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Before we start: a brief self introduction

» Zhenyu Liao

» 2010-2014: B.Sc. in Optical and Electronic Information, HUST

» 2014-2016: M.Sc. in Signal and Image Processing, University of Paris-Saclay, France.

» 2016-2019: Ph.D. in Statistics and Machine Learning, University of Paris-Saclay,
France, under the supervision of Prof. Romain Couillet

» 2020-2021: Postdoctoral Scholar at ICSI and Department of Statistics, University of
California, Berkeley, hosted by Prof. Michael Mahoney.

» 2021-now: Research Associated Professor at School of Electronic Information and
Communications, HUST.

» Homepage: https://zhenyu-liao.github.io/
» Research interest: machine learning, signal processing, high-dimensional statistics
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About today’s lecture

» Introduction to non-convex optimization
» Basic concepts and mathematical tools

» Some non-convex optimization methods: non-convex projected GD, alternating
minimization, stochastic optimization

» Some applications in signal processing and machine learning: sparse recovery,
low-rank matrix recovery, and phase retrieval (MAY SKIP)

» Reference: Prateek Jain and Purushottam Kar. “Non-Convex Optimization for
Machine Learning”. In: Foundations and Trends® in Machine Learning 10.3-4 (Dec.
2017), 142-363. 1ssn: 1935-8237, 1935-8245. por: 10.1561/2200000058


https://doi.org/10.1561/2200000058
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Non-convex optimization

» generic form of analytic optimization problem:

o S
s.t. xeC,

with variable x € R?, objective function f: R” — R, and C C R? the constraint set.
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Non-convex optimization

» generic form of analytic optimization problem:

o S
s.t. xeC,

with variable x € R?, objective function f: R” — R, and C C R? the constraint set.
» the problem is convex if both the objective f is a convex function and C is a convex set
» Examples of non-convex optimization problems:

» sparse regression: W = arg minycpy |y — X'w|2, st |wlo<s<p

» recommendation system: (low rank) matrix completion problem as

A = arg minyc g > jea(Xi — Aj)?,  storank(X) <r

» life is hard and math is difficult, we resort to convex relaxation, and hope the gap is

small
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Figure: Examples of applications of non-convex optimization
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Convex versus non-convex optimization

» facing a non-convex optimization problem, we may either
(i) resortto convex relation of the problem, and hope that the problem is nice enough
for the gap to be small; or
(ii) (somewhat naively) solve it using non-convex optimization approaches (such as

gradient descent, alternating minimization, and the expectation-maximization
algorithm, etc.) and ?
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Convex versus non-convex optimization

» facing a non-convex optimization problem, we may either
(i) resortto convex relation of the problem, and hope that the problem is nice enough
for the gap to be small; or
(ii) (somewhat naively) solve it using non-convex optimization approaches (such as
gradient descent, alternating minimization, and the expectation-maximization
algorithm, etc.) and ?
» in fact it turns out that if the problems possess nice structure, both approaches work,
and non-convex techniques may even be more efficient (in term of complexity)!
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Recap on convex analysis

» Convex combination: for xi,...,x, € R, xg = > "1 ; 0ix; with6p > 0and > 1, 6; = 1.
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» Convex combination: for xi, ...

» Convex set: C such that if x,y € C then forany A € [0,1], (1 - A\)x+ Ay € C
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Recap on convex analysis

» Convex combination: for xi,...,x, € R, xg = > "1 ; 0ix; with6p > 0and > 1, 6; = 1.
» Convex set: C such that if x,y € C then forany A € [0,1], (1 - A\)x+ Ay € C

» Convex function: (if continuously differentiable) f : R — R if x,y € R? then
fly) > f(x) — (y — x, Vf(x)), with Vf(x) the gradient of f at x

CONVEX SET NON-CONVEX SET NON-CONVEX SET
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Convex projection

» For any closed set (convex or not) C C R and z € R, projection onto C as

Il¢(z) = arg minyec [|Ix — 2|
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Convex projection

