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Discrete-time linear systems

» Consider the following discrete-time linear (possibly time-varying) system with
impulse response h[n, m], and the input is the random process X,.

» The output Y}, of such system is given by

Y, = Z hin, m) Xp—m
m

and we would like to check whether the sum in (defining) Y}, exists?

h[n,m|
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Existence and WSS of the output

Theorem

Let {X,, : n € Z} be a discrete-time random process with auto-correlation function
rex[n,m] = E[X,X},]. Let hin, m] denote the the impulse response of a discrete-time linear
system with input-output relation given by y[n] = Y, h[n, m|x[n — m],n € Z. Then,
> the output
Y, = Zh[n, m| Xon—m,
m

(for any fixed n € Z) exists in the mean-square (m.s.) sense if

Z \h[n,m“ rxx[l’l*m,l’lfm] < 00.
meZ

» if X,, is Wide-Sense Stationary (WSS) and the system is linear time-invariant (LTI) and
BIBO-stable, then Yy, always exists in the m.s. sense and it is also WSS.

4

Proof: For any given n € Z, define the random process {Z,,,, = h[n, m|Xy—y : m € Z},

so that Y, =), Z,, . Then, the auto-correlation function of Z, ;; (with respect to m for
fixed n) is

1220, k] = [hln, 0)X,_oh*[n,k]X}_ ] = hin, €)h* [n,Klrsx[n — €,n — k]
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Proof: continuation

It is known that for a discrete-time process {X,,: n € Z} with auto-correlation function
ryx[1,m], then the sum Y, = Y2y X converges in a m.s. sense

Q ifand only if limy ;m—co Y, ¢ ij:n 41 ", j] = 0 (Cauchy convergence);
@ ifand only if limy,m—co Y q E]’-": 1 "xxli,j] = < co (Loeve’s criterion);

@ ifY,’ 1 V/tx[n n] < oo (Cauchy-Schwartz).

So, by Item 3, we have the convergence Yy, = Y, Zy m if
Y \frzlmm] =Y |h[n,m]|\/rec[n —m,n —m] < co.
mez mezZ

This proves the first statement.
Then, by definition of WSS (for X,,), we have ryy[n, m] = ry[n — m]; and by definition
of LTI system, we have h[n, m] = h|m] (independent of 1), so that

Y, = Zh[n, m|Xy—m = Zh[m}X,,,m discrete-time convolution
m m

Furthermore, by definition of BIBO-stable, we have h[m] absolutely summable and

Y \Jrazlmom) = Y bl ml|\fracln — mn—m] = \/rxx[O];\h[mH < co.

meZ meZ

And it remains to check Y}, is WSS to conclude the proof of the second statement.
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Input-output second-order statistics

» Consider Y, = ¥, h[n, m]X,,_, and assume that it exists in the m.s. sense. Then,

pyln) = Y hln,mpx(n —m]
ryy[n, m] YN h[n, Orex[n — €,m — kJh* [m, k]
7K
ryx[n, m] Y hn, O)r[n — €, m]
7
reyln,m) = ;rm [n,m — k)h*[m, k]

> Suppose that the transformation is LTI, BIBO stable, and in the input is WSS, then
Yy =Y h[m]Xu—m
m
» Constant mean function of the output:
Hy = Zh[m]ﬂx = Hx Zh[m]
m m
> Auto-correlation function of the output

ryylm] = E[Yn Y} ] = ;;h[e]rxx(m — L+ K k] = B[] @ I [—m] @ 1y [m]
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» Output-input cross-correlation function

ryx[m] = ]E[YnXme] = ;h[e]rxx [m - E] = h[m} & Txx [m]

> Input-output cross-correlation function

ray[m] = E[Xu Y] Eh Oryx[m — €] = W*[—m] @ rex[m]

» Notice also:
ry ] = h{m] & rey ] = W [=m] & ryefm]
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Fourier transforms

» Discrete-time signals (Z = Z):

X(f) = anf] 27ifn dt-Fourier transform
n

Xn = / (f)el?rdf representation
1/2

» Discrete-time finite duration signals (or periodic signals) (Z = Zy):

1 Nil LI
Y= — xpe I DFT
VN n=0
1 N2t 2
Xp = —— Xe! ik representation
N 5o
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Meaning of the equalities

» In all above relations, the = sign establishes a correspondence between x and its
transform X.

