Publications

Conferences:

  1. J. Wei, X. Lee, Z. Liao, T. Palpanas, B. Peng “Subspace Collision: An Efficient and Accurate Framework for High-dimensional Approximate Nearest Neighbor Search”, SIGMOD International Conference on Management of Data (SIGMOD 2025), 2025. preprint

  2. W. Yang, Z. Wang, X. Mai, Z. Ling, R. C. Qiu, Z. LiaoInconsistency of ESPRIT DoA Estimation for Large Arrays and a Correction via RMT” (Best Student Paper Candidate), IEEE 32nd European Signal Processing Conference (EUSIPCO 2024), 2024.

  3. Z. Ling, L. Li, Z. Feng, Y. Zhang, F. Zhou, R. C. Qiu, Z. LiaoDeep Equilibrium Models are Almost Equivalent to Not-so-deep Explicit Models for High-dimensional Gaussian Mixtures”, The Forty-first International Conference on Machine Learning (ICML 2024), 2024. preprint

  4. Y. Song, K. Wan, Z. Liao, H. Xu, G. Caire, S. Shamai, “An Achievable and Analytic Solution to Information Bottleneck for Gaussian Mixtures”, 2024 IEEE International Symposium on Information Theory (ISIT 2024), 2024.

  5. Y. Wang, Z. Feng, Z. Liao, “FedRF-Adapt: Robust and Communication-Efficient Federated Domain Adaptation via Random Features”, Workshop on Timely and Private Machine Learning over Networks, 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSPW 2024), 2024.

  6. L. Gu, Y. Du, Y. Zhang, D. Xie, S. Pu, R. C. Qiu, Z. Liao, ““Lossless” Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel Approach” (Spotlight), The 36th Conference on Neural Information Processing Systems (NeurIPS 2022), 2022. preprint by fixing typos in Theorems 1 and 2 from the NeurIPS 2022 proceeding version.

  7. H. Tiomoko, Z. Liao, R. Couillet, “Random matrices in service of ML footprint: ternary random features with no performance loss”, The Tenth International Conference on Learning Representations (ICLR 2022), 2022. preprint

  8. Z. Liao, M. W. Mahoney, “Hessian Eigenspectra of More Realistic Nonlinear Models” (Oral), The 35th Conference on Neural Information Processing Systems (NeurIPS 2021), 2021. preprint

  9. M. Dereziński, Z. Liao, E. Dobriban, M. W. Mahoney, “Sparse sketches with small inversion bias”, The 34th Annual Conference on Learning Theory (COLT 2021), 2021. preprint

  10. F. Liu, Z.Liao, J. A.K. Suykens, “Kernel regression in high dimension: Refined analysis beyond double descent”, The 24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021), 2021. preprint

  11. Z.Liao, R. Couillet, M. W. Mahoney, “Sparse Quantized Spectral Clustering” (Spotlight), The Ninth International Conference on Learning Representations (ICLR 2021), 2021. poster, slides, and preprint

  12. Z.Liao, R. Couillet, M. W. Mahoney, “A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian Kernel, A Precise Phase Transition, and the Corresponding Double Descent”, The 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada, 2020. poster and preprint

  13. M. Dereziński, F. Liang, Z. Liao, M. W. Mahoney, “Precise expressions for random projections: Low-rank approximation and randomized Newton”, The 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada, 2020. preprint

  14. Z.Liao, R. Couillet, “On Inner-product Kernels of High Dimensional Data”, IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2019), Guadeloupe, French West Indies, 2019. preprint

  15. X. Mai, Z. Liao, R. Couillet, “A Large Scale Analysis of Logistic Regression: Asymptotic Performance and New Insights”, 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019), Brighton, UK, 2019. poster and preprint

  16. R. Couillet, Z. Liao, X. Mai, “Classification Asymptotics in the Random Matrix Regime”, The 26th European Signal Processing Conference (EUSIPCO 2018), Rome, Italy, 2018. preprint

  17. Z. Liao, R. Couillet, “On the Spectrum of Random Features Maps of High Dimensional Data”, Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 2018. (Long Talk) slides and preprint

  18. Z. Liao, R. Couillet, “The Dynamics of Learning: A Random Matrix Approach”, Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 2018. (Long Talk) slides and preprint

  19. Z. Liao, R. Couillet, “Random Matrices Meet Machine Learning: A Large Dimensional Analysis of LS-SVM”, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2017), New Orleans, USA, 2017. slides and preprint


Journals:

  1. Z. Feng, Y. Wang, J. Li, F. Yang, J. Lou, T. Mi, R. C. Qiu, Z. Liao, “Robust and Communication-Efficient Federated Domain Adaptation via Random Features”, IEEE Transactions on Knowledge and Data Engineering, 2024. preprint and code

  2. J. Wang, S. Zhang, J. Cai, Z. Liao, C. Arenz, R. Betzholz, “Robustness of random-control quantum-state tomography”, Physical Review A 108 (2 Aug. 2023), 022408. preprint

  3. Y. Chitour, Z. Liao, R. Couillet, “A geometric approach of gradient descent algorithms in linear neural networks”, Mathematical Control and Related Fields, 13(3) (2023), 918–945. preprint

  4. Z.Liao, R. Couillet, M. W. Mahoney, “A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent”, Journal of Statistical Mechanics: Theory and Experiment 2021(12) (Dec. 2021), 124006. preprint

  5. Z. Liao, R. Couillet, “A Large Dimensional Analysis of Least Squares Support Vector Machines”, IEEE Transactions on Signal Processing 67 (4) (Feb. 2019), 1065-1074. (University of Paris-Saclay ED STIC Ph.D. Paper Award) preprint and supplementary material

  6. C. Louart, Z. Liao, R. Couillet, “A Random Matrix Approach to Neural Networks”, The Annals of Applied Probability 28 (2) (Apr. 2018), 1190-1248. preprint


Preprints:


Ph.D. thesis:

Z. Liao, “A random matrix framework for large dimensional machine learning and neural networks”, CentraleSupélec, University Paris-Saclay, September 2019. [slides]