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Convergence of sequences of random variables

Example

Let {Yi} denote a sequence of i.i.d. random variable (RVs) uniformly distributed over
the integers {0, 1, . . . , 9}, and consider

Xn =
n

∑
i=1

Yi10−i.

Expect that the Xn converges, for n→ ∞, to a uniform RV X on [0, 1].This is indeed the
case (in some sense) and we write Xn → X.

Example

Let {Xi} denote a sequence of i.i.d. RVs with mean µ, and consider the sample mean

Xn =
1
n

n

∑
i=1

Xi.

Expect that as n→ ∞, the sample mean converges to the true mean. This is indeed the
case (in some sense) and we write Xn → µ.

The “meaning” of stochastic convergence may be quite different according to the cases.
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Convergence of sequences of numbers

I The infimum of a set of numbers A = {a1, a2, . . .} is the larger number a such that
a ≤ ai for all i. We write a = inf A.

I The supremum of a set of numbers A = {a1, a2, . . .} is the smallest number a such
that a ≥ ai for all i. We write a = sup A.

I Given a sequence of numbers {an} we define liminf and limsup as

lim inf
n→∞

an = lim
n→∞

inf{an, an+1, . . .}, lim sup
n→∞

an = lim
n→∞

sup{an, an+1, . . .}

I Obviously, for any sequence we have lim inf an ≤ lim sup an.
I We say that the sequence {an} has a limit (i.e., the limit that limn→∞ an exists) if

lim inf an = lim sup an.
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Convergence of (deterministic) functions (1)

I Consider a sequence of functions fn : [a, b]→ R, for n = 1, 2, 3, . . .
I Pointwise convergence: if for all x ∈ [a, b] the sequence of numbers

f1(x), f2(x), f3(x), . . . converges to a number f (x) (we use the short-hand notation
fn(x)→ f (x) as n→ ∞ for all x ∈ [a, b]), then we say that fn → f pointwise.

I Convergence pointwise and uniformly: for all ε > 0 there exists N(ε) such that for
all n ≥ N(ε)

|fn(x)− f (x)| ≤ ε, ∀ x ∈ [a, b]

Notice: the function (N(ε), ε) provides a uniform bound to the convergence
absolute error |fn(x)− f (x)|. The bound is called uniform since it is independent
of x.

Z. Liao (EIC, HUST) PSP V December 13, 2022 4 / 25



Convergence of (deterministic) functions (2)

I Norm convergence: consider a set of functions V that forms a normed vector
space. Let ‖ · ‖ : V → R+ denote the norm function satisfying the usual norm
axioms:

1 ‖f‖ ≥ 0 for all f ∈ V, with equality iff f = 0.
2 ‖af‖ = |a| · ‖f‖ for all a ∈ R.
3 ‖f + g‖ ≤ ‖f‖+ ‖g‖ (triangle inequality).

Consider a sequence of functions f1, f2, f3, . . . in V. We say that fn → f in norm if

‖fn − f‖ → 0, as n→ ∞.
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Convergence of (deterministic) functions (3)

I Convergence in measure: fix ε > 0 and, given two functions h, g defined on [a, b],
define the set

S(h, g, ε) = {x ∈ [a, b] : |h(x)− g(x)| > ε}.
We say that fn → f in measure if, for all ε > 0,∫

S(fn,f ,ε)
dx =

∫
1S(fn,f ,ε)dx→ 0 as n→ ∞.

I Implications: if fn → f pointwise, then fn → f in measure, but the converse is not
generally true;

I In general, convergence in norm and convergence pointwise do not imply each
other.