> If we restrict to £, and ¢, functions and sequences, the correspondence is
one-to-one in the Hilbert spaces of squared summable functions and sequences
with inner product

(wy) =[xy @, o) =T

> Parseval identity ensures that the Fourier transform operator maps £, (resp., £5)
into £, (resp., {3), in particular, in the discrete-time case we have:

() = bl = [ Jr() Pt
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Energy spectral density

> Consider a random process X, with auto-correlation function rx,[n, m] such that
Yom Txx [, m] < co (Notice: this process is generally NOT WSS).

» Its Fourier transform exists in the m.s. sense

X(f) = Y. Xpe P2
n
> The auto-correlation function of X(f) is defined as

relfufo) = B ()] = T X el mle 275
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> In electrical engineering, the second moment [E[|X,,|?] = ryx[n, 1] represents the
(ensemble average) energy per sample of the process.

» Summed over all i, the total (ensemble average) energy is

> Xnl?
n

Ex=E

= Z Txx |1, 1]
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» By using Parseval’s identity, we have

Y IXul?
n
> We define the energy spectral density (ESD) function as

Ex(f) = E[IX()]?] = rsz(£.f)

> The ESD is non-negative real, and when integrated over f € [—1/2,1/2] yields the
process average energy.

f=E e[ [ xOPa] = [ratpn

-1/2

» The quantity Ex(f)df can be interpreted as the average amount of energy that the
process allocates to its frequency component at frequency f.
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ESD and LTI systems

» Consider Yy, = Y, h[m]Xy,—m where h[m] is the impulse response of a BIBO-stable
LTI system. Then

Y(f) = h(F)X(f)
» Direct calculation shows immediately that
ry(fif2) = h(A)R* (R)rss(fi f2)

» [t follows that

Ey(f) = rg(£.) = [F)| Ex(f)

» In plain words, the LTI system acts on the energy density of the process by
re-weighting the frequency components by the squared magnitude of the system
transfer function |(f)|?.
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Power spectral density

> Consider a random process X, such that },, ,,, 7xx [n, m] may not converge, but such
that its truncation to the finite support [—N, N] is finite for any finite N.

» Define
Xn(f) = Z Xue 2
n=—N
and the corresponding ESD ESCN) (f) = E[|Xn(f)|?], with [ E,(CN) (Hdf = S,EN)
» The power of X, is defined as the average energy per index/symbol/time

Pr= lim ~— ™ — jim V2N (g
¥ NBew 2N 1% Nﬁw2N+1 1/2"

when this limit exists.
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> Assuming that we can exchange limit and integration (e.g., with Lebesgue’s
dominated convergence theorem), we define the power spectral density (PSD) of
X, as

Px(f) = lim BV _ E[|Xn ()]

N—oo 2N +1 N4>002N+1

> It follows that, if the PSD exists (exchanging limit with integration is valid), then
the signal power is given by

Pe= [ pipyas

-1/2
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Wiener-Khintchine Theorem

In plain words, auto-correlation function of a wide-sense-stationary (WSS) random
process has a spectral decomposition given by the power spectrum of that process.

Theorem

If X, is WSS with absolutely summable auto-correlation function rx[m], then
Py(f) = erx [m]eﬂZ”f’”
m

i.e., the PSD is the Fourier transform of the auto-correlation function.

> P.(f) is real non-negative valued since ry[m] is Hermitian symmetric and positive
semi-definite.

> If X, is real-valued, then Py(f) is an even function (i.e., Px(f) = Px(—f)).
» By the inverse Fourier transform, we have

rx[m] = /j/Z Px(f)efzﬂfmdf

1/2
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Proof of Wiener-Khintchine Theorem

» We write

2N+1 [| Xn ()| ]

2
LI % Xpe 127
aN+1 || ="
1L ¢y 2nf(n-m)
_ —j12nf(n—m
2N +1 ZNm; e[ —mle
% rax (€] <1_ 4 )e—]ZHfé
PRt 2N +1

where the last equality follows from the fact that ry,[n — m] is constant for each

diagonal summation path n — m = ¢ in the rectangle [N, N] x

[~N,N].