» For any closed set (convex or not) C C R and z € R, projection onto C as
Ile(z) = arg minyec [|Ix — 2|
» properties of Il¢(-):
(i) any closed set C, then for all x € C, ||[Il¢(z) — z|| < ||x — z|
(ii) convex setC, then forallx € C, (x —Il¢(z),z — Il¢(z)) <0
(iii) contraction property: convex C, then for all x € C, ||TI¢(z) — x|| < ||z — x|
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Convex projection: a few (practical) examples

» for C = B;,(1), that is, the unit L, ball, the projection is equivalent to normalization

z/llz|, if[|z] > 1
Z, otherwise

s,1)(z) = { (1)
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Convex projection: a few (practical) examples

» for C = B;,(1), that is, the unit L, ball, the projection is equivalent to normalization

M 1(2) = {Z/ el it el = 1 M)

Z, otherwise

» for C = B(1), the unit L ball, the projection is equivalent to soft-thresholding:
z = Il (1)(z), then z; = max(z; — 0,0) for a threshold 6 determined by a sorting on z

» for C = By(1), non-convex set! but hard-thresholding, see later
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(2)

Algorithm Projected Gradient Descent (PGD)

Input: Convex objective f, convex constraint set C, step lengths 7
Output: A point x € C with near-optimal objective value

1: X(O) =0

2: fort=1,2,...,Tdo

3 2lt+1) —x(t) —n - VAx(E))

4 x(t+1) « Ie(z(t+ 1))

5: end for

6: (OPTION 1) return Xgna = x(7T)

7: (OPTION 2) return Xavg = (31 x(t))/T

8: (OPTION 3) return Xpes; = arg minggr) f(x(t))
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A few comments on PGD

» in the proof of the convergence of PGD, we generally get step length n; = 1/+/T, with
T the total number of iterations: horizon-aware
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A few comments on PGD

» in the proof of the convergence of PGD, we generally get step length n; = 1/+/T, with
T the total number of iterations: horizon-aware

» horizon-oblivious: take 7 = 1/ V't also works, in theory
» in practice: the step length 7 is tuned globally by doing a grid search over several
possible values (akin to the horizon-aware setting), or per-iteration using line search
mechanisms (akin to the horizon-oblivious setting), to obtain a step length value that
assures good convergence rates
o line search: for a given direction g(x(t)), choose 7 > 0 that (exactly or “loosely”)
minimize k() = f(x(t) — n¢ - g(x(t))), and update as x(t + 1) = x(t) — n; - g(x(¢))
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Projected gradient descent (again), but non-convex

» PGD practically applies to convex and non-convex problems (we will see why)

For z € R?, let 0 be the permutation that sorts the entries of z in decreasing order,
|ZU(1)| > ... 2 |Zo(p)|/ then HBO(S) (Z) = [Zi . 1U(i)§s]r with B()(S) = {X € RP, ”X”O < S}.

Projection into sparse vectors

For A € R"™" with singular value decomposition A = UXVT, then Il5_ () (A)
U(r)E(r)VE';) for any r < min(m, n), with Brank(r) = {A € R™*" rank(A) < r}.

Projection into low-rank matrices (Eckart-Young-Mirsky theorem)
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Projected gradient descent (again), but non-convex

» PGD practically applies to convex and non-convex problems (we will see why)
» however, the projection onto a non-convex C can already be NP-hard

For z € R?, let 0 be the permutation that sorts the entries of z in decreasing order,
|ZU(1)| > ... 2 |Zo(p)|/ then HBQ(S) (Z) = [Zi . 1U(i)§s]r with B()(S) = {X € RP, ”X”O < S}.

Projection into sparse vectors

» also known as the hard-thresholding

For A € R"™*" with singular value decomposition A = USVT, then Iz, )(A) =
U(r)E(r)VE';) for any r < min(m, n), with Bank(r) = {A € R™*" rank(A) < r}.

