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About today’s lecture

∠ Introduction to non-convex optimization
∠ Basic concepts and mathematical tools
∠ Some non-convex optimization methods: non-convex projected GD, alternating

minimization, stochastic optimization
∠ Some applications in signal processing and machine learning: sparse recovery,

low-rank matrix recovery, and phase retrieval (MAY SKIP)
∠ Reference: Prateek Jain and Purushottam Kar. “Non-Convex Optimization for

Machine Learning”. In: Foundations and Trends® in Machine Learning 10.3-4 (Dec.
2017), 142–363. issn: 1935-8237, 1935-8245. doi: 10.1561/2200000058

https://doi.org/10.1561/2200000058
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Non-convex optimization

∠ generic form of analytic optimization problem:

min
x∈Rp f (x)

s.t. x ∈ C,

with variable x ∈ Rp, objective function f : Rp → R, and C ⊂ Rp the constraint set.
∠ the problem is convex if both the objective f is a convex function and C is a convex set
∠ Examples of non-convex optimization problems:

∠ sparse regression: ŵ = argminw∈Rp ∥y − XTw∥2, s.t. ∥w∥0 ≤ s≪ p
∠ recommendation system: (low rank) matrix completion problem as

Â = argminX∈Rm×n
∑

(i,j)∈Ω(Xij − Aij)2, s.t. rank(X) ≤ r
∠ life is hard and math is difficult, we resort to convex relaxation, and hope the gap is

small
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Figure: Examples of applications of non-convex optimization
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Convex versus non-convex optimization

∠ facing a non-convex optimization problem, we may either
(i) resort to convex relation of the problem, and hope that the problem is nice enough

for the gap to be small; or
(ii) (somewhat naively) solve it using non-convex optimization approaches (such as

gradient descent, alternating minimization, and the expectation-maximization
algorithm, etc.) and ?

∠ in fact it turns out that if the problems possess nice structure, both approaches work,
and non-convex techniques may even be more efficient (in term of complexity)!
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Recap on convex analysis

∠ Convex combination: for x1, . . . , xn ∈ Rp, xθ ≡
∑n

i=1 θixi with θ0 ≥ 0 and
∑n

i=1 θi = 1.
∠ Convex set: C such that if x,y ∈ C then for any λ ∈ [0, 1], (1− λ)x+ λy ∈ C
∠ Convex function: (if continuously differentiable) f : Rp → R if x,y ∈ Rp then

f (y) ≥ f (x)− ⟨y − x,∇f (x)⟩, with ∇f (x) the gradient of f at x
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Convex projection

∠ For any closed set (convex or not) C ⊂ Rp and z ∈ Rp, projection onto C as
ΠC(z) ≡ argminx∈C ∥x− z∥

∠ properties of ΠC(·):
(i) any closed set C, then for all x ∈ C, ∥ΠC(z)− z∥ ≤ ∥x− z∥
(ii) convex set C, then for all x ∈ C, ⟨x−ΠC(z), z−ΠC(z)⟩ ≤ 0
(iii) contraction property: convex C, then for all x ∈ C, ∥ΠC(z)− x∥ ≤ ∥z− x∥
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Convex projection: a few (practical) examples

∠ for C = B2(1), that is, the unit L2 ball, the projection is equivalent to normalization

ΠB2(1)(z) =
{
z/∥z∥, if ∥z∥ ≥ 1
z, otherwise

(1)

∠ for C = B1(1), the unit L1 ball, the projection is equivalent to soft-thresholding:
ẑ = ΠB1(1)(z), then ẑi = max(zi − θ, 0) for a threshold θ determined by a sorting on z

∠ for C = B0(1), non-convex set! but hard-thresholding, see later
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min
x∈Rp f (x), s.t. x ∈ C. (2)

Algorithm Projected Gradient Descent (PGD)
Input: Convex objective f , convex constraint set C, step lengths ηt
Output: A point x̂ ∈ C with near-optimal objective value
1: x(0) = 0
2: for t = 1, 2, . . . ,T do
3: z(t+ 1)← x(t)− ηt · ∇f (x(t))
4: x(t+ 1)← ΠC(z(t+ 1))
5: end for
6: (OPTION 1) return x̂final = x(T)
7: (OPTION 2) return x̂avg = (