> If ryy[m] is absolutely summable, we can let N — oo and have the result.
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LTI Systems in the frequency domain

> Let X;;, Yy, be the WSS input and output of a LTI BIBO-stable system with impulse
response h[m].

> Recalling the convolution relation between ryy[m], ryx[m] and ry, [m], we have

& Py(f) = |h(F)PPx(f)
< Pyl(f) = h(f)Px(f)
& Py(f) =*(f)Px(f)
& Py(f) = h(f)Py(f)

ryylm] = h{m] @ h* [—m] @ ryx[m
]
]
]

ryy[m] = h[m] @ ryy[m

ryx[m] = h[m] @ ryx[m

rxy[m] = h*[—m] @ ry[m

]
]
]
]
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Input-output relations for correlation

i
Lol e
L
M hin] ® h*[—m)|
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Input-output relations for PSD

X, Bm] Y,
PO gy Pal)
EO gy e
PE i PUy
1] ()
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PSD of more general processes

> For a wide class of processes, the ensemble-averaged power

1 - 2 1 2
= lim —— F X I / d
P = M oN T HEN‘ nl T NS 2N + { 1/2| ()l f}
exists.
> In addition, it happens that imy_,eo o7 E[|Xn (f) [?] = Px(f) exists forall f € R

and that Py = [/, P.(f)df.
> In this case, we wish to calculate the PSD Py (f) even though X, is not WSS.
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Theorem

For sufficiently well-behaved ryx[n, m],

Py(f) =) P [m]e 127

where
1 N
- — lim e
P[] Jim o n;}\] Trx[n, 1 — m]
is the time-averaged auto-correlation function. )
Corollary
The family of WSC processes has mean function yx[n] periodic with period T and
auto-correlation function rxx[n, n — m| periodic with respect to n with period T for all m. In
this case, the time-averaged auto-correlation function is easily obtained by averaging over one
period:
1T=1
Fax[m] = = Y rln,n—mj
n=0
y

Proof: as in the proof of the Wiener-Khintchine Theorem.
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A reminder on continuous-time random processes

> Given a probability space (Q), F,P) and an interval 7 C IR, a continuous-time
random process is the collection of random variables {X(w, t) : t € T } where for
any n and n-tuple of indices t1, ..., t; € T we have that
(X(, 1), -+, X(-, tn)) : Q@ — R" is a random vector with respect to the given
probability space.

> As usual, we generally neglect the explicit dependence on w, and write
{X(t) : t € T}, or evenjust X(t) when T is clear from the context.

> We shall indicate by x(w, t) a sample path of the process X(t), that is, a particular
realization, or trajectory of the process in correspondence of the abstract random
experiment outcome w.
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Outline

@ Continuous-time random processes and linear systems
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Extension of definitions (from dt to ct)

» We have defined and discussed stationarity, cyclostationarity, ergodicity, etc., for
discrete-time random processes

> All what said for discrete-time random processes holds almost verbatim for
continuous-time random processes, with the following replacements:

) /dt

-
n

dt-Fourier Transform —  ct-Fourier Transform
dt-convolution — ct-convolution
—

dt-frequency domain [—1/2,1/2] ct-frequency domain R
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ct-Fourier Transform and convolution

» Transform

() = /Tx(t)e-ﬂ”ﬂdf
» Inverse transform oo

x(t) = [ wp)er s

» Convolution

/h x(t = T)dt & Y(F) = h(F)*(F)
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Mean and autocorrelation functions

> Consider the complex proper random process X(t) defined over 7 = RR.
» The mean function y : 7 — R is defined as

p(t) = E[X(#)]

» The (auto)covariance function cyy : 7 X T — R is defined as

cxx (b, t2) = Cov(X(t), X(£2)) = E[X(11) X" (82)] — p(ta) " (£2)

» The (auto)correlation function ryy : 7 x T — R is defined as

ree(ty, ta) = B[X(t) X" (t2)] = cxx(t, t2) + p(ty)u" (f2)

» Usually these are referred to as “covariance” and “correlation” functions...
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Wide-Sense Stationarity

Definition
A random process X(t) is called Wide-Sense Stationary (WSS) if its second-order
statistics are invariant with respect to time-shifts 7 for any t € 7.