Projection into low-rank matrices (Eckart-Young-Mirsky theorem)
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Intuition on how this might work for non-convex problems

» (generally) non-convex can be restricted convex if f : R” — R over a (possibly
non-smooth) region C C R? satisfies (x — Il¢(z),z — Il¢(z)) <0

N
SVg(x)

d d
—f:R* >R —g:R* >R
RESTRICTED A NON-CONVEX FUNCTION THAT SATISFIES
CONVEXITY RESTRICTED STRONG CONVEXITY
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Intuition on how this might work for non-convex problems

» (generally) non-convex can be restricted convex if f : R” — R over a (possibly
non-smooth) region C C R? satisfies (x — Il¢(z),z — Il¢(z)) <0

» so everything should work as in the convex case with (almost) the same PGD
approach, and this is indeed the case

N
SVg(x)

d d
—f:R* >R —g:R* >R
RESTRICTED A NON-CONVEX FUNCTION THAT SATISFIES
CONVEXITY RESTRICTED STRONG CONVEXITY
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Alternative Minimization

» useful when the optimization concerns with two or more groups of variables, e.g., in
low-rank matrix completion, find X € R"™*" such that rank(X) = r <> X = UV with
U e R™¥" YV € R"™"
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Alternative Minimization

» useful when the optimization concerns with two or more groups of variables, e.g., in
low-rank matrix completion, find X € R"™*" such that rank(X) = r <> X = UV with
Ue Rmxr’v c R"xr

» in these case, the problem may not be jointly convex in all the variables

» Joint convexity: for f: R x R7 — R continuously differentiable in two variables, if for
every (x1,y1), (x1,y1) € RP*7 one has
f(x2,y2) > f(x1,y1) + (Vf(x1,y1), (X2, y2) — (X1,y1)), sSame as convexity inz = [x, y

» f is marginally convex in its first variable if for every given y € R, the function
(,y): R — Ris convex, thatis f(x2,y) > f(x1,y) + (Vxf (x1,¥),X2 — X1)

» the idea is simple: solve for one variable (which is convex), with other variables fixed

]T
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Generalized Alternating Minimization (gAM)

Algorithm Generalized Alternating Minimization (gAM)

Input: Objective functionf: X x Y — R

Output: A point (x,y) € X x Y with near-optimal objective value
1: (x(0),y(0)) < INIT()
2: fort=1,2,...,T do
3 x(t+1) « argmingy f(x,y(f))
4 y(t+1) « argmingey f(x(f+1),y)
5: end for
6: return (x(T),y(T))

» we can of course use gradient descent to solve the marginal optimization problem
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gAM always work well? No!

For any given'y € ), we say X is a marginally optimal coordinate with respect to y, and
denote x € mOPT(y) if f(x,y) < f(x,y) for all x € X, and similarly for y € mOPT(x).

Marginally Optimum Coordinate

A point (x,y) € X x ) is a bistable point if x € mOPT(y) and y € mOPT¢(x).
Bistable Point

» the optimum of the optimization problem must be a bistable point
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gAM always work well? No!

For any given'y € ), we say X is a marginally optimal coordinate with respect to y, and
denote x € mOPT(y) if f(x,y) < f(x,y) for all x € X, and similarly for y € mOPT(x).

Marginally Optimum Coordinate

A point (x,y) € X x ) is a bistable point if x € mOPT(y) and y € mOPT¢(x).
Bistable Point

» the optimum of the optimization problem must be a bistable point

» but gAM must stop at a bistable point



Some Non-convex Optimization Methods «20/39

gAM and its convergence (or not) in non-convex problems

Yo (OPT(y0).y0)

BISTABLE

POINT (x0, OPT(x0))

|
MARGINAL OPTIMALITY PLOT gAM ITERATES CONVERGE MULTIPLE BISTABLE

TO THE BISTABLE POINT  POINTS WITH RESPECTIVE
REGIONS OF ATTRACTION

X

» when having multiple bistable points, convergence depends on initialization (so in
fact the problem structure), with detailed analysis on the “region of attraction” of
different bistable points
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any one is good enough
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Convergence of gAM for convex problems

