v}, \mathbf{u}\rangle$, for all $\mathbf{v}, \mathbf{u} \in V$ and $x \in \mathbb{R}$ (scaling).
(3) $\left\langle\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{u}\right\rangle=\left\langle\mathbf{v}_{1}, \mathbf{u}\right\rangle+\left\langle\mathbf{v}_{2}, \mathbf{u}\right\rangle$ (linearity).
(9) $\langle\mathbf{v}, \mathbf{v}\rangle \geq 0$, with equality if and only if $\mathbf{v}=\mathbf{0}$.

A vector space with an inner product is called inner product space.

Theorem (Cauchy-Schwarz inequality)

$$
\langle\mathbf{v}, \mathbf{u}\rangle^{2} \leq\langle\mathbf{v}, \mathbf{v}\rangle\langle\mathbf{u}, \mathbf{u}\rangle
$$

with equality if and only if $a \mathbf{v}=b \mathbf{u}$, with $a, b \in \mathbb{R}$ not both zero.

Theorem (2-norm)

Let V be an inner product space. Then, the following is a norm (called 2-norm, or standard Euclidean norm):

$$
\|\mathbf{v}\|_{2}=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}
$$

Least Squares approximation

- Let be \mathbf{x} a point (vector) in some vector space V over \mathbb{R} and let $\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}$ be a given collection of vectors: we wish to find the "best" approximation of \mathbf{x} by a linear combination of the vectors $\left\{\mathbf{y}_{i}\right\}$.
- We have to give a rigorous meaning to the term "best": if V is an inner product space, we shall consider the minimum distance approximation, that is, we look for

$$
\widehat{\mathbf{x}}=\sum_{i=1}^{m} a_{i} \mathbf{y}_{i}
$$

such that

$$
\|\mathbf{x}-\widehat{\mathbf{x}}\|_{2}^{2}=\langle\mathbf{x}-\widehat{\mathbf{x}}, \mathbf{x}-\widehat{\mathbf{x}}\rangle
$$

is minimum.

- This approximation is called (linear) "Least-Squares" (some people call it "linear regression").

LS Solution

- A brute-force approach: we can write, for $\mathbf{a} \in \mathbb{R}^{m}$,

$$
\begin{aligned}
\|\mathbf{x}-\widehat{\mathbf{x}}\|_{2}^{2} & =\|\mathbf{x}\|_{2}^{2}-2\langle\mathbf{x}, \widehat{\mathbf{x}}\rangle+\|\widehat{\mathbf{x}}\|_{2}^{2} \\
& =\|\mathbf{x}\|_{2}^{2}-2 \sum_{i=1}^{m}\left\langle\mathbf{x}, \mathbf{y}_{i}\right\rangle a_{i}+\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i}\left\langle\mathbf{y}_{i}, \mathbf{y}_{j}\right\rangle a_{j} \\
& =\|\mathbf{x}\|_{2}^{2}-2 \mathbf{r}_{x y}^{\top} \mathbf{a}+\mathbf{a}^{\top} \mathbf{G}_{y} \mathbf{a}
\end{aligned}
$$

where we define the "cross-correlation vector"

$$
\mathbf{r}_{x y}=\left[\left\langle\mathbf{x}, \mathbf{y}_{1}\right\rangle, \ldots,\left\langle\mathbf{x}, \mathbf{y}_{m}\right\rangle\right]^{\top}
$$

and the matrix of inner products (Gram matrix)

$$
\mathbf{G}_{y}=\left[\begin{array}{cccc}
\left\langle\mathbf{y}_{1}, \mathbf{y}_{1}\right\rangle & \left\langle\mathbf{y}_{1}, \mathbf{y}_{2}\right\rangle & \cdots & \left\langle\mathbf{y}_{1}, \mathbf{y}_{m}\right\rangle \\
\left\langle\mathbf{y}_{2}, \mathbf{y}_{1}\right\rangle & \left\langle\mathbf{y}_{2}, \mathbf{y}_{2}\right\rangle & & \vdots \\
\vdots & & & \\
\left\langle\mathbf{y}_{m}, \mathbf{y}_{1}\right\rangle & \left\langle\mathbf{y}_{m}, \mathbf{y}_{2}\right\rangle & \cdots & \left\langle\mathbf{y}_{m}, \mathbf{y}_{m}\right\rangle
\end{array}\right]
$$

Notice: this is true independent of the "dimension" of the vector space V !