» The mean function of a WSS process X(t) satisfies, for all T:
EX(t—1)] =E[X(#)] = wu(t) =pu (constantfunction)

> The autocorrelation function (and covariance function) of a WSS process X(t)
satisfies, for all T:

EX(h —T)X* (2 — D] = E[X(t1)X* ()] = rulh—T,t2— 1) =ru(h,f2)

> Letting T = t; we have that ry (1, t2) = rxx(t1 — £2,0), that is the autocorrelation
function depends only on the time difference.

> For WSS processes, with some abuse of notation, we define rxy(7) = ry (£t — T)
and ¢y (T) = cxx (Kt — T).

Z.Liao (EIC, HUST) PSP VI December 13, 2022 29 /52




Wide-Sense Cyclostationarity

Definition

A random process X(t) is called Wide-Sense Cyclostationary (WSC) of period T if its
second-order statistics are periodic functions of period T.

» The mean function of a WSC process X(t) satisfies:
EX(t—T)] =EX()] = wult—T)=u(t) (periodic)

> The auto-correlation function (and covariance function) of a WSC process X (t)
satisfies:

]E[X(tl — T)X*(tz — T)] = ]E[X(tl)X*(t2)] = Txx(tl — T, tz — T) = Txx(tl,fz)

> Letting t; = tand tp =t — Twe have that ryy (Lt —T) = 1 (t =T, t =T —7T) isa
periodic function in the variable ¢, for any time difference 7.
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Mean-square calculus

» In order to study second-order processes in continuous time we need to develop a
theory for continuity, differentiability, and integrability.

» This allows us to study the effect of continuous-time random processes as input
and output of linear systems (i.e., convoluted with a system impulse response), or
as input/output of system of differential equations.

> We develop tools for the existence of limits in the m.s. sense very similar to what
already done for dt-processes.
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And many other things holds as in the discrete case

> Loeve’s criterion on the existence of the limit of X () for t — oo (e.g., in the
mean-square sense) “controlled” by the (existence of the) limit of auto-correlation
function;

» mean-square continuity and uniform mean-square continuity

v

mean-square differentiability
> etc.
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Loeve’s criterion

Theorem

Let {X(t) : t € T} be a random process with autocorrelation function r(t1, t;). The limit of
X () for t — oo exists in the mean-square sense if and only if limy, ¢, 0o *(t1,t2) = € R4 (a
constant, independent of how t1,t, go to infinity). O

Proof: it is analogous to what already done for the discrete-time case.
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Mean-square continuity

Definition

Let X(t) denote a real or complex-valued random process defined over 7 C R. We say
that X(t) is continuous in the m.s. sense at #( if

lim E[|X(¢) — X(to)|*] = 0

t—to
or, more explicitly, for all € > 0 there exist 6(f, €) such that
E[|X(¢) —X(t0)|2] <€ VY |[t—ty| <ty €)

Furthermore, if for all {) € T there exists some 6(fy, €) = d(¢€) satisfying the above
condition that does not depend on #y, we say that X(#) is uniformly continuous in the
m.s. sense.
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> Stated in terms of the correlation function 7y (1, ), the condition for m.s.
continuity yields

l’xx(t, t) — Txx(t, to) — rxx(t()/ t) —|—7’xx(t0,t0) <eg V ‘t — to‘ < (5([’0,6)

Lemma

X () is m.s. continuous at ty if and only if its auto-correlation function ryx(t, tp) is
continuous at the point (tg, ). O

Corollary

If X(t) is WSS, then it is m.s. continuous if and only if rxx(T) is continuous at T = 0. Then, a
WSS process X (t) is either uniformly m.s. continuous at all t, or discontinuous at all t.
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Mean-square differentiability

Definition
Let X(#) denote a real or complex-valued random process defined over 7 C RR. We say
that X(#) is differentiable at fy € 7 in the mean-square sense if the sequence of random
variables

X ri) =)
h

converges in mean-square to some limit Y, as h — 0. In this case, the limit X(t) is the
m.s. derivative of X(t) at ¢;.