∑T
t=1 x(t))/T

8: (OPTION 3) return x̂best = argmint∈[T] f (x(t))
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A few comments on PGD

∠ in the proof of the convergence of PGD, we generally get step length ηt = 1/
√
T, with

T the total number of iterations: horizon-aware
∠ horizon-oblivious: take ηt = 1/

√
t also works, in theory

∠ in practice: the step length ηt is tuned globally by doing a grid search over several
possible values (akin to the horizon-aware setting), or per-iteration using line search
mechanisms (akin to the horizon-oblivious setting), to obtain a step length value that
assures good convergence rates
○␣ line search: for a given direction g(x(t)), choose ηt ≥ 0 that (exactly or “loosely”)
minimize h(ηt) = f (x(t)− ηt · g(x(t))), and update as x(t+ 1) = x(t)− ηt · g(x(t))
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Projected gradient descent (again), but non-convex

∠ PGD practically applies to convex and non-convex problems (we will see why)
∠ however, the projection onto a non-convex C can already be NP-hard

Projection into sparse vectors

For z ∈ Rp, let σ be the permutation that sorts the entries of z in decreasing order,
|zσ(1)| ≥ . . . ≥ |zσ(p)|, then ΠB0(s)(z) = [zi · 1σ(i)≤s], with B0(s) ≡ {x ∈ Rp, ∥x∥0 ≤ s}.

∠ also known as the hard-thresholding

Projection into low-rank matrices (Eckart-Young-Mirsky theorem)

For A ∈ Rm×n with singular value decomposition A = UΣVT, then ΠBrank(r)(A) =

U(r)Σ(r)VT
(r) for any r ≤ min(m,n), with Brank(r) ≡ {A ∈ Rm×n, rank(A) ≤ r}.
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Intuition on how this might work for non-convex problems

∠ (generally) non-convex can be restricted convex if f : Rp → R over a (possibly
non-smooth) region C ⊂ Rp satisfies ⟨x−ΠC(z), z−ΠC(z)⟩ ≤ 0

∠ so everything should work as in the convex case with (almost) the same PGD
approach, and this is indeed the case
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Alternative Minimization

∠ useful when the optimization concerns with two or more groups of variables, e.g., in
low-rank matrix completion, find X ∈ Rm×n such that rank(X) = r ⇔ X = UVT with
U ∈ Rm×r,V ∈ Rn×r

∠ in these case, the problem may not be jointly convex in all the variables
∠ Joint convexity: for f : Rp × Rq → R continuously differentiable in two variables, if for

every (x1,y1), (x1,y1) ∈ Rp×q one has
f (x2,y2) ≥ f (x1,y1) + ⟨∇f (x1,y1), (x2,y2)− (x1,y1)⟩, same as convexity in z = [x, y]T

∠ f is marginally convex in its first variable if for every given y ∈ Rq, the function
(·,y) : Rp → R is convex, that is f (x2,y) ≥ f (x1,y) + ⟨∇xf (x1,y), x2 − x1⟩

∠ the idea is simple: solve for one variable (which is convex), with other variables fixed
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every (x1,y1), (x1,y1) ∈ Rp×q one has
f (x2,y2) ≥ f (x1,y1) + ⟨∇f (x1,y1), (x2,y2)− (x1,y1)⟩, same as convexity in z = [x, y]T

∠ f ismarginally convex in its first variable if for every given y ∈ Rq, the function
(·,y) : Rp → R is convex, that is f (x2,y) ≥ f (x1,y) + ⟨∇xf (x1,y), x2 − x1⟩

∠ the idea is simple: solve for one variable (which is convex), with other variables fixed
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Generalized Alternating Minimization (gAM)

Algorithm Generalized Alternating Minimization (gAM)
Input: Objective function f : X × Y → R
Output: A point (x̂, ŷ) ∈ X × Y with near-optimal objective value
1: (x(0),y(0))← INIT()
2: for t = 1, 2, . . . ,T do
3: x(t+ 1)← argminx∈X f (x,y(t))
4: y(t+ 1)← argminy∈Y f (x(t+ 1),y)
5: end for
6: return (x(T),y(T))

∠ we can of course use gradient descent to solve the marginal optimization problem
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gAM always work well? No!