Z. Liao (EIC, HUST) PSP V December 13, 2022 6 / 25



Modes of stochastic convergence

Definition (Modes of stochastic convergence)

Let {Xn} = {X1, X2, X3, . . .} denotes a sequence of RVs defined on a common
probability space (Ω,F , P). We say that:

a) Xn → X almost surely, (written Xn
a.s.→ X) if

P
({

ω ∈ Ω : Xn(ω)→ X(ω)
})

= 1

b) Xn → X in the r-th mean, with r ≥ 1, (written Xn
r→ X) if E[|Xn|r] < ∞ for all n

and
E
[
|Xn −X|r

]
→ 0, as n→ ∞

c) Xn → X in probability, (written Xn
P→ X) if

P (|Xn −X| > ε)→ 0, as n→ ∞, ∀ ε > 0

d) Xn → X in distribution, (written Xn
D→ X) if

FXn (x)→ FX(x) ∀ x ∈ R

(Notice: convergence of cdfs is in the sense for all points of continuity of FX)
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Remarks

I Convergence a.s., also indicated by almost everywhere (a.e.) or with probability 1
(w.p. 1), is akin pointwise convergence of deterministic functions. However, we
want to avoid those points ω ∈ Ω belonging to null sets. Hence, instead of
requiring that Xn(ω)→ X(ω) for all ω ∈ Ω, we require the milder condition that
the probability (“volume”) of the set of ωs for which Xn(ω)→ X(ω) has p. 1.

I The most common cases of convergence in the r-th mean are r = 1 and r = 2.

Xn
1→ X is referred to as convergence in mean. Xn

2→ X is referred to as
convergence in mean-square.

I Noticing that P(|Xn −X| > ε) =
∫
S(Xn,X,ε) dP, where

S(Xn, X, ε) = {ω ∈ Ω : |Xn(ω)−X(ω)| > ε}

we recognize that convergence in probability is akin the convergence in measure
for deterministic functions.

I Convergence in distribution is also known as “weak convergence”, or
“convergence in law.”
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Cauchy convergence

I A sequence of real numbers {an} is Cauchy convergent if |an − am| → 0 for
n, m→ ∞.

I A sequence of real numbers is convergent if and only if it is Cauchy convergent.
I Cauchy convergence has the advantage that we can check convergence even when

we do NOT know the limit, just by looking at the difference of terms |an − am| for
large and arbitrary n, m.

I A sequence of RVs {Xn} is called a.s. Cauchy convergent if

P
({

ω ∈ Ω : |Xn(ω)−Xm(ω)| → 0
})

= 1

and it follows that {Xn} is a.s. convergent if and only if it is a.s. Cauchy
convergent.

Z. Liao (EIC, HUST) PSP V December 13, 2022 9 / 25



Relations between convergence modes

Example
I Let Xn = X for all n, where X is Bernoulli taking values in {0, 1} with equal

probability. Clearly, since each Xn has the same cdf (independent of n), we have

that Xn
D→ X.

I Now, consider Y = 1−X for all n. Since X and 1−X are identically distributed

(NOT independent!) we have that Xn
D→ Y as well.

I However, Xn does not converge to Y in any other way, since
|Xn − Y| = |X− 1 + X| = 1 for all n.

Notice: the above example shows that convergence modes do not imply each other in
general, with the exception of the generally valid implications summarized by the
following theorem.
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General implications

Theorem
Let X1, X2, X3, . . . denote a sequence of RVs defined on a common probability space (Ω,F , P).
The following implications hold in general:

1) (Xn
P→ X)⇒ (Xn

D→ X)

2) (Xn
a.s.→ X)⇒ (Xn

P→ X)

3) (Xn
r→ X)⇒ (Xn

P→ X)

and, for 1 ≤ s ≤ r,

4) (Xn
r→ X)⇒ (Xn

s→ X)

Notice: no other implications hold in general, but other implications may hold under
extra conditions, as we will see later on.
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More implications

Theorem
Let X1, X2, X3, . . . denote a sequence of RVs defined on a common probability space (Ω,F , P).
Then,

1 If Xn
D→ c, where c is a constant, then Xn

P→ c.

2 If Xn
P→ X and P(|Xn| ≤ C) = 1 for all n and some constant C independent of n

(uniformly bounded w.p. 1) then Xn
r→ X for all r ≥ 1.

3 If pn(ε) = P(|Xn −X| > ε) satisfies ∑n pn(ε) < ∞ for all ε > 0, then Xn
a.s.→ X.

(Known as the Borel–Cantelli Lemma, commonly used in the proof of a.s. convergence).
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General implication (1)

Lemma

If Xn
P→ X, then Xn

D→ X. The converse generally fails.