Things are (again) nice for convex problems

» for differentiable (jointly) convex functions, all bistable points are global minima, so
any one is good enough

» (Block) Coordinate Minimization approach: solve a single p-dimensional variable
x € RPas p one-dimensional variables {x1,...,x,}, useful in large-scale convex
optimization

» may not work well for non-differentiable optimization problems

For non-convex problems:

» we can only converge to bistable points, and hope they are (or at least close, in some
sense, to) global minima
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Convergence of gAM for non-convex problems

Apoint (x,y) € X x)is abistable with respect to a continuously differentiable function
f: RP x RY that is marginally convex in both its variables if and only if Vf(x,y) = 0.

Lemma (Bistable points are stationary points)

A function f : RP x RY is said to be C-robust bistable if for some C > 0, every (x,y) €
RP x R1, x € mOPT(y) and y € mOPT¢(x) we have

fOGye) +f(xe,y) = 2f < CQ2f(x,y) —f(x,¥) —f(Xy)), (3)

with (x4, y«) any optimal points with f(x,y«) = fs.

Robust Bistability Property

» reduce locally the value of f with marginal optimization
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Convergence of gAM for non-convex problems

Apoint (x,y) € X x)is abistable with respect to a continuously differentiable function
f: RP x RY that is marginally convex in both its variables if and only if Vf(x,y) = 0.

Lemma (Bistable points are stationary points)

A function f : RP x RY is said to be C-robust bistable if for some C > 0, every (x,y) €
RP x R1, x € mOPT(y) and y € mOPT¢(x) we have

fOGye) +f(xe,y) = 2f < CQ2f(x,y) —f(x,¥) —f(Xy)), (3)

with (x4, y«) any optimal points with f(x,y«) = fs.

Robust Bistability Property

» reduce locally the value of f with marginal optimization
» if no more can be made (f(x,y) ~ f(x,y) ~ f(X,y)), close to the optimum
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The Expectation Maximization (EM) algorithm

Very important and interesting,
but skipped here due to time constraint and its different form, see [ 1, Chapter 5]!
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Stochastic Optimization Techniques

» in (ML and SP) applications, objectives functions can be non-convex as well

Minimum

Maximum

Saddle point

N

/N
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Stochastic Optimization Techniques

» in (ML and SP) applications, objectives functions can be non-convex as well
» gradient descent x(f + 1) = x(t) — n:Vf (x(t)) stalls at stationary points with

Vf(x(t)) = 0
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Stochastic Optimization Techniques

» in (ML and SP) applications, objectives functions can be non-convex as well
» gradient descent x(f + 1) = x(t) — n:Vf (x(t)) stalls at stationary points with

Vf(x(t)) = 0

o local minima, V2f(x) = 0
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Stochastic Optimization Techniques

» in (ML and SP) applications, objectives functions can be non-convex as well
» gradient descent x(f + 1) = x(t) — n:Vf (x(t)) stalls at stationary points with

Vf(x()) =0
o local minima, V2f(x) = 0
o local maxima, V2f(x) < 0

Minimum

N

Maximum Saddle point

/N
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Stochastic Optimization Techniques

» in (ML and SP) applications, objectives functions can be non-convex as well
» gradient descent x(f + 1) = x(t) — n:Vf (x(t)) stalls at stationary points with

Vf(x()) =0
o local minima, V2f(x) = 0
o local maxima, V2f(x) < 0

o saddle points contains both positive and negative eigenvalues: we do not know, but
important, since they are many of them

Minimum Maximum Saddle point

A
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Motivating example: Orthogonal Tensor Decomposition

» use outer product ® to construct 2nd order tensor, foru,v e R, u®@ v = uv' € RPXP

tensor = multidimensional array

vector matrix tensor

H®

Ve R64 X e ]RSXE X e R4x4x4
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Motivating example: Orthogonal Tensor Decomposition

» use outer product ® to construct 2nd order tensor, foru,v e R, u®@ v = uv' € RPXP