Marginally Optimum Coordinate

For any given y ∈ Y , we say x̃ is a marginally optimal coordinate with respect to y, and
denote x̃ ∈ mOPTf (y) if f (x̃,y) ≤ f (x,y) for all x ∈ X , and similarly for ỹ ∈ mOPTf (x).

Bistable Point

A point (x,y) ∈ X × Y is a bistable point if x̃ ∈ mOPTf (y) and ỹ ∈ mOPTf (x).

∠ the optimum of the optimization problem must be a bistable point
∠ but gAMmust stop at a bistable point
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gAM and its convergence (or not) in non-convex problems

∠ when having multiple bistable points, convergence depends on initialization (so in
fact the problem structure), with detailed analysis on the “region of attraction” of
different bistable points
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Convergence of gAM for convex problems

Things are (again) nice for convex problems
∠ for differentiable (jointly) convex functions, all bistable points are global minima, so

any one is good enough
∠ (Block) Coordinate Minimization approach: solve a single p-dimensional variable

x ∈ Rpas p one-dimensional variables {x1, . . . , xp}, useful in large-scale convex
optimization

∠ may not work well for non-differentiable optimization problems

For non-convex problems:
∠ we can only converge to bistable points, and hope they are (or at least close, in some

sense, to) global minima
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Convergence of gAM for non-convex problems

Lemma (Bistable points are stationary points)

Apoint (x,y) ∈ X×Y is a bistablewith respect to a continuously differentiable function
f : Rp × Rq that is marginally convex in both its variables if and only if ∇f (x,y) = 0.

Robust Bistability Property

A function f : Rp × Rq is said to be C-robust bistable if for some C > 0, every (x,y) ∈
Rp × Rq, x̃ ∈ mOPTf (y) and ỹ ∈ mOPTf (x) we have

f (x,y∗) + f (x∗,y)− 2f∗ ≤ C (2f (x,y)− f (x, ỹ)− f (x̃,y)) , (3)

with (x∗,y∗) any optimal points with f (x∗,y∗) = f∗.

∠ reduce locally the value of f with marginal optimization
∠ if no more can be made (f (x, ỹ) ≈ f (x,y) ≈ f (x̃,y)), close to the optimum
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The Expectation Maximization (EM) algorithm

Very important and interesting,
but skipped here due to time constraint and its different form, see [1, Chapter 5]!
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Stochastic Optimization Techniques

∠ in (ML and SP) applications, objectives functions can be non-convex as well
∠ gradient descent x(t+ 1) = x(t)− ηt∇f (x(t)) stalls at stationary points with
∇f (x(t)) = 0
○␣ local minima,∇2f (x) ≻ 0
○␣ local maxima, ∇2f (x) ≺ 0
○␣ saddle points contains both positive and negative eigenvalues: we do not know, but
important, since they aremany of them



Introduction and basic concepts Some Non-convex Optimization Methods Applications ∠ 24/39

Stochastic Optimization Techniques

∠ in (ML and SP) applications, objectives functions can be non-convex as well
∠ gradient descent x(t+ 1) = x(t)− ηt∇f (x(t)) stalls at stationary points with
∇f (x(t)) = 0
○␣ local minima,∇2f (x) ≻ 0
○␣ local maxima, ∇2f (x) ≺ 0
○␣ saddle points contains both positive and negative eigenvalues: we do not know, but
important, since they aremany of them



Introduction and basic concepts Some Non-convex Optimization Methods Applications ∠ 24/39

Stochastic Optimization Techniques

∠ in (ML and SP) applications, objectives functions can be non-convex as well
∠ gradient descent x(t+ 1) = x(t)− ηt∇f (x(t)) stalls at stationary points with
∇f (x(t)) = 0
○␣ local minima,∇2f (x) ≻ 0
○␣ local maxima, ∇2f (x) ≺ 0
○␣ saddle points contains both positive and negative eigenvalues: we do not know, but
important, since they aremany of them



Introduction and basic concepts Some Non-convex Optimization Methods Applications ∠ 24/39