Y, =

Lemma

X(t) is m.s. differentiable at t( if and only if % exists and it is finite at the point (to, t).
y
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Correlation of a process and its derivative

> Suppose that X(t) is differentiable in the m.s. sense and let X(t) = %X (t) denote
the derivative process.

» Mean-square differentiability ensures that we can exchange expectation with the
differentiation operation.

d

pe(t) = x(t)
rix(t1, ) = ‘—927’3;(7;;@
ree(ty, b)) = %ﬁf&)
rei(t1, f2) = %}2'@)
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» When X(t) is WSS, we define the auto-correlation function ryy (¢, — T) = rxx(T)

and its derivatives 7y (T) = %rxx(r) and yy (T) = dd—;rxx('f), and obtain

d
ﬂx(t) = %ﬂx =0
rix(t1, ) = —Frx(t1 — 1)
rix(t1, ) = fxx(ty — t2)
i (b1, tp) = —Fae(t — £2)

> We conclude that X(t) and X(t) are jointly WSS, and the derivative process has
mean zero and auto-covariance function —xy (7).
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Riemann integration of random processes

» The Riemann integral of X(t) over [a,b] is defined as the limit:

b m
Sia bl = [ X(0at = Jim Y X()(tia — 1)

where T, = {to, 11, ..., tm} is a grid of non-decreasing indices such that fy = 2 and

tm = b, Ty, = {t}, ..., t,} is a sequence of indices such that t; | <t < t; forall i,

and for all sufficiently large m, 7y, satisfies

t—t 4| <6
g@nlz i1l <om (%)

where 6,, — 0as m — co.

» The limit with respect to m is a short-hand notation to indicate the limit along any
sequence of sets Ty, T, satisfying the above conditions, and the limit must exist
and be the same irrespectively of the sequence of sets, as long as condition () is
satisfied.
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» When the integrand function is a random process, we have to specify in which
sense the sequence of RVs S, = Y | X(#))(ti41 — t;) converges.

» We use Loeve’s criterion: E[S,,S};] must converge to some real limit for m,n — oo
irrespectively of the path.

» We have

m n
E [SuSy] = Y ) rax(ti, s7) (tivn — ti) (Sj41 — 5j)
i-1j31

> Taking the limit for m,n — co we arrive at the necessary and sufficient condition:
the Riemann integral 4[: X (t)dt exists in the m.s. sense if and only if

b b
/ / Txx (£, 8)dtds < oo
a a
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Continuous-time processes and LTI systems

» The output of an LTI system with impulse response h(t) is written as

/h x(t—1)d

> When the input is a random process X(t), then the output exists in a mean-square
sense if the convolution integral
/ h(T)X(t —1)d

exists in the m.s. sense, that is, the process Z;(t) = h(7)X(t — T) must be
integrable in the m.s. sense for all ¢.

» Using the necessary and sufficient condition seen before (and restricting to
well-behaved processes and systems for which Riemann integration applies), we
have the necessary and sufficient condition

//h Nry(t — 7, t — T')dTdt’ < 00

foreveryt € T.
> If X(t) is WSS we have 7y (t — T,t — T') = () — T), therefore the condition
becomes

//h Ve (T — T)dTdT < 00
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Existence of the WSS output

Lemma

The output Y (t) to the LTI system with impulse response h(T) and WSS input X(t) exists in
the m.s. sense if the system is BIBO-stable.

Proof: We can write

//h Ny (T — 1)drdt’

IN

[ [ W) ) e

rx(0) (/ |h(T)|dT)2

where |7y (T — T)| < 714x(0) follows from the Cauchy-Schwartz inequality. If the
system is BIBO-stable, then its impulse response is absolutely integrable.

IA
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Input-output second-order statistics

> Consider a WSS input X to an LTI BIBO-stable system with impulse response h(7),
and let Y(t) = [ h(7)X(t — T)dT denote the output.