Proof. Suppose Xn
P→ X and write

Fn(x) = P(Xn ≤ x), and F(x) = P(X ≤ x)

For ε ≥ 0, we can write

Fn(x) = P(Xn ≤ x, X ≤ x + ε) + P(Xn ≤ x, X > x + ε)

≤ F(x + ε) + P(|Xn −X| > ε),

F(x− ε) = P(X ≤ x− ε, Xn ≤ x) + P(X ≤ x− ε, Xn > x)
≤ Fn(x) + P(|Xn −X| > ε).

Thus we have

F(x− ε)−P(|Xn −X| > ε) ≤ Fn(x) ≤ F(x + ε) + P(|Xn −X| > ε)

which implies, for n→ ∞,

F(x− ε) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F(x + ε)

Since ε is arbitrary, this implies convergence (limit exists) of Fn(x) to F(x) for any point
of continuity x of F(x).
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General implications (3) and (4)

Lemma

If Xn
1→ X, then Xn

P→ X. Furthermore, if Xn
r→ X then Xn

s→ X for 1 ≤ s < r.

Proof: Using Markov inequality we have, for all ε > 0,

P(|Xn −X| > ε) ≤ E[|Xn −X|]
ε

Using Lyapunov inequality, we have that for 1 ≤ s ≤ r,

E[|Xn −X|s]1/s ≤ E[|Xn −X|r]1/r.
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General Implication (2)

Lemma

Define the set An(ε) = {|Xn −X| > ε} and Bm(ε) =
⋃

n≥m An(ε). Then,

1 Xn
a.s.→ X if and only if, for all ε > 0, P(Bm(ε))→ 0 as m→ ∞.

2 Xn
a.s.→ X if ∑n P(An(ε)) < ∞ for all ε > 0.

3 If Xn
a.s.→ X, then Xn

P→ X, but the converse generally fails.
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Borel Cantelli Lemmas: as proof ingredient

I Consider a sequence of events A1, A2, A3, . . . in a common probability space
(Ω,F , P).

I We define the event {An i.o.} (read: event that infinitely many of the An’s occur,
or, An occurs infinitely often) as

{An i.o.} = lim sup
n→∞

An =
⋂
n

⋃
m≥n

Am

Theorem
1 If ∑n P(An) < ∞, then P(An i.o.) = 0.
2 If ∑n P(An) = ∞ and the An’s are independent, then P(An i.o.) = 1.
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Proof.
1) Let C = {ω : Xn(ω)→ X(ω)} and define

A(ε) = {ω : |Xn(ω)−X(ω)| > ε infinitely often} =
⋂
m

⋃
n≥m

An(ε) =
⋂
m

Bm(ε)

Now, Xn(ω)→ X(ω) if and only if ω /∈ A(ε) for all ε > 0. Hence, a.s. convergence (i.e.,
P(C) = 1) implies P(A(ε)) = 0. Using the continuity of the probability measure, we
have

lim
m→∞

P(Bm(ε)) = P( lim
m→∞

Bm(ε)) = P

(⋂
m

Bm(ε)

)
= P(A(ε)) = 0

2) From the definition of Bm(ε) and the union bound we have

P(Bm(ε)) ≤
∞

∑
n=m

P(An(ε))

so P(Bm(ε))→ 0 if ∑∞
n=1 P(An(ε)) < ∞.

3) Since Am(ε) ⊆ Bm(ε) then statement 1) implies that

P(|Xm −X| > ε) = P(Am(ε)) ≤ P(Bm(ε))→ 0

which yields convergence in probability.
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A.s. convergence of sub-sequences

Theorem

If Xn
P→ X, then there exists a non-random increasing sequence of integers n1, n2, . . . , such that

the sub-sequence {Xni : i = 1, 2, 3, . . .} converges to X almost surely, i.e., Xni
a.s.→ X as i→ ∞.

Proof.