- Notice that $\mathbf{G}_{y} \in \mathbb{R}^{m \times m}$ is symmetric and positive semi-definite (WHY?).
- Taking the gradient of the distance function with respect to a, we obtain the equation

$$
\mathbf{G}_{y} \mathbf{a}=\mathbf{r}_{x y}
$$

- Assuming for simplicity that \mathbf{G}_{y} is invertible (otherwise, we can eliminate some linearly dependent \mathbf{y}_{i} and obtain the same subspace), we obtain $\mathbf{a}=\mathbf{G}_{y}^{-1} \mathbf{r}_{x y}$.
- This leads to the solution $\widehat{\mathbf{x}}=\left[\begin{array}{lll}\mathbf{y}_{1} & \ldots & \mathbf{y}_{m}\end{array}\right] \mathbf{a}$, is this the minimal $\|\mathbf{x}-\widehat{\mathbf{x}}\|$? If yes, WHY?
- OBSERVATION: notice that the solution \widehat{x} satisfies the following orthogonality condition:

$$
\left\langle\mathbf{x}-\widehat{\mathbf{x}}, \mathbf{y}_{i}\right\rangle=0, \quad \forall i=1, \ldots, m
$$

How to prove this?

Zero-mean Finite Covariance RVs

- The space of zero-mean finite covariance RVs forms a vector space.
- Inner product:

$$
\langle X, Y\rangle=\mathbb{E}[X Y]
$$

- Induced 2-norm:

$$
\|X\|_{2}=\sqrt{\mathbb{E}\left[|X|^{2}\right]}
$$

- In this vector space, distance is expressed by the MSE

$$
\|X-Y\|_{2}^{2}=\mathbb{E}\left[|X-Y|^{2}\right]
$$

Generalization to Random Vectors

- For zero-mean finite covariance random vectors, we can combine the standard inner product in \mathbb{R}^{n} with what defined before:

$$
\langle\mathbf{X}, \mathbf{Y}\rangle=\mathbb{E}\left[\mathbf{X}^{\top} \mathbf{Y}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i} Y_{i}\right]
$$

- The induced 2-norm is given by

$$
\sqrt{(\mathbf{X}, \mathbf{X})}=\sqrt{\mathbb{E}\left[\mathbf{X}^{\top} \mathbf{X}\right]}=\sqrt{\operatorname{tr}\left(\mathbb{E}\left[\mathbf{X} \mathbf{X}^{\top}\right]\right)}=\sqrt{\operatorname{tr}\left(\mathbf{\Sigma}_{x}\right)}
$$

- Then, the MSE for the vector case is given by

$$
\mathrm{MSE}=\mathbb{E}\left[\|\mathbf{X}-\mathbf{Y}\|^{2}\right]=\sum_{i=1}^{n} \mathbb{E}\left[\left|X_{i}-Y_{i}\right|^{2}\right]=\operatorname{tr}(\operatorname{Cov}(\mathbf{X}-\mathbf{Y}))
$$

A remark about notation

- Unfortunately, the same symbol $\|\cdot\|_{2}$ takes on different meanings depending on the inner product space it is referred to.
- In our case, for all $\omega \in \Omega, \mathbf{X}(\omega)$ is an element of \mathbb{R}^{n}, but when defining the vector space V of finite-dimensional random vectors with mean zero and finite per-component variance, we need to be careful!
- We shall use

$$
\|\boldsymbol{X}\|^{2}=\sum_{i=1}^{n}\left|X_{i}\right|^{2}
$$

to denote the standard squared 2-norm in \mathbb{R}^{n}. Since \mathbf{X} is a random vector, $\|\mathbf{X}\|^{2}$ is a random variable.

