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Likelihood function and the MLE

» Consider data X1, ..., Xy, iid- x|0) for a parameter model {f(x|0): 6 € Q)
p

> given observed values X, ..., X;, we call the function
L£(0) = £(X110) x ...f(Xa]6), M

the likelihood function.

> in the discrete case, £(0) just the probability (function) of observing the values
X, ..., X, if the true parameter were 6; clearly, £(9) is a function of 6

» The maximum likelihood estimator (MLE) of 6 is the one that maximizes the
function £(6)

> intuitively, this is the value of § that makes the observed data “most probable” or
“most likely”
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From NP to MLE

» the idea to MLE is related to the use of the likelihood ratio statistic in the
Neyman-Pearson lemma. Recall that for testing

HQI(Xl,...,Xn)Ng, Hll(Xl,...,Xn)Nh, (2)

for g, f joints pdfs of n random variables, the most powerful test in the sense of
Neyman-Pearson decides on the likelihood ratio

L(Xy,. .., X)) = H 3)

> in the context of parametric model, we test between f(x|6) and f(x|6;) , for two
possible different parameter values of 6y, 6; € (), and the likelihood ratio is
L(60)/L(61)

> the MLE, if exists and is unique, is the value of 6 € () such that

L(0)/L(0) >1 @

for any other values of 8’ € Q).
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Examples of MLE: Poisson

» deriving the MLE is an optimization problem, it is in general more convenient to

maximize the log likelihood function as

1(8) =log(L Zlog(f (X;10)).

MLE of Poisson parameter
Let X1, ..., X, ~ Poission(A). Then

)\X‘e n
Zlog ( ) =) (XjlogA — A —log(X;!))

i=1

n
:kgAZerAfZﬂg@M.
i=1 i=1

Taking the derivation (with respect to A) to zero, we get
1 n
ozmm:XZ&—n
i=1

And the MLE in this case is Ayp = - YL, X; = X.

©)

(6)
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Examples of MLE: Gamma

MLE of Gamma parameter
Let Xy, ..., Xy ~ Gamma(a, B). Then
n

Zlog( xe1 *ﬁx> =) (alog(B) —logT(a) + (a — 1)log X; — BX;)

i=1

n
=nalogp —nlogl'(a)+ (a —1) Zlog ZX
i=1

Taking the derivation (with respect to («, B)) to zero, we get

0= 26:8) — togp e+ sty

i=1

_ol(a, ) _ne &
0= o _ffgxl.
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Examples of MLE: Gamma

> the second equation says that the MLEs &, 8 should satisfy § = &/X
> substituting into the first we get

I'(a S 1&
0=loga — F((g)) —log(X) + - 1:21 log(X;) (7)

()

the function f(«) = loga — Tz) decreases from oo to 0 as & increases from 0 to oo
the value of —log(X) + 1 Y7, log(X;) < 0 (by Jensen’s inequality)
so the MLE (&, B) is unique, and in particular, different from the MoM estimator

unfortunately, there is no closed-form solution to &

vvyyyvy

can be numerically solved using the Newton-Raphson method
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Newton-Raphson method

Idea: use linear approximation to iteratively solve a nonlinear equation

fx) =0. ®)

> for f(x) well-behaved function, looking for the root x = r of the equation f(x) = 0

> start with an “initial guess” x of , in each iteration, get a “better” estimate x; 1
from previous estimate x;

> assume ¥y is a good initial guess in the sense that r = x( + / for some error  that
is “small”, use linear approximation of the smooth function

0=f(r) = f(xo +h) ~ f(x0) + hf'(x0), €)
so, for f'(xg) # 0 that

X
r=xo+h=~xy— ]J:’((x?))) . (10)
» do this iteratively as
x:
Xip1 =X — ]J:/((;)) (11)
1
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Geometric interpretation

> the curve y = f(x) meets the x-axis atx = r
> we are currentatx = a
> the tangent line (i.e., linear approximation) to y = f(x) at the point (a,f(a)) is

given by

y=f(a)+ (x—a)f'(a), (12)
which meets the x-axis atb = a — %, that is the Newton-Raphson estimate ‘next’
toa
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MSE, consistency, and asymptotic normality

» recall from the example of MLE for Poisson distribution above that A =X, and
also agrees with the MoM estimator
» we have computed its MSE

E[A] = A, Var[d] = % (13)

so that A is unbiased and has variance A /1.
> for 1 large, we have a precise picture of A,
— by LLN, we have A — A in probability or a.s. as n — co; and
— by CLT, /(A — A) — N(0,A) in distribution as # — co.
> So,

X 1
A~ ﬁ/\f((),/\). (14)

> This allows to access other measures of error e.g., E[|A — A|] or P(|]A — A| > 0.01),
as well as obtain a conference interval for A

Consistency and asymptotic normality

In a parametric model, we say an estimator f based on X1, ..., Xy
> is consistent if 0 — 6 in probability as n — co; and

> is asymptotically normal if \/71(f — @) converges in distribution to a normal (or
multivariate normal) distribution as n — co.
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MLE, consistency, and asymptotic normality

Theorem (MLE is consistent and asymptotically normal)

Let {f (x|9) 60 € O} be a parametric model, where 6 € R is a singe parameter. Let
iid.