Stochastic Optimization Techniques

∠ in (ML and SP) applications, objectives functions can be non-convex as well
∠ gradient descent x(t+ 1) = x(t)− ηt∇f (x(t)) stalls at stationary points with
∇f (x(t)) = 0
○␣ local minima,∇2f (x) ≻ 0
○␣ local maxima, ∇2f (x) ≺ 0
○␣ saddle points contains both positive and negative eigenvalues: we do not know, but
important, since they aremany of them



Introduction and basic concepts Some Non-convex Optimization Methods Applications ∠ 24/39

Stochastic Optimization Techniques

∠ in (ML and SP) applications, objectives functions can be non-convex as well
∠ gradient descent x(t+ 1) = x(t)− ηt∇f (x(t)) stalls at stationary points with
∇f (x(t)) = 0
○␣ local minima,∇2f (x) ≻ 0
○␣ local maxima, ∇2f (x) ≺ 0
○␣ saddle points contains both positive and negative eigenvalues: we do not know, but
important, since they aremany of them



Introduction and basic concepts Some Non-convex Optimization Methods Applications ∠ 25/39

Motivating example: Orthogonal Tensor Decomposition

∠ use outer product ⊗ to construct 2nd order tensor, for u,v ∈ Rp, u⊗ v ≡ uvT ∈ Rp×p

∠ 4th-order tensor (4-dimensional array) that has orthogonal decomposition
T =

∑r
i=1 ui ⊗ ui ⊗ ui ⊗ ui, with uT

i uj = δij (orthonormal)
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∠ like a matrix ∈ Rp×p defines a bilinear form A : (x,y) 7→ xTAy, (orthonormal) tensor
defines multi-linear form as

T (v,v,v,v) =
r∑

i=1
(uT

i v)4 ∈ R, . . . , T (I, I, I,v) =
r∑

i=1
(uT

i v) · (ui ⊗ ui ⊗ ui) ∈ Rp×p×p

∠ the problem of tensor decomposition: recover all ui, i = 1, . . . , r, do this one by one
∠ in need to solvemax∥u∥=1 T (u,u,u,u) =

∑n
i=1(uT

i u)4
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∠ in the case of Orthogonal Tensor Decomposition, symmetry in problem:
○␣ recover the components in any order we like (a lot of equivalent global optima); but
○␣ convex combinations of the components are not optima: in fact, r isolated optima
spread out in space, interspersed with saddle points (just like in the pictures)

∠ In this case, what should we do?
(i) apply second-order (e.g., Newton’s method) to “escape” from saddle points: this is

however not always possible due to high complexity
(ii) what to do if we are only allowed to use first-order methods? Add some noise!
∠ intuition: if a saddle point x of f contains direction of steep gradient, then there is

some chance for gradient descent to “discover” and “fall” along it
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Intuition of noisy gradient descent

∠ existence of the steep gradient direction makes the saddle unstable and behaves like a
local maxima along this direction

∠ so slight perturbation of the gradient may cause gradient descent to roll down
∠ see below for the two-dimensional toy example of f (x, y) = x2 − y2, with saddle at

(0, 0) and minimum Hessian eigenvalue = −2
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The strict saddle property

Strict saddle property

For unconstrained optimization problem minx∈Rp f (x), we say f : Rp → R satisfy the
strict saddle property if, for every point x ∈ Rp we have at least one the following
properties holds:
∠ Non-stationary point: ∥∇f (x)∥ ≥ C1;
∠ Strict saddle point: λmin(∇2f (x)) ≤ −C2;
∠ Approximate local minimum: ∥x− x∗∥ ≥ C3 for some local minimum x∗.
for some C1,C2,C3 > 0.