- Instead, we use

$$
\|\mathbf{X}\|_{2}^{2}=\mathbb{E}\left[\|\mathbf{X}\|^{2}\right]
$$

to denote the squared norm in V. This is a non-random quantity (expectation).

Linear Minimum Mean-Square Error estimation

- We have two jointly distributed random vectors $\mathbf{X} \in \mathbb{R}^{n}$ and $\mathbf{Y} \in \mathbb{R}^{m}$.
- We observe \mathbf{Y} and we with to "guess" the value of \mathbf{X} by some estimator $\widehat{\mathbf{X}}=g(\mathbf{Y})$ in order to minimize the Mean-Square-Error sense:

$$
\mathrm{MSE}=\mathbb{E}\left[\|\mathbf{X}-\widehat{\mathbf{X}}\|^{2}\right]
$$

- For now, we seek an estimator $\widehat{\mathbf{X}}$ in the form of a linear function of the observation \mathbf{Y}, that is,

$$
\widehat{\mathbf{x}}=\mathbf{A Y}
$$

Orthogonality principle

- The approximation error $\mathbf{X}-\widehat{\mathbf{X}}$ must be orthogonal with respect to the space of linear functions of \mathbf{Y}.
- This means that for any matrix $\mathbf{B} \in \mathbb{C}^{n \times m}$ is must be:

$$
\mathbb{E}\left[(\mathbf{X}-\widehat{\mathbf{X}})^{\top} \mathbf{B Y}\right]=0
$$

for all linear functions BY of the observation.

- The orthogonality principle yields the condition

$$
\langle\mathbf{X}-\widehat{\mathbf{X}}, \mathbf{B} \mathbf{Y}\rangle=\mathbb{E}\left[(\mathbf{X}-\widehat{\mathbf{X}})^{\top} \mathbf{B} \mathbf{Y}\right]=\operatorname{tr}\left(\mathbb{E}\left[\mathbf{B} \mathbf{Y}(\mathbf{X}-\widehat{\mathbf{X}})^{\top}\right]\right)=0
$$

for all $\mathbf{B} \in \mathbb{R}^{n \times m}$.

- In turns, by replacing $\widehat{\mathbf{X}}=\mathbf{A Y}$, we find the condition that, for all \mathbf{B}, it must be

$$
\operatorname{tr}\left(\mathbf{B}\left(\mathbb{E}\left[\mathbf{Y} \mathbf{X}^{\top}\right]-\mathbb{E}\left[\mathbf{Y} \mathbf{Y}^{\top}\right] \mathbf{A}^{\top}\right)\right)=0
$$

- This yields the equation

$$
\mathbf{A} \mathbb{E}\left[\mathbf{Y} \mathbf{Y}^{\top}\right]=\mathbb{E}\left[\mathbf{X} \mathbf{Y}^{\boldsymbol{\top}}\right]
$$

LMMSE estimator

- Solving for \mathbf{A} (under the assumption that the covariance $\mathbb{E}\left[\mathbf{Y} \mathbf{Y}^{\top}\right]$ is strictly positive definite), we find:

$$
\mathbf{A E}\left[\mathbf{Y} \mathbf{Y}^{\top}\right]=\mathbb{E}\left[\mathbf{X} \mathbf{Y}^{\top}\right] \Rightarrow \mathbf{A}=\mathbb{E}\left[\mathbf{X} \mathbf{Y}^{\top}\right]\left(\mathbb{E}\left[\mathbf{Y} \mathbf{Y}^{\top}\right]\right)^{-1}
$$