Since Xn
P→ X, then P(|Xn −X| > ε)→ 0 for all ε > 0. Then, pick the sequence {ni}

such that
P(|Xni −X| > i−1) ≤ i−2

For any ε > 0 we have

∑
i>ε−1

P(|Xni −X| > ε) ≤ ∑
i>ε−1

P(|Xni −X| > i−1) ≤ ∑
i>ε−1

1
i2

< ∞

Then, the result follows from the Borel–Cantelli Lemma.

Notice: the different modes of convergence majorly concern with the “speed”/rate of
convergence; consider the example of P(|Xn −X| > ε) ≤ n−1 (convergence in
probability) versus P(|Xn −X| > ε) ≤ n−2 (almost sure convergence).
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Some additional results on weak convergence

I Continuous mapping theorem: if Xn
D→ X and g : R→ R is continuous, then

g(Xn)
D→ g(X).

I Slutsky’s theorem: if Xn
D→ X and Yn

P→ Y for Y being a constant, then

1 Xn + Yn
D→ X + Y;

2 XnYn
D→ XY;

3 Xn/Yn
D→ X/Y, provided that Y 6= 0.

I The following statement are equivalent (i.e., there is an “if and only if”
relationship between them):

1 Xn
D→ X;

2 limn→∞ E[g(Xn)] = E[g(X)] for all bounded continuous functions g.
3 limn→∞ E[g(Xn)] = E[g(X)] for all functions g of the form g(x) = f (x)I{x∈[a,b]} where

f (x) is continuous in [a, b] and a, b are point of continuity of the cdf of X.
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Convergence results for the sum of two RVs

Using Markov, Chebyshev, Hölder, Minkowski, and Lyapunov inequalities, we can
prove the following statements:
I if Xn → X and Yn → Y, where convergence is a.s., r-th mean or P, then

Xn + Yn → X + Y

where convergence is of the same type (respectively, a.s., r or P).

I One important observation: if Xn
D→ X and Yn

D→ Y, it is NOT generally true that

Xn + Yn
D→ X + Y.
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Laws of Large Numbers

I General problem: given a sequence of RVs {Xn} with partial sum Sn = ∑n
i=1 Xi,

two sequences of numbers {an} and {bn} and a RV S, under what conditions the
following convergence occurs?

Sn

bn
− an → S, for n→ ∞

and in what sense?
I For example, by using the characteristics function and its uniqueness properties,

we have already established:

1
n

Sn
D→ µ,

Sn − nµ√
nσ

D→ N (0, 1)

for {Xn} i.i.d. with mean µ and variance σ2.
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I Restricting to the case of i.i.d. sequences of RVs {Xn} with E[X1] = µ (so we
assume that the mean exists),

1 if 1
n Sn

P→ µ we say that the sequence obeys the weak law of large numbers (WLLN);
2 while if 1

n Sn
a.s.→ µ we say that the sequence obeys the strong law of large numbers

(SLLN).

I We already know that if {Xn} is an i.i.d. sequence with E[X1] = µ, then it obeys
the WLLN.
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Sufficient condition for the SLLN

Theorem

Let {Xn} denote an i.i.d. sequence with E[X2
1] < ∞ and E[X1] = µ. Then,

1
n

n

∑
i=1

Xi → µ, for n→ ∞

almost surely and in mean-square sense.

Proof.
In order to show m.s. convergence, we write:

E

[∣∣∣∣ 1n Sn − µ

∣∣∣∣2
]
=

1
n2 E

∣∣∣∣∣ n

∑
i=1

Xi − nµ

∣∣∣∣∣
2
 =

1
n2

n

∑
i=1

Var(Xi)→ 0

In order to show a.s. convergence we have to work a bit harder.
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Discussion

I The conditions in the theorem above are both necessary and sufficient for the
convergence in mean square.

I For almost sure convergence, the condition E[|X1|] < ∞ is necessary and
sufficient, but the proof is considerably more involved.

I There exist sequences that satisfy the WLLN but NOT the SLLN.
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Thank you!

Thank you! Q & A?
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