» Mean function of the output:

py = /h(T)ﬂxdT = px /h(r)dr

> Auto-correlation function of the output
ry(th—t) = //h(tl — ) (' — ¥ (ty — ¢t dt" =

= //h(r')rxx(tl —ty — '+ T (")d d
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> Output-input cross-correlation function

re(h — ) = /h(tl et — )dE = / WD) ra (b — by — T)dT

> Input-output cross-correlation function (using the fact that ry,(t1, ) = ryx(t2, t1))

rxytl_tZ /h* z—t ?’xxt—tldt_/h* Txxtl—tz—’l’)d’[‘

> Written in a more compact way, we have

ry(t) = h(t)® B (—7) @ rex(T)
() = h(1) @ (1)
ry(T) = KH(=T)®@ru(7)

» Notice: these are completely analogous to the discrete-time case.
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Power spectral density

» The Fourier transform of the truncated process {X(t) : t € [-T/2,T/2]} is

. T/2
Xr(f) = /XT(f)e*JQ”ffdt = / ) X(t)e 2t
—T/2
» The power of X(t) is defined as
Py = lim LE " X(t)|*d Ji E X d
x = 2o {LT/2| ()] t} im {/{ T(f| f}
when this limit exists.

» Assuming that we can exchange limit and integration, we define the power
spectral density (PSD) of X(t) as

) = fim 7 |51

» It follows that, if the PSD exists (exchanging limit with integration is valid), then
the signal power is given by
m:/mm#
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Wiener-Khintchine Theorem: continuous time

Theorem

If X(t) is WSS with absolutely integrable auto-correlation function ryx(T), then

Pu(f) = / re(D)e P

Proof: as in the discrete setting with a change of variable, skipped here.
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Cross-Spectrum and output PSD

> A simple corollary of the Wiener-Khintchine theorem concerns the case of jointly
WSS processes X(f) and Y(t) with absolutely integrable cross-correlation function
ey (T) = EIX(t + 1) Y*()].

» In this case, we can define the cross-spectrum as the Fourier transform

Py (f) = / ey (D)2

» When X and Y are the input and output of a stable LTI system with transfer
function h(f), we have

Pay(f) = 1 (F)Px(F),  Pyx(F) = h(f)Px(f)

and

Py(f) = h(F)*Px(f)
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PSD of more general processes

> For a wide class of processes, the time-average power
1 /2 1 © .
= lim ~ X(0)Pdt| = lim 2B | [ %r(Hd
P fim 2| [ x(0Par] = fim 2| [ 1) Py

exists.

> In addition, it happens that limr_,. +E[|X7(f)[?] = Px(f) exists for allf € R and
that Py = [ Px(f)df.
> In this case, we wish to calculate the PSD Py(f) even though X(¢) is not WSS.
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Theorem
For sufficiently well-behaved 1y (t1,t2),

Py(f) = / ?xx('r)e’ﬂ”deT

where

_ .1 T2
Fa(T) = Jim 7 /—T/Z Tx( +6,0)d0

is the time-averaged auto-correlation function.

y
Corollary
The family of WSC processes has mean function my(t) periodic with period T and
auto-correlation function ry (t + T, t) periodic with respect to t with period T for all T. In this
case, the time-averaged auto-correlation function is easily obtained by averaging over one
period:
_ 1 /T
Tax(T) = 7/ rxx (T +6,0)do
T Jo y
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From ct to dt: Shannon sampling theorem

Theorem

Let x(t) be a function with Fourier transform X(f ) with support strictly inside the interval
[—B/2,B/2]. Then, the following equality holds pointwise

x(t) = _i x(n/B) sinc(B(t —n/B))

n o0

Notice: The set of functions i, (t) = v/Bsinc(B(t — n/B)) for n € Z forms an
orthonormal basis. This is a complete basis for the set of functions with bandwidth
strictly limited in [-B/2,B/2].
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Sampling of band-limited processes

Theorem

Let X(t) be a ct WSS process with PSD P (f), with support strictly inside the interval
[—B/2,B/2] (strictly band-limited WSS process). Then, the following equality holds in the
1m.s. sense

X()= Y X(n/B)sinc(B(t—n/B))

n=—oo

Notice: This theorem says that band-limited continuous-time processes can be
essentially identified with discrete-time processes, obtained by sampling at an
appropriate rate B samples per unit time.

It follows that almost all processes relevant in system-theory problems with finite
bandwidth can be safely studied by looking at their discrete-time equivalent.
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Thank you!

Thank you! Q & A?
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