- In the general case of non-zero mean vectors, we define the centralized RVs $\mathbf{X}_{0}=\mathbf{X}-\mathbf{m}_{x}$ and $\mathbf{Y}_{0}=\mathbf{Y}-\mathbf{m}_{y}$, and notice that $\widehat{\mathbf{X}}$ is the LMMSE estimator for \mathbf{X} if and only if $\widehat{\mathbf{X}}_{0}=\widehat{\mathbf{X}}-\mathbf{m}_{x}$ is the LMMSE estimator for \mathbf{X}_{0} :

$$
\mathbb{E}\left[\|\mathbf{X}-\widehat{\mathbf{X}}\|^{2}\right]=\mathbb{E}[\|\mathbf{X}_{0}-\underbrace{\left(\widehat{\boldsymbol{X}}-\mathbf{m}_{x}\right)}_{\widehat{\mathbf{X}}_{0}}\|^{2}]
$$

- Furthermore, $\widehat{\mathbf{X}}_{0}$ must be a (linear) function of $\widehat{\mathbf{Y}}_{0}$, since \mathbf{m}_{y} is just an (arbitrary) constant.
- Letting

$$
\begin{aligned}
\boldsymbol{\Sigma}_{x y} & =\operatorname{Cov}(\mathbf{X}, \mathbf{Y})=\mathbb{E}\left[\left(\mathbf{X}-\mathbf{m}_{x}\right)\left(\mathbf{Y}-\mathbf{m}_{y}\right)^{\top}\right] \\
\boldsymbol{\Sigma}_{y} & =\operatorname{Cov}(\mathbf{Y})=\mathbb{E}\left[\left(\mathbf{Y}-\mathbf{m}_{y}\right)\left(\mathbf{Y}-\mathbf{m}_{y}\right)^{\mathbf{\top}}\right]
\end{aligned}
$$

we obtain

$$
\widehat{\mathbf{X}}_{0}=\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y}^{-1} \mathbf{Y}_{0}
$$

and for the non-zero mean case

$$
\widehat{\mathbf{X}}=\mathbf{m}_{x}+\widehat{\mathbf{X}}_{0}=\mathbf{m}_{x}+\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y}^{-1}\left(\mathbf{Y}-\mathbf{m}_{y}\right)
$$

MMSE Covariance Matrix

- The MMSE covariance matrix is given by

$$
\operatorname{Cov}(\mathbf{X}-\widehat{\mathbf{x}})=\boldsymbol{\Sigma}_{x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y}^{-1} \boldsymbol{\Sigma}_{x y}^{\top}
$$

- The resulting MMSE, is given by $\mathbb{E}\left[\|\mathbf{X}-\widehat{\mathbf{X}}\|^{2}\right]=\operatorname{tr}(\operatorname{Cov}(\mathbf{X}-\widehat{\mathbf{X}}))$.
- Notice: The estimation error vector $\mathbf{X}-\widehat{\mathbf{X}}$ is uncorrelated with any linear function of the observation vector \mathbf{Y}.

MMSE estimator: the general case

- With the same setting as before, we now seek an estimator $\widehat{\mathbf{X}}=g^{*}(\mathbf{Y})$, in the space of all (measurable, so not necessarily linear) functions of the observation \mathbf{Y}.

Theorem

The MMSE estimator of \mathbf{X} given \mathbf{Y} is the conditional mean

$$
\widehat{\mathbf{X}}=g^{*}(\mathbf{Y})=\mathbb{E}[\mathbf{X} \mid \mathbf{Y}]
$$

Proof

We use the orthogonality principle: the optimal estimator $\widehat{\mathbf{X}}$ must satisfy

$$
\mathbb{E}\left[(\mathbf{X}-\widehat{\mathbf{X}})^{\top} g(\mathbf{Y})\right]=0, \quad \text { for all functions } g
$$

Letting $\widehat{\mathbf{X}}=\mathbb{E}[\mathbf{X} \mid \mathbf{Y}]$ and using the iterated expectation theorem ${ }^{2}$, we find:

$$
\begin{aligned}
\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X} \mid \mathbf{Y}])^{\top} g(\mathbf{Y})\right] & =\mathbb{E}\left[\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X} \mid \mathbf{Y}])^{\top} g(\mathbf{Y}) \mid \mathbf{Y}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{X}^{\top} g(\mathbf{Y}) \mid \mathbf{Y}\right]-\mathbb{E}[\mathbf{X} \mid \mathbf{Y}]^{\top} g(\mathbf{Y})\right] \\
& =\mathbb{E}\left[\mathbb{E}[\mathbf{X} \mid \mathbf{Y}]^{\top} g(\mathbf{Y})-\mathbb{E}[\mathbf{X} \mid \mathbf{Y}]^{\top} g(\mathbf{Y})\right] \\
& =0
\end{aligned}
$$

[^1]
Reminder on Conditional Gaussian distribution

- Consider a random vector with $n+m$ components, denoted for simplicity by (\mathbf{X}, \mathbf{Y}).
- A very important problem in statistics is to find the conditional distribution of a group of components given the other group. Without loss of generality, we are interested in the conditional distribution of \mathbf{X} given \mathbf{Y}.
- In particular, suppose that $(\mathbf{X}, \mathbf{Y}) \sim \mathcal{N}(\mathbf{m}, \boldsymbol{\Sigma})$, with

$$
\mathbf{m}=\left[\begin{array}{l}
\mathbf{m}_{x} \\
\mathbf{m}_{y}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{x} & \boldsymbol{\Sigma}_{x y} \\
\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y}
\end{array}\right]
$$

with $\mathbf{m}_{x}=\mathbb{E}[\mathbf{X}], \mathbf{m}_{y}=\mathbb{E}[\mathbf{Y}], \boldsymbol{\Sigma}_{x}=\operatorname{cov}(\mathbf{X}), \boldsymbol{\Sigma}_{y}=\operatorname{cov}(\mathbf{Y})$ and

$$
\boldsymbol{\Sigma}_{x y}=\operatorname{cov}(\mathbf{X}, \mathbf{Y})=\mathbb{E}\left[\left(\mathbf{X}-\mathbf{m}_{x}\right)\left(\mathbf{Y}-\mathbf{m}_{y}\right)^{\mathbf{\top}}\right]
$$

with $\Sigma_{y x}=\Sigma_{x y}^{\top}$.

Reminder on Conditional Gaussian distribution

With the notation defined before,

$$
f_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}\left(\boldsymbol{\Sigma}_{x \mid y}\right)}} \exp \left(-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_{x \mid y}\right)^{\top} \boldsymbol{\Sigma}_{x \mid y}^{-1}\left(\mathbf{x}-\mathbf{m}_{x \mid y}\right)\right)
$$

where the conditional mean value is given by

$$
\mathbf{m}_{x \mid y}=\mathbb{E}[\mathbf{X} \mid \mathbf{Y}=\mathbf{y}]=\mathbf{m}_{x}+\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y}^{-1}\left(\mathbf{y}-\mathbf{m}_{y}\right)
$$

and the conditional covariance matrix is given by

$$
\boldsymbol{\Sigma}_{x \mid y}=\mathbb{E}\left[\left(\mathbf{X}-\mathbf{m}_{x \mid y}\right)\left(\mathbf{X}-\mathbf{m}_{x \mid y}\right)^{\top} \mid \mathbf{Y}=\mathbf{y}\right]=\boldsymbol{\Sigma}_{x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y}^{-1} \boldsymbol{\Sigma}_{y x}
$$

Notice: given jointly Gaussian $\mathbf{X}, \mathbf{Y}, \mathbf{X}$ given \mathbf{Y} is Gaussian, with conditional mean affine function of \mathbf{Y} and conditional covariance constant with \mathbf{Y}.

MMSE estimation for Gaussian vectors

- If X, Y are jointly Gaussian, then the linear MMSE estimator and the optimal MMSE estimator coincide.
- In order to see this, recall

$$
f_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}\left(\boldsymbol{\Sigma}_{x \mid y}\right)}} \exp \left(-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_{x \mid y}\right)^{\top} \boldsymbol{\Sigma}_{x \mid y}^{-1}\left(\mathbf{x}-\mathbf{m}_{x \mid y}\right)\right)
$$

where the conditional mean value is given by

$$
\mathbf{m}_{x \mid y}=\mathbb{E}[\mathbf{X} \mid \mathbf{Y}=\mathbf{y}]=\mathbf{m}_{x}+\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y}^{-1}\left(\mathbf{y}-\mathbf{m}_{y}\right)
$$

and the conditional covariance matrix is given by

$$
\boldsymbol{\Sigma}_{x \mid y}=\mathbb{E}\left[\left(\mathbf{X}-\mathbf{m}_{x \mid y}\right)\left(\mathbf{X}-\mathbf{m}_{x \mid y}\right)^{\top} \mid \mathbf{Y}=\mathbf{y}\right]=\boldsymbol{\Sigma}_{x}-\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y}^{-1} \boldsymbol{\Sigma}_{y x}
$$

- Hence, in the Gaussian case, the (general) MMSE estimator of \mathbf{X} given \mathbf{Y} coincides with the LMMSE estimator (Wiener filter):

$$
\widehat{\mathbf{X}}=\mathbb{E}[\mathbf{X} \mid \mathbf{Y}]=\mathbf{m}_{x}+\boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y}^{-1}\left(\mathbf{Y}-\mathbf{m}_{y}\right)
$$

- MMSE decomposition:

$$
\mathbf{X}=\widehat{\mathbf{X}}+(\mathbf{X}-\widehat{\mathbf{X}})=\widehat{\mathbf{X}}+\mathbf{V}
$$

where the MMSE estimator $\widehat{\mathbf{X}}$ and the estimation error vector \mathbf{V} are uncorrelated, and therefore independent (in the Gaussian case), where we have

$$
\widehat{\mathbf{X}} \sim \mathcal{N}\left(\mathbf{m}_{x}, \boldsymbol{\Sigma}_{x y} \boldsymbol{\Sigma}_{y}^{-1} \boldsymbol{\Sigma}_{y x}\right), \quad \mathbf{V} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{x \mid y}\right)
$$

Application to proper Gaussian random vectors

- If \mathbf{X} and \mathbf{Y} are proper jointly Gaussian, i.e.,

$$
\binom{\mathbf{X}}{\mathbf{Y}} \sim \mathcal{C N}\left(\left[\begin{array}{l}
\mathbf{m}_{x} \\
\mathbf{m}_{y}
\end{array}\right],\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{x} & \boldsymbol{\Sigma}_{x y} \\
\boldsymbol{\Sigma}_{y x} & \boldsymbol{\Sigma}_{y}
\end{array}\right]\right)
$$

where

$$
\begin{gathered}
\boldsymbol{\Sigma}_{x}=\mathbb{E}\left[\left(\mathbf{X}-\mathbf{m}_{x}\right)\left(\mathbf{X}-\mathbf{m}_{x}\right)^{\mathbf{H}}\right], \quad \boldsymbol{\Sigma}_{y}=\mathbb{E}\left[\left(\mathbf{Y}-\mathbf{m}_{y}\right)\left(\mathbf{Y}-\mathbf{m}_{y}\right)^{\mathbf{H}}\right] \\
\boldsymbol{\Sigma}_{x y}=\mathbb{E}\left[\left(\mathbf{X}-\mathbf{m}_{x}\right)\left(\mathbf{Y}-\mathbf{m}_{y}\right)^{\mathbf{H}}\right]
\end{gathered}
$$

we define the MSE as

$$
\mathrm{MSE}=\mathbb{E}\left[\|\mathbf{X}-\widehat{\mathbf{X}}\|^{2}\right]=\mathbb{E}\left[(\mathbf{X}-\widehat{\mathbf{X}})^{\mathrm{H}}(\mathbf{X}-\widehat{\mathbf{X}})\right]
$$

- Result: all the derivations and results found before are still valid when replacing "transpose" with "Hermitian transpose".

Gaussian signal in Gaussian noise

- Often we need to estimate a signal observed through a linear transformation \mathbf{H} in additive noise:

$$
\mathbf{Y}=\mathbf{H X}+\mathbf{Z}
$$

where $\mathbf{X} \sim \mathcal{C N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{x}\right)$ and $\mathbf{Z}=\mathcal{C N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{z}\right)$.

- In this case, we have

$$
\widehat{\mathbf{X}}=\boldsymbol{\Sigma}_{x} \mathbf{H}^{\mathrm{H}}\left(\mathbf{H} \boldsymbol{\Sigma}_{x} \mathbf{H}^{\mathrm{H}}+\boldsymbol{\Sigma}_{z}\right)^{-1} \mathbf{Y}
$$

with estimation error covariance

$$
\boldsymbol{\Sigma}_{x \mid y}=\boldsymbol{\Sigma}_{x}-\boldsymbol{\Sigma}_{x} \mathbf{H}^{\mathrm{H}}\left(\mathbf{H} \boldsymbol{\Sigma}_{x} \mathbf{H}^{\mathrm{H}}+\boldsymbol{\Sigma}_{z}\right)^{-1} \mathbf{H} \boldsymbol{\Sigma}_{x}
$$

Example: MMSE Multi-user Detection

- A Gaussian Multiple Access Channel can be represented as

$$
\mathbf{Y}=\sum_{k=1}^{K} \sqrt{P_{k}} \mathbf{s}_{k} X_{k}+\mathbf{Z}=\mathbf{S P}^{1 / 2} \mathbf{X}+\mathbf{Z}
$$

where $\mathbf{s}_{k}=\left(s_{1, k}, \ldots, s_{N, k}\right)^{\top}$ is the vector formed by the samples of user k waveform, P_{k} is the received power of user k, X_{k} are information symbols from a unit energy signal constellation (e.g., QAM), and $\mathbf{Z} \sim \mathcal{C N}\left(\mathbf{0}, N_{0} \mathbf{I}\right)$.

- A linear detector for user k consists of a projection of \mathbf{Y} onto a unit vector \mathbf{u}_{k}, forming the scalar observation $\widehat{X}_{k}=\mathbf{u}_{k}^{\mathrm{H}} \mathbf{Y}$.
- We define the Signal to Interference plus Noise Ratio (SINR) as

$$
\operatorname{SINR}_{k}=\frac{\left|\mathbf{u}_{k}^{\mathrm{H}} \mathbf{s}_{k}\right|^{2} P_{k}}{N_{0}+\sum_{j \neq k}\left|\mathbf{u}_{k}^{\mathrm{H}} \mathbf{s}_{j}\right|^{2} P_{j}}
$$

- It can be shown that the SINR is maximized over all linear detectors by choosing

$$
\mathbf{u}_{k}=\alpha_{k}\left(N_{0} \mathbf{I}+\sum_{j=1}^{K} P_{j} \mathbf{s}_{j} \mathbf{s}_{j}^{H}\right)^{-1} \mathbf{s}_{k}
$$

where α_{k} is a normalization constant in order to have $\left\|\mathbf{u}_{k}\right\|=1$.

- Notice that this SINR-maximizing detector is proportional to the MMSE estimator of X_{k} given Y .
- The resulting maximum SINR can be compactly written as

$$
\operatorname{SINR}_{k}=P_{k} \mathbf{s}_{k}^{\mathrm{H}}\left(N_{0} \mathbf{I}+\sum_{j \neq k} P_{j} \mathbf{s}_{j} \mathbf{s}_{j}^{\mathrm{H}}\right)^{-1} \mathbf{s}_{k} .
$$

Thank you!

Thank you! Q \& A?

Exercises

Method of moments: Gamma distribution

Let $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Gamma}(\alpha, \beta)$, derive the corresponding MoM estimators $\hat{\alpha}, \hat{\beta}$ for the parameters α and β, and try to derive the bias-variance decomposition of their MSE.

Binary Signal in Gaussian noise

Consider X taking values in $\mathcal{X}=\{+1,-1\}$ with equal probability, and the observation

$$
Y=h X+Z
$$

where $h \in \mathbb{R}_{+}$and $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Show that

- the linear MMSE estimator is given by $\widehat{X}_{\text {lin }}=\frac{h}{h^{2}+\sigma^{2}} Y$; and
- the optimal MMSE estimator is

$$
\widehat{X}_{\mathrm{opt}}=\tanh \left(\frac{h Y}{\sigma^{2}}\right) .
$$

Exercises

Method of moments: Gamma distribution

Let $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Gamma}(\alpha, \beta)$, derive the corresponding MoM estimators $\hat{\alpha}, \hat{\beta}$ for the parameters α and β, and try to derive the bias-variance decomposition of their MSE.

- For XGamma $\sim(\alpha, \beta)$, we have

$$
\begin{equation*}
\mathbb{E}[X]=\frac{\alpha}{\beta}, \quad \mathbb{E}\left[X^{2}\right]=\frac{\alpha^{2}+\alpha}{\beta^{2}} \tag{13}
\end{equation*}
$$

- This leads to the MoM estimators as

$$
\begin{equation*}
\hat{\alpha}=, \quad \hat{\beta}= \tag{14}
\end{equation*}
$$

with corresponding bias and variance given by

$$
\begin{equation*}
\mathbb{E}[\hat{\alpha}]-\alpha=, \quad \mathbb{E}[\hat{\alpha}]-\alpha=, \quad \operatorname{Var}[\hat{\alpha}]=, \quad \operatorname{Var}[\hat{\beta}]= \tag{15}
\end{equation*}
$$

so that MSE as

$$
\begin{equation*}
\mathbb{E}\left[(\hat{\alpha}-\alpha)^{2}\right]=, \quad \mathbb{E}\left[(\hat{\beta}-\beta)^{2}\right]= \tag{16}
\end{equation*}
$$

Exercises

Binary Signal in Gaussian noise

Consider X taking values in $\mathcal{X}=\{+1,-1\}$ with equal probability, and the observation

$$
Y=h X+Z
$$

where $h \in \mathbb{R}_{+}$and $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Show that

- the linear MMSE estimator is given by $\widehat{X}_{\text {lin }}=\frac{h}{h^{2}+\sigma^{2}}{ }^{2}$; and
- the optimal MMSE estimator is

$$
\widehat{X}_{\mathrm{opt}}=\tanh \left(\frac{h Y}{\sigma^{2}}\right) .
$$

- for LMMSE, consider $\widehat{X}_{\text {lin }}=a Y$, and it suffices to determine $\alpha \in \mathbb{R}$ that minimizes $\mathbb{E}\left[(X-\hat{X})^{2}\right]=\mathbb{E}\left[X^{2}-2 X \hat{X}+\hat{X}^{2}\right]=\mathbb{E}\left[X^{2}\right]-2 a \mathbb{E}[X(h X+Z)]+a^{2} \mathbb{E}\left[(h X+Z)^{2}\right]=$ $1-2 a(h+0)+a^{2}\left(h^{2}+\sigma^{2}\right)$.
- This leads to $a=\frac{h}{h^{2}+\sigma^{2}}$ and thus the conclusion.
- To derive the optimal MMSE estimator, we use the conclusion that $\widehat{X}_{\text {opt }}=\mathbb{E}[X \mid Y]$.
- For given Y, we have that $X=\frac{Y-Z}{h}$, for $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$,

[^0]: ${ }^{1}$ If the number of parameters increases with the sample size, the "double asymptotic" regime in RMT.

[^1]: ${ }^{2} \mathbb{E}[f(X, Y)]=\mathbb{E}[\mathbb{E}[f(X, Y) \mid Y]]$.