X1,..., Xy ~ f(x]60) for some 8y € Q, and let 0 be the MLLE based on Xy, . . ., Xu. Suppose

certain regulurzty conditions hold, including:
» the log-likelihood 1(0) is differentiable with respect to 0
> 0 is the unique value in Q) that solve s 0 = I'(9).
Then, @ is consistent and asymptotically normal, with

V(0 —6) %N(O,@),

with Fisher information
1(8) = Var[z(X,0)] = —E[Z/(X,0)],

for score function z(x,0) = 5 9 logf(x|6), and 2/ (x,0) = 392 10gf(x|9)

(15)

(16)

(Some technical conditions in addition to the ones stated are required to make this
theorem rigorously true, but they are beyond the scope of this class.)
> Exercise: check this is true for the Poisson estimation problem.
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Fisher information matrix

Asymptotic normality of the MLE extends naturally to the setting of multiple
parameters.

Theorem (MLE is consistent and asymptotically normal)

Let {f(x|0): 6 € Q} be a parametric model, where 6 € R* has k parameters. Let

X1, Xn Z"l“vd'f(x|00)for some 6y € Q, and let O be the MLE based on X, . .., Xy. Define the
Fisher information matrix 1(0) € RM*¥, with its (i,]) entry given by

8 d 9?2
1(6)i; = Cov | 35 108f(XI0), 3 1ogf(X[6)| = B | ;250 tog (XIO)| . (17
Then, under the same regularity conditions, we have
V(6 — 6p) —>N(0,1(9)*1). 18)
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The Cramer-Rao lower bound

Recall the definition of the Fisher information (matrix):
» for Xq,..., X, i'ri'vd'f(x|90) for some true parameter 6y € ()
» and I(f) = Y1, logf(X;|0) the log-likelihood function

» then the fishier information (at true 6) is given by

2
1(60) = ~E | % 08 f(XI0)lo—s, | = —TE"(00)] (19)

> () measures the expected curvature of the log-likelihood function /(6) around
the true parameter 6 = 6

— if 1(6) is sharply curved around 6y, then a small change in 6 can lead to a large decrease
in the log-likelihood
— the data/observations provide rich information whether 6 is close to 6

» This Fisher information is an intrinsic property of the model (note that its
definition is independent of MLE)
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The Cramer-Rao lower bound

We have the following Cramer-Rao lower bound result.

Theorem (Cramer-Rao lower bound)

Consider a parametric model {f (x|0): 6 € Q} (satisfying certain mild regularity assumptions)
where 6 € () is a single parameter. Let T be any unbiased estimator of 6 based on

X1, Xn Z'%i'f(x|9). Then,

Var[T] > (20)

nl(6)

» For two unbiased estimators of 6, the ratio of their variances is called their relative
efficiency.

> An unbiased estimator is efficient if its variance equals the lower bound #@ .

Since the MLE achieves this lower bound asymptotically, we say it is
asymptotically efficient.

> Notice: sometimes we can do better with slightly biased estimators, check
James—Stein estimator for more info.
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Proof of Cramer-Rao lower bound

> recall the definition of score function z(x, 0) = % logf(x]0) = f(xlw i S;w)
> letnow Z = }!' ; z(X;,0), by the definition of covariance/correlation and the

Cauchy-Schwarz inequality that, for any estimator T, we have

Cov[Z, T}* < Var|[Z] - Var[T]. (21)

» Since the random variables z(X;, 0) are i.i.d. and is of zero mean and variance I(6)
(prove this using the chain rule of differentiation and the definition of Fisher
information), we have

Var[Z] = nVar(z(X;,0)] = nI(8). (22)

» Since T is unbiased, we can write

0 = E[T] = /]R T(x1, ..., %0 )f(x1]8) X .. % f(xu|0)dx1 - .. . 23)
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6 = E[T] = / T(x1, -, %0 )f(x1]8) X .. % f(xu|0)dxy - .. . (24)
> differentiating both sides with respect to 8, we get
]
1:/ﬂT(x1,... )(aef(xlw) X f(xn0) +
]
+Hf(x1]0) x ... X 5 (x,,|9)) dxy ...dxy.

= T(x1,. o, Xn) X Z(x1, ..., %n) X f(x1|0) X ... X f(x,]0)dxq ... dxy.

> since [E[Z] = 0, we must have Cov|[T, Z] = E[TZ]? = 1, and thus Var|[T] > M%e).
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Thank you!

Thank you! Q & A?
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Exercises

MLE: Gaussian distribution

LetXy,..., Xy iid. (u, 0'2), derive the corresponding MLE i, &2 for the mean and
variance parameter y and 02, respectively.

(You should check that the obtained results agree with MoM estimates and they are
indeed unique minimizer of the likelihood function.)

MLE of Gamma distribution and its asymptotic normality
XXX
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