∠ assume the property of f and is in fact very restrictive
∠ however, there does exist such problem in practice: e.g., the Orthogonal Tensor

Decomposition
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Noisy Gradient Descent (NGD)

Algorithm Noisy Gradient Descent (NGD)
Input: Objective f , max step length ηmax, tolerance ϵ
Output: A locally optimal point x̂ ∈ Rp

1: x(0)← INIT()
2: Set T ← 1/η2, where η = min

{
ϵ2/ log2(1/ϵ), ηmax

}
3: for t = 1, 2, . . . ,T do
4: Sample perturbation z(t) ∼ Sp−1 //Random pt. on unit sphere
5: g(t)← ∇f (x(t)) + z(t)
6: x(t+ 1)← x(t)− η · g(t)
7: end for
8: return x(T)
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A few comments on NGD

∠ At each step, perturbs the gradient using a unit vector pointing at a random direction,
to continue to make progress even at saddle points

∠ for standard Gaussian random vector w ∼ N (0, Ip), take z = w
∥w∥

∠ we have E[z] = 0 so that E[g|x] = ∇f (x) unbiased estimate of true gradient (common
and important in stochastic optimization scheme)

∠ a side remark: the step length η ≈ 1/
√
T as in the horizon-aware setting of PGD,

essentially for the sake of proof
In case of a constrained optimization with non-convex objective:
∠ use Projected Noisy Gradient Descent
∠ in fact applies to the Orthogonal Tensor Decomposition problem (which can be

shown, with some tedious calculations, to satisfy the strict saddle property)
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Sparse Regression

min
w∈Rp,∥w∥0≤s

∥y − XTw∥2 (4)

with some (given) X ∈ Rp×n, y ∈ Rn, and sparsity constraint s > 0.
∠ known to be an NP-hard problem
∠ can be solved via PGD, which, in the setting, known as Iterative Hard-thresholding if,

the problem (e.g., the sensing matrix X) is nice enough: nullspace property, restricted
eigenvalue property, Restricted Isometry Property (RIP), etc.
○␣ random design (i.i.d. Gaussian, Bernoulli entries)
○␣ deterministic design: incoherent matrix
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Iterative Hard-thresholding

Algorithm Iterative Hard-thresholding (IHT)

Input: Data X,y, step length η, projection sparsity level k
Output: A sparse model ŵ ∈ B0(k)
1: w(0)← 0
2: for t = 1, 2, . . . , do
3: z(t+ 1)← w(t)− η · X(XTw(t)− y)
4: w(t+ 1)← ΠB0(k)(z(t+ 1)) //in fact, sorting
5: end for
6: return w(t)
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A few comments on Sparse Recovery

Other popular techniques for Sparse Recovery
∠ hard thresholding techniques: IHT, Gradient Descent with Sparsification (GraDeS),

and Hard Thresholding Pursuit (HTP)
∠ pursuit techniques: discover support elements iteratively: at each time step, add a

new support element to an active support set (empty when initialized) and solve a
traditional least-squares (with no sparsity constraint, convex and easy) problem on
the active set

∠ convex relaxation: relax the L0 norm to L1 norm, solve the so-called LASSO problem,
in nice cases (e.g., RIP), can find optimal solution
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Low-rank Matrix Completion

min
X∈Rm×n, rank(X)≤r

∥ΠΩ(X− X∗)∥2F (5)

with an “observation” projection ΠΩ(X) defined as

[ΠΩ(X)]ij =
{
Xij if (i, j) ∈ Ω

0 otherwise.
(6)

∠ is a special case of the (or Affine Rank Minimization (ARM))
min

X∈Rm×n
∥A(X)− y∥22

s.t. rank(X) = r,
with affine transformation A(i,j) : X 7→ tr(XTEij) = Xij

∠ can be solved with PGD
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Singular Value Projection (SVP)

Algorithm Singular Value Projection (SVP)
Input: Linear map A(·), measurements y, target rank q, step length η
Output: A matrix X̂ with rank at most q
1: X(0)← 0m×n
2: for t = 1, 2, . . . do
3: Y(t+ 1)← X(t)− η · AT(A(X(t))− y)
4: Compute top q singular vectors/values of Y(t+ 1) to get Uq(t),Σq(t),Vq(t)
5: X(t+ 1)← Uq(t)Σq(t)VT

q (t)
6: end for
7: return X(t)
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A few comments on Low-rank Matrix Completion

∠ again, as we should have expected, SVP works when things are nice enough (e.g.,
matrix RIP)

∠ we can alternatively use alternative minimization to solve

min
U∈Rm×k,V∈Rn×k

∥ΠΩ(UVT − X∗)∥2F. (7)

∠ initializations are very important, since one in general has only convergence for
non-convex problems
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