» 4th-order tensor (4-dimensional array) that has orthogonal decomposition
T =Y, ®w®u®u, withuu; = §; (orthonormal)

tensor = multidimensional array

vector matrix tensor

Ve R64 X e ]RSXB X e R4x4x4
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» like a matrix € RP*? defines a bilinear form A: (x,y) + x" Ay, (orthonormal) tensor

defines multi-linear form as
r T

Tw,vov,v) = S @) € R, TILLLY) = S (@) - (w @ w @ w) € R
i=1 i=1

Figure 6.1: The function on the left £(z) = o' — 4 2% + 4 has two global optima {~v2, v2}
separated by a local maxima at 0. Using this function, we construct on the right, a higher
dimensional function g(z,y) = f(z) + f(y) + 8 which now has 4 global minima separated by
4 saddle points. The number of such minima and saddle points can explode exponentially in
learning problems with symmetry (indeed g(z, y, 2) = f(z)+ f(y) + f(z)+12 has 8 local minima
and saddle points). Plot on the right courtesy acadeno.org
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» like a matrix € RP*P defines a bilinear form A: (x,y) — x' Ay, (orthonormal) tensor

defines multi-linear form as
s r

Tw,v,v,v) = S (@) R, TILLLY) = S (ulv) - (@ w; @ u)) € RV
i=1 i=1

» the problem of tensor decomposition: recover all u;, i = 1, ...,r, do this one by one

Figure 6.1: The function on the left £(z) = o' — 4 2% + 4 has two global optima {~v2, v2}
separated by a local maxima at 0. Using this function, we construct on the right, a higher
dimensional function g(z,y) = f(z) + f(y) + 8 which now has 4 global minima separated by
4 saddle points. The number of such minima and saddle points can explode exponentially in
learning problems with symmetry (indeed g(z, y, 2) = f(z)+ f(y) + f(z)+12 has 8 local minima
and saddle points). Plot on the right courtesy acadeno.org
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» like a matrix € RP*P defines a bilinear form A: (x,y) — x' Ay, (orthonormal) tensor

defines multi-linear form as
s r

T(V,V, V,V) = Z(U;I—V)4 € Rv s 77-(171317‘/) = Z(u;rv) : (ui ®u® ui) € RP>*P>P
i=1 i=1
» the problem of tensor decomposition: recover all u;, i = 1, ...,r, do this one by one
» in need to solve maxy =1 7 (u,u,u,u) = Y7 (u]u)*

Figure 6.1: The function on the left f(z) = 2" — 4- 2% + 4 has two global optima {7\/5, ﬁ}
separated by a local maxima at 0. Using this function, we construct on the right, a higher
dimensional function g(z,y) = f(z) + f(y) + 8 which now has 4 global minima separated by
4 saddle points. The number of such minima and saddle points can explode exponentially in
learning problems with symmetry (indeed g(z, y, 2) = f(z)+ f(y) + f(z)+12 has 8 local minima
and saddle points). Plot on the right courtesy acadeno.org
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» in the case of Orthogonal Tensor Decomposition, symmetry in problem:
o recover the components in any order we like (a lot of equivalent global optima); but
o convex combinations of the components are not optima: in fact, r isolated optima
spread out in space, interspersed with saddle points (just like in the pictures)
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» in the case of Orthogonal Tensor Decomposition, symmetry in problem:
o recover the components in any order we like (a lot of equivalent global optima); but
o convex combinations of the components are not optima: in fact, r isolated optima
spread out in space, interspersed with saddle points (just like in the pictures)
» In this case, what should we do?
(i) apply second-order (e.g., Newton’s method) to “escape” from saddle points: this is
however not always possible due to high complexity
(ii) what to do if we are only allowed to use first-order methods? Add some noise!
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» in the case of Orthogonal Tensor Decomposition, symmetry in problem:
o recover the components in any order we like (a lot of equivalent global optima); but
o convex combinations of the components are not optima: in fact, r isolated optima
spread out in space, interspersed with saddle points (just like in the pictures)
» In this case, what should we do?
(i) apply second-order (e.g., Newton’s method) to “escape” from saddle points: this is
however not always possible due to high complexity
(ii) what to do if we are only allowed to use first-order methods? Add some noise!

» intuition: if a saddle point x of f contains direction of steep gradient, then there is
some chance for gradient descent to “discover” and “fall” along it
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Intuition of noisy gradient descent

» existence of the steep gradient direction makes the saddle unstable and behaves like a
local maxima along this direction
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RS
SOSSE




Introduction and basic concepts  Some Non-convex Optimization Methods /A pplications «28/39

Intuition of noisy gradient descent

» existence of the steep gradient direction makes the saddle unstable and behaves like a
local maxima along this direction

» so slight perturbation of the gradient may cause gradient descent to roll down

» see below for the two-dimensional toy example of f (x,y) = x*> — y?, with saddle at
(0,0) and minimum Hessian eigenvalue = —2

& SN
RN
e
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The strict saddle property

For unconstrained optimization problem minycgy f (x), we say f: R — R satisfy the

strict saddle property if, for every point x € R” we have at least one the following
properties holds:

» Non-stationary point: ||Vf(x)|| > Cy;

for some Cy,Cp,C3 > 0.

Strict saddle property
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The strict saddle property

For unconstrained optimization problem minycgy f (x), we say f: R — R satisfy the

strict saddle property if, for every point x € R” we have at least one the following
properties holds:

» Non-stationary point: ||Vf(x)|| > Cy;
» Strict saddle point: A\, (V2f(x)) < —Cp;

» Approximate local minimum: ||x — x.|| > C3 for some local minimum x..
for some C1,Cp,C3 > 0.

Strict saddle property

» assume the property of f and is in fact very restrictive

» however, there does exist such problem in practice: e.g., the Orthogonal Tensor
Decomposition
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Noisy Gradient Descent (NGD)

«30/39

Algorithm Noisy Gradient Descent (NGD)

Input: Objective f, max step length 7y, tolerance e
Output: A locally optimal point x € RP
x(0) « INIT()
: Set]ﬂé—»1/n2,vvhere77::rnhl{ez/logz(l/e),nnmx}
:fort=1,2,...,T do
Sample perturbation z(t) ~ SP~1
g(t) — VF(x(t) +2(t)
X(t+1) < x(t) — - g(t)
end for
return x(T)

PN @R

//Random pt.

on unit sphere
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A few comments on NGD

» At each step, perturbs the gradient using a unit vector pointing at a random direction,
to continue to make progress even at saddle points

In case of a constrained optimization with non-convex objective:
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A few comments on NGD

» At each step, perturbs the gradient using a unit vector pointing at a random direction,
to continue to make progress even at saddle points

» for standard Gaussian random vector w ~ N(0,1,), take z = ||TWH
» we have E[z| = 0 so that E[g|x] = Vf(x) unbiased estimate of true gradient (common
and important in stochastic optimization scheme)

» aside remark: the step length n ~ 1/+/T as in the horizon-aware setting of PGD,
essentially for the sake of proof

In case of a constrained optimization with non-convex objective:
» use Projected Noisy Gradient Descent

» in fact applies to the Orthogonal Tensor Decomposition problem (which can be
shown, with some tedious calculations, to satisfy the strict saddle property)
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Sparse Regression

min

WERY, [[wllo<s

ly — XTwl2

with some (given) X € RP*", y € R", and sparsity constraint s > 0.

» known to be an NP-hard problem

(4)
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with some (given) X € RP*", y € R", and sparsity constraint s > 0.
» known to be an NP-hard problem

» can be solved via PGD, which, in the setting, known as Iterative Hard-thresholding if,
the problem (e.g., the sensing matrix X) is nice enough: nullspace property, restricted
eigenvalue property, Restricted Isometry Property (RIP), etc.
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Sparse Regression

min [y — X wl; (4)

WERY, [[wllo<s

with some (given) X € RP*", y € R", and sparsity constraint s > 0.
» known to be an NP-hard problem
» can be solved via PGD, which, in the setting, known as Iterative Hard-thresholding if,

the problem (e.g., the sensing matrix X) is nice enough: nullspace property, restricted
eigenvalue property, Restricted Isometry Property (RIP), etc.

o random design (i.i.d. Gaussian, Bernoulli entries)
o deterministic design: incoherent matrix
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Iterative Hard-thresholding

«34/39

Algorithm Iterative Hard-thresholding (IHT)

Input: Data X,y, step length 7, projection sparsity level k
Output: A sparse model w € By(k)
1: W(O) +~0
2: fort=1,2,...,do
3 z(t+1) «—w(t)—n-XXTw(t) —y)
4: W(t + 1) — HBo(k) (Z(f + 1))
5: end for
6: return w(t)

//in fact, sorting
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A few comments on Sparse Recovery

Other popular techniques for Sparse Recovery

» hard thresholding techniques: IHT, Gradient Descent with Sparsification (GraDeS),
and Hard Thresholding Pursuit (HTP)
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» pursuit techniques: discover support elements iteratively: at each time step, add a
new support element to an active support set (empty when initialized) and solve a
traditional least-squares (with no sparsity constraint, convex and easy) problem on
the active set
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A few comments on Sparse Recovery

Other popular techniques for Sparse Recovery

» hard thresholding techniques: IHT, Gradient Descent with Sparsification (GraDeS),
and Hard Thresholding Pursuit (HTP)

» pursuit techniques: discover support elements iteratively: at each time step, add a
new support element to an active support set (empty when initialized) and solve a
traditional least-squares (with no sparsity constraint, convex and easy) problem on
the active set

» convex relaxation: relax the Ly norm to L1 norm, solve the so-called LASSO problem,
in nice cases (e.g., RIP), can find optimal solution
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RUNTIME (sec)

200 ! .
«=O-: LASSO
150 | FoBa £
—O— HT
100 p-=pmm d' g

0.5 1
DIMENSIONALITY (p)x10*

1.5

2

2.5
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Low-rank Matrix Completion
i Mo (X — X.) |7 5
XERMM, Tank(X)<r ITa( Iz )
with an “observation” projection Il (X) defined as
X if (i,7) € Q
Mol = { ) ©)

0 otherwise.

» is a special case of the (or Affine Rank Minimization (ARM))

i AX) —yl3
Lain - [lAX) = yll2

s.t. rank(X) =7,

with affine transformation A; ;) : X — tr(XTEy) = Xj
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Low-rank Matrix Completion
i Mo (X — X.) |7 5
XERMM, Tank(X)<r ITa( Iz )
with an “observation” projection Il (X) defined as
X if (i,7) € Q
Mol = { ) ©)

0 otherwise.

» is a special case of the (or Affine Rank Minimization (ARM))

i AX) —yl3
Lain - [lAX) = yll2

s.t. rank(X) =7,

with affine transformation A; ;) : X — tr(XTEy) = Xj
» can be solved with PGD
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Singular Value Projection (SVP)

«38/39

Algorithm Singular Value Projection (SVP)

Input: Linear map A(-), measurements y, target rank g, step length n
Output: A matrix X with rank at most g
1: X(O) — 04xn
2: fort=1,2,...do
3 Y(E+1) < X(E) — - AT(AX(D) — y)
4. Compute top g singular vectors/values of Y(t 4 1) to get Uy(t), 34(t), V4(t)
5 X(t41) « Uy(t)Zq(t)Vy (t)
6: end for
7: return X(t)
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A few comments on Low-rank Matrix Completion

» again, as we should have expected, SVP works when things are nice enough (e.g.,
matrix RIP)
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UER"’Xk,VER”Xk



Applications «39/39

A few comments on Low-rank Matrix Completion

» again, as we should have expected, SVP works when things are nice enough (e.g.,
matrix RIP)

» we can alternatively use alternative minimization to solve

min _|To(UVT - X.)|3. (7)
UER"’Xk,VER”Xk

» initializations are very important, since one in general has only convergence for
non-convex